Unnamed: 0
int64
0
409
Code
stringlengths
131
27.3k
Unit Test
stringlengths
89
30.5k
0
#ifndef TENSORFLOW_COMPILER_MLIR_TF2XLA_API_V1_COMPILE_MLIR_UTIL_H_ #define TENSORFLOW_COMPILER_MLIR_TF2XLA_API_V1_COMPILE_MLIR_UTIL_H_ #include <memory> #include "absl/base/attributes.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/StringRef.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/xla_argument.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/xla_computation.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/framework/graph_debug_info.pb.h" #include "tensorflow/core/framework/tensor_shape.h" namespace tensorflow { ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") Status ConvertMLIRToXlaComputation( mlir::ModuleOp module_op, llvm::StringRef device_type, xla::XlaComputation* xla_computation, bool use_tuple_args, bool enable_op_fallback, bool return_tuple, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns = {}, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes = {}, llvm::StringRef module_name = llvm::StringRef()); ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") void CreateConvertMlirToXlaHloPipeline( mlir::OpPassManager& pm, llvm::StringRef device_type, bool enable_op_fallback, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes, bool lower_to_xla_hlo = true, bool allow_partial_conversion = false); struct TensorOrResourceShape { TensorShape shape; bool is_resource = false; }; ABSL_DEPRECATED("Not meant to be used directly and should be a util.") Status RefineShapes(llvm::ArrayRef<TensorOrResourceShape> arg_shapes, mlir::ModuleOp module); ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") Status BuildHloFromTf(mlir::ModuleOp module_op, xla::XlaBuilder& builder, llvm::ArrayRef<xla::XlaOp> xla_params, std::vector<xla::XlaOp>& returns, llvm::ArrayRef<TensorOrResourceShape> arg_shapes, llvm::StringRef device_type, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes); ABSL_DEPRECATED("Not meant to be used directly and should be a util.") Status PopulateResultIOInfo( mlir::ModuleOp module_op, llvm::ArrayRef<TensorOrResourceShape> arg_shapes, bool use_tuple_args, bool use_resource_updates_for_aliases, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, XlaCompilationResult* compilation_result); ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") absl::StatusOr<std::string> CompileMlirToXlaHlo( mlir::ModuleOp module_op, llvm::ArrayRef<TensorOrResourceShape> arg_shapes, llvm::StringRef device_type, bool use_tuple_args, bool enable_op_fallback, bool use_return_tuple, bool use_resource_updates_for_aliases, XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, XlaCompilationResult* compilation_result, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes, llvm::StringRef module_name = llvm::StringRef(), bool lower_to_xla_hlo = true); ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") absl::StatusOr<std::string> CompileSerializedMlirToXlaHlo( llvm::StringRef mlir_module_string, llvm::ArrayRef<TensorShape> arg_shapes, llvm::StringRef device_type, bool use_tuple_args, bool enable_op_fallback, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, XlaCompilationResult* compilation_result, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes = {}, llvm::StringRef module_name = llvm::StringRef(), bool lower_to_xla_hlo = true); ABSL_DEPRECATED("Use v2/legalize_tf.h::LegalizeMlirToHlo instead.") Status CompileGraphToXlaHlo( mlir::ModuleOp module_op, llvm::ArrayRef<XlaArgument> args, llvm::StringRef device_type, bool use_tuple_args, bool enable_op_fallback, bool use_return_tuple, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, XlaCompilationResult* compilation_result, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes); ABSL_DEPRECATED( "Use v1/compile_tf_graph.h::CompileTensorflowGraphToHlo instead.") Status BuildHloFromGraph( const Graph& graph, xla::XlaBuilder& builder, mlir::MLIRContext& mlir_context, llvm::ArrayRef<xla::XlaOp> xla_params, std::vector<xla::XlaOp>& returns, bool unconditionally_use_output_shapes, llvm::ArrayRef<XlaArgument> args, llvm::ArrayRef<std::string> control_rets, llvm::StringRef device_type, const FunctionLibraryDefinition& flib_def, const GraphDebugInfo& debug_info, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes = {}); static inline Status CompileToHloGraphAnalysisFailedError() { return errors::Internal("disabled after graph analysis"); } void RegisterConvertMlirToXlaHloPipelineWithDefaults(); } #endif #include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include <memory> #include <string> #include "tensorflow/compiler/mlir/tf2xla/mlir_bridge_rollout_policy.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Shape/IR/Shape.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Dialect.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OpDefinition.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LLVM.h" #include "mlir/Transforms/Passes.h" #include "stablehlo/dialect/Register.h" #include "tensorflow/compiler/mlir/quantization/stablehlo/passes/bridge/passes.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_executor.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_types.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/passes.h" #include "tensorflow/compiler/mlir/tensorflow/transforms/shape_inference.h" #include "tensorflow/compiler/mlir/tensorflow/translate/import_model.h" #include "tensorflow/compiler/mlir/tensorflow/translate/mlir_roundtrip_flags.h" #include "tensorflow/compiler/mlir/tensorflow/utils/bridge_logger.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tensorflow/utils/data_dumper_logger_config.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dynamic_shape_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/serialize_mlir_module_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/translate_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/xla_sharding_util.h" #include "tensorflow/compiler/mlir/tf2xla/internal/mlir_pass_instrumentation.h" #include "tensorflow/compiler/mlir/tf2xla/internal/passes/lowering_passes.h" #include "tensorflow/compiler/mlir/tf2xla/transforms/passes.h" #include "tensorflow/compiler/tf2xla/layout_util.h" #include "tensorflow/compiler/tf2xla/shape_util.h" #include "tensorflow/compiler/tf2xla/type_util.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/xla_computation.h" #include "xla/hlo/ir/hlo_sharding.h" #include "xla/mlir_hlo/mhlo/IR/hlo_ops.h" #include "xla/mlir_hlo/mhlo/IR/register.h" #include "xla/mlir_hlo/mhlo/transforms/passes.h" #include "xla/shape.h" #include "xla/translate/mhlo_to_hlo/layout_util.h" #include "xla/translate/mhlo_to_hlo/mlir_hlo_to_hlo.h" #include "xla/translate/mhlo_to_hlo/type_to_shape.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/platform/error_payloads.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/core_platform_payloads.pb.h" #include "tensorflow/core/tpu/tpu_defs.h" #include "tensorflow/core/util/debug_data_dumper.h" #include "tsl/platform/errors.h" namespace tensorflow { namespace { constexpr absl::string_view kGroupSizeAttrName = "tf2xla.collective_info.group_size"; constexpr absl::string_view kGroupKeyAttrName = "tf2xla.collective_info.group_key"; absl::StatusOr<TensorShape> GetTensorShapeFromXlaArgument( const XlaArgument& arg) { if (absl::holds_alternative<xla::Shape>(arg.shape)) { TensorShape arg_shape; TF_RETURN_IF_ERROR( XLAShapeToTensorShape(std::get<xla::Shape>(arg.shape), &arg_shape)); return arg_shape; } else { return std::get<TensorShape>(arg.shape); } } Status MaybeRewriteLayoutWithShardedShape( mlir::StringAttr sharding, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, xla::Shape* shape) { if (!sharding) return absl::OkStatus(); xla::OpSharding op_sharding; if (tensorflow::DecodeShardingAttribute(sharding, op_sharding).failed()) { return errors::InvalidArgument("failed to parse sharding '", sharding.getValue().str(), "'"); } std::optional<xla::HloSharding> hlo_sharding; TF_ASSIGN_OR_RETURN(hlo_sharding, xla::HloSharding::FromProto(op_sharding)); TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape( hlo_sharding, false, shape_determination_fns, shape)); return absl::OkStatus(); } Status GetXlaInputShapes( mlir::ModuleOp module, llvm::ArrayRef<TensorOrResourceShape> arg_shapes, bool use_tuple_args, const XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, std::vector<xla::Shape>* xla_input_shapes) { xla_input_shapes->clear(); mlir::func::FuncOp main_func = module.lookupSymbol<mlir::func::FuncOp>("main"); TF_RET_CHECK(main_func != nullptr) << "No main function found"; mlir::FunctionType func_type = main_func.getFunctionType(); int num_args = func_type.getNumInputs(); xla_input_shapes->reserve(num_args); std::vector<xla::Shape> individual_arg_shapes; individual_arg_shapes.reserve(num_args); for (int i = 0; i < num_args; ++i) { individual_arg_shapes.emplace_back(); xla::Shape& xla_shape = individual_arg_shapes.back(); DataType arg_dtype; TF_RETURN_IF_ERROR(ConvertToDataType(func_type.getInput(i), &arg_dtype)); auto layout_preference = shape_determination_fns.layout_preference_fn( arg_shapes[i].shape, arg_dtype, std::nullopt); TF_ASSIGN_OR_RETURN(xla_shape, shape_determination_fns.shape_representation_fn( arg_shapes[i].shape, arg_dtype, false, layout_preference)); auto sharding = main_func.getArgAttrOfType<mlir::StringAttr>(i, "mhlo.sharding"); TF_RETURN_IF_ERROR(MaybeRewriteLayoutWithShardedShape( sharding, shape_determination_fns, &xla_shape)); } if (use_tuple_args) { xla_input_shapes->push_back( xla::ShapeUtil::MakeTupleShape(individual_arg_shapes)); } else { *xla_input_shapes = individual_arg_shapes; } return absl::OkStatus(); } mlir::RankedTensorType GetBufferType(mlir::Type ty) { auto ranked_ty = mlir::dyn_cast_or_null<mlir::RankedTensorType>(ty); if (!ranked_ty) return {}; int64_t rank = ranked_ty.getRank(); llvm::SmallVector<int64_t, 4> dims = llvm::to_vector<4>(ranked_ty.getShape()); auto encoding = mlir::dyn_cast_or_null<mlir::mhlo::TypeExtensionsAttr>( ranked_ty.getEncoding()); if (encoding && !encoding.getBounds().empty()) { for (int64_t dim = 0; dim < rank; ++dim) { if (dims[dim] == mlir::ShapedType::kDynamic) { dims[dim] = encoding.getBounds()[dim]; } } } return GetTypeFromTFTensorShape(dims, ranked_ty.getElementType()); } Status GetOutputInfo( mlir::ModuleOp module, bool use_resource_updates_for_aliases, XlaShapeLayoutHelpers::ShapeDeterminationFns shape_determination_fns, xla::Shape* xla_output_shape, std::vector<XlaOutputDescription>* outputs, std::vector<XlaResourceUpdate>* resource_updates) { auto shape_representation_fn_no_fast_memory = [shape_determination_fns]( const xla::Shape& xla_shape) -> absl::StatusOr<xla::Shape> { TensorShape shape; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(xla_shape, &shape)); TF_ASSIGN_OR_RETURN(DataType dtype, EncodePrimitiveTypeAsDataType( xla_shape.element_type())); auto layout_preference = shape_determination_fns.layout_preference_fn( shape, dtype, std::nullopt); return shape_determination_fns.shape_representation_fn( shape, dtype, false, layout_preference); }; mlir::func::FuncOp main_func = module.lookupSymbol<mlir::func::FuncOp>("main"); mlir::FunctionType func_type = main_func.getFunctionType(); outputs->clear(); outputs->reserve(func_type.getNumResults()); resource_updates->clear(); resource_updates->reserve(func_type.getNumResults()); std::vector<xla::Shape> shapes; shapes.reserve(func_type.getNumResults()); llvm::SmallDenseMap<unsigned, unsigned> output_to_input_alias; for (unsigned i = 0; i < main_func.getNumArguments(); ++i) if (auto aliasing_output = main_func.getArgAttrOfType<mlir::IntegerAttr>( i, "tf.aliasing_output")) output_to_input_alias[aliasing_output.getInt()] = i; auto return_op = main_func.begin()->getTerminator(); for (const auto& type_and_idx : llvm::enumerate(func_type.getResults())) { size_t idx = type_and_idx.index(); auto result_ty = mlir::cast<mlir::RankedTensorType>(type_and_idx.value()); mlir::RankedTensorType buffer_ty = result_ty; if (!buffer_ty.hasStaticShape()) { mlir::Value return_val = return_op->getOperand(idx); if (auto owner = mlir::dyn_cast_or_null<mlir::tensor::CastOp>( return_val.getDefiningOp())) { buffer_ty = GetBufferType(owner.getOperand().getType()); if (!buffer_ty || !buffer_ty.hasStaticShape()) { return errors::InvalidArgument( "results needs to be static or bounded"); } } } xla::Shape shape = xla::TypeToShape(buffer_ty); if (shape.element_type() == xla::PRIMITIVE_TYPE_INVALID) { return errors::InvalidArgument("XLA conversion failed for MLIR type."); } TF_ASSIGN_OR_RETURN(shape, shape_representation_fn_no_fast_memory(shape)); if (!result_ty.hasStaticShape()) { int64_t rank = result_ty.getRank(); for (int64_t dim = 0; dim < rank; ++dim) { if (result_ty.isDynamicDim(dim)) { shape.set_dynamic_dimension(dim, true); } } } auto sharding = main_func.getResultAttrOfType<mlir::StringAttr>( type_and_idx.index(), "mhlo.sharding"); TF_RETURN_IF_ERROR(MaybeRewriteLayoutWithShardedShape( sharding, shape_determination_fns, &shape)); auto tensor_type = mlir::dyn_cast<mlir::RankedTensorType>(type_and_idx.value()); shapes.push_back(shape); auto it = output_to_input_alias.find(type_and_idx.index()); if (it != output_to_input_alias.end() && use_resource_updates_for_aliases) { resource_updates->emplace_back(); XlaResourceUpdate& resource_update = resource_updates->back(); resource_update.input_index = it->getSecond(); resource_update.modified = true; TF_RETURN_IF_ERROR(ConvertToDataType(tensor_type, &resource_update.type)); TF_RETURN_IF_ERROR(XLAShapeToTensorShape(shape, &resource_update.shape)); continue; } outputs->emplace_back(); XlaOutputDescription& out_desc = outputs->back(); TF_RETURN_IF_ERROR(ConvertToDataType(tensor_type, &out_desc.type)); out_desc.is_constant = false; TF_RETURN_IF_ERROR(XLAShapeToTensorShape(shape, &out_desc.shape)); out_desc.input_index = it != output_to_input_alias.end() ? it->getSecond() : -1; out_desc.is_tensor_list = false; } *xla_output_shape = xla::ShapeUtil::MakeTupleShape(shapes); return absl::OkStatus(); } void GetInputMappingForMlir(int num_inputs, std::vector<int>* input_mapping) { input_mapping->resize(num_inputs, 0); std::iota(input_mapping->begin(), input_mapping->end(), 0); } static void RegisterDialects(mlir::DialectRegistry& registry) { mlir::RegisterAllTensorFlowDialects(registry); mlir::mhlo::registerAllMhloDialects(registry); mlir::stablehlo::registerAllDialects(registry); } bool CanInlineFunctionsPostLegalization(llvm::StringRef device_type) { return device_type == DEVICE_TPU_XLA_JIT; } void AddLegalizationPasses(mlir::OpPassManager& pm, bool legalize_chlo, llvm::StringRef device_type, bool enable_op_fallback, bool lower_to_xla_hlo) { if (lower_to_xla_hlo) { mlir::quant::stablehlo::AddQuantizationLoweringPasses(pm); pm.addPass(mlir::mhlo::createLegalizeTFPass( legalize_chlo, device_type, enable_op_fallback)); } pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::CreateInfeedsOpsXlaAdjustLayoutPass()); if (lower_to_xla_hlo) { pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); } } } void CreateConvertMlirToXlaHloPipeline( mlir::OpPassManager& pm, llvm::StringRef device_type, bool enable_op_fallback, llvm::MutableArrayRef<std::unique_ptr<mlir::Pass>> custom_legalization_passes, bool lower_to_xla_hlo, bool allow_partial_conversion) { bool legalize_chlo = true; pm.addNestedPass<mlir::func::FuncOp>( tensorflow::tf2xla::internal::CreateInputLoweringMetricsPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::CreateTFXLADeviceSpecificTransformsPass(device_type)); pm.addPass(mlir::TF::CreateTFFunctionalControlFlowToRegions()); pm.addPass(mlir::createInlinerPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::TF::CreateDropWhileShapeInvariantPass()); if (lower_to_xla_hlo) { pm.addNestedPass<mlir::func::FuncOp>( mlir::TF::CreateReplicateTensorListInitOpsPass()); } pm.addNestedPass<mlir::func::FuncOp>(mlir::createCanonicalizerPass()); pm.addPass(mlir::createSCCPPass()); pm.addPass(mlir::TF::CreateGuaranteeAllFuncsOneUsePass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); pm.addPass(mlir::createSCCPPass()); if (lower_to_xla_hlo) { pm.addPass(mlir::TF::CreateTensorListOpsDecompositionPass()); } pm.addPass(mlir::TF::CreateStackOpsDecompositionPass()); if (lower_to_xla_hlo) { pm.addPass(mlir::TF::CreateTensorArrayOpsDecompositionPass()); } pm.addNestedPass<mlir::func::FuncOp>( mlir::TFDevice::CreateDecomposeResourceOpsPass()); pm.addPass(mlir::TF::CreatePromoteResourcesToArgsPass()); pm.addPass(mlir::createSymbolDCEPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createSinkConstantsToControlFlowPass()); pm.addPass(mlir::TF::CreateTFShapeInferencePass()); if (lower_to_xla_hlo) { pm.addPass(mlir::mhlo::createStablehloLegalizeToHloPass()); } pm.addNestedPass<mlir::func::FuncOp>(mlir::TF::CreateLowerQuantizedPass()); pm.addNestedPass<mlir::func::FuncOp>( mlir::quant::stablehlo::CreateConvertTFQuantTypesPass()); if (lower_to_xla_hlo) { for (auto& target_pass : custom_legalization_passes) { pm.addNestedPass<mlir::func::FuncOp>(std::move(target_pass)); } pm.addPass(mlir::mhlo::CreateLegalizeTFCollectivePass()); } AddLegalizationPasses(pm, legalize_chlo, device_type, enable_op_fallback, lower_to_xla_hlo); if (lower_to_xla_hlo) { pm.addPass(mlir::mhlo::CreateLegalizeTFCommunicationPass()); if (!allow_partial_conversion) { pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::CreateVerifyTFXLALegalizationPass(legalize_chlo)); } } if (CanInlineFunctionsPostLegalization(device_type)) { pm.addPass(mlir::createInlinerPass()); } pm.addNestedPass<mlir::func::FuncOp>( mlir::mhlo::createSinkConstantsToControlFlowPass()); } Status RefineShapes(llvm::ArrayRef<TensorOrResourceShape> arg_shapes, mlir::ModuleOp module) { auto producer_or = GetTfGraphProducerVersion(module); if (!producer_or.ok()) ret
#include "tensorflow/compiler/mlir/tf2xla/api/v1/compile_mlir_util.h" #include <initializer_list> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/Pass/PassManager.h" #include "tensorflow/compiler/jit/xla_compile_util.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/mlir/tensorflow/utils/serialize_mlir_module_utils.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/client/xla_builder.h" #include "tensorflow/core/framework/function.h" #include "tensorflow/core/framework/node_def_builder.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/lib/monitoring/cell_reader.h" #include "tensorflow/core/platform/types.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace { using ::mlir::OpPassManager; using ::tensorflow::monitoring::testing::CellReader; using ::testing::HasSubstr; static constexpr char kMlirModuleStr[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.Const"() {value = dense<1000> : tensor<1xi32>} : () -> tensor<1xi32> func.return %0 : tensor<1xi32> } })"; TEST(LegalizeMlirTest, LegalizesModule) { mlir::DialectRegistry mlir_registry; RegisterAllTensorFlowDialects(mlir_registry); std::vector<tensorflow::TensorShape> arg_shapes; XlaCompilationResult compilation_result; auto status = CompileSerializedMlirToXlaHlo( kMlirModuleStr, arg_shapes, "XLA_TPU_JIT", true, false, {}, &compilation_result); EXPECT_TRUE(status.ok()); EXPECT_THAT(status.value(), HasSubstr("mhlo.const")); } TEST(LegalizeMlirTest, FailsLegalizesModule) { constexpr char failed_legalization[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main() -> tensor<1xi32> { %0 = "tf.DoesntExist"() : () -> tensor<1xi32> func.return %0 : tensor<1xi32> } })"; CellReader<int64_t> count( "/tensorflow/core/tf2xla/v1/mlir_failed_xla_legalize_tf_pass_count"); std::vector<tensorflow::TensorShape> arg_shapes; XlaCompilationResult compilation_result; auto status = CompileSerializedMlirToXlaHlo( failed_legalization, arg_shapes, "XLA_TPU_JIT", true, false, {}, &compilation_result); EXPECT_FALSE(status.ok()); EXPECT_EQ(count.Delta("tf.DoesntExist", "Unknown"), 1); } TEST(CompileMlirUtil, CreatesPipeline) { OpPassManager pass_manager; llvm::StringRef device_type = "XLA_CPU_JIT"; CreateConvertMlirToXlaHloPipeline(pass_manager, device_type, false, {}); EXPECT_FALSE(pass_manager.getPasses().empty()); } TEST(CompileMlirUtil, HasLegalizationPass) { OpPassManager pass_manager; llvm::StringRef device_type = "XLA_CPU_JIT"; absl::string_view kLegalizeTfPass = "xla-legalize-tf"; CreateConvertMlirToXlaHloPipeline(pass_manager, device_type, true, {}); std::string pass_description; llvm::raw_string_ostream raw_stream(pass_description); pass_manager.printAsTextualPipeline(raw_stream); EXPECT_THAT(pass_description, HasSubstr(kLegalizeTfPass)); } TEST(CompileMlirUtil, DoesNotHaveLegalizationPass) { OpPassManager pass_manager; llvm::StringRef device_type = "XLA_CPU_JIT"; absl::string_view kLegalizeTfPass = "xla-legalize-tf"; CreateConvertMlirToXlaHloPipeline(pass_manager, device_type, false, {}, false); std::string pass_description; llvm::raw_string_ostream raw_stream(pass_description); pass_manager.printAsTextualPipeline(raw_stream); EXPECT_THAT(pass_description, Not(HasSubstr(kLegalizeTfPass))); } TEST(CompileMlirUtil, DoesNotLowerWhenTold) { mlir::DialectRegistry mlir_registry; RegisterAllTensorFlowDialects(mlir_registry); std::vector<tensorflow::TensorShape> arg_shapes; XlaCompilationResult compilation_result; auto status = CompileSerializedMlirToXlaHlo( kMlirModuleStr, arg_shapes, "XLA_TPU_JIT", true, false, {}, &compilation_result, {}, "", false); EXPECT_TRUE(status.ok()); EXPECT_THAT(status.value(), HasSubstr("tf.Const")); } TEST(CompileMlirUtil, CanonicalizationIsExplicitDuringInlining) { OpPassManager pass_manager; llvm::StringRef device_type = "XLA_CPU_JIT"; absl::string_view kInlinePass = "inline{default-pipeline=canonicalize " "inlining-threshold=4294967295 max-iterations=4 }"; CreateConvertMlirToXlaHloPipeline(pass_manager, device_type, true, {}); std::string pass_description; llvm::raw_string_ostream raw_stream(pass_description); pass_manager.printAsTextualPipeline(raw_stream); EXPECT_THAT(pass_description, HasSubstr(kInlinePass)); } TEST(LegalizeMlirTest, LegalizesModuleWithDynamicShape) { constexpr char legalization[] = R"( module attributes {tf.versions = {bad_consumers = [], min_consumer = 0 : i32, producer = 268 : i32}} { func.func @main(%arg0: tensor<?xi32, #mhlo.type_extensions<bounds = [1]>>) -> tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> { %0 = "tf.Identity"(%arg0) : (tensor<?xi32, #mhlo.type_extensions<bounds = [1]>>) -> tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> func.return %0 : tensor<?xi32, #mhlo.type_extensions<bounds = [1]>> } })"; std::vector<tensorflow::TensorShape> arg_shapes = {{1}}; XlaCompilationResult compilation_result; auto status = CompileSerializedMlirToXlaHlo( legalization, arg_shapes, "XLA_TPU_JIT", true, false, {}, &compilation_result); EXPECT_TRUE(status.ok()); } absl::StatusOr<std::unique_ptr<Graph>> BuildOpGraphWithOutputShapes() { DataType data_type = DT_INT32; std::initializer_list<int64_t> dims = {2, 3, 4, 5}; Tensor tensor(data_type, TensorShape(dims)); for (int i = 0; i < 2 * 3 * 4 * 5; ++i) { tensor.flat<int32>()(i) = i; } NodeDef node; auto builder = NodeDefBuilder("some_node", "Const") .Attr("dtype", data_type) .Attr("value", tensor); AttrValue shape_attr; TensorShapeProto* shape_proto = shape_attr.mutable_list()->add_shape(); shape_proto->add_dim()->set_size(1); builder.Attr("_output_shapes", shape_attr); TF_RETURN_IF_ERROR(builder.Finalize(&node)); return CreateSingleOpGraph(node, {}, {DataType::DT_INT32}); } absl::Status BuildHloFromGraph(Graph& graph, bool use_output_shapes) { xla::XlaBuilder builder( ::testing::UnitTest::GetInstance()->current_test_info()->name()); mlir::MLIRContext mlir_context; llvm::SmallVector<xla::XlaOp, 4> xla_params; std::vector<xla::XlaOp> returns(1); return BuildHloFromGraph(graph, builder, mlir_context, xla_params, returns, use_output_shapes, {}, {}, DEVICE_TPU, FunctionLibraryDefinition(OpRegistry::Global()), {}, {}); } TEST(CompileMlirUtil, UsesCorrectOriginalShapeWithoutOutputShapes) { TF_ASSERT_OK_AND_ASSIGN(auto graph, BuildOpGraphWithOutputShapes()); auto build_result = BuildHloFromGraph(*graph, false); TF_ASSERT_OK(build_result); } TEST(CompileMlirUtil, UsesIncorrectOutputShapesWhenPresent) { TF_ASSERT_OK_AND_ASSIGN(auto graph, BuildOpGraphWithOutputShapes()); auto build_result = BuildHloFromGraph(*graph, true); ASSERT_FALSE(build_result.ok()); EXPECT_THAT(build_result.message(), HasSubstr("op operand type 'tensor<2x3x4x5xi32>' and result type " "'tensor<1xi32>' are cast incompatible")); } } }
1
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_XNNPACK_PLUGIN_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_XNNPACK_PLUGIN_H_ #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #ifdef __cplusplus extern "C" { #endif const TfLiteDelegatePlugin* TfLiteXnnpackDelegatePluginCApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); auto options(TfLiteXNNPackDelegateOptionsDefault()); const auto* xnnpack_settings = tflite_settings->xnnpack_settings(); if (xnnpack_settings) { options.num_threads = xnnpack_settings->num_threads(); if (xnnpack_settings->flags()) { options.flags = xnnpack_settings->flags(); } if (xnnpack_settings->experimental_weight_cache_file_path()) { options.experimental_weight_cache_file_path = xnnpack_settings->experimental_weight_cache_file_path()->c_str(); } } return TfLiteXNNPackDelegateCreate(&options); } static void DestroyDelegate(TfLiteDelegate* delegate) { TfLiteXNNPackDelegateDelete(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { return 0; } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteXnnpackDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/xnnpack_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "pthreadpool.h" #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" namespace tflite { class XnnpackTest : public testing::Test { public: static constexpr int kNumThreadsForTest = 7; void SetUp() override { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_num_threads(kNumThreadsForTest); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~XnnpackTest() override = default; protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; constexpr int XnnpackTest::kNumThreadsForTest; TEST_F(XnnpackTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int error_number = TfLiteXnnpackDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, SetsCorrectThreadCount) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); pthreadpool_t threadpool = static_cast<pthreadpool_t>(TfLiteXNNPackDelegateGetThreadPool(delegate)); int thread_count = pthreadpool_get_threads_count(threadpool); EXPECT_EQ(thread_count, kNumThreadsForTest); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsByDefault) { TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesSpecifiedFlagsWhenNonzero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_FLAG_QU8); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } TEST_F(XnnpackTest, UsesDefaultFlagsWhenZero) { XNNPackSettingsBuilder xnnpack_settings_builder(flatbuffer_builder_); xnnpack_settings_builder.add_flags( tflite::XNNPackFlags_TFLITE_XNNPACK_DELEGATE_NO_FLAGS); flatbuffers::Offset<XNNPackSettings> xnnpack_settings = xnnpack_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_xnnpack_settings(xnnpack_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); TfLiteDelegate *delegate = TfLiteXnnpackDelegatePluginCApi()->create(settings_); int flags = TfLiteXNNPackDelegateGetFlags(delegate); EXPECT_EQ(flags, TfLiteXNNPackDelegateOptionsDefault().flags); TfLiteXnnpackDelegatePluginCApi()->destroy(delegate); } }
2
#ifndef QUICHE_QUIC_CORE_CRYPTO_CERTIFICATE_UTIL_H_ #define QUICHE_QUIC_CORE_CRYPTO_CERTIFICATE_UTIL_H_ #include <string> #include "absl/strings/string_view.h" #include "openssl/evp.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { struct QUICHE_EXPORT CertificateTimestamp { uint16_t year; uint8_t month; uint8_t day; uint8_t hour; uint8_t minute; uint8_t second; }; struct QUICHE_EXPORT CertificateOptions { absl::string_view subject; uint64_t serial_number; CertificateTimestamp validity_start; CertificateTimestamp validity_end; }; QUICHE_EXPORT bssl::UniquePtr<EVP_PKEY> MakeKeyPairForSelfSignedCertificate(); QUICHE_EXPORT std::string CreateSelfSignedCertificate( EVP_PKEY& key, const CertificateOptions& options); } #endif #include "quiche/quic/core/crypto/certificate_util.h" #include <string> #include <vector> #include "absl/strings/str_format.h" #include "absl/strings/str_split.h" #include "absl/strings/string_view.h" #include "openssl/bn.h" #include "openssl/bytestring.h" #include "openssl/digest.h" #include "openssl/ec_key.h" #include "openssl/mem.h" #include "openssl/pkcs7.h" #include "openssl/pool.h" #include "openssl/rsa.h" #include "openssl/stack.h" #include "quiche/quic/core/crypto/boring_utils.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { bool AddEcdsa256SignatureAlgorithm(CBB* cbb) { static const uint8_t kEcdsaWithSha256[] = {0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x03, 0x02}; CBB sequence, oid; if (!CBB_add_asn1(cbb, &sequence, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&sequence, &oid, CBS_ASN1_OBJECT)) { return false; } if (!CBB_add_bytes(&oid, kEcdsaWithSha256, sizeof(kEcdsaWithSha256))) { return false; } return CBB_flush(cbb); } bool AddName(CBB* cbb, absl::string_view name) { static const uint8_t kCommonName[] = {0x55, 0x04, 0x03}; static const uint8_t kCountryName[] = {0x55, 0x04, 0x06}; static const uint8_t kOrganizationName[] = {0x55, 0x04, 0x0a}; static const uint8_t kOrganizationalUnitName[] = {0x55, 0x04, 0x0b}; std::vector<std::string> attributes = absl::StrSplit(name, ',', absl::SkipEmpty()); if (attributes.empty()) { QUIC_LOG(ERROR) << "Missing DN or wrong format"; return false; } CBB rdns; if (!CBB_add_asn1(cbb, &rdns, CBS_ASN1_SEQUENCE)) { return false; } for (const std::string& attribute : attributes) { std::vector<std::string> parts = absl::StrSplit(absl::StripAsciiWhitespace(attribute), '='); if (parts.size() != 2) { QUIC_LOG(ERROR) << "Wrong DN format at " + attribute; return false; } const std::string& type_string = parts[0]; const std::string& value_string = parts[1]; absl::Span<const uint8_t> type_bytes; if (type_string == "CN") { type_bytes = kCommonName; } else if (type_string == "C") { type_bytes = kCountryName; } else if (type_string == "O") { type_bytes = kOrganizationName; } else if (type_string == "OU") { type_bytes = kOrganizationalUnitName; } else { QUIC_LOG(ERROR) << "Unrecognized type " + type_string; return false; } CBB rdn, attr, type, value; if (!CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET) || !CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT) || !CBB_add_bytes(&type, type_bytes.data(), type_bytes.size()) || !CBB_add_asn1(&attr, &value, type_string == "C" ? CBS_ASN1_PRINTABLESTRING : CBS_ASN1_UTF8STRING) || !AddStringToCbb(&value, value_string) || !CBB_flush(&rdns)) { return false; } } if (!CBB_flush(cbb)) { return false; } return true; } bool CBBAddTime(CBB* cbb, const CertificateTimestamp& timestamp) { CBB child; std::string formatted_time; const bool is_utc_time = (1950 <= timestamp.year && timestamp.year < 2050); if (is_utc_time) { uint16_t year = timestamp.year - 1900; if (year >= 100) { year -= 100; } formatted_time = absl::StrFormat("%02d", year); if (!CBB_add_asn1(cbb, &child, CBS_ASN1_UTCTIME)) { return false; } } else { formatted_time = absl::StrFormat("%04d", timestamp.year); if (!CBB_add_asn1(cbb, &child, CBS_ASN1_GENERALIZEDTIME)) { return false; } } absl::StrAppendFormat(&formatted_time, "%02d%02d%02d%02d%02dZ", timestamp.month, timestamp.day, timestamp.hour, timestamp.minute, timestamp.second); static const size_t kGeneralizedTimeLength = 15; static const size_t kUTCTimeLength = 13; QUICHE_DCHECK_EQ(formatted_time.size(), is_utc_time ? kUTCTimeLength : kGeneralizedTimeLength); return AddStringToCbb(&child, formatted_time) && CBB_flush(cbb); } bool CBBAddExtension(CBB* extensions, absl::Span<const uint8_t> oid, bool critical, absl::Span<const uint8_t> contents) { CBB extension, cbb_oid, cbb_contents; if (!CBB_add_asn1(extensions, &extension, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&extension, &cbb_oid, CBS_ASN1_OBJECT) || !CBB_add_bytes(&cbb_oid, oid.data(), oid.size()) || (critical && !CBB_add_asn1_bool(&extension, 1)) || !CBB_add_asn1(&extension, &cbb_contents, CBS_ASN1_OCTETSTRING) || !CBB_add_bytes(&cbb_contents, contents.data(), contents.size()) || !CBB_flush(extensions)) { return false; } return true; } bool IsEcdsa256Key(const EVP_PKEY& evp_key) { if (EVP_PKEY_id(&evp_key) != EVP_PKEY_EC) { return false; } const EC_KEY* key = EVP_PKEY_get0_EC_KEY(&evp_key); if (key == nullptr) { return false; } const EC_GROUP* group = EC_KEY_get0_group(key); if (group == nullptr) { return false; } return EC_GROUP_get_curve_name(group) == NID_X9_62_prime256v1; } } bssl::UniquePtr<EVP_PKEY> MakeKeyPairForSelfSignedCertificate() { bssl::UniquePtr<EVP_PKEY_CTX> context( EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr)); if (!context) { return nullptr; } if (EVP_PKEY_keygen_init(context.get()) != 1) { return nullptr; } if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(context.get(), NID_X9_62_prime256v1) != 1) { return nullptr; } EVP_PKEY* raw_key = nullptr; if (EVP_PKEY_keygen(context.get(), &raw_key) != 1) { return nullptr; } return bssl::UniquePtr<EVP_PKEY>(raw_key); } std::string CreateSelfSignedCertificate(EVP_PKEY& key, const CertificateOptions& options) { std::string error; if (!IsEcdsa256Key(key)) { QUIC_LOG(ERROR) << "CreateSelfSignedCert only accepts ECDSA P-256 keys"; return error; } bssl::ScopedCBB cbb; CBB tbs_cert, version, validity; uint8_t* tbs_cert_bytes; size_t tbs_cert_len; if (!CBB_init(cbb.get(), 64) || !CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE) || !CBB_add_asn1(&tbs_cert, &version, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || !CBB_add_asn1_uint64(&version, 2) || !CBB_add_asn1_uint64(&tbs_cert, options.serial_number) || !AddEcdsa256SignatureAlgorithm(&tbs_cert) || !AddName(&tbs_cert, options.subject) || !CBB_add_asn1(&tbs_cert, &validity, CBS_ASN1_SEQUENCE) || !CBBAddTime(&validity, options.validity_start) || !CBBAddTime(&validity, options.validity_end) || !AddName(&tbs_cert, options.subject) || !EVP_marshal_public_key(&tbs_cert, &key)) { return error; } CBB outer_extensions, extensions; if (!CBB_add_asn1(&tbs_cert, &outer_extensions, 3 | CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED) || !CBB_add_asn1(&outer_extensions, &extensions, CBS_ASN1_SEQUENCE)) { return error; } constexpr uint8_t kKeyUsageOid[] = {0x55, 0x1d, 0x0f}; constexpr uint8_t kKeyUsageContent[] = { 0x3, 0x2, 0x0, 0x80, }; CBBAddExtension(&extensions, kKeyUsageOid, true, kKeyUsageContent); if (!CBB_finish(cbb.get(), &tbs_cert_bytes, &tbs_cert_len)) { return error; } bssl::UniquePtr<uint8_t> delete_tbs_cert_bytes(tbs_cert_bytes); CBB cert, signature; bssl::ScopedEVP_MD_CTX ctx; uint8_t* sig_out; size_t sig_len; uint8_t* cert_bytes; size_t cert_len; if (!CBB_init(cbb.get(), tbs_cert_len) || !CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE) || !CBB_add_bytes(&cert, tbs_cert_bytes, tbs_cert_len) || !AddEcdsa256SignatureAlgorithm(&cert) || !CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING) || !CBB_add_u8(&signature, 0 ) || !EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, &key) || !EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes, tbs_cert_len) || !CBB_reserve(&signature, &sig_out, sig_len) || !EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes, tbs_cert_len) || !CBB_did_write(&signature, sig_len) || !CBB_finish(cbb.get(), &cert_bytes, &cert_len)) { return error; } bssl::UniquePtr<uint8_t> delete_cert_bytes(cert_bytes); return std::string(reinterpret_cast<char*>(cert_bytes), cert_len); } }
#include "quiche/quic/core/crypto/certificate_util.h" #include <memory> #include <optional> #include <string> #include <utility> #include "openssl/ssl.h" #include "quiche/quic/core/crypto/certificate_view.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_test_output.h" namespace quic { namespace test { namespace { TEST(CertificateUtilTest, CreateSelfSignedCertificate) { bssl::UniquePtr<EVP_PKEY> key = MakeKeyPairForSelfSignedCertificate(); ASSERT_NE(key, nullptr); CertificatePrivateKey cert_key(std::move(key)); CertificateOptions options; options.subject = "CN=subject"; options.serial_number = 0x12345678; options.validity_start = {2020, 1, 1, 0, 0, 0}; options.validity_end = {2049, 12, 31, 0, 0, 0}; std::string der_cert = CreateSelfSignedCertificate(*cert_key.private_key(), options); ASSERT_FALSE(der_cert.empty()); QuicSaveTestOutput("CertificateUtilTest_CreateSelfSignedCert.crt", der_cert); std::unique_ptr<CertificateView> cert_view = CertificateView::ParseSingleCertificate(der_cert); ASSERT_NE(cert_view, nullptr); EXPECT_EQ(cert_view->public_key_type(), PublicKeyType::kP256); std::optional<std::string> subject = cert_view->GetHumanReadableSubject(); ASSERT_TRUE(subject.has_value()); EXPECT_EQ(*subject, options.subject); EXPECT_TRUE( cert_key.ValidForSignatureAlgorithm(SSL_SIGN_ECDSA_SECP256R1_SHA256)); EXPECT_TRUE(cert_key.MatchesPublicKey(*cert_view)); } } } }
3
#ifndef ABSL_BASE_INTERNAL_SYSINFO_H_ #define ABSL_BASE_INTERNAL_SYSINFO_H_ #ifndef _WIN32 #include <sys/types.h> #endif #include <cstdint> #include "absl/base/config.h" #include "absl/base/port.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { double NominalCPUFrequency(); int NumCPUs(); #ifdef _WIN32 using pid_t = uint32_t; #endif pid_t GetTID(); pid_t GetCachedTID(); } ABSL_NAMESPACE_END } #endif #include "absl/base/internal/sysinfo.h" #include "absl/base/attributes.h" #ifdef _WIN32 #include <windows.h> #else #include <fcntl.h> #include <pthread.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #endif #ifdef __linux__ #include <sys/syscall.h> #endif #if defined(__APPLE__) || defined(__FreeBSD__) #include <sys/sysctl.h> #endif #ifdef __FreeBSD__ #include <pthread_np.h> #endif #ifdef __NetBSD__ #include <lwp.h> #endif #if defined(__myriad2__) #include <rtems.h> #endif #include <string.h> #include <cassert> #include <cerrno> #include <cstdint> #include <cstdio> #include <cstdlib> #include <ctime> #include <limits> #include <thread> #include <utility> #include <vector> #include "absl/base/call_once.h" #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/unscaledcycleclock.h" #include "absl/base/thread_annotations.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { #if defined(_WIN32) DWORD Win32CountSetBits(ULONG_PTR bitMask) { for (DWORD bitSetCount = 0; ; ++bitSetCount) { if (bitMask == 0) return bitSetCount; bitMask &= bitMask - 1; } } int Win32NumCPUs() { #pragma comment(lib, "kernel32.lib") using Info = SYSTEM_LOGICAL_PROCESSOR_INFORMATION; DWORD info_size = sizeof(Info); Info* info(static_cast<Info*>(malloc(info_size))); if (info == nullptr) return 0; bool success = GetLogicalProcessorInformation(info, &info_size); if (!success && GetLastError() == ERROR_INSUFFICIENT_BUFFER) { free(info); info = static_cast<Info*>(malloc(info_size)); if (info == nullptr) return 0; success = GetLogicalProcessorInformation(info, &info_size); } DWORD logicalProcessorCount = 0; if (success) { Info* ptr = info; DWORD byteOffset = 0; while (byteOffset + sizeof(Info) <= info_size) { switch (ptr->Relationship) { case RelationProcessorCore: logicalProcessorCount += Win32CountSetBits(ptr->ProcessorMask); break; case RelationNumaNode: case RelationCache: case RelationProcessorPackage: break; default: break; } byteOffset += sizeof(Info); ptr++; } } free(info); return static_cast<int>(logicalProcessorCount); } #endif } static int GetNumCPUs() { #if defined(__myriad2__) return 1; #elif defined(_WIN32) const int hardware_concurrency = Win32NumCPUs(); return hardware_concurrency ? hardware_concurrency : 1; #elif defined(_AIX) return sysconf(_SC_NPROCESSORS_ONLN); #else return static_cast<int>(std::thread::hardware_concurrency()); #endif } #if defined(_WIN32) static double GetNominalCPUFrequency() { #if WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_APP) && \ !WINAPI_FAMILY_PARTITION(WINAPI_PARTITION_DESKTOP) return 1.0; #else #pragma comment(lib, "advapi32.lib") HKEY key; if (RegOpenKeyExA(HKEY_LOCAL_MACHINE, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, KEY_READ, &key) == ERROR_SUCCESS) { DWORD type = 0; DWORD data = 0; DWORD data_size = sizeof(data); auto result = RegQueryValueExA(key, "~MHz", nullptr, &type, reinterpret_cast<LPBYTE>(&data), &data_size); RegCloseKey(key); if (result == ERROR_SUCCESS && type == REG_DWORD && data_size == sizeof(data)) { return data * 1e6; } } return 1.0; #endif } #elif defined(CTL_HW) && defined(HW_CPU_FREQ) static double GetNominalCPUFrequency() { unsigned freq; size_t size = sizeof(freq); int mib[2] = {CTL_HW, HW_CPU_FREQ}; if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { return static_cast<double>(freq); } return 1.0; } #else static bool ReadLongFromFile(const char *file, long *value) { bool ret = false; #if defined(_POSIX_C_SOURCE) const int file_mode = (O_RDONLY | O_CLOEXEC); #else const int file_mode = O_RDONLY; #endif int fd = open(file, file_mode); if (fd != -1) { char line[1024]; char *err; memset(line, '\0', sizeof(line)); ssize_t len; do { len = read(fd, line, sizeof(line) - 1); } while (len < 0 && errno == EINTR); if (len <= 0) { ret = false; } else { const long temp_value = strtol(line, &err, 10); if (line[0] != '\0' && (*err == '\n' || *err == '\0')) { *value = temp_value; ret = true; } } close(fd); } return ret; } #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) static int64_t ReadMonotonicClockNanos() { struct timespec t; #ifdef CLOCK_MONOTONIC_RAW int rc = clock_gettime(CLOCK_MONOTONIC_RAW, &t); #else int rc = clock_gettime(CLOCK_MONOTONIC, &t); #endif if (rc != 0) { ABSL_INTERNAL_LOG( FATAL, "clock_gettime() failed: (" + std::to_string(errno) + ")"); } return int64_t{t.tv_sec} * 1000000000 + t.tv_nsec; } class UnscaledCycleClockWrapperForInitializeFrequency { public: static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } }; struct TimeTscPair { int64_t time; int64_t tsc; }; static TimeTscPair GetTimeTscPair() { int64_t best_latency = std::numeric_limits<int64_t>::max(); TimeTscPair best; for (int i = 0; i < 10; ++i) { int64_t t0 = ReadMonotonicClockNanos(); int64_t tsc = UnscaledCycleClockWrapperForInitializeFrequency::Now(); int64_t t1 = ReadMonotonicClockNanos(); int64_t latency = t1 - t0; if (latency < best_latency) { best_latency = latency; best.time = t0; best.tsc = tsc; } } return best; } static double MeasureTscFrequencyWithSleep(int sleep_nanoseconds) { auto t0 = GetTimeTscPair(); struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = sleep_nanoseconds; while (nanosleep(&ts, &ts) != 0 && errno == EINTR) {} auto t1 = GetTimeTscPair(); double elapsed_ticks = t1.tsc - t0.tsc; double elapsed_time = (t1.time - t0.time) * 1e-9; return elapsed_ticks / elapsed_time; } static double MeasureTscFrequency() { double last_measurement = -1.0; int sleep_nanoseconds = 1000000; for (int i = 0; i < 8; ++i) { double measurement = MeasureTscFrequencyWithSleep(sleep_nanoseconds); if (measurement * 0.99 < last_measurement && last_measurement < measurement * 1.01) { return measurement; } last_measurement = measurement; sleep_nanoseconds *= 2; } return last_measurement; } #endif static double GetNominalCPUFrequency() { long freq = 0; if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz", &freq)) { return freq * 1e3; } #if defined(ABSL_INTERNAL_UNSCALED_CYCLECLOCK_FREQUENCY_IS_CPU_FREQUENCY) return MeasureTscFrequency(); #else if (ReadLongFromFile("/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq", &freq)) { return freq * 1e3; } return 1.0; #endif } #endif ABSL_CONST_INIT static once_flag init_num_cpus_once; ABSL_CONST_INIT static int num_cpus = 0; int NumCPUs() { base_internal::LowLevelCallOnce( &init_num_cpus_once, []() { num_cpus = GetNumCPUs(); }); return num_cpus; } ABSL_CONST_INIT static once_flag init_nominal_cpu_frequency_once; ABSL_CONST_INIT static double nominal_cpu_frequency = 1.0; double NominalCPUFrequency() { base_internal::LowLevelCallOnce( &init_nominal_cpu_frequency_once, []() { nominal_cpu_frequency = GetNominalCPUFrequency(); }); return nominal_cpu_frequency; } #if defined(_WIN32) pid_t GetTID() { return pid_t{GetCurrentThreadId()}; } #elif defined(__linux__) #ifndef SYS_gettid #define SYS_gettid __NR_gettid #endif pid_t GetTID() { return static_cast<pid_t>(syscall(SYS_gettid)); } #elif defined(__akaros__) pid_t GetTID() { if (in_vcore_context()) return 0; return reinterpret_cast<struct pthread_tcb *>(current_uthread)->id; } #elif defined(__myriad2__) pid_t GetTID() { uint32_t tid; rtems_task_ident(RTEMS_SELF, 0, &tid); return tid; } #elif defined(__APPLE__) pid_t GetTID() { uint64_t tid; pthread_threadid_np(nullptr, &tid); return static_cast<pid_t>(tid); } #elif defined(__FreeBSD__) pid_t GetTID() { return static_cast<pid_t>(pthread_getthreadid_np()); } #elif defined(__OpenBSD__) pid_t GetTID() { return getthrid(); } #elif defined(__NetBSD__) pid_t GetTID() { return static_cast<pid_t>(_lwp_self()); } #elif defined(__native_client__) pid_t GetTID() { auto* thread = pthread_self(); static_assert(sizeof(pid_t) == sizeof(thread), "In NaCL int expected to be the same size as a pointer"); return reinterpret_cast<pid_t>(thread); } #else pid_t GetTID() { return static_cast<pid_t>(pthread_self()); } #endif pid_t GetCachedTID() { #ifdef ABSL_HAVE_THREAD_LOCAL static thread_local pid_t thread_id = GetTID(); return thread_id; #else return GetTID(); #endif } } ABSL_NAMESPACE_END }
#include "absl/base/internal/sysinfo.h" #ifndef _WIN32 #include <sys/types.h> #include <unistd.h> #endif #include <thread> #include <unordered_set> #include <vector> #include "gtest/gtest.h" #include "absl/synchronization/barrier.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { namespace { TEST(SysinfoTest, NumCPUs) { EXPECT_NE(NumCPUs(), 0) << "NumCPUs() should not have the default value of 0"; } TEST(SysinfoTest, GetTID) { EXPECT_EQ(GetTID(), GetTID()); #ifdef __native_client__ return; #endif for (int i = 0; i < 10; ++i) { constexpr int kNumThreads = 10; Barrier all_threads_done(kNumThreads); std::vector<std::thread> threads; Mutex mutex; std::unordered_set<pid_t> tids; for (int j = 0; j < kNumThreads; ++j) { threads.push_back(std::thread([&]() { pid_t id = GetTID(); { MutexLock lock(&mutex); ASSERT_TRUE(tids.find(id) == tids.end()); tids.insert(id); } all_threads_done.Block(); })); } for (auto& thread : threads) { thread.join(); } } } #ifdef __linux__ TEST(SysinfoTest, LinuxGetTID) { EXPECT_EQ(GetTID(), getpid()); } #endif } } ABSL_NAMESPACE_END }
4
#ifndef QUICHE_COMMON_HTTP_HTTP_HEADER_BLOCK_H_ #define QUICHE_COMMON_HTTP_HTTP_HEADER_BLOCK_H_ #include <stddef.h> #include <functional> #include <list> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "quiche/common/http/http_header_storage.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/quiche_linked_hash_map.h" #include "quiche/common/quiche_text_utils.h" namespace quiche { namespace test { class HttpHeaderBlockPeer; class ValueProxyPeer; } #ifndef SPDY_HEADER_DEBUG #if !defined(NDEBUG) || defined(ADDRESS_SANITIZER) #define SPDY_HEADER_DEBUG 1 #else #define SPDY_HEADER_DEBUG 0 #endif #endif class QUICHE_EXPORT HttpHeaderBlock { private: class QUICHE_EXPORT HeaderValue { public: HeaderValue(HttpHeaderStorage* storage, absl::string_view key, absl::string_view initial_value); HeaderValue(HeaderValue&& other); HeaderValue& operator=(HeaderValue&& other); void set_storage(HttpHeaderStorage* storage); HeaderValue(const HeaderValue& other) = delete; HeaderValue& operator=(const HeaderValue& other) = delete; ~HeaderValue(); void Append(absl::string_view fragment); absl::string_view value() const { return as_pair().second; } const std::pair<absl::string_view, absl::string_view>& as_pair() const; size_t SizeEstimate() const { return size_; } private: absl::string_view ConsolidatedValue() const; mutable HttpHeaderStorage* storage_; mutable Fragments fragments_; mutable std::pair<absl::string_view, absl::string_view> pair_; size_t size_ = 0; size_t separator_size_ = 0; }; typedef quiche::QuicheLinkedHashMap<absl::string_view, HeaderValue, quiche::StringPieceCaseHash, quiche::StringPieceCaseEqual> MapType; public: typedef std::pair<absl::string_view, absl::string_view> value_type; enum class InsertResult { kInserted, kReplaced, }; class QUICHE_EXPORT iterator { public: typedef std::pair<absl::string_view, absl::string_view> value_type; typedef value_type& reference; typedef value_type* pointer; typedef std::forward_iterator_tag iterator_category; typedef MapType::iterator::difference_type difference_type; typedef const value_type& const_reference; typedef const value_type* const_pointer; explicit iterator(MapType::const_iterator it); iterator(const iterator& other); ~iterator(); const_reference operator*() const { #if SPDY_HEADER_DEBUG QUICHE_CHECK(!dereference_forbidden_); #endif return it_->second.as_pair(); } const_pointer operator->() const { return &(this->operator*()); } bool operator==(const iterator& it) const { return it_ == it.it_; } bool operator!=(const iterator& it) const { return !(*this == it); } iterator& operator++() { it_++; return *this; } iterator operator++(int) { auto ret = *this; this->operator++(); return ret; } #if SPDY_HEADER_DEBUG void forbid_dereference() { dereference_forbidden_ = true; } #endif private: MapType::const_iterator it_; #if SPDY_HEADER_DEBUG bool dereference_forbidden_ = false; #endif }; typedef iterator const_iterator; HttpHeaderBlock(); HttpHeaderBlock(const HttpHeaderBlock& other) = delete; HttpHeaderBlock(HttpHeaderBlock&& other); ~HttpHeaderBlock(); HttpHeaderBlock& operator=(const HttpHeaderBlock& other) = delete; HttpHeaderBlock& operator=(HttpHeaderBlock&& other); HttpHeaderBlock Clone() const; bool operator==(const HttpHeaderBlock& other) const; bool operator!=(const HttpHeaderBlock& other) const; std::string DebugString() const; iterator begin() { return wrap_iterator(map_.begin()); } iterator end() { return wrap_iterator(map_.end()); } const_iterator begin() const { return wrap_const_iterator(map_.begin()); } const_iterator end() const { return wrap_const_iterator(map_.end()); } bool empty() const { return map_.empty(); } size_t size() const { return map_.size(); } iterator find(absl::string_view key) { return wrap_iterator(map_.find(key)); } const_iterator find(absl::string_view key) const { return wrap_const_iterator(map_.find(key)); } bool contains(absl::string_view key) const { return find(key) != end(); } void erase(absl::string_view key); void clear(); InsertResult insert(const value_type& value); void AppendValueOrAddHeader(const absl::string_view key, const absl::string_view value); class QUICHE_EXPORT ValueProxy { public: ~ValueProxy(); ValueProxy(ValueProxy&& other); ValueProxy& operator=(ValueProxy&& other); ValueProxy(const ValueProxy& other) = delete; ValueProxy& operator=(const ValueProxy& other) = delete; ValueProxy& operator=(absl::string_view value); bool operator==(absl::string_view value) const; std::string as_string() const; private: friend class HttpHeaderBlock; friend class test::ValueProxyPeer; ValueProxy(HttpHeaderBlock* block, HttpHeaderBlock::MapType::iterator lookup_result, const absl::string_view key, size_t* spdy_header_block_value_size); HttpHeaderBlock* block_; HttpHeaderBlock::MapType::iterator lookup_result_; absl::string_view key_; size_t* spdy_header_block_value_size_; bool valid_; }; ABSL_MUST_USE_RESULT ValueProxy operator[](const absl::string_view key); size_t TotalBytesUsed() const { return key_size_ + value_size_; } private: friend class test::HttpHeaderBlockPeer; inline iterator wrap_iterator(MapType::const_iterator inner_iterator) const { #if SPDY_HEADER_DEBUG iterator outer_iterator(inner_iterator); if (inner_iterator == map_.end()) { outer_iterator.forbid_dereference(); } return outer_iterator; #else return iterator(inner_iterator); #endif } inline const_iterator wrap_const_iterator( MapType::const_iterator inner_iterator) const { #if SPDY_HEADER_DEBUG const_iterator outer_iterator(inner_iterator); if (inner_iterator == map_.end()) { outer_iterator.forbid_dereference(); } return outer_iterator; #else return iterator(inner_iterator); #endif } void AppendHeader(const absl::string_view key, const absl::string_view value); absl::string_view WriteKey(const absl::string_view key); size_t bytes_allocated() const; MapType map_; HttpHeaderStorage storage_; size_t key_size_ = 0; size_t value_size_ = 0; }; inline bool operator==(absl::string_view lhs, const HttpHeaderBlock::ValueProxy& rhs) { return rhs == lhs; } } #endif #include "quiche/common/http/http_header_block.h" #include <string.h> #include <algorithm> #include <ios> #include <string> #include <utility> #include "absl/strings/str_cat.h" #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { namespace { const size_t kInitialMapBuckets = 11; const char kCookieKey[] = "cookie"; const char kNullSeparator = 0; absl::string_view SeparatorForKey(absl::string_view key) { if (key == kCookieKey) { static absl::string_view cookie_separator = "; "; return cookie_separator; } else { return absl::string_view(&kNullSeparator, 1); } } } HttpHeaderBlock::HeaderValue::HeaderValue(HttpHeaderStorage* storage, absl::string_view key, absl::string_view initial_value) : storage_(storage), fragments_({initial_value}), pair_({key, {}}), size_(initial_value.size()), separator_size_(SeparatorForKey(key).size()) {} HttpHeaderBlock::HeaderValue::HeaderValue(HeaderValue&& other) : storage_(other.storage_), fragments_(std::move(other.fragments_)), pair_(std::move(other.pair_)), size_(other.size_), separator_size_(other.separator_size_) {} HttpHeaderBlock::HeaderValue& HttpHeaderBlock::HeaderValue::operator=( HeaderValue&& other) { storage_ = other.storage_; fragments_ = std::move(other.fragments_); pair_ = std::move(other.pair_); size_ = other.size_; separator_size_ = other.separator_size_; return *this; } void HttpHeaderBlock::HeaderValue::set_storage(HttpHeaderStorage* storage) { storage_ = storage; } HttpHeaderBlock::HeaderValue::~HeaderValue() = default; absl::string_view HttpHeaderBlock::HeaderValue::ConsolidatedValue() const { if (fragments_.empty()) { return absl::string_view(); } if (fragments_.size() > 1) { fragments_ = { storage_->WriteFragments(fragments_, SeparatorForKey(pair_.first))}; } return fragments_[0]; } void HttpHeaderBlock::HeaderValue::Append(absl::string_view fragment) { size_ += (fragment.size() + separator_size_); fragments_.push_back(fragment); } const std::pair<absl::string_view, absl::string_view>& HttpHeaderBlock::HeaderValue::as_pair() const { pair_.second = ConsolidatedValue(); return pair_; } HttpHeaderBlock::iterator::iterator(MapType::const_iterator it) : it_(it) {} HttpHeaderBlock::iterator::iterator(const iterator& other) = default; HttpHeaderBlock::iterator::~iterator() = default; HttpHeaderBlock::ValueProxy::ValueProxy( HttpHeaderBlock* block, HttpHeaderBlock::MapType::iterator lookup_result, const absl::string_view key, size_t* spdy_header_block_value_size) : block_(block), lookup_result_(lookup_result), key_(key), spdy_header_block_value_size_(spdy_header_block_value_size), valid_(true) {} HttpHeaderBlock::ValueProxy::ValueProxy(ValueProxy&& other) : block_(other.block_), lookup_result_(other.lookup_result_), key_(other.key_), spdy_header_block_value_size_(other.spdy_header_block_value_size_), valid_(true) { other.valid_ = false; } HttpHeaderBlock::ValueProxy& HttpHeaderBlock::ValueProxy::operator=( HttpHeaderBlock::ValueProxy&& other) { block_ = other.block_; lookup_result_ = other.lookup_result_; key_ = other.key_; valid_ = true; other.valid_ = false; spdy_header_block_value_size_ = other.spdy_header_block_value_size_; return *this; } HttpHeaderBlock::ValueProxy::~ValueProxy() { if (valid_ && lookup_result_ == block_->map_.end()) { block_->storage_.Rewind(key_); } } HttpHeaderBlock::ValueProxy& HttpHeaderBlock::ValueProxy::operator=( absl::string_view value) { *spdy_header_block_value_size_ += value.size(); HttpHeaderStorage* storage = &block_->storage_; if (lookup_result_ == block_->map_.end()) { QUICHE_DVLOG(1) << "Inserting: (" << key_ << ", " << value << ")"; lookup_result_ = block_->map_ .emplace(std::make_pair( key_, HeaderValue(storage, key_, storage->Write(value)))) .first; } else { QUICHE_DVLOG(1) << "Updating key: " << key_ << " with value: " << value; *spdy_header_block_value_size_ -= lookup_result_->second.SizeEstimate(); lookup_result_->second = HeaderValue(storage, key_, storage->Write(value)); } return *this; } bool HttpHeaderBlock::ValueProxy::operator==(absl::string_view value) const { if (lookup_result_ == block_->map_.end()) { return false; } else { return value == lookup_result_->second.value(); } } std::string HttpHeaderBlock::ValueProxy::as_string() const { if (lookup_result_ == block_->map_.end()) { return ""; } else { return std::string(lookup_result_->second.value()); } } HttpHeaderBlock::HttpHeaderBlock() : map_(kInitialMapBuckets) {} HttpHeaderBlock::HttpHeaderBlock(HttpHeaderBlock&& other) : map_(kInitialMapBuckets) { map_.swap(other.map_); storage_ = std::move(other.storage_); for (auto& p : map_) { p.second.set_storage(&storage_); } key_size_ = other.key_size_; value_size_ = other.value_size_; } HttpHeaderBlock::~HttpHeaderBlock() = default; HttpHeaderBlock& HttpHeaderBlock::operator=(HttpHeaderBlock&& other) { map_.swap(other.map_); storage_ = std::move(other.storage_); for (auto& p : map_) { p.second.set_storage(&storage_); } key_size_ = other.key_size_; value_size_ = other.value_size_; return *this; } HttpHeaderBlock HttpHeaderBlock::Clone() const { HttpHeaderBlock copy; for (const auto& p : *this) { copy.AppendHeader(p.first, p.second); } return copy; } bool HttpHeaderBlock::operator==(const HttpHeaderBlock& other) const { return size() == other.size() && std::equal(begin(), end(), other.begin()); } bool HttpHeaderBlock::operator!=(const HttpHeaderBlock& other) const { return !(operator==(other)); } std::string HttpHeaderBlock::DebugString() const { if (empty()) { return "{}"; } std::string output = "\n{\n"; for (auto it = begin(); it != end(); ++it) { absl::StrAppend(&output, " ", it->first, " ", it->second, "\n"); } absl::StrAppend(&output, "}\n"); return output; } void HttpHeaderBlock::erase(absl::string_view key) { auto iter = map_.find(key); if (iter != map_.end()) { QUICHE_DVLOG(1) << "Erasing header with name: " << key; key_size_ -= key.size(); value_size_ -= iter->second.SizeEstimate(); map_.erase(iter); } } void HttpHeaderBlock::clear() { key_size_ = 0; value_size_ = 0; map_.clear(); storage_.Clear(); } HttpHeaderBlock::InsertResult HttpHeaderBlock::insert( const HttpHeaderBlock::value_type& value) { value_size_ += value.second.size(); auto iter = map_.find(value.first); if (iter == map_.end()) { QUICHE_DVLOG(1) << "Inserting: (" << value.first << ", " << value.second << ")"; AppendHeader(value.first, value.second); return InsertResult::kInserted; } else { QUICHE_DVLOG(1) << "Updating key: " << iter->first << " with value: " << value.second; value_size_ -= iter->second.SizeEstimate(); iter->second = HeaderValue(&storage_, iter->first, storage_.Write(value.second)); return InsertResult::kReplaced; } } HttpHeaderBlock::ValueProxy HttpHeaderBlock::operator[]( const absl::string_view key) { QUICHE_DVLOG(2) << "Operator[] saw key: " << key; absl::string_view out_key; auto iter = map_.find(key); if (iter == map_.end()) { out_key = WriteKey(key); QUICHE_DVLOG(2) << "Key written as: " << std::hex << static_cast<const void*>(key.data()) << ", " << std::dec << key.size(); } else { out_key = iter->first; } return ValueProxy(this, iter, out_key, &value_size_); } void HttpHeaderBlock::AppendValueOrAddHeader(const absl::string_view key, const absl::string_view value) { value_size_ += value.size(); auto iter = map_.find(key); if (iter == map_.end()) { QUICHE_DVLOG(1) << "Inserting: (" << key << ", " << value << ")"; AppendHeader(key, value); return; } QUICHE_DVLOG(1) << "Updating key: " << iter->first << "; appending value: " << value; value_size_ += SeparatorForKey(key).size(); iter->second.Append(storage_.Write(value)); } void HttpHeaderBlock::AppendHeader(const absl::string_view key, const absl::string_view value) { auto backed_key = WriteKey(key); map_.emplace(std::make_pair( backed_key, HeaderValue(&storage_, backed_key, storage_.Write(value)))); } absl::string_view HttpHeaderBlock::WriteKey(const absl::string_view key) { key_size_ += key.size(); return storage_.Write(key); } size_t HttpHeaderBlock::bytes_allocated() const { return storage_.bytes_allocated(); } }
#include "quiche/common/http/http_header_block.h" #include <memory> #include <string> #include <utility> #include "quiche/common/platform/api/quiche_test.h" #include "quiche/spdy/test_tools/spdy_test_utils.h" using ::testing::ElementsAre; namespace quiche { namespace test { class ValueProxyPeer { public: static absl::string_view key(HttpHeaderBlock::ValueProxy* p) { return p->key_; } }; std::pair<absl::string_view, absl::string_view> Pair(absl::string_view k, absl::string_view v) { return std::make_pair(k, v); } TEST(HttpHeaderBlockTest, EmptyBlock) { HttpHeaderBlock block; EXPECT_TRUE(block.empty()); EXPECT_EQ(0u, block.size()); EXPECT_EQ(block.end(), block.find("foo")); EXPECT_FALSE(block.contains("foo")); EXPECT_TRUE(block.end() == block.begin()); block.erase("bar"); } TEST(HttpHeaderBlockTest, KeyMemoryReclaimedOnLookup) { HttpHeaderBlock block; absl::string_view copied_key1; { auto proxy1 = block["some key name"]; copied_key1 = ValueProxyPeer::key(&proxy1); } absl::string_view copied_key2; { auto proxy2 = block["some other key name"]; copied_key2 = ValueProxyPeer::key(&proxy2); } EXPECT_EQ(copied_key1.data(), copied_key2.data()); { auto proxy1 = block["some key name"]; block["some other key name"] = "some value"; } block["key"] = "value"; EXPECT_EQ("value", block["key"]); EXPECT_EQ("some value", block["some other key name"]); EXPECT_TRUE(block.find("some key name") == block.end()); } TEST(HttpHeaderBlockTest, AddHeaders) { HttpHeaderBlock block; block["foo"] = std::string(300, 'x'); block["bar"] = "baz"; block["qux"] = "qux1"; block["qux"] = "qux2"; block.insert(std::make_pair("key", "value")); EXPECT_EQ(Pair("foo", std::string(300, 'x')), *block.find("foo")); EXPECT_EQ("baz", block["bar"]); std::string qux("qux"); EXPECT_EQ("qux2", block[qux]); ASSERT_NE(block.end(), block.find("key")); ASSERT_TRUE(block.contains("key")); EXPECT_EQ(Pair("key", "value"), *block.find("key")); block.erase("key"); EXPECT_EQ(block.end(), block.find("key")); } TEST(HttpHeaderBlockTest, CopyBlocks) { HttpHeaderBlock block1; block1["foo"] = std::string(300, 'x'); block1["bar"] = "baz"; block1.insert(std::make_pair("qux", "qux1")); HttpHeaderBlock block2 = block1.Clone(); HttpHeaderBlock block3(block1.Clone()); EXPECT_EQ(block1, block2); EXPECT_EQ(block1, block3); } TEST(HttpHeaderBlockTest, Equality) { HttpHeaderBlock block1; block1["foo"] = "bar"; HttpHeaderBlock block2; block2["foo"] = "bar"; HttpHeaderBlock block3; block3["baz"] = "qux"; EXPECT_EQ(block1, block2); EXPECT_NE(block1, block3); block2["baz"] = "qux"; EXPECT_NE(block1, block2); } HttpHeaderBlock ReturnTestHeaderBlock() { HttpHeaderBlock block; block["foo"] = "bar"; block.insert(std::make_pair("foo2", "baz")); return block; } TEST(HttpHeaderBlockTest, MovedFromIsValid) { HttpHeaderBlock block1; block1["foo"] = "bar"; HttpHeaderBlock block2(std::move(block1)); EXPECT_THAT(block2, ElementsAre(Pair("foo", "bar"))); block1["baz"] = "qux"; HttpHeaderBlock block3(std::move(block1)); block1["foo"] = "bar"; HttpHeaderBlock block4(std::move(block1)); block1.clear(); EXPECT_TRUE(block1.empty()); block1["foo"] = "bar"; EXPECT_THAT(block1, ElementsAre(Pair("foo", "bar"))); HttpHeaderBlock block5 = ReturnTestHeaderBlock(); block5.AppendValueOrAddHeader("foo", "bar2"); EXPECT_THAT(block5, ElementsAre(Pair("foo", std::string("bar\0bar2", 8)), Pair("foo2", "baz"))); } TEST(HttpHeaderBlockTest, AppendHeaders) { HttpHeaderBlock block; block["foo"] = "foo"; block.AppendValueOrAddHeader("foo", "bar"); EXPECT_EQ(Pair("foo", std::string("foo\0bar", 7)), *block.find("foo")); block.insert(std::make_pair("foo", "baz")); EXPECT_EQ("baz", block["foo"]); EXPECT_EQ(Pair("foo", "baz"), *block.find("foo")); block["cookie"] = "key1=value1"; block.AppendValueOrAddHeader("h1", "h1v1"); block.insert(std::make_pair("h2", "h2v1")); block.AppendValueOrAddHeader("h3", "h3v2"); block.AppendValueOrAddHeader("h2", "h2v2"); block.AppendValueOrAddHeader("h1", "h1v2"); block.AppendValueOrAddHeader("cookie", "key2=value2"); block.AppendValueOrAddHeader("cookie", "key3=value3"); block.AppendValueOrAddHeader("h1", "h1v3"); block.AppendValueOrAddHeader("h2", "h2v3"); block.AppendValueOrAddHeader("h3", "h3v3"); block.AppendValueOrAddHeader("h4", "singleton"); block.AppendValueOrAddHeader("set-cookie", "yummy"); block.AppendValueOrAddHeader("set-cookie", "scrumptious"); EXPECT_EQ("key1=value1; key2=value2; key3=value3", block["cookie"]); EXPECT_EQ("baz", block["foo"]); EXPECT_EQ(std::string("h1v1\0h1v2\0h1v3", 14), block["h1"]); EXPECT_EQ(std::string("h2v1\0h2v2\0h2v3", 14), block["h2"]); EXPECT_EQ(std::string("h3v2\0h3v3", 9), block["h3"]); EXPECT_EQ("singleton", block["h4"]); EXPECT_EQ(std::string("yummy\0scrumptious", 17), block["set-cookie"]); } TEST(HttpHeaderBlockTest, CompareValueToStringPiece) { HttpHeaderBlock block; block["foo"] = "foo"; block.AppendValueOrAddHeader("foo", "bar"); const auto& val = block["foo"]; const char expected[] = "foo\0bar"; EXPECT_TRUE(absl::string_view(expected, 7) == val); EXPECT_TRUE(val == absl::string_view(expected, 7)); EXPECT_FALSE(absl::string_view(expected, 3) == val); EXPECT_FALSE(val == absl::string_view(expected, 3)); const char not_expected[] = "foo\0barextra"; EXPECT_FALSE(absl::string_view(not_expected, 12) == val); EXPECT_FALSE(val == absl::string_view(not_expected, 12)); const auto& val2 = block["foo2"]; EXPECT_FALSE(absl::string_view(expected, 7) == val2); EXPECT_FALSE(val2 == absl::string_view(expected, 7)); EXPECT_FALSE(absl::string_view("") == val2); EXPECT_FALSE(val2 == absl::string_view("")); } TEST(HttpHeaderBlockTest, UpperCaseNames) { HttpHeaderBlock block; block["Foo"] = "foo"; block.AppendValueOrAddHeader("Foo", "bar"); EXPECT_NE(block.end(), block.find("foo")); EXPECT_EQ(Pair("Foo", std::string("foo\0bar", 7)), *block.find("Foo")); block.AppendValueOrAddHeader("foo", "baz"); EXPECT_THAT(block, ElementsAre(Pair("Foo", std::string("foo\0bar\0baz", 11)))); } namespace { size_t HttpHeaderBlockSize(const HttpHeaderBlock& block) { size_t size = 0; for (const auto& pair : block) { size += pair.first.size() + pair.second.size(); } return size; } } TEST(HttpHeaderBlockTest, TotalBytesUsed) { HttpHeaderBlock block; const size_t value_size = 300; block["foo"] = std::string(value_size, 'x'); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); block.insert(std::make_pair("key", std::string(value_size, 'x'))); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); block.AppendValueOrAddHeader("abc", std::string(value_size, 'x')); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); block["foo"] = std::string(value_size, 'x'); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); block.insert(std::make_pair("key", std::string(value_size, 'x'))); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); block.AppendValueOrAddHeader("abc", std::string(value_size, 'x')); EXPECT_EQ(block.TotalBytesUsed(), HttpHeaderBlockSize(block)); size_t block_size = block.TotalBytesUsed(); HttpHeaderBlock block_copy = std::move(block); EXPECT_EQ(block_size, block_copy.TotalBytesUsed()); block_copy.erase("foo"); EXPECT_EQ(block_copy.TotalBytesUsed(), HttpHeaderBlockSize(block_copy)); block_copy.erase("key"); EXPECT_EQ(block_copy.TotalBytesUsed(), HttpHeaderBlockSize(block_copy)); block_copy.erase("abc"); EXPECT_EQ(block_copy.TotalBytesUsed(), HttpHeaderBlockSize(block_copy)); } TEST(HttpHeaderBlockTest, OrderPreserved) { HttpHeaderBlock block; block[":method"] = "GET"; block["foo"] = "bar"; block[":path"] = "/"; EXPECT_THAT(block, ElementsAre(Pair(":method", "GET"), Pair("foo", "bar"), Pair(":path", "/"))); } TEST(HttpHeaderBlockTest, InsertReturnValue) { HttpHeaderBlock block; EXPECT_EQ(HttpHeaderBlock::InsertResult::kInserted, block.insert({"foo", "bar"})); EXPECT_EQ(HttpHeaderBlock::InsertResult::kReplaced, block.insert({"foo", "baz"})); } } }
5
#ifndef XLA_WINDOW_UTIL_H_ #define XLA_WINDOW_UTIL_H_ #include "absl/types/span.h" #include "xla/types.h" #include "xla/xla_data.pb.h" namespace xla { namespace window_util { Window MakeWindow(absl::Span<const int64_t> sizes); Window MakeWindow(absl::Span<const int64_t> sizes, absl::Span<const int64_t> strides); PaddingConfig MakeSymmetricPadding(absl::Span<const int64_t> sizes); std::string ToString(const WindowDimension& dim); std::string ToString(const Window& window); bool HasStride(const Window& window); bool HasPadding(const Window& window); bool HasSymmetricPadding(const Window& window); bool HasNegativePadding(const Window& window); bool HasSymmetricPadding(const PaddingConfig& padding_config); bool HasBaseDilation(const Window& window); bool HasWindowDilation(const Window& window); bool HasDilation(const Window& window); bool HasOverlappingWindow(const Window& window); bool HasWindowReversal(const Window& window); bool AllOrNoneReversed(const Window& window); bool IsTrivialWindowDimension(const WindowDimension& window_dimension); int64_t DilatedBound(int64_t bound, int64_t dilation); int64_t StridedBound(int64_t bound, int64_t window_size, int64_t stride); } } #endif #include "xla/window_util.h" #include <functional> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "absl/functional/function_ref.h" #include "absl/strings/str_cat.h" #include "xla/xla_data.pb.h" #include "tsl/platform/logging.h" namespace xla { namespace window_util { Window MakeWindow(absl::Span<const int64_t> sizes) { Window window; for (int64_t size : sizes) { auto* dimension = window.add_dimensions(); dimension->set_size(size); dimension->set_stride(1); dimension->set_base_dilation(1); dimension->set_window_dilation(1); } return window; } Window MakeWindow(absl::Span<const int64_t> sizes, absl::Span<const int64_t> strides) { Window window; CHECK_EQ(sizes.size(), strides.size()); for (auto nb = 0; nb < sizes.size(); ++nb) { auto* dimension = window.add_dimensions(); dimension->set_size(sizes[nb]); dimension->set_stride(strides[nb]); dimension->set_base_dilation(1); dimension->set_window_dilation(1); } return window; } PaddingConfig MakeSymmetricPadding(absl::Span<const int64_t> sizes) { PaddingConfig config; for (int64_t size : sizes) { auto* dimension = config.add_dimensions(); dimension->set_edge_padding_low(size); dimension->set_edge_padding_high(size); } return config; } std::string ToString(const WindowDimension& dim) { using absl::StrAppend; using absl::StrCat; std::string str = StrCat("(size=", dim.size()); if (dim.stride() != 1) { StrAppend(&str, ",stride=", dim.stride()); } if (dim.padding_low() != 0) { StrAppend(&str, ",padding_low=", dim.padding_low()); } if (dim.padding_high() != 0) { StrAppend(&str, ",padding_high=", dim.padding_high()); } if (dim.base_dilation() != 1) { StrAppend(&str, ",base_dilation=", dim.base_dilation()); } if (dim.window_dilation() != 1) { StrAppend(&str, ",window_dilation=", dim.window_dilation()); } if (dim.window_reversal()) { StrAppend(&str, ",window_reversal"); } StrAppend(&str, ")"); return str; } std::string ToString(const Window& window) { using absl::StrAppend; using absl::StrCat; std::string str; const auto add_field = [&](const char* heading, absl::FunctionRef<std::string(const WindowDimension&)> format) { StrAppend(&str, heading, "="); const char* prefix = ""; for (const auto& window_dimension : window.dimensions()) { StrAppend(&str, prefix, format(window_dimension)); prefix = "x"; } }; if (window.dimensions_size() > 0) { add_field("size", [](const WindowDimension& dim) { return StrCat(dim.size()); }); } if (HasStride(window)) { add_field(" stride", [](const WindowDimension& dim) { return StrCat(dim.stride()); }); } if (HasPadding(window)) { add_field(" pad", [](const WindowDimension& dim) { return StrCat(dim.padding_low(), "_", dim.padding_high()); }); } if (HasBaseDilation(window)) { add_field(" lhs_dilate", [](const WindowDimension& dim) { return StrCat(dim.base_dilation()); }); } if (HasWindowDilation(window)) { add_field(" rhs_dilate", [](const WindowDimension& dim) { return StrCat(dim.window_dilation()); }); } if (HasWindowReversal(window)) { add_field(" rhs_reversal", [](const WindowDimension& dim) { return StrCat(dim.window_reversal() ? 1 : 0); }); } return str; } bool HasStride(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.stride() != 1) { return true; } } return false; } bool HasPadding(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.padding_low() != 0 || dim.padding_high() != 0) { return true; } } return false; } bool HasSymmetricPadding(const Window& window) { return absl::c_all_of(window.dimensions(), [](const WindowDimension& dim) { return dim.padding_low() == dim.padding_high(); }); } bool HasSymmetricPadding(const PaddingConfig& padding_config) { return absl::c_all_of(padding_config.dimensions(), [](const PaddingConfig::PaddingConfigDimension& dim) { return dim.edge_padding_low() == dim.edge_padding_high(); }); } bool HasNegativePadding(const Window& window) { return absl::c_any_of(window.dimensions(), [](const WindowDimension& dim) { return dim.padding_low() < 0 || dim.padding_high() < 0; }); } bool HasBaseDilation(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.base_dilation() != 1) { return true; } } return false; } bool HasWindowDilation(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.window_dilation() != 1) { return true; } } return false; } bool HasWindowReversal(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.window_reversal()) { return true; } } return false; } bool AllOrNoneReversed(const Window& window) { if (window.dimensions().empty()) { return true; } bool reversed = window.dimensions()[0].window_reversal(); return absl::c_all_of(window.dimensions(), [&](const WindowDimension& dim) { return dim.window_reversal() == reversed; }); } bool HasDilation(const Window& window) { return HasBaseDilation(window) || HasWindowDilation(window); } bool IsTrivialWindowDimension(const WindowDimension& window_dimension) { return window_dimension.size() == 1 && window_dimension.stride() == 1 && window_dimension.padding_low() == 0 && window_dimension.padding_high() == 0 && window_dimension.window_dilation() == 1 && window_dimension.base_dilation() == 1; } bool HasOverlappingWindow(const Window& window) { for (const auto& dim : window.dimensions()) { if (dim.size() > dim.stride()) { return true; } } return false; } int64_t DilatedBound(int64_t bound, int64_t dilation) { CHECK_GE(bound, 0); CHECK_GE(dilation, 1); if (bound == 0) { return 0; } return (bound - 1) * dilation + 1; } int64_t StridedBound(int64_t bound, int64_t window_size, int64_t stride) { CHECK_GE(window_size, 0); CHECK_GE(bound, 0); CHECK_GE(stride, 1); if (bound == 0 || window_size > bound) { return 0; } return (bound - window_size) / stride + 1; } } }
#include "xla/window_util.h" #include "xla/test.h" namespace xla { namespace { using ::testing::ElementsAre; TEST(WindowUtilTest, HasOverlappingWindowTest) { EXPECT_FALSE( window_util::HasOverlappingWindow(window_util::MakeWindow({1, 1}))); EXPECT_TRUE( window_util::HasOverlappingWindow(window_util::MakeWindow({2, 2, 2, 2}))); } TEST(WindowUtilTest, MakeWindowStrideTest) { Window w = window_util::MakeWindow({1, 2}, {3, 4}); EXPECT_EQ(w.dimensions()[0].size(), 1); EXPECT_EQ(w.dimensions()[1].size(), 2); EXPECT_EQ(w.dimensions()[0].stride(), 3); EXPECT_EQ(w.dimensions()[1].stride(), 4); } } }
6
#ifndef QUICHE_COMMON_HTTP_HTTP_HEADER_STORAGE_H_ #define QUICHE_COMMON_HTTP_HTTP_HEADER_STORAGE_H_ #include "absl/container/inlined_vector.h" #include "absl/strings/string_view.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/quiche_simple_arena.h" namespace quiche { using Fragments = absl::InlinedVector<absl::string_view, 1>; class QUICHE_EXPORT HttpHeaderStorage { public: HttpHeaderStorage(); HttpHeaderStorage(const HttpHeaderStorage&) = delete; HttpHeaderStorage& operator=(const HttpHeaderStorage&) = delete; HttpHeaderStorage(HttpHeaderStorage&& other) = default; HttpHeaderStorage& operator=(HttpHeaderStorage&& other) = default; absl::string_view Write(absl::string_view s); void Rewind(absl::string_view s); void Clear() { arena_.Reset(); } absl::string_view WriteFragments(const Fragments& fragments, absl::string_view separator); size_t bytes_allocated() const { return arena_.status().bytes_allocated(); } private: QuicheSimpleArena arena_; }; QUICHE_EXPORT size_t Join(char* dst, const Fragments& fragments, absl::string_view separator); } #endif #include "quiche/common/http/http_header_storage.h" #include <cstring> #include "quiche/common/platform/api/quiche_logging.h" namespace quiche { namespace { const size_t kDefaultStorageBlockSize = 2048; } HttpHeaderStorage::HttpHeaderStorage() : arena_(kDefaultStorageBlockSize) {} absl::string_view HttpHeaderStorage::Write(const absl::string_view s) { return absl::string_view(arena_.Memdup(s.data(), s.size()), s.size()); } void HttpHeaderStorage::Rewind(const absl::string_view s) { arena_.Free(const_cast<char*>(s.data()), s.size()); } absl::string_view HttpHeaderStorage::WriteFragments( const Fragments& fragments, absl::string_view separator) { if (fragments.empty()) { return absl::string_view(); } size_t total_size = separator.size() * (fragments.size() - 1); for (const absl::string_view& fragment : fragments) { total_size += fragment.size(); } char* dst = arena_.Alloc(total_size); size_t written = Join(dst, fragments, separator); QUICHE_DCHECK_EQ(written, total_size); return absl::string_view(dst, total_size); } size_t Join(char* dst, const Fragments& fragments, absl::string_view separator) { if (fragments.empty()) { return 0; } auto* original_dst = dst; auto it = fragments.begin(); memcpy(dst, it->data(), it->size()); dst += it->size(); for (++it; it != fragments.end(); ++it) { memcpy(dst, separator.data(), separator.size()); dst += separator.size(); memcpy(dst, it->data(), it->size()); dst += it->size(); } return dst - original_dst; } }
#include "quiche/common/http/http_header_storage.h" #include "quiche/common/platform/api/quiche_test.h" namespace quiche { namespace test { TEST(JoinTest, JoinEmpty) { Fragments empty; absl::string_view separator = ", "; char buf[10] = ""; size_t written = Join(buf, empty, separator); EXPECT_EQ(0u, written); } TEST(JoinTest, JoinOne) { Fragments v = {"one"}; absl::string_view separator = ", "; char buf[15]; size_t written = Join(buf, v, separator); EXPECT_EQ(3u, written); EXPECT_EQ("one", absl::string_view(buf, written)); } TEST(JoinTest, JoinMultiple) { Fragments v = {"one", "two", "three"}; absl::string_view separator = ", "; char buf[15]; size_t written = Join(buf, v, separator); EXPECT_EQ(15u, written); EXPECT_EQ("one, two, three", absl::string_view(buf, written)); } } }
7
#ifndef TENSORFLOW_CORE_IR_INTERFACES_H_ #define TENSORFLOW_CORE_IR_INTERFACES_H_ #include "mlir/IR/Dialect.h" #include "mlir/IR/DialectInterface.h" #include "mlir/IR/OpDefinition.h" #include "mlir/Interfaces/ControlFlowInterfaces.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/interfaces.h.inc" namespace mlir { namespace tfg { class TensorFlowRegistryInterfaceBase : public TensorFlowRegistryInterface::FallbackModel< TensorFlowRegistryInterfaceBase>, public DialectInterface::Base<TensorFlowRegistryInterfaceBase> { public: explicit TensorFlowRegistryInterfaceBase(Dialect *dialect) : DialectInterface::Base<TensorFlowRegistryInterfaceBase>(dialect) {} virtual bool isStateful(Operation *op) const = 0; }; class StatefulMemoryEffectInterface : public MemoryEffectOpInterface::FallbackModel< StatefulMemoryEffectInterface>, public DialectInterface::Base<StatefulMemoryEffectInterface> { public: explicit StatefulMemoryEffectInterface(Dialect *dialect) : DialectInterface::Base<StatefulMemoryEffectInterface>(dialect) {} void getEffects( Operation *op, SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> &effects) const; }; } namespace OpTrait { template <typename ConcreteType> class IntrinsicOperation : public mlir::OpTrait::TraitBase<ConcreteType, IntrinsicOperation> {}; } } #endif #include "tensorflow/core/ir/interfaces.h" #include "llvm/ADT/SmallVector.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Region.h" #include "mlir/IR/Value.h" #include "mlir/Interfaces/SideEffectInterfaces.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/ir/types/dialect.h" namespace mlir { namespace tfg { LogicalResult ControlArgumentInterface::verifyRegion(Operation *op, Region &region) { unsigned num_ctl = 0, num_data = 0; for (BlockArgument arg : region.getArguments()) { bool is_ctl = mlir::isa<tf_type::ControlType>(arg.getType()); num_ctl += is_ctl; num_data += !is_ctl; } if (num_ctl != num_data) { return op->emitOpError("region #") << region.getRegionNumber() << " expected same number of data values and control tokens (" << num_data << " vs. " << num_ctl << ")"; } return success(); } void StatefulMemoryEffectInterface::getEffects( Operation *op, SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>> &effects) const { auto registry = dyn_cast<TensorFlowRegistryInterface>(op); if (!registry || registry.isStateful() || op->getParentOfType<GraphOp>()) { effects.emplace_back(MemoryEffects::Write::get()); } } } } #include "tensorflow/core/ir/interfaces.cc.inc"
#include "tensorflow/core/ir/interfaces.h" #include "llvm/ADT/ScopeExit.h" #include "mlir/IR/DialectInterface.h" #include "mlir/IR/Location.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/Verifier.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { TEST(TensorFlowRegistryInterface, TestDefaultImplementation) { MLIRContext context(MLIRContext::Threading::DISABLED); auto *dialect = context.getOrLoadDialect<TFGraphDialect>(); OperationState state(UnknownLoc::get(&context), "tfg.Foo"); state.addTypes(dialect->getControlType()); Operation *op = Operation::create(state); auto cleanup = llvm::make_scope_exit([&] { op->destroy(); }); ASSERT_TRUE(succeeded(verify(op))); auto iface = dyn_cast<TensorFlowRegistryInterface>(op); EXPECT_FALSE(iface); } TEST(TensorFlowRegisterInterface, TestCustomImplementation) { MLIRContext context(MLIRContext::Threading::DISABLED); DialectRegistry registry; registry.insert<TFGraphDialect>(); struct CustomRegistryInterface : public TensorFlowRegistryInterfaceBase { using TensorFlowRegistryInterfaceBase::TensorFlowRegistryInterfaceBase; bool isStateful(Operation *op) const override { return op->getName().stripDialect() == "Foo"; } }; registry.addExtension(+[](mlir::MLIRContext *ctx, TFGraphDialect *dialect) { dialect->addInterfaces<CustomRegistryInterface>(); }); context.appendDialectRegistry(registry); auto *dialect = context.getOrLoadDialect<TFGraphDialect>(); SmallVector<StringRef, 2> op_names = {"tfg.Foo", "tfg.Bar"}; SmallVector<bool, 2> expected = {true, false}; for (auto it : llvm::zip(op_names, expected)) { OperationState state(UnknownLoc::get(&context), std::get<0>(it)); state.addTypes(dialect->getControlType()); Operation *op = Operation::create(state); auto cleanup = llvm::make_scope_exit([&] { op->destroy(); }); auto iface = dyn_cast<TensorFlowRegistryInterface>(op); ASSERT_TRUE(iface); EXPECT_EQ(iface.isStateful(), std::get<1>(it)); } } } } }
8
#ifndef MLIR_HLO_DIALECT_MHLO_IR_REGISTER_H_ #define MLIR_HLO_DIALECT_MHLO_IR_REGISTER_H_ namespace mlir { class DialectRegistry; namespace mhlo { void registerAllMhloDialects(DialectRegistry &registry); } } #endif #include "tensorflow/lite/core/kernels/register.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/schema/schema_generated.h" #include "tensorflow/lite/tflite_with_xnnpack_optional.h" namespace tflite { namespace ops { namespace custom { TfLiteRegistration* Register_NUMERIC_VERIFY(); TfLiteRegistration* Register_AUDIO_SPECTROGRAM(); TfLiteRegistration* Register_MFCC(); TfLiteRegistration* Register_DETECTION_POSTPROCESS(); } namespace builtin { BuiltinOpResolver::BuiltinOpResolver() { AddBuiltin(BuiltinOperator_ABS, Register_ABS(), 1, 5); AddBuiltin(BuiltinOperator_HARD_SWISH, Register_HARD_SWISH()); AddBuiltin(BuiltinOperator_RELU, Register_RELU(), 1, 3); AddBuiltin(BuiltinOperator_RELU_N1_TO_1, Register_RELU_N1_TO_1()); AddBuiltin(BuiltinOperator_RELU_0_TO_1, Register_RELU_0_TO_1()); AddBuiltin(BuiltinOperator_RELU6, Register_RELU6(), 1, 3); AddBuiltin(BuiltinOperator_TANH, Register_TANH(), 1, 3); AddBuiltin(BuiltinOperator_LOGISTIC, Register_LOGISTIC(), 1, 3); AddBuiltin(BuiltinOperator_AVERAGE_POOL_2D, Register_AVERAGE_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_MAX_POOL_2D, Register_MAX_POOL_2D(), 1, 3); AddBuiltin(BuiltinOperator_L2_POOL_2D, Register_L2_POOL_2D()); AddBuiltin(BuiltinOperator_CONV_2D, Register_CONV_2D(), 1, 8); AddBuiltin(BuiltinOperator_DEPTHWISE_CONV_2D, Register_DEPTHWISE_CONV_2D(), 1, 7); AddBuiltin(BuiltinOperator_SVDF, Register_SVDF(), 1, 4); AddBuiltin(BuiltinOperator_RNN, Register_RNN(), 1, 3); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_RNN, Register_BIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_RNN, Register_UNIDIRECTIONAL_SEQUENCE_RNN(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP, Register_EMBEDDING_LOOKUP(), 1, 3); AddBuiltin(BuiltinOperator_EMBEDDING_LOOKUP_SPARSE, Register_EMBEDDING_LOOKUP_SPARSE()); AddBuiltin(BuiltinOperator_FULLY_CONNECTED, Register_FULLY_CONNECTED(), 1, 12); AddBuiltin(BuiltinOperator_LSH_PROJECTION, Register_LSH_PROJECTION()); AddBuiltin(BuiltinOperator_HASHTABLE_LOOKUP, Register_HASHTABLE_LOOKUP()); AddBuiltin(BuiltinOperator_SOFTMAX, Register_SOFTMAX(), 1, 3); AddBuiltin(BuiltinOperator_CONCATENATION, Register_CONCATENATION(), 1, 4); AddBuiltin(BuiltinOperator_ADD, Register_ADD(), 1, 5); AddBuiltin(BuiltinOperator_SPACE_TO_BATCH_ND, Register_SPACE_TO_BATCH_ND(), 1, 4); AddBuiltin(BuiltinOperator_BATCH_TO_SPACE_ND, Register_BATCH_TO_SPACE_ND(), 1, 4); AddBuiltin(BuiltinOperator_MUL, Register_MUL(), 1, 7); AddBuiltin(BuiltinOperator_L2_NORMALIZATION, Register_L2_NORMALIZATION(), 1, 2); AddBuiltin(BuiltinOperator_LOCAL_RESPONSE_NORMALIZATION, Register_LOCAL_RESPONSE_NORMALIZATION()); AddBuiltin(BuiltinOperator_LSTM, Register_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_BIDIRECTIONAL_SEQUENCE_LSTM, Register_BIDIRECTIONAL_SEQUENCE_LSTM(), 1, 3); AddBuiltin(BuiltinOperator_UNIDIRECTIONAL_SEQUENCE_LSTM, Register_UNIDIRECTIONAL_SEQUENCE_LSTM(), 1, 4); AddBuiltin(BuiltinOperator_PAD, Register_PAD(), 1, 4); AddBuiltin(BuiltinOperator_PADV2, Register_PADV2(), 1, 4); AddBuiltin(BuiltinOperator_RESHAPE, Register_RESHAPE()); AddBuiltin(BuiltinOperator_RESIZE_BILINEAR, Register_RESIZE_BILINEAR(), 1, 4); AddBuiltin(BuiltinOperator_RESIZE_NEAREST_NEIGHBOR, Register_RESIZE_NEAREST_NEIGHBOR(), 1, 4); AddBuiltin(BuiltinOperator_SKIP_GRAM, Register_SKIP_GRAM()); AddBuiltin(BuiltinOperator_SPACE_TO_DEPTH, Register_SPACE_TO_DEPTH(), 1, 2); AddBuiltin(BuiltinOperator_DEPTH_TO_SPACE, Register_DEPTH_TO_SPACE(), 1, 2); AddBuiltin(BuiltinOperator_GATHER, Register_GATHER(), 1, 7); AddBuiltin(BuiltinOperator_TRANSPOSE, Register_TRANSPOSE(), 1, 6); AddBuiltin(BuiltinOperator_MEAN, Register_MEAN(), 1, 3); AddBuiltin(BuiltinOperator_DIV, Register_DIV(), 1, 2); AddBuiltin(BuiltinOperator_SUB, Register_SUB(), 1, 5); AddBuiltin(BuiltinOperator_SPLIT, Register_SPLIT(), 1, 4); AddBuiltin(BuiltinOperator_SPLIT_V, Register_SPLIT_V(), 1, 2); AddBuiltin(BuiltinOperator_SQUEEZE, Register_SQUEEZE(), 1, 2); AddBuiltin(BuiltinOperator_STRIDED_SLICE, Register_STRIDED_SLICE(), 1, 8); AddBuiltin(BuiltinOperator_EXP, Register_EXP(), 1, 2); AddBuiltin(BuiltinOperator_TOPK_V2, Register_TOPK_V2(), 1, 3); AddBuiltin(BuiltinOperator_LOG, Register_LOG(), 1, 2); AddBuiltin(BuiltinOperator_LOG_SOFTMAX, Register_LOG_SOFTMAX(), 1, 2); AddBuiltin(BuiltinOperator_CAST, Register_CAST(), 1, 6); AddBuiltin(BuiltinOperator_DEQUANTIZE, Register_DEQUANTIZE(), 1, 6); AddBuiltin(BuiltinOperator_PRELU, Register_PRELU()); AddBuiltin(BuiltinOperator_MAXIMUM, Register_MAXIMUM(), 1, 4); AddBuiltin(BuiltinOperator_MINIMUM, Register_MINIMUM(), 1, 4); AddBuiltin(BuiltinOperator_ARG_MAX, Register_ARG_MAX(), 1, 3); AddBuiltin(BuiltinOperator_ARG_MIN, Register_ARG_MIN(), 1, 3); AddBuiltin(BuiltinOperator_GREATER, Register_GREATER(), 1, 2); AddBuiltin(BuiltinOperator_GREATER_EQUAL, Register_GREATER_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_LESS, Register_LESS(), 1, 3); AddBuiltin(BuiltinOperator_LESS_EQUAL, Register_LESS_EQUAL(), 1, 2); AddBuiltin(BuiltinOperator_FLOOR, Register_FLOOR()); AddBuiltin(BuiltinOperator_CEIL, Register_CEIL()); AddBuiltin(BuiltinOperator_ROUND, Register_ROUND()); AddBuiltin(BuiltinOperator_NEG, Register_NEG()); AddBuiltin(BuiltinOperator_SELECT, Register_SELECT(), 1, 4); AddBuiltin(BuiltinOperator_SELECT_V2, Register_SELECT_V2(), 1, 2); AddBuiltin(BuiltinOperator_SLICE, Register_SLICE(), 1, 6); AddBuiltin(BuiltinOperator_SIN, Register_SIN()); AddBuiltin(BuiltinOperator_COS, Register_COS()); AddBuiltin(BuiltinOperator_TRANSPOSE_CONV, Register_TRANSPOSE_CONV(), 1, 5); AddBuiltin(BuiltinOperator_TILE, Register_TILE(), 1, 3); AddBuiltin(BuiltinOperator_SUM, Register_SUM(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_PROD, Register_REDUCE_PROD(), 1, 2); AddBuiltin(BuiltinOperator_REDUCE_MAX, Register_REDUCE_MAX(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_MIN, Register_REDUCE_MIN(), 1, 3); AddBuiltin(BuiltinOperator_REDUCE_ANY, Register_REDUCE_ANY()); AddBuiltin(BuiltinOperator_REDUCE_ALL, Register_REDUCE_ALL()); AddBuiltin(BuiltinOperator_EXPAND_DIMS, Register_EXPAND_DIMS()); AddBuiltin(BuiltinOperator_SPARSE_TO_DENSE, Register_SPARSE_TO_DENSE(), 1, 3); AddBuiltin(BuiltinOperator_EQUAL, Register_EQUAL(), 1, 4); AddBuiltin(BuiltinOperator_NOT_EQUAL, Register_NOT_EQUAL(), 1, 3); AddBuiltin(BuiltinOperator_SQRT, Register_SQRT()); AddBuiltin(BuiltinOperator_RSQRT, Register_RSQRT(), 1, 3); AddBuiltin(BuiltinOperator_SHAPE, Register_SHAPE()); AddBuiltin(BuiltinOperator_RANK, Register_RANK()); AddBuiltin(BuiltinOperator_POW, Register_POW()); AddBuiltin(BuiltinOperator_FAKE_QUANT, Register_FAKE_QUANT(), 1, 2); AddBuiltin(BuiltinOperator_PACK, Register_PACK(), 1, 4); AddBuiltin(BuiltinOperator_ONE_HOT, Register_ONE_HOT()); AddBuiltin(BuiltinOperator_LOGICAL_OR, Register_LOGICAL_OR()); AddBuiltin(BuiltinOperator_LOGICAL_AND, Register_LOGICAL_AND()); AddBuiltin(BuiltinOperator_LOGICAL_NOT, Register_LOGICAL_NOT()); AddBuiltin(BuiltinOperator_UNPACK, Register_UNPACK(), 1, 4); AddBuiltin(BuiltinOperator_FLOOR_DIV, Register_FLOOR_DIV(), 1, 3); AddBuiltin(BuiltinOperator_SQUARE, Register_SQUARE()); AddBuiltin(BuiltinOperator_ZEROS_LIKE, Register_ZEROS_LIKE()); AddBuiltin(BuiltinOperator_FLOOR_MOD, Register_FLOOR_MOD(), 1, 2); AddBuiltin(BuiltinOperator_RANGE, Register_RANGE(), 1, 2); AddBuiltin(BuiltinOperator_LEAKY_RELU, Register_LEAKY_RELU(), 1, 2); AddBuiltin(BuiltinOperator_SQUARED_DIFFERENCE, Register_SQUARED_DIFFERENCE(), 1, 2); AddBuiltin(BuiltinOperator_FILL, Register_FILL(), 1, 4); AddBuiltin(BuiltinOperator_MIRROR_PAD, Register_MIRROR_PAD(), 1, 3); AddBuiltin(BuiltinOperator_UNIQUE, Register_UNIQUE()); AddBuiltin(BuiltinOperator_REVERSE_V2, Register_REVERSE_V2(), 1, 3); AddBuiltin(BuiltinOperator_ADD_N, Register_ADD_N()); AddBuiltin(BuiltinOperator_GATHER_ND, Register_GATHER_ND(), 1, 5); AddBuiltin(BuiltinOperator_WHERE, Register_WHERE(), 1, 2); AddBuiltin(BuiltinOperator_ELU, Register_ELU()); AddBuiltin(BuiltinOperator_REVERSE_SEQUENCE, Register_REVERSE_SEQUENCE()); AddBuiltin(BuiltinOperator_MATRIX_DIAG, Register_MATRIX_DIAG()); AddBuiltin(BuiltinOperator_QUANTIZE, Register_QUANTIZE(), 1, 3); AddBuiltin(BuiltinOperator_MATRIX_SET_DIAG, Register_MATRIX_SET_DIAG()); AddBuiltin(BuiltinOperator_IF, tflite::ops::builtin::Register_IF()); AddBuiltin(BuiltinOperator_WHILE, tflite::ops::builtin::Register_WHILE()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V4, Register_NON_MAX_SUPPRESSION_V4()); AddBuiltin(BuiltinOperator_NON_MAX_SUPPRESSION_V5, Register_NON_MAX_SUPPRESSION_V5()); AddBuiltin(BuiltinOperator_SCATTER_ND, Register_SCATTER_ND()); AddBuiltin(BuiltinOperator_DENSIFY, Register_DENSIFY()); AddBuiltin(BuiltinOperator_SEGMENT_SUM, Register_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_BATCH_MATMUL, Register_BATCH_MATMUL(), 1, 4); AddBuiltin(BuiltinOperator_CUMSUM, Register_CUMSUM()); AddBuiltin(BuiltinOperator_BROADCAST_TO, Register_BROADCAST_TO(), 2, 3); AddBuiltin(BuiltinOperator_CALL_ONCE, tflite::ops::builtin::Register_CALL_ONCE()); AddBuiltin(BuiltinOperator_RFFT2D, Register_RFFT2D()); AddBuiltin(BuiltinOperator_CONV_3D, Register_CONV_3D()); AddBuiltin(BuiltinOperator_IMAG, Register_IMAG()); AddBuiltin(BuiltinOperator_REAL, Register_REAL()); AddBuiltin(BuiltinOperator_COMPLEX_ABS, Register_COMPLEX_ABS()); AddBuiltin(BuiltinOperator_BROADCAST_ARGS, Register_BROADCAST_ARGS()); AddBuiltin(BuiltinOperator_HASHTABLE, Register_HASHTABLE()); AddBuiltin(BuiltinOperator_HASHTABLE_FIND, Register_HASHTABLE_FIND()); AddBuiltin(BuiltinOperator_HASHTABLE_IMPORT, Register_HASHTABLE_IMPORT()); AddBuiltin(BuiltinOperator_HASHTABLE_SIZE, Register_HASHTABLE_SIZE()); AddBuiltin(BuiltinOperator_CONV_3D_TRANSPOSE, Register_CONV_3D_TRANSPOSE()); AddBuiltin(BuiltinOperator_VAR_HANDLE, Register_VAR_HANDLE()); AddBuiltin(BuiltinOperator_READ_VARIABLE, Register_READ_VARIABLE()); AddBuiltin(BuiltinOperator_ASSIGN_VARIABLE, Register_ASSIGN_VARIABLE()); AddBuiltin(BuiltinOperator_MULTINOMIAL, Register_MULTINOMIAL()); AddBuiltin(BuiltinOperator_RANDOM_STANDARD_NORMAL, Register_RANDOM_STANDARD_NORMAL()); AddBuiltin(BuiltinOperator_BUCKETIZE, Register_BUCKETIZE()); AddBuiltin(BuiltinOperator_RANDOM_UNIFORM, Register_RANDOM_UNIFORM()); AddBuiltin(BuiltinOperator_GELU, Register_GELU(), 1, 2); AddBuiltin(BuiltinOperator_DYNAMIC_UPDATE_SLICE, Register_DYNAMIC_UPDATE_SLICE(), 1, 2); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_PROD, Register_UNSORTED_SEGMENT_PROD()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MAX, Register_UNSORTED_SEGMENT_MAX()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_MIN, Register_UNSORTED_SEGMENT_MIN()); AddBuiltin(BuiltinOperator_UNSORTED_SEGMENT_SUM, Register_UNSORTED_SEGMENT_SUM()); AddBuiltin(BuiltinOperator_ATAN2, Register_ATAN2()); AddBuiltin(BuiltinOperator_SIGN, Register_SIGN(), 1, 2); AddBuiltin(BuiltinOperator_BITCAST, Register_BITCAST()); AddBuiltin(BuiltinOperator_BITWISE_XOR, Register_BITWISE_XOR()); AddBuiltin(BuiltinOperator_RIGHT_SHIFT, Register_RIGHT_SHIFT()); AddBuiltin(BuiltinOperator_STABLEHLO_SCATTER, Register_STABLEHLO_SCATTER()); AddBuiltin(BuiltinOperator_DILATE, Register_DILATE()); AddBuiltin(BuiltinOperator_STABLEHLO_RNG_BIT_GENERATOR, Register_STABLEHLO_RNG_BIT_GENERATOR()); AddBuiltin(BuiltinOperator_REDUCE_WINDOW, Register_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_REDUCE_WINDOW, Register_STABLEHLO_REDUCE_WINDOW()); AddBuiltin(BuiltinOperator_STABLEHLO_GATHER, Register_STABLEHLO_GATHER()); AddBuiltin(BuiltinOperator_STABLEHLO_ADD, Register_STABLEHLO_ADD()); AddBuiltin(BuiltinOperator_STABLEHLO_MULTIPLY, Register_STABLEHLO_MULTIPLY()); AddBuiltin(BuiltinOperator_STABLEHLO_MAXIMUM, Register_STABLEHLO_MAXIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_MINIMUM, Register_STABLEHLO_MINIMUM()); AddBuiltin(BuiltinOperator_STABLEHLO_PAD, Register_STABLEHLO_PAD()); AddBuiltin(BuiltinOperator_STABLEHLO_COMPOSITE, Register_STABLEHLO_COMPOSITE()); AddCustom("NumericVerify", tflite::ops::custom::Register_NUMERIC_VERIFY()); AddCustom("Mfcc", tflite::ops::custom::Register_MFCC()); AddCustom("AudioSpectrogram", tflite::ops::custom::Register_AUDIO_SPECTROGRAM()); AddCustom("TFLite_Detection_PostProcess", tflite::ops::custom::Register_DETECTION_POSTPROCESS()); may_directly_contain_user_defined_ops_ = false; delegate_creators_.push_back([](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, XNNPackQS8Options::default_value); }); } BuiltinOpResolverWithXNNPACK::BuiltinOpResolverWithXNNPACK( bool enable_xnnpack_unsigned_quantized) { delegate_creators_.clear(); XNNPackQS8Options xnnpack_qs8_options = enable_xnnpack_unsigned_quantized ? XNNPackQS8Options::enabled : XNNPackQS8Options::disabled; delegate_creators_.push_back([xnnpack_qs8_options](TfLiteContext* context) { return tflite::MaybeCreateXNNPACKDelegate(context, xnnpack_qs8_options); }); } } } }
#include "tensorflow/lite/core/kernels/register.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h" #include "tensorflow/lite/mutable_op_resolver.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite::ops::builtin { namespace { TEST(BuiltinOpResolverTest, SupportsAdd) { BuiltinOpResolver builtin_op_resolver; const TfLiteRegistration *add = builtin_op_resolver.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } TEST(BuiltinOpResolverTest, CopySupportsAdd) { BuiltinOpResolver builtin_op_resolver; MutableOpResolver copy = builtin_op_resolver; const TfLiteRegistration *add = copy.FindOp(::tflite::BuiltinOperator_ADD, 1); ASSERT_NE(add, nullptr); ASSERT_NE(add->init, nullptr); ASSERT_NE(add->free, nullptr); ASSERT_NE(add->prepare, nullptr); ASSERT_NE(add->invoke, nullptr); } #if defined(TFLITE_WITHOUT_XNNPACK) TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, HasXNNPACKDelegate_QS8_QU8) { BuiltinOpResolver builtin_op_resolver; ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, TFLITE_XNNPACK_DELEGATE_FLAG_QU8); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } TEST(BuiltinOpResolverTest, Disable_QU8) { BuiltinOpResolverWithXNNPACK builtin_op_resolver(false); ASSERT_EQ(builtin_op_resolver.GetDelegateCreators().size(), 1); BuiltinOpResolver::TfLiteDelegateCreator delegate_creator = builtin_op_resolver.GetDelegateCreators()[0]; std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate *)> delegate = delegate_creator(nullptr); const TfLiteXNNPackDelegateOptions *options = TfLiteXNNPackDelegateGetOptions(delegate.get()); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QU8, 0); ASSERT_EQ(options->flags & TFLITE_XNNPACK_DELEGATE_FLAG_QS8, TFLITE_XNNPACK_DELEGATE_FLAG_QS8); } #endif } }
9
#ifndef ABSL_SYNCHRONIZATION_BARRIER_H_ #define ABSL_SYNCHRONIZATION_BARRIER_H_ #include "absl/base/thread_annotations.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN class Barrier { public: explicit Barrier(int num_threads) : num_to_block_(num_threads), num_to_exit_(num_threads) {} Barrier(const Barrier&) = delete; Barrier& operator=(const Barrier&) = delete; bool Block(); private: Mutex lock_; int num_to_block_ ABSL_GUARDED_BY(lock_); int num_to_exit_ ABSL_GUARDED_BY(lock_); }; ABSL_NAMESPACE_END } #endif #include "absl/synchronization/barrier.h" #include "absl/base/internal/raw_logging.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN static bool IsZero(void *arg) { return 0 == *reinterpret_cast<int *>(arg); } bool Barrier::Block() { MutexLock l(&this->lock_); this->num_to_block_--; if (this->num_to_block_ < 0) { ABSL_RAW_LOG( FATAL, "Block() called too many times. num_to_block_=%d out of total=%d", this->num_to_block_, this->num_to_exit_); } this->lock_.Await(Condition(IsZero, &this->num_to_block_)); this->num_to_exit_--; ABSL_RAW_CHECK(this->num_to_exit_ >= 0, "barrier underflow"); return this->num_to_exit_ == 0; } ABSL_NAMESPACE_END }
#include "absl/synchronization/barrier.h" #include <thread> #include <vector> #include "gtest/gtest.h" #include "absl/synchronization/mutex.h" #include "absl/time/clock.h" TEST(Barrier, SanityTest) { constexpr int kNumThreads = 10; absl::Barrier* barrier = new absl::Barrier(kNumThreads); absl::Mutex mutex; int counter = 0; auto thread_func = [&] { if (barrier->Block()) { delete barrier; } absl::MutexLock lock(&mutex); ++counter; }; std::vector<std::thread> threads; for (int i = 0; i < kNumThreads - 1; ++i) { threads.push_back(std::thread(thread_func)); } absl::SleepFor(absl::Seconds(1)); { absl::MutexLock lock(&mutex); EXPECT_EQ(counter, 0); } threads.push_back(std::thread(thread_func)); for (auto& thread : threads) { thread.join(); } absl::MutexLock lock(&mutex); EXPECT_EQ(counter, kNumThreads); }
10
#ifndef TENSORFLOW_CORE_LIB_CORE_ARENA_H_ #define TENSORFLOW_CORE_LIB_CORE_ARENA_H_ #include <assert.h> #include <vector> #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace core { class Arena { public: explicit Arena(const size_t block_size); ~Arena(); char* Alloc(const size_t size) { return reinterpret_cast<char*>(GetMemory(size, 1)); } char* AllocAligned(const size_t size, const size_t alignment) { return reinterpret_cast<char*>(GetMemory(size, alignment)); } void Reset(); #ifdef __i386__ static const int kDefaultAlignment = 4; #else static constexpr int kDefaultAlignment = 8; #endif protected: bool SatisfyAlignment(const size_t alignment); void MakeNewBlock(const uint32 alignment); void* GetMemoryFallback(const size_t size, const int align); void* GetMemory(const size_t size, const int align) { assert(remaining_ <= block_size_); if (size > 0 && size < remaining_ && align == 1) { void* result = freestart_; freestart_ += size; remaining_ -= size; return result; } return GetMemoryFallback(size, align); } size_t remaining_; private: struct AllocatedBlock { char* mem; size_t size; }; AllocatedBlock* AllocNewBlock(const size_t block_size, const uint32 alignment); const size_t block_size_; char* freestart_; char* freestart_when_empty_; size_t blocks_alloced_; AllocatedBlock first_blocks_[16]; std::vector<AllocatedBlock>* overflow_blocks_; void FreeBlocks(); Arena(const Arena&) = delete; void operator=(const Arena&) = delete; }; } } #endif #include "tensorflow/core/lib/core/arena.h" #include <assert.h> #include <algorithm> #include <vector> #include "tensorflow/core/lib/math/math_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/mem.h" namespace tensorflow { namespace core { Arena::Arena(const size_t block_size) : remaining_(0), block_size_(block_size), freestart_(nullptr), blocks_alloced_(1), overflow_blocks_(nullptr) { assert(block_size > kDefaultAlignment); first_blocks_[0].mem = reinterpret_cast<char*>(port::AlignedMalloc(block_size_, sizeof(void*))); first_blocks_[0].size = block_size_; Reset(); } Arena::~Arena() { FreeBlocks(); assert(overflow_blocks_ == nullptr); for (size_t i = 0; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); } } bool Arena::SatisfyAlignment(size_t alignment) { const size_t overage = reinterpret_cast<size_t>(freestart_) & (alignment - 1); if (overage > 0) { const size_t waste = alignment - overage; if (waste >= remaining_) { return false; } freestart_ += waste; remaining_ -= waste; } DCHECK_EQ(size_t{0}, reinterpret_cast<size_t>(freestart_) & (alignment - 1)); return true; } void Arena::Reset() { FreeBlocks(); freestart_ = first_blocks_[0].mem; remaining_ = first_blocks_[0].size; CHECK(SatisfyAlignment(kDefaultAlignment)); freestart_when_empty_ = freestart_; } void Arena::MakeNewBlock(const uint32 alignment) { AllocatedBlock* block = AllocNewBlock(block_size_, alignment); freestart_ = block->mem; remaining_ = block->size; CHECK(SatisfyAlignment(alignment)); } static uint32 LeastCommonMultiple(uint32 a, uint32 b) { if (a > b) { return (a / MathUtil::GCD<uint32>(a, b)) * b; } else if (a < b) { return (b / MathUtil::GCD<uint32>(b, a)) * a; } else { return a; } } Arena::AllocatedBlock* Arena::AllocNewBlock(const size_t block_size, const uint32 alignment) { AllocatedBlock* block; if (blocks_alloced_ < TF_ARRAYSIZE(first_blocks_)) { block = &first_blocks_[blocks_alloced_++]; } else { if (overflow_blocks_ == nullptr) overflow_blocks_ = new std::vector<AllocatedBlock>; overflow_blocks_->resize(overflow_blocks_->size() + 1); block = &overflow_blocks_->back(); } uint32 adjusted_alignment = (alignment > 1 ? LeastCommonMultiple(alignment, kDefaultAlignment) : 1); adjusted_alignment = std::max(adjusted_alignment, static_cast<uint32>(sizeof(void*))); CHECK_LE(adjusted_alignment, static_cast<uint32>(1 << 20)) << "Alignment on boundaries greater than 1MB not supported."; size_t adjusted_block_size = block_size; if (adjusted_block_size > adjusted_alignment) { const uint32 excess = adjusted_block_size % adjusted_alignment; adjusted_block_size += (excess > 0 ? adjusted_alignment - excess : 0); } block->mem = reinterpret_cast<char*>( port::AlignedMalloc(adjusted_block_size, adjusted_alignment)); block->size = adjusted_block_size; CHECK(nullptr != block->mem) << "block_size=" << block_size << " adjusted_block_size=" << adjusted_block_size << " alignment=" << alignment << " adjusted_alignment=" << adjusted_alignment; return block; } void* Arena::GetMemoryFallback(const size_t size, const int alignment) { if (0 == size) { return nullptr; } CHECK(alignment > 0 && 0 == (alignment & (alignment - 1))); if (block_size_ == 0 || size > block_size_ / 4) { return AllocNewBlock(size, alignment)->mem; } if (!SatisfyAlignment(alignment) || size > remaining_) { MakeNewBlock(alignment); } CHECK_LE(size, remaining_); remaining_ -= size; void* result = freestart_; freestart_ += size; return result; } void Arena::FreeBlocks() { for (size_t i = 1; i < blocks_alloced_; ++i) { port::AlignedFree(first_blocks_[i].mem); first_blocks_[i].mem = nullptr; first_blocks_[i].size = 0; } blocks_alloced_ = 1; if (overflow_blocks_ != nullptr) { std::vector<AllocatedBlock>::iterator it; for (it = overflow_blocks_->begin(); it != overflow_blocks_->end(); ++it) { port::AlignedFree(it->mem); } delete overflow_blocks_; overflow_blocks_ = nullptr; } } } }
#include "tensorflow/core/lib/core/arena.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace core { namespace { static void TestMemory(void* mem, int size) { memset(mem, 0xaa, size); char* tmp[100]; for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { tmp[i] = new char[i * i + 1]; } memset(mem, 0xcc, size); for (size_t i = 0; i < TF_ARRAYSIZE(tmp); i++) { delete[] tmp[i]; } memset(mem, 0xee, size); } TEST(ArenaTest, TestBasicArena) { Arena a(1024); char* memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); memory = a.Alloc(100); ASSERT_NE(memory, nullptr); TestMemory(memory, 100); } TEST(ArenaTest, TestAlignment) { Arena a(1024); char* byte0 = a.Alloc(1); char* alloc_aligned8 = a.AllocAligned(17, 8); EXPECT_EQ(alloc_aligned8 - byte0, 8); char* alloc_aligned8_b = a.AllocAligned(8, 8); EXPECT_EQ(alloc_aligned8_b - alloc_aligned8, 24); char* alloc_aligned8_c = a.AllocAligned(16, 8); EXPECT_EQ(alloc_aligned8_c - alloc_aligned8_b, 8); char* alloc_aligned8_d = a.AllocAligned(8, 1); EXPECT_EQ(alloc_aligned8_d - alloc_aligned8_c, 16); } TEST(ArenaTest, TestVariousArenaSizes) { { Arena a(1024); char* memory = a.Alloc(1024); ASSERT_NE(memory, nullptr); TestMemory(memory, 1024); char* memory2 = a.Alloc(1024); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1024); } { Arena a(1024); char* memory = a.Alloc(768); ASSERT_NE(memory, nullptr); TestMemory(memory, 768); char* memory2 = a.Alloc(768); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 768); } { Arena a(1024); char* memory = a.Alloc(10240); ASSERT_NE(memory, nullptr); TestMemory(memory, 10240); char* memory2 = a.Alloc(1234); ASSERT_NE(memory2, nullptr); TestMemory(memory2, 1234); } } } } }
11
#ifndef ABSL_SYNCHRONIZATION_INTERNAL_PER_THREAD_SEM_H_ #define ABSL_SYNCHRONIZATION_INTERNAL_PER_THREAD_SEM_H_ #include <atomic> #include "absl/base/internal/thread_identity.h" #include "absl/synchronization/internal/create_thread_identity.h" #include "absl/synchronization/internal/kernel_timeout.h" namespace absl { ABSL_NAMESPACE_BEGIN class Mutex; namespace synchronization_internal { class PerThreadSem { public: PerThreadSem() = delete; PerThreadSem(const PerThreadSem&) = delete; PerThreadSem& operator=(const PerThreadSem&) = delete; static void Tick(base_internal::ThreadIdentity* identity); static void SetThreadBlockedCounter(std::atomic<int> *counter); static std::atomic<int> *GetThreadBlockedCounter(); private: static inline void Init(base_internal::ThreadIdentity* identity); static inline void Post(base_internal::ThreadIdentity* identity); static inline bool Wait(KernelTimeout t); friend class PerThreadSemTest; friend class absl::Mutex; friend void OneTimeInitThreadIdentity(absl::base_internal::ThreadIdentity*); }; } ABSL_NAMESPACE_END } extern "C" { void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemInit)( absl::base_internal::ThreadIdentity* identity); void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPost)( absl::base_internal::ThreadIdentity* identity); bool ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemWait)( absl::synchronization_internal::KernelTimeout t); void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPoke)( absl::base_internal::ThreadIdentity* identity); } void absl::synchronization_internal::PerThreadSem::Init( absl::base_internal::ThreadIdentity* identity) { ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemInit)(identity); } void absl::synchronization_internal::PerThreadSem::Post( absl::base_internal::ThreadIdentity* identity) { ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPost)(identity); } bool absl::synchronization_internal::PerThreadSem::Wait( absl::synchronization_internal::KernelTimeout t) { return ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemWait)(t); } #endif #include "absl/base/internal/low_level_alloc.h" #ifndef ABSL_LOW_LEVEL_ALLOC_MISSING #include "absl/synchronization/internal/per_thread_sem.h" #include <atomic> #include "absl/base/attributes.h" #include "absl/base/internal/thread_identity.h" #include "absl/synchronization/internal/waiter.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { void PerThreadSem::SetThreadBlockedCounter(std::atomic<int> *counter) { base_internal::ThreadIdentity *identity; identity = GetOrCreateCurrentThreadIdentity(); identity->blocked_count_ptr = counter; } std::atomic<int> *PerThreadSem::GetThreadBlockedCounter() { base_internal::ThreadIdentity *identity; identity = GetOrCreateCurrentThreadIdentity(); return identity->blocked_count_ptr; } void PerThreadSem::Tick(base_internal::ThreadIdentity *identity) { const int ticker = identity->ticker.fetch_add(1, std::memory_order_relaxed) + 1; const int wait_start = identity->wait_start.load(std::memory_order_relaxed); const bool is_idle = identity->is_idle.load(std::memory_order_relaxed); if (wait_start && (ticker - wait_start > Waiter::kIdlePeriods) && !is_idle) { ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPoke)(identity); } } } ABSL_NAMESPACE_END } extern "C" { ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemInit)( absl::base_internal::ThreadIdentity *identity) { new (absl::synchronization_internal::Waiter::GetWaiter(identity)) absl::synchronization_internal::Waiter(); } ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPost)( absl::base_internal::ThreadIdentity *identity) { absl::synchronization_internal::Waiter::GetWaiter(identity)->Post(); } ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemPoke)( absl::base_internal::ThreadIdentity *identity) { absl::synchronization_internal::Waiter::GetWaiter(identity)->Poke(); } ABSL_ATTRIBUTE_WEAK bool ABSL_INTERNAL_C_SYMBOL(AbslInternalPerThreadSemWait)( absl::synchronization_internal::KernelTimeout t) { bool timeout = false; absl::base_internal::ThreadIdentity *identity; identity = absl::synchronization_internal::GetOrCreateCurrentThreadIdentity(); int ticker = identity->ticker.load(std::memory_order_relaxed); identity->wait_start.store(ticker ? ticker : 1, std::memory_order_relaxed); identity->is_idle.store(false, std::memory_order_relaxed); if (identity->blocked_count_ptr != nullptr) { identity->blocked_count_ptr->fetch_add(1, std::memory_order_relaxed); } timeout = !absl::synchronization_internal::Waiter::GetWaiter(identity)->Wait(t); if (identity->blocked_count_ptr != nullptr) { identity->blocked_count_ptr->fetch_sub(1, std::memory_order_relaxed); } identity->is_idle.store(false, std::memory_order_relaxed); identity->wait_start.store(0, std::memory_order_relaxed); return !timeout; } } #endif
#include "absl/synchronization/internal/per_thread_sem.h" #include <atomic> #include <condition_variable> #include <functional> #include <limits> #include <mutex> #include <string> #include <thread> #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/base/internal/cycleclock.h" #include "absl/base/internal/thread_identity.h" #include "absl/strings/str_cat.h" #include "absl/time/clock.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace synchronization_internal { class SimpleSemaphore { public: SimpleSemaphore() : count_(0) {} void Wait() { std::unique_lock<std::mutex> lock(mu_); cv_.wait(lock, [this]() { return count_ > 0; }); --count_; cv_.notify_one(); } void Post() { std::lock_guard<std::mutex> lock(mu_); ++count_; cv_.notify_one(); } private: std::mutex mu_; std::condition_variable cv_; int count_; }; struct ThreadData { int num_iterations; SimpleSemaphore identity2_written; base_internal::ThreadIdentity *identity1; base_internal::ThreadIdentity *identity2; KernelTimeout timeout; }; class PerThreadSemTest : public testing::Test { public: static void TimingThread(ThreadData* t) { t->identity2 = GetOrCreateCurrentThreadIdentity(); t->identity2_written.Post(); while (t->num_iterations--) { Wait(t->timeout); Post(t->identity1); } } void TestTiming(const char *msg, bool timeout) { static const int kNumIterations = 100; ThreadData t; t.num_iterations = kNumIterations; t.timeout = timeout ? KernelTimeout(absl::Now() + absl::Seconds(10000)) : KernelTimeout::Never(); t.identity1 = GetOrCreateCurrentThreadIdentity(); std::thread partner_thread(std::bind(TimingThread, &t)); t.identity2_written.Wait(); int64_t min_cycles = std::numeric_limits<int64_t>::max(); int64_t total_cycles = 0; for (int i = 0; i < kNumIterations; ++i) { absl::SleepFor(absl::Milliseconds(20)); int64_t cycles = base_internal::CycleClock::Now(); Post(t.identity2); Wait(t.timeout); cycles = base_internal::CycleClock::Now() - cycles; min_cycles = std::min(min_cycles, cycles); total_cycles += cycles; } std::string out = StrCat( msg, "min cycle count=", min_cycles, " avg cycle count=", absl::SixDigits(static_cast<double>(total_cycles) / kNumIterations)); printf("%s\n", out.c_str()); partner_thread.join(); } protected: static void Post(base_internal::ThreadIdentity *id) { PerThreadSem::Post(id); } static bool Wait(KernelTimeout t) { return PerThreadSem::Wait(t); } static bool Wait(absl::Time t) { return Wait(KernelTimeout(t)); } static void Tick(base_internal::ThreadIdentity *identity) { PerThreadSem::Tick(identity); } }; namespace { TEST_F(PerThreadSemTest, WithoutTimeout) { PerThreadSemTest::TestTiming("Without timeout: ", false); } TEST_F(PerThreadSemTest, WithTimeout) { PerThreadSemTest::TestTiming("With timeout: ", true); } TEST_F(PerThreadSemTest, Timeouts) { const absl::Duration delay = absl::Milliseconds(50); const absl::Time start = absl::Now(); EXPECT_FALSE(Wait(start + delay)); const absl::Duration elapsed = absl::Now() - start; absl::Duration slop = absl::Milliseconds(1); #ifdef _MSC_VER slop = absl::Milliseconds(16); #endif EXPECT_LE(delay - slop, elapsed) << "Wait returned " << delay - elapsed << " early (with " << slop << " slop), start time was " << start; absl::Time negative_timeout = absl::UnixEpoch() - absl::Milliseconds(100); EXPECT_FALSE(Wait(negative_timeout)); EXPECT_LE(negative_timeout, absl::Now() + slop); Post(GetOrCreateCurrentThreadIdentity()); EXPECT_TRUE(Wait(negative_timeout)); } TEST_F(PerThreadSemTest, ThreadIdentityReuse) { for (int i = 0; i < 10000; i++) { std::thread t([]() { GetOrCreateCurrentThreadIdentity(); }); t.join(); } } } } ABSL_NAMESPACE_END }
12
#ifndef QUICHE_QUIC_CORE_QUIC_PACKETS_H_ #define QUICHE_QUIC_CORE_QUIC_PACKETS_H_ #include <sys/types.h> #include <cstddef> #include <cstdint> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/strings/string_view.h" #include "quiche/quic/core/frames/quic_frame.h" #include "quiche/quic/core/quic_ack_listener_interface.h" #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_error_codes.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_export.h" #include "quiche/quic/platform/api/quic_socket_address.h" namespace quic { class QuicPacket; struct QuicPacketHeader; QUICHE_EXPORT QuicConnectionId GetServerConnectionIdAsRecipient( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT QuicConnectionId GetClientConnectionIdAsRecipient( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT QuicConnectionId GetServerConnectionIdAsSender( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT QuicConnectionIdIncluded GetServerConnectionIdIncludedAsSender( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT QuicConnectionId GetClientConnectionIdAsSender( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT QuicConnectionIdIncluded GetClientConnectionIdIncludedAsSender( const QuicPacketHeader& header, Perspective perspective); QUICHE_EXPORT uint8_t GetIncludedConnectionIdLength(QuicConnectionId connection_id, QuicConnectionIdIncluded connection_id_included); QUICHE_EXPORT uint8_t GetIncludedDestinationConnectionIdLength(const QuicPacketHeader& header); QUICHE_EXPORT uint8_t GetIncludedSourceConnectionIdLength(const QuicPacketHeader& header); QUICHE_EXPORT size_t GetPacketHeaderSize(QuicTransportVersion version, const QuicPacketHeader& header); QUICHE_EXPORT size_t GetPacketHeaderSize( QuicTransportVersion version, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool include_version, bool include_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length); QUICHE_EXPORT size_t GetStartOfEncryptedData(QuicTransportVersion version, const QuicPacketHeader& header); QUICHE_EXPORT size_t GetStartOfEncryptedData( QuicTransportVersion version, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool include_version, bool include_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length); struct QUICHE_EXPORT QuicPacketHeader { QuicPacketHeader(); QuicPacketHeader(const QuicPacketHeader& other); ~QuicPacketHeader(); QuicPacketHeader& operator=(const QuicPacketHeader& other); QUICHE_EXPORT friend std::ostream& operator<<(std::ostream& os, const QuicPacketHeader& header); QuicConnectionId destination_connection_id; QuicConnectionIdIncluded destination_connection_id_included; QuicConnectionId source_connection_id; QuicConnectionIdIncluded source_connection_id_included; bool reset_flag; bool version_flag; bool has_possible_stateless_reset_token; QuicPacketNumberLength packet_number_length; uint8_t type_byte; ParsedQuicVersion version; DiversificationNonce* nonce; QuicPacketNumber packet_number; PacketHeaderFormat form; QuicLongHeaderType long_packet_type; StatelessResetToken possible_stateless_reset_token; quiche::QuicheVariableLengthIntegerLength retry_token_length_length; absl::string_view retry_token; quiche::QuicheVariableLengthIntegerLength length_length; QuicByteCount remaining_packet_length; bool operator==(const QuicPacketHeader& other) const; bool operator!=(const QuicPacketHeader& other) const; }; struct QUICHE_EXPORT QuicPublicResetPacket { QuicPublicResetPacket(); explicit QuicPublicResetPacket(QuicConnectionId connection_id); QuicConnectionId connection_id; QuicPublicResetNonceProof nonce_proof; QuicSocketAddress client_address; std::string endpoint_id; }; struct QUICHE_EXPORT QuicVersionNegotiationPacket { QuicVersionNegotiationPacket(); explicit QuicVersionNegotiationPacket(QuicConnectionId connection_id); QuicVersionNegotiationPacket(const QuicVersionNegotiationPacket& other); ~QuicVersionNegotiationPacket(); QuicConnectionId connection_id; ParsedQuicVersionVector versions; }; struct QUICHE_EXPORT QuicIetfStatelessResetPacket { QuicIetfStatelessResetPacket(); QuicIetfStatelessResetPacket(const QuicPacketHeader& header, StatelessResetToken token); QuicIetfStatelessResetPacket(const QuicIetfStatelessResetPacket& other); ~QuicIetfStatelessResetPacket(); QuicPacketHeader header; StatelessResetToken stateless_reset_token; }; class QUICHE_EXPORT QuicData { public: QuicData(const char* buffer, size_t length); QuicData(const char* buffer, size_t length, bool owns_buffer); QuicData(absl::string_view data); QuicData(const QuicData&) = delete; QuicData& operator=(const QuicData&) = delete; virtual ~QuicData(); absl::string_view AsStringPiece() const { return absl::string_view(data(), length()); } const char* data() const { return buffer_; } size_t length() const { return length_; } private: const char* buffer_; size_t length_; bool owns_buffer_; }; class QUICHE_EXPORT QuicPacket : public QuicData { public: QuicPacket( char* buffer, size_t length, bool owns_buffer, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool includes_version, bool includes_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length); QuicPacket(QuicTransportVersion version, char* buffer, size_t length, bool owns_buffer, const QuicPacketHeader& header); QuicPacket(const QuicPacket&) = delete; QuicPacket& operator=(const QuicPacket&) = delete; absl::string_view AssociatedData(QuicTransportVersion version) const; absl::string_view Plaintext(QuicTransportVersion version) const; char* mutable_data() { return buffer_; } private: char* buffer_; const uint8_t destination_connection_id_length_; const uint8_t source_connection_id_length_; const bool includes_version_; const bool includes_diversification_nonce_; const QuicPacketNumberLength packet_number_length_; const quiche::QuicheVariableLengthIntegerLength retry_token_length_length_; const QuicByteCount retry_token_length_; const quiche::QuicheVariableLengthIntegerLength length_length_; }; class QUICHE_EXPORT QuicEncryptedPacket : public QuicData { public: QuicEncryptedPacket(const char* buffer, size_t length); QuicEncryptedPacket(const char* buffer, size_t length, bool owns_buffer); QuicEncryptedPacket(absl::string_view data); QuicEncryptedPacket(const QuicEncryptedPacket&) = delete; QuicEncryptedPacket& operator=(const QuicEncryptedPacket&) = delete; std::unique_ptr<QuicEncryptedPacket> Clone() const; QUICHE_EXPORT friend std::ostream& operator<<(std::ostream& os, const QuicEncryptedPacket& s); }; namespace test { class QuicReceivedPacketPeer; } class QUICHE_EXPORT QuicReceivedPacket : public QuicEncryptedPacket { public: QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time); QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer); QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer, int ttl, bool ttl_valid); QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer, int ttl, bool ttl_valid, char* packet_headers, size_t headers_length, bool owns_header_buffer); QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer, int ttl, bool ttl_valid, char* packet_headers, size_t headers_length, bool owns_header_buffer, QuicEcnCodepoint ecn_codepoint); ~QuicReceivedPacket(); QuicReceivedPacket(const QuicReceivedPacket&) = delete; QuicReceivedPacket& operator=(const QuicReceivedPacket&) = delete; std::unique_ptr<QuicReceivedPacket> Clone() const; QuicTime receipt_time() const { return receipt_time_; } int ttl() const { return ttl_; } char* packet_headers() const { return packet_headers_; } int headers_length() const { return headers_length_; } QUICHE_EXPORT friend std::ostream& operator<<(std::ostream& os, const QuicReceivedPacket& s); QuicEcnCodepoint ecn_codepoint() const { return ecn_codepoint_; } private: friend class test::QuicReceivedPacketPeer; const QuicTime receipt_time_; int ttl_; char* packet_headers_; int headers_length_; bool owns_header_buffer_; QuicEcnCodepoint ecn_codepoint_; }; struct QUICHE_EXPORT SerializedPacket { SerializedPacket(QuicPacketNumber packet_number, QuicPacketNumberLength packet_number_length, const char* encrypted_buffer, QuicPacketLength encrypted_length, bool has_ack, bool has_stop_waiting); SerializedPacket(const SerializedPacket& other) = delete; SerializedPacket& operator=(const SerializedPacket& other) = delete; SerializedPacket(SerializedPacket&& other); ~SerializedPacket(); const char* encrypted_buffer; QuicPacketLength encrypted_length; std::function<void(const char*)> release_encrypted_buffer; QuicFrames retransmittable_frames; QuicFrames nonretransmittable_frames; IsHandshake has_crypto_handshake; QuicPacketNumber packet_number; QuicPacketNumberLength packet_number_length; EncryptionLevel encryption_level; bool has_ack; bool has_stop_waiting; bool has_ack_ecn = false; TransmissionType transmission_type; QuicPacketNumber largest_acked; bool has_ack_frame_copy; bool has_ack_frequency; bool has_message; SerializedPacketFate fate; QuicSocketAddress peer_address; std::optional<QuicByteCount> bytes_not_retransmitted; std::optional<QuicPacketHeader> initial_header; }; QUICHE_EXPORT SerializedPacket* CopySerializedPacket( const SerializedPacket& serialized, quiche::QuicheBufferAllocator* allocator, bool copy_buffer); QUICHE_EXPORT char* CopyBuffer(const SerializedPacket& packet); QUICHE_EXPORT char* CopyBuffer(const char* encrypted_buffer, QuicPacketLength encrypted_length); struct QUICHE_EXPORT QuicPerPacketContext { virtual ~QuicPerPacketContext() {} }; struct QUICHE_EXPORT ReceivedPacketInfo { ReceivedPacketInfo(const QuicSocketAddress& self_address, const QuicSocketAddress& peer_address, const QuicReceivedPacket& packet); ReceivedPacketInfo(const ReceivedPacketInfo& other) = default; ~ReceivedPacketInfo(); std::string ToString() const; QUICHE_EXPORT friend std::ostream& operator<<( std::ostream& os, const ReceivedPacketInfo& packet_info); const QuicSocketAddress& self_address; const QuicSocketAddress& peer_address; const QuicReceivedPacket& packet; PacketHeaderFormat form; QuicLongHeaderType long_packet_type; bool version_flag; bool use_length_prefix; QuicVersionLabel version_label; ParsedQuicVersion version; QuicConnectionId destination_connection_id; QuicConnectionId source_connection_id; std::optional<absl::string_view> retry_token; }; } #endif #include "quiche/quic/core/quic_packets.h" #include <algorithm> #include <memory> #include <ostream> #include <string> #include <utility> #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/quic_connection_id.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/core/quic_versions.h" #include "quiche/quic/platform/api/quic_flags.h" namespace quic { QuicConnectionId GetServerConnectionIdAsRecipient( const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_SERVER) { return header.destination_connection_id; } return header.source_connection_id; } QuicConnectionId GetClientConnectionIdAsRecipient( const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_CLIENT) { return header.destination_connection_id; } return header.source_connection_id; } QuicConnectionId GetServerConnectionIdAsSender(const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_CLIENT) { return header.destination_connection_id; } return header.source_connection_id; } QuicConnectionIdIncluded GetServerConnectionIdIncludedAsSender( const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_CLIENT) { return header.destination_connection_id_included; } return header.source_connection_id_included; } QuicConnectionId GetClientConnectionIdAsSender(const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_CLIENT) { return header.source_connection_id; } return header.destination_connection_id; } QuicConnectionIdIncluded GetClientConnectionIdIncludedAsSender( const QuicPacketHeader& header, Perspective perspective) { if (perspective == Perspective::IS_CLIENT) { return header.source_connection_id_included; } return header.destination_connection_id_included; } uint8_t GetIncludedConnectionIdLength( QuicConnectionId connection_id, QuicConnectionIdIncluded connection_id_included) { QUICHE_DCHECK(connection_id_included == CONNECTION_ID_PRESENT || connection_id_included == CONNECTION_ID_ABSENT); return connection_id_included == CONNECTION_ID_PRESENT ? connection_id.length() : 0; } uint8_t GetIncludedDestinationConnectionIdLength( const QuicPacketHeader& header) { return GetIncludedConnectionIdLength( header.destination_connection_id, header.destination_connection_id_included); } uint8_t GetIncludedSourceConnectionIdLength(const QuicPacketHeader& header) { return GetIncludedConnectionIdLength(header.source_connection_id, header.source_connection_id_included); } size_t GetPacketHeaderSize(QuicTransportVersion version, const QuicPacketHeader& header) { return GetPacketHeaderSize( version, GetIncludedDestinationConnectionIdLength(header), GetIncludedSourceConnectionIdLength(header), header.version_flag, header.nonce != nullptr, header.packet_number_length, header.retry_token_length_length, header.retry_token.length(), header.length_length); } size_t GetPacketHeaderSize( QuicTransportVersion version, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool include_version, bool include_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length) { if (include_version) { size_t size = kPacketHeaderTypeSize + kConnectionIdLengthSize + destination_connection_id_length + source_connection_id_length + packet_number_length + kQuicVersionSize; if (include_diversification_nonce) { size += kDiversificationNonceSize; } if (VersionHasLengthPrefixedConnectionIds(version)) { size += kConnectionIdLengthSize; } QUICHE_DCHECK( QuicVersionHasLongHeaderLengths(version) || retry_token_length_length + retry_token_length + length_length == 0); if (QuicVersionHasLongHeaderLengths(version)) { size += retry_token_length_length + retry_token_length + length_length; } return size; } return kPacketHeaderTypeSize + destination_connection_id_length + packet_number_length; } size_t GetStartOfEncryptedData(QuicTransportVersion version, const QuicPacketHeader& header) { return GetPacketHeaderSize(version, header); } size_t GetStartOfEncryptedData( QuicTransportVersion version, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool include_version, bool include_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length) { return GetPacketHeaderSize( version, destination_connection_id_length, source_connection_id_length, include_version, include_diversification_nonce, packet_number_length, retry_token_length_length, retry_token_length, length_length); } QuicPacketHeader::QuicPacketHeader() : destination_connection_id(EmptyQuicConnectionId()), destination_connection_id_included(CONNECTION_ID_PRESENT), source_connection_id(EmptyQuicConnectionId()), source_connection_id_included(CONNECTION_ID_ABSENT), reset_flag(false), version_flag(false), has_possible_stateless_reset_token(false), packet_number_length(PACKET_4BYTE_PACKET_NUMBER), type_byte(0), version(UnsupportedQuicVersion()), nonce(nullptr), form(GOOGLE_QUIC_PACKET), long_packet_type(INITIAL), possible_stateless_reset_token({}), retry_token_length_length(quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0), retry_token(absl::string_view()), length_length(quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0), remaining_packet_length(0) {} QuicPacketHeader::QuicPacketHeader(const QuicPacketHeader& other) = default; QuicPacketHeader::~QuicPacketHeader() {} QuicPacketHeader& QuicPacketHeader::operator=(const QuicPacketHeader& other) = default; QuicPublicResetPacket::QuicPublicResetPacket() : connection_id(EmptyQuicConnectionId()), nonce_proof(0) {} QuicPublicResetPacket::QuicPublicResetPacket(QuicConnectionId connection_id) : connection_id(connection_id), nonce_proof(0) {} QuicVersionNegotiationPacket::QuicVersionNegotiationPacket() : connection_id(EmptyQuicConnectionId()) {} QuicVersionNegotiationPacket::QuicVersionNegotiationPacket( QuicConnectionId connection_id) : connection_id(connection_id) {} QuicVersionNegotiationPacket::QuicVersionNegotiationPacket( const QuicVersionNegotiationPacket& other) = default; QuicVersionNegotiationPacket::~QuicVersionNegotiationPacket() {} QuicIetfStatelessResetPacket::QuicIetfStatelessResetPacket() : stateless_reset_token({}) {} QuicIetfStatelessResetPacket::QuicIetfStatelessResetPacket( const QuicPacketHeader& header, StatelessResetToken token) : header(header), stateless_reset_token(token) {} QuicIetfStatelessResetPacket::QuicIetfStatelessResetPacket( const QuicIetfStatelessResetPacket& other) = default; QuicIetfStatelessResetPacket::~QuicIetfStatelessResetPacket() {} std::ostream& operator<<(std::ostream& os, const QuicPacketHeader& header) { os << "{ destination_connection_id: " << header.destination_connection_id << " (" << (header.destination_connection_id_included == CONNECTION_ID_PRESENT ? "present" : "absent") << "), source_connection_id: " << header.source_connection_id << " (" << (header.source_connection_id_included == CONNECTION_ID_PRESENT ? "present" : "absent") << "), packet_number_length: " << static_cast<int>(header.packet_number_length) << ", reset_flag: " << header.reset_flag << ", version_flag: " << header.version_flag; if (header.version_flag) { os << ", version: " << ParsedQuicVersionToString(header.version); if (header.long_packet_type != INVALID_PACKET_TYPE) { os << ", long_packet_type: " << QuicUtils::QuicLongHeaderTypetoString(header.long_packet_type); } if (header.retry_token_length_length != quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0) { os << ", retry_token_length_length: " << static_cast<int>(header.retry_token_length_length); } if (header.retry_token.length() != 0) { os << ", retry_token_length: " << header.retry_token.length(); } if (header.length_length != quiche::VARIABLE_LENGTH_INTEGER_LENGTH_0) { os << ", length_length: " << static_cast<int>(header.length_length); } if (header.remaining_packet_length != 0) { os << ", remaining_packet_length: " << header.remaining_packet_length; } } if (header.nonce != nullptr) { os << ", diversification_nonce: " << absl::BytesToHexString( absl::string_view(header.nonce->data(), header.nonce->size())); } os << ", packet_number: " << header.packet_number << " }\n"; return os; } QuicData::QuicData(const char* buffer, size_t length) : buffer_(buffer), length_(length), owns_buffer_(false) {} QuicData::QuicData(const char* buffer, size_t length, bool owns_buffer) : buffer_(buffer), length_(length), owns_buffer_(owns_buffer) {} QuicData::QuicData(absl::string_view packet_data) : buffer_(packet_data.data()), length_(packet_data.length()), owns_buffer_(false) {} QuicData::~QuicData() { if (owns_buffer_) { delete[] const_cast<char*>(buffer_); } } QuicPacket::QuicPacket( char* buffer, size_t length, bool owns_buffer, uint8_t destination_connection_id_length, uint8_t source_connection_id_length, bool includes_version, bool includes_diversification_nonce, QuicPacketNumberLength packet_number_length, quiche::QuicheVariableLengthIntegerLength retry_token_length_length, QuicByteCount retry_token_length, quiche::QuicheVariableLengthIntegerLength length_length) : QuicData(buffer, length, owns_buffer), buffer_(buffer), destination_connection_id_length_(destination_connection_id_length), source_connection_id_length_(source_connection_id_length), includes_version_(includes_version), includes_diversification_nonce_(includes_diversification_nonce), packet_number_length_(packet_number_length), retry_token_length_length_(retry_token_length_length), retry_token_length_(retry_token_length), length_length_(length_length) {} QuicPacket::QuicPacket(QuicTransportVersion , char* buffer, size_t length, bool owns_buffer, const QuicPacketHeader& header) : QuicPacket(buffer, length, owns_buffer, GetIncludedDestinationConnectionIdLength(header), GetIncludedSourceConnectionIdLength(header), header.version_flag, header.nonce != nullptr, header.packet_number_length, header.retry_token_length_length, header.retry_token.length(), header.length_length) {} QuicEncryptedPacket::QuicEncryptedPacket(const char* buffer, size_t length) : QuicData(buffer, length) {} QuicEncryptedPacket::QuicEncryptedPacket(const char* buffer, size_t length, bool owns_buffer) : QuicData(buffer, length, owns_buffer) {} QuicEncryptedPacket::QuicEncryptedPacket(absl::string_view data) : QuicData(data) {} std::unique_ptr<QuicEncryptedPacket> QuicEncryptedPacket::Clone() const { char* buffer = new char[this->length()]; std::copy(this->data(), this->data() + this->length(), buffer); return std::make_unique<QuicEncryptedPacket>(buffer, this->length(), true); } std::ostream& operator<<(std::ostream& os, const QuicEncryptedPacket& s) { os << s.length() << "-byte data"; return os; } QuicReceivedPacket::QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time) : QuicReceivedPacket(buffer, length, receipt_time, false ) {} QuicReceivedPacket::QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer) : QuicReceivedPacket(buffer, length, receipt_time, owns_buffer, 0 , true ) {} QuicReceivedPacket::QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer, int ttl, bool ttl_valid) : quic::QuicReceivedPacket(buffer, length, receipt_time, owns_buffer, ttl, ttl_valid, nullptr , 0 , false , ECN_NOT_ECT) {} QuicReceivedPacket::QuicReceivedPacket(const char* buffer, size_t length, QuicTime receipt_time, bool owns_buffer, int ttl, bool ttl_valid, char* packet_heade
#include "quiche/quic/core/quic_packets.h" #include <memory> #include <string> #include "absl/memory/memory.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/core/quic_types.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/quic_test_utils.h" #include "quiche/common/test_tools/quiche_test_utils.h" namespace quic { namespace test { namespace { QuicPacketHeader CreateFakePacketHeader() { QuicPacketHeader header; header.destination_connection_id = TestConnectionId(1); header.destination_connection_id_included = CONNECTION_ID_PRESENT; header.source_connection_id = TestConnectionId(2); header.source_connection_id_included = CONNECTION_ID_ABSENT; return header; } class QuicPacketsTest : public QuicTest {}; TEST_F(QuicPacketsTest, GetServerConnectionIdAsRecipient) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(TestConnectionId(1), GetServerConnectionIdAsRecipient(header, Perspective::IS_SERVER)); EXPECT_EQ(TestConnectionId(2), GetServerConnectionIdAsRecipient(header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, GetServerConnectionIdAsSender) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(TestConnectionId(2), GetServerConnectionIdAsSender(header, Perspective::IS_SERVER)); EXPECT_EQ(TestConnectionId(1), GetServerConnectionIdAsSender(header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, GetServerConnectionIdIncludedAsSender) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(CONNECTION_ID_ABSENT, GetServerConnectionIdIncludedAsSender( header, Perspective::IS_SERVER)); EXPECT_EQ(CONNECTION_ID_PRESENT, GetServerConnectionIdIncludedAsSender( header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, GetClientConnectionIdIncludedAsSender) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(CONNECTION_ID_PRESENT, GetClientConnectionIdIncludedAsSender( header, Perspective::IS_SERVER)); EXPECT_EQ(CONNECTION_ID_ABSENT, GetClientConnectionIdIncludedAsSender( header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, GetClientConnectionIdAsRecipient) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(TestConnectionId(2), GetClientConnectionIdAsRecipient(header, Perspective::IS_SERVER)); EXPECT_EQ(TestConnectionId(1), GetClientConnectionIdAsRecipient(header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, GetClientConnectionIdAsSender) { QuicPacketHeader header = CreateFakePacketHeader(); EXPECT_EQ(TestConnectionId(1), GetClientConnectionIdAsSender(header, Perspective::IS_SERVER)); EXPECT_EQ(TestConnectionId(2), GetClientConnectionIdAsSender(header, Perspective::IS_CLIENT)); } TEST_F(QuicPacketsTest, CopyQuicPacketHeader) { QuicPacketHeader header; QuicPacketHeader header2 = CreateFakePacketHeader(); EXPECT_NE(header, header2); QuicPacketHeader header3(header2); EXPECT_EQ(header2, header3); } TEST_F(QuicPacketsTest, CopySerializedPacket) { std::string buffer(1000, 'a'); quiche::SimpleBufferAllocator allocator; SerializedPacket packet(QuicPacketNumber(1), PACKET_1BYTE_PACKET_NUMBER, buffer.data(), buffer.length(), false, false); packet.retransmittable_frames.push_back(QuicFrame(QuicWindowUpdateFrame())); packet.retransmittable_frames.push_back(QuicFrame(QuicStreamFrame())); QuicAckFrame ack_frame(InitAckFrame(1)); packet.nonretransmittable_frames.push_back(QuicFrame(&ack_frame)); packet.nonretransmittable_frames.push_back(QuicFrame(QuicPaddingFrame(-1))); std::unique_ptr<SerializedPacket> copy = absl::WrapUnique<SerializedPacket>( CopySerializedPacket(packet, &allocator, true)); EXPECT_EQ(quic::QuicPacketNumber(1), copy->packet_number); EXPECT_EQ(PACKET_1BYTE_PACKET_NUMBER, copy->packet_number_length); ASSERT_EQ(2u, copy->retransmittable_frames.size()); EXPECT_EQ(WINDOW_UPDATE_FRAME, copy->retransmittable_frames[0].type); EXPECT_EQ(STREAM_FRAME, copy->retransmittable_frames[1].type); ASSERT_EQ(2u, copy->nonretransmittable_frames.size()); EXPECT_EQ(ACK_FRAME, copy->nonretransmittable_frames[0].type); EXPECT_EQ(PADDING_FRAME, copy->nonretransmittable_frames[1].type); EXPECT_EQ(1000u, copy->encrypted_length); quiche::test::CompareCharArraysWithHexError( "encrypted_buffer", copy->encrypted_buffer, copy->encrypted_length, packet.encrypted_buffer, packet.encrypted_length); std::unique_ptr<SerializedPacket> copy2 = absl::WrapUnique<SerializedPacket>( CopySerializedPacket(packet, &allocator, false)); EXPECT_EQ(packet.encrypted_buffer, copy2->encrypted_buffer); EXPECT_EQ(1000u, copy2->encrypted_length); } TEST_F(QuicPacketsTest, CloneReceivedPacket) { char header[4] = "bar"; QuicReceivedPacket packet("foo", 3, QuicTime::Zero(), false, 0, true, header, sizeof(header) - 1, false, QuicEcnCodepoint::ECN_ECT1); std::unique_ptr<QuicReceivedPacket> copy = packet.Clone(); EXPECT_EQ(packet.ecn_codepoint(), copy->ecn_codepoint()); } } } }
13
#ifndef AROLLA_UTIL_BINARY_SEARCH_H_ #define AROLLA_UTIL_BINARY_SEARCH_H_ #include <cstddef> #include <cstdint> #include <optional> #include "absl/base/attributes.h" #include "absl/types/span.h" namespace arolla { size_t LowerBound(float value, absl::Span<const float> array); size_t LowerBound(double value, absl::Span<const double> array); size_t LowerBound(int32_t value, absl::Span<const int32_t> array); size_t LowerBound(int64_t value, absl::Span<const int64_t> array); size_t UpperBound(float value, absl::Span<const float> array); size_t UpperBound(double value, absl::Span<const double> array); size_t UpperBound(int32_t value, absl::Span<const int32_t> array); size_t UpperBound(int64_t value, absl::Span<const int64_t> array); template <typename T, typename Iter> Iter GallopingLowerBound(Iter begin, Iter end, const T& value); } namespace arolla::binary_search_details { constexpr size_t kSupremacySizeThreshold = 1'000'000; template <typename T> size_t LowerBound(T value, absl::Span<const T> array); template <typename T> size_t UpperBound(T value, absl::Span<const T> array); template <typename T, typename Predicate> inline ABSL_ATTRIBUTE_ALWAYS_INLINE std::optional<size_t> SmallLinearSearch( absl::Span<const T> array, Predicate predicate) { if (array.size() <= 2) { if (array.empty() || predicate(array[0])) { return 0; } else if (array.size() == 1 || predicate(array[1])) { return 1; } return 2; } return std::nullopt; } size_t UpperBoundImpl(float value, absl::Span<const float> array); size_t UpperBoundImpl(double value, absl::Span<const double> array); size_t UpperBoundImpl(int32_t value, absl::Span<const int32_t> array); size_t UpperBoundImpl(int64_t value, absl::Span<const int64_t> array); size_t LowerBoundImpl(float value, absl::Span<const float> array); size_t LowerBoundImpl(double value, absl::Span<const double> array); size_t LowerBoundImpl(int32_t value, absl::Span<const int32_t> array); size_t LowerBoundImpl(int64_t value, absl::Span<const int64_t> array); template <typename T> inline ABSL_ATTRIBUTE_ALWAYS_INLINE size_t LowerBound(T value, absl::Span<const T> array) { if (auto result = SmallLinearSearch(array, [value](T arg) { return !(arg < value); })) { return *result; } return LowerBoundImpl(value, array); } template <typename T> inline ABSL_ATTRIBUTE_ALWAYS_INLINE size_t UpperBound(T value, absl::Span<const T> array) { if (auto result = SmallLinearSearch(array, [value](T arg) { return value < arg; })) { return *result; } return UpperBoundImpl(value, array); } } namespace arolla { inline size_t LowerBound(float value, absl::Span<const float> array) { return binary_search_details::LowerBound<float>(value, array); } inline size_t LowerBound(double value, absl::Span<const double> array) { return binary_search_details::LowerBound<double>(value, array); } inline size_t LowerBound(int32_t value, absl::Span<const int32_t> array) { return binary_search_details::LowerBound<int32_t>(value, array); } inline size_t LowerBound(int64_t value, absl::Span<const int64_t> array) { return binary_search_details::LowerBound<int64_t>(value, array); } inline size_t UpperBound(float value, absl::Span<const float> array) { return binary_search_details::UpperBound<float>(value, array); } inline size_t UpperBound(double value, absl::Span<const double> array) { return binary_search_details::UpperBound<double>(value, array); } inline size_t UpperBound(int32_t value, absl::Span<const int32_t> array) { return binary_search_details::UpperBound<int32_t>(value, array); } inline size_t UpperBound(int64_t value, absl::Span<const int64_t> array) { return binary_search_details::UpperBound<int64_t>(value, array); } template <typename T, typename Iter> Iter GallopingLowerBound(Iter begin, Iter end, const T& value) { size_t i = 0; size_t size = end - begin; if (begin >= end || !(*begin < value)) { return std::min<Iter>(begin, end); } size_t d = 1; while (i + d < size && begin[i + d] < value) { i += d; d <<= 1; } while (d > 1) { d >>= 1; if (i + d < size && begin[i + d] < value) { i += d; } } return begin + i + 1; } } #endif #include "arolla/util/binary_search.h" #include <cassert> #include <cmath> #include <cstddef> #include <cstdint> #include "absl/types/span.h" #include "arolla/util/bits.h" #include "arolla/util/switch_index.h" namespace arolla::binary_search_details { namespace { template <size_t kArraySize, typename T, class Predicate> size_t FastBinarySearchT(const T* const array, Predicate predicate) { static_assert((kArraySize & (kArraySize + 1)) == 0); size_t offset = 0; for (size_t k = kArraySize; k > 0;) { k >>= 1; offset = (!predicate(array[offset + k]) ? offset + k + 1 : offset); } return offset; } template <typename T, typename Predicate> size_t BinarySearchT(absl::Span<const T> array, Predicate predicate) { assert(!array.empty()); const int log2_size = BitScanReverse(array.size()); return switch_index<8 * sizeof(size_t)>( log2_size, [array, predicate](auto constexpr_log2_size) { constexpr size_t size = (1ULL << static_cast<int>(constexpr_log2_size)) - 1; size_t offset = 0; #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Warray-bounds" #endif offset = (!predicate(array[size]) ? array.size() - size : offset); #if !defined(__clang__) && defined(__GNUC__) #pragma GCC diagnostic pop #endif return offset + FastBinarySearchT<size>(array.begin() + offset, predicate); }); } } size_t LowerBoundImpl(float value, absl::Span<const float> array) { return BinarySearchT(array, [value](auto arg) { return !(arg < value); }); } size_t LowerBoundImpl(double value, absl::Span<const double> array) { return BinarySearchT(array, [value](auto arg) { return !(arg < value); }); } size_t LowerBoundImpl(int32_t value, absl::Span<const int32_t> array) { return BinarySearchT(array, [value](auto arg) { return arg >= value; }); } size_t LowerBoundImpl(int64_t value, absl::Span<const int64_t> array) { return BinarySearchT(array, [value](auto arg) { return arg >= value; }); } size_t UpperBoundImpl(float value, absl::Span<const float> array) { if (std::isnan(value)) { return array.size(); } return BinarySearchT(array, [value](auto arg) { return !(arg <= value); }); } size_t UpperBoundImpl(double value, absl::Span<const double> array) { if (std::isnan(value)) { return array.size(); } return BinarySearchT(array, [value](auto arg) { return !(arg <= value); }); } size_t UpperBoundImpl(int32_t value, absl::Span<const int32_t> array) { return BinarySearchT(array, [value](auto arg) { return arg > value; }); } size_t UpperBoundImpl(int64_t value, absl::Span<const int64_t> array) { return BinarySearchT(array, [value](auto arg) { return arg > value; }); } }
#include "arolla/util/binary_search.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <functional> #include <limits> #include <random> #include <vector> #include "gtest/gtest.h" #include "absl/types/span.h" namespace arolla { namespace { size_t StdLowerBound(float value, absl::Span<const float> array) { return std::lower_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdLowerBound(double value, absl::Span<const double> array) { return std::lower_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdLowerBound(int32_t value, absl::Span<const int32_t> array) { return std::lower_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdLowerBound(int64_t value, absl::Span<const int64_t> array) { return std::lower_bound(array.begin(), array.end(), value) - array.begin(); } size_t RlGallopingLowerBound(float value, absl::Span<const float> array) { return GallopingLowerBound(array.begin(), array.end(), value) - array.begin(); } TEST(Algorithms, LowerBound_General) { for (int n : {0, 1, 5, 7, 100, 1000}) { std::vector<float> thresholds(n); for (int i = 0; i < n; ++i) { thresholds[i] = 2 * i + 1; } for (int i = 0; i < static_cast<int>(2 * thresholds.size()); ++i) { size_t expected = StdLowerBound(i, thresholds); ASSERT_EQ(LowerBound(i, thresholds), expected); ASSERT_EQ(RlGallopingLowerBound(i, thresholds), expected); } ASSERT_EQ(LowerBound(-10 * n, thresholds), StdLowerBound(-10 * n, thresholds)); ASSERT_EQ(LowerBound(10 * n, thresholds), StdLowerBound(10 * n, thresholds)); } } TEST(Algorithms, LowerBound_Duplicates) { for (int n : {2, 140}) { std::vector<float> thresholds(n, 0.); ASSERT_EQ(LowerBound(-1, thresholds), 0); ASSERT_EQ(LowerBound(0., thresholds), 0); ASSERT_EQ(LowerBound(1., thresholds), n); ASSERT_EQ(RlGallopingLowerBound(-1, thresholds), 0); ASSERT_EQ(RlGallopingLowerBound(0., thresholds), 0); ASSERT_EQ(RlGallopingLowerBound(1., thresholds), n); } } TEST(Algorithms, LowerBound_Infs) { const auto kInf = std::numeric_limits<float>::infinity(); for (int n : {2, 140}) { std::vector<float> thresholds(n); for (int i = 0; i < n; ++i) { thresholds.push_back(i); } thresholds.front() = -kInf; thresholds.back() = kInf; ASSERT_EQ(LowerBound(-kInf, thresholds), StdLowerBound(-kInf, thresholds)); ASSERT_EQ(LowerBound(kInf, thresholds), StdLowerBound(kInf, thresholds)); ASSERT_EQ(RlGallopingLowerBound(kInf, thresholds), StdLowerBound(kInf, thresholds)); } } TEST(Algorithms, LowerBound_Nan) { const auto kNan = std::numeric_limits<float>::quiet_NaN(); const auto kInf = std::numeric_limits<float>::infinity(); for (int n : {2, 140}) { std::vector<float> thresholds; for (int i = 0; i < n; ++i) { thresholds.push_back(i); } thresholds.front() = -kInf; thresholds.back() = kInf; ASSERT_EQ(LowerBound(kNan, thresholds), StdLowerBound(kNan, thresholds)); ASSERT_EQ(RlGallopingLowerBound(kNan, thresholds), StdLowerBound(kNan, thresholds)); } } size_t StdUpperBound(float value, absl::Span<const float> array) { return std::upper_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdUpperBound(double value, absl::Span<const double> array) { return std::upper_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdUpperBound(int32_t value, absl::Span<const int32_t> array) { return std::upper_bound(array.begin(), array.end(), value) - array.begin(); } size_t StdUpperBound(int64_t value, absl::Span<const int64_t> array) { return std::upper_bound(array.begin(), array.end(), value) - array.begin(); } TEST(Algorithms, UpperBound_General) { for (int n : {0, 1, 5, 7, 100, 1000}) { std::vector<float> thresholds(n); for (int i = 0; i < n; ++i) { thresholds[i] = 2 * i + 1; } for (int i = 0; i < static_cast<int>(2 * thresholds.size()); ++i) { ASSERT_EQ(UpperBound(i, thresholds), StdUpperBound(i, thresholds)); } ASSERT_EQ(UpperBound(-10 * n, thresholds), StdUpperBound(-10 * n, thresholds)); ASSERT_EQ(UpperBound(10 * n, thresholds), StdUpperBound(10 * n, thresholds)); } } TEST(Algorithms, UpperBound_Duplicates) { for (int n : {2, 140}) { std::vector<float> thresholds(n, 0.); ASSERT_EQ(UpperBound(-1, thresholds), StdUpperBound(-1., thresholds)); ASSERT_EQ(UpperBound(0., thresholds), StdUpperBound(0., thresholds)); } } TEST(Algorithms, UpperBound_Infs) { const auto kInf = std::numeric_limits<float>::infinity(); for (int n : {2, 140}) { std::vector<float> thresholds(n); for (int i = 0; i < n; ++i) { thresholds.push_back(i); } thresholds.front() = -kInf; thresholds.back() = kInf; ASSERT_EQ(UpperBound(-kInf, thresholds), StdUpperBound(-kInf, thresholds)); ASSERT_EQ(UpperBound(kInf, thresholds), StdUpperBound(kInf, thresholds)); } } TEST(Algorithms, UpperBound_Nan) { const auto kNan = std::numeric_limits<float>::quiet_NaN(); const auto kInf = std::numeric_limits<float>::infinity(); for (int n : {2, 140}) { std::vector<float> thresholds; for (int i = 0; i < n; ++i) { thresholds.push_back(i); } thresholds.front() = -kInf; thresholds.back() = kInf; ASSERT_EQ(UpperBound(kNan, thresholds), StdUpperBound(kNan, thresholds)); } } template <typename T> std::vector<T> RandomVector(size_t seed, size_t size) { std::mt19937 gen(seed); std::vector<T> result(size); if constexpr (std::is_integral_v<T>) { std::uniform_int_distribution<T> uniform(0, 1 << 30); for (auto& x : result) { x = uniform(gen); } } else { std::uniform_real_distribution<T> uniform01; for (auto& x : result) { x = uniform01(gen); } } return result; } template <typename T> std::vector<T> Sorted(std::vector<T> vec) { std::sort(vec.begin(), vec.end()); return vec; } template <typename T> using AlgoFn = std::function<size_t(T, const std::vector<T>&)>; template <typename T> void BinarySearchStressTest(size_t size, AlgoFn<T> algoFn, AlgoFn<T> referenceAlgoFn) { const auto seed = 34 + size; const auto array = Sorted(RandomVector<T>(seed, size)); for (auto value : RandomVector<T>(seed, 2 * size)) { const auto actual_value = algoFn(value, array); const auto expected_value = referenceAlgoFn(value, array); if (actual_value != expected_value) { ADD_FAILURE() << "Actual value: " << actual_value << '\n' << "Expected value: " << expected_value << '\n' << "size: " << size; return; } } } TEST(Algorithms, LowerBound_Stress) { for (int size : {10, 100, 1000, 100000}) { BinarySearchStressTest<float>( size, [](float value, absl::Span<const float> array) { return LowerBound(value, array); }, [](float value, absl::Span<const float> array) { return StdLowerBound(value, array); }); BinarySearchStressTest<float>( size, [](float value, absl::Span<const float> array) { return RlGallopingLowerBound(value, array); }, [](float value, absl::Span<const float> array) { return StdLowerBound(value, array); }); BinarySearchStressTest<double>( size, [](double value, absl::Span<const double> array) { return LowerBound(value, array); }, [](double value, absl::Span<const double> array) { return StdLowerBound(value, array); }); BinarySearchStressTest<int32_t>( size, [](int32_t value, absl::Span<const int32_t> array) { return LowerBound(value, array); }, [](int32_t value, absl::Span<const int32_t> array) { return StdLowerBound(value, array); }); BinarySearchStressTest<int64_t>( size, [](int64_t value, absl::Span<const int64_t> array) { return LowerBound(value, array); }, [](int64_t value, absl::Span<const int64_t> array) { return StdLowerBound(value, array); }); } } TEST(Algorithms, UpperBound_Stress) { for (int size : {10, 100, 1000, 100000}) { BinarySearchStressTest<float>( size, [](float value, absl::Span<const float> array) { return UpperBound(value, array); }, [](float value, absl::Span<const float> array) { return StdUpperBound(value, array); }); BinarySearchStressTest<double>( size, [](double value, absl::Span<const double> array) { return UpperBound(value, array); }, [](double value, absl::Span<const double> array) { return StdUpperBound(value, array); }); BinarySearchStressTest<int32_t>( size, [](int32_t value, absl::Span<const int32_t> array) { return UpperBound(value, array); }, [](int32_t value, absl::Span<const int32_t> array) { return StdUpperBound(value, array); }); BinarySearchStressTest<int64_t>( size, [](int64_t value, absl::Span<const int64_t> array) { return UpperBound(value, array); }, [](int64_t value, absl::Span<const int64_t> array) { return StdUpperBound(value, array); }); } } } }
14
#ifndef AROLLA_EXPR_DERIVED_CAST_OPERATOR_H_ #define AROLLA_EXPR_DERIVED_CAST_OPERATOR_H_ #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator.h" #include "arolla/qtype/qtype.h" namespace arolla::expr { class DerivedQTypeUpcastOperator final : public BuiltinExprOperatorTag, public BasicExprOperator { public: static absl::StatusOr<QTypePtr> GetOutputQType(QTypePtr derived_qtype, QTypePtr value_qtype); explicit DerivedQTypeUpcastOperator(QTypePtr derived_qtype); absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const final; QTypePtr derived_qtype() const; private: QTypePtr derived_qtype_; }; class DerivedQTypeDowncastOperator final : public BuiltinExprOperatorTag, public BasicExprOperator { public: static absl::StatusOr<QTypePtr> GetOutputQType(QTypePtr derived_qtype, QTypePtr value_qtype); explicit DerivedQTypeDowncastOperator(QTypePtr derived_qtype); absl::StatusOr<QTypePtr> GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const final; QTypePtr derived_qtype() const; private: QTypePtr derived_qtype_; }; } #endif #include "arolla/expr/derived_qtype_cast_operator.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/basic_expr_operator.h" #include "arolla/expr/expr_operator_signature.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { absl::StatusOr<QTypePtr> DerivedQTypeUpcastOperator::GetOutputQType( QTypePtr derived_qtype, QTypePtr value_qtype) { if (value_qtype == derived_qtype) { return DecayDerivedQType(derived_qtype); } return absl::InvalidArgumentError( absl::StrFormat("expected %s, got value: %s", derived_qtype->name(), value_qtype->name())); } DerivedQTypeUpcastOperator::DerivedQTypeUpcastOperator(QTypePtr derived_qtype) : BasicExprOperator( absl::StrFormat("derived_qtype.upcast[%s]", derived_qtype->name()), ExprOperatorSignature{{"value"}}, "Casts a derived value to the base type.", FingerprintHasher("arolla::expr::DerivedQTypeUpcastOperator") .Combine(derived_qtype) .Finish()), derived_qtype_(derived_qtype) {} absl::StatusOr<QTypePtr> DerivedQTypeUpcastOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return DerivedQTypeUpcastOperator::GetOutputQType(derived_qtype_, input_qtypes[0]); } QTypePtr DerivedQTypeUpcastOperator::derived_qtype() const { return derived_qtype_; } absl::StatusOr<QTypePtr> DerivedQTypeDowncastOperator::GetOutputQType( QTypePtr derived_qtype, QTypePtr value_qtype) { const auto* base_qtype = DecayDerivedQType(derived_qtype); if (value_qtype == base_qtype) { return derived_qtype; } return absl::InvalidArgumentError(absl::StrFormat( "expected %s, got value: %s", base_qtype->name(), value_qtype->name())); } DerivedQTypeDowncastOperator::DerivedQTypeDowncastOperator( QTypePtr derived_qtype) : BasicExprOperator( absl::StrFormat("derived_qtype.downcast[%s]", derived_qtype->name()), ExprOperatorSignature{{"value"}}, "Casts a base qtype value to the derived qtype.", FingerprintHasher("arolla::expr::DerivedQTypeDowncastOperator") .Combine(derived_qtype) .Finish()), derived_qtype_(derived_qtype) {} absl::StatusOr<QTypePtr> DerivedQTypeDowncastOperator::GetOutputQType( absl::Span<const QTypePtr> input_qtypes) const { return DerivedQTypeDowncastOperator::GetOutputQType(derived_qtype_, input_qtypes[0]); } QTypePtr DerivedQTypeDowncastOperator::derived_qtype() const { return derived_qtype_; } }
#include "arolla/expr/derived_qtype_cast_operator.h" #include <memory> #include <string> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "arolla/expr/expr_operator.h" #include "arolla/expr/testing/testing.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/derived_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/indestructible.h" #include "arolla/util/init_arolla.h" #include "arolla/util/repr.h" #include "arolla/util/testing/repr_token_eq.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla::expr { namespace { using ::arolla::testing::InvokeExprOperator; using ::arolla::testing::ReprTokenEq; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; struct TimeQType final : BasicDerivedQType { TimeQType() : BasicDerivedQType(ConstructorArgs{ .name = "TIME", .base_qtype = GetQType<float>(), }) {} ReprToken UnsafeReprToken(const void* source) const override { auto result = GetBaseQType()->UnsafeReprToken(source); result.str += "s"; return result; } static QTypePtr get() { static const Indestructible<TimeQType> result; return result.get(); } }; struct DistanceQType final : BasicDerivedQType { DistanceQType() : BasicDerivedQType(ConstructorArgs{ .name = "DISTANCE", .base_qtype = GetQType<float>(), }) {} ReprToken UnsafeReprToken(const void* source) const override { auto result = GetBaseQType()->UnsafeReprToken(source); result.str += "m"; return result; } static QTypePtr get() { static const Indestructible<DistanceQType> result; return result.get(); } }; class DerivedQTypeCastOperatorTests : public ::testing::Test { void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(DerivedQTypeCastOperatorTests, UpcastDistance_WithDistanceInput) { ExprOperatorPtr upcast_distance = std::make_shared<DerivedQTypeUpcastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(upcast_distance, d)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } TEST_F(DerivedQTypeCastOperatorTests, UpcastDistance_WithFloat32Input) { ExprOperatorPtr upcast_distance = std::make_shared<DerivedQTypeUpcastOperator>(DistanceQType::get()); EXPECT_THAT(InvokeExprOperator<TypedValue>(upcast_distance, 6.28f), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected DISTANCE, got value: FLOAT32"))); } TEST_F(DerivedQTypeCastOperatorTests, UpcastFloat32_WithDistanceInput) { ExprOperatorPtr upcast_float32 = std::make_shared<DerivedQTypeUpcastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(upcast_float32, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST_F(DerivedQTypeCastOperatorTests, UpcastFloat32_WithFloat32Input) { ExprOperatorPtr upcast_float32 = std::make_shared<DerivedQTypeUpcastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(upcast_float32, 6.28f)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } TEST_F(DerivedQTypeCastOperatorTests, DowncastDistance_WithDistanceInput) { ExprOperatorPtr downcast_distance = std::make_shared<DerivedQTypeDowncastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(downcast_distance, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST_F(DerivedQTypeCastOperatorTests, DowncastDistance_WithFloat32Input) { ExprOperatorPtr downcast_distance = std::make_shared<DerivedQTypeDowncastOperator>(DistanceQType::get()); ASSERT_OK_AND_ASSIGN( auto d, InvokeExprOperator<TypedValue>(downcast_distance, 6.28f)); EXPECT_EQ(d.GetType(), DistanceQType::get()); EXPECT_THAT(d.GenReprToken(), ReprTokenEq("6.28m", ReprToken::kSafeForNegation)); } TEST_F(DerivedQTypeCastOperatorTests, DowncastFloat32_WithDistanceInput) { ExprOperatorPtr downcast_float32 = std::make_shared<DerivedQTypeDowncastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN( auto d, TypedValue::FromValueWithQType(6.28f, DistanceQType::get())); EXPECT_THAT(InvokeExprOperator<TypedValue>(downcast_float32, d), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("expected FLOAT32, got value: DISTANCE"))); } TEST_F(DerivedQTypeCastOperatorTests, DowncastFloat32_WithFloat32Input) { ExprOperatorPtr downcast_float32 = std::make_shared<DerivedQTypeDowncastOperator>(GetQType<float>()); ASSERT_OK_AND_ASSIGN(auto f32, InvokeExprOperator<TypedValue>(downcast_float32, 6.28f)); EXPECT_EQ(f32.GetType(), GetQType<float>()); EXPECT_THAT(f32.GenReprToken(), ReprTokenEq("6.28", ReprToken::kSafeForNegation)); } } }
15
#ifndef TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_MESSAGE_WRAPPERS_H_ #define TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_MESSAGE_WRAPPERS_H_ #include "absl/status/status.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/master.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { class RunStepRequestWrapper { public: virtual ~RunStepRequestWrapper() {} virtual const string& session_handle() const = 0; virtual const string& partial_run_handle() const = 0; virtual size_t num_feeds() const = 0; virtual const string& feed_name(size_t i) const = 0; virtual Status FeedValue(size_t i, Tensor* out_tensor) const = 0; virtual Status FeedValue(size_t i, TensorProto* out_tensor) const = 0; virtual size_t num_fetches() const = 0; virtual const string& fetch_name(size_t i) const = 0; virtual size_t num_targets() const = 0; virtual const string& target_name(size_t i) const = 0; virtual const RunOptions& options() const = 0; virtual bool store_errors_in_response_body() const = 0; virtual int64_t request_id() const = 0; virtual string DebugString() const = 0; virtual const RunStepRequest& ToProto() const = 0; }; class MutableRunStepRequestWrapper : public RunStepRequestWrapper { public: virtual void set_session_handle(const string& handle) = 0; virtual void set_partial_run_handle(const string& handle) = 0; virtual void add_feed(const string& name, const Tensor& value) = 0; virtual void add_fetch(const string& name) = 0; virtual void add_target(const string& name) = 0; virtual RunOptions* mutable_options() = 0; virtual void set_store_errors_in_response_body(bool store_errors) = 0; }; class InMemoryRunStepRequest : public MutableRunStepRequestWrapper { public: const string& session_handle() const override; const string& partial_run_handle() const override; size_t num_feeds() const override; const string& feed_name(size_t i) const override; Status FeedValue(size_t i, Tensor* out_tensor) const override; Status FeedValue(size_t i, TensorProto* out_tensor) const override; size_t num_fetches() const override; const string& fetch_name(size_t i) const override; size_t num_targets() const override; const string& target_name(size_t i) const override; const RunOptions& options() const override; string DebugString() const override; const RunStepRequest& ToProto() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; void set_session_handle(const string& handle) override; void set_partial_run_handle(const string& handle) override; void add_feed(const string& name, const Tensor& value) override; void add_fetch(const string& name) override; void add_target(const string& name) override; RunOptions* mutable_options() override; void set_store_errors_in_response_body(bool store_errors) override; private: string session_handle_; string partial_run_handle_; gtl::InlinedVector<std::pair<string, Tensor>, 4> feeds_; gtl::InlinedVector<string, 4> fetches_; gtl::InlinedVector<string, 4> targets_; RunOptions options_; bool store_errors_in_response_body_ = false; mutable std::unique_ptr<RunStepRequest> proto_version_; }; class MutableProtoRunStepRequest : public MutableRunStepRequestWrapper { public: const string& session_handle() const override; const string& partial_run_handle() const override; size_t num_feeds() const override; const string& feed_name(size_t i) const override; Status FeedValue(size_t i, Tensor* out_tensor) const override; Status FeedValue(size_t i, TensorProto* out_tensor) const override; size_t num_fetches() const override; const string& fetch_name(size_t i) const override; size_t num_targets() const override; const string& target_name(size_t i) const override; const RunOptions& options() const override; string DebugString() const override; const RunStepRequest& ToProto() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; void set_session_handle(const string& handle) override; void set_partial_run_handle(const string& handle) override; void add_feed(const string& name, const Tensor& value) override; void add_fetch(const string& name) override; void add_target(const string& name) override; RunOptions* mutable_options() override; void set_store_errors_in_response_body(bool store_errors) override; private: RunStepRequest request_; friend class MasterInterface; }; class ProtoRunStepRequest : public RunStepRequestWrapper { public: ProtoRunStepRequest(const RunStepRequest* request); const string& session_handle() const override; const string& partial_run_handle() const override; size_t num_feeds() const override; const string& feed_name(size_t i) const override; Status FeedValue(size_t i, Tensor* out_tensor) const override; Status FeedValue(size_t i, TensorProto* out_tensor) const override; size_t num_fetches() const override; const string& fetch_name(size_t i) const override; size_t num_targets() const override; const string& target_name(size_t i) const override; const RunOptions& options() const override; string DebugString() const override; const RunStepRequest& ToProto() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; private: const RunStepRequest* const request_; }; class RunGraphRequestWrapper { public: virtual ~RunGraphRequestWrapper() {} virtual const string& session_handle() const = 0; virtual bool create_worker_session_called() const = 0; virtual const string& graph_handle() const = 0; virtual int64_t step_id() const = 0; virtual const ExecutorOpts& exec_opts() const = 0; virtual size_t num_sends() const = 0; virtual const string& send_key(size_t i) const = 0; virtual Status SendValue(size_t i, Tensor* out_tensor) const = 0; virtual size_t num_recvs() const = 0; virtual const string& recv_key(size_t i) const = 0; virtual bool is_partial() const = 0; virtual bool is_last_partial_run() const = 0; virtual bool store_errors_in_response_body() const = 0; virtual int64_t request_id() const = 0; virtual const RunGraphRequest& ToProto() const = 0; }; class MutableRunGraphRequestWrapper : public RunGraphRequestWrapper { public: virtual void set_session_handle(const string& handle) = 0; virtual void set_create_worker_session_called(bool called) = 0; virtual void set_graph_handle(const string& handle) = 0; virtual void set_step_id(int64_t step_id) = 0; virtual ExecutorOpts* mutable_exec_opts() = 0; virtual Status AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) = 0; virtual Status AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) = 0; virtual void add_recv_key(const string& recv_key) = 0; virtual void set_is_partial(bool is_partial) = 0; virtual void set_is_last_partial_run(bool is_last_partial_run) = 0; virtual void set_store_errors_in_response_body(bool store_errors) = 0; virtual void set_request_id(int64_t request_id) = 0; }; class InMemoryRunGraphRequest : public MutableRunGraphRequestWrapper { public: const string& session_handle() const override; const string& graph_handle() const override; bool create_worker_session_called() const override; int64_t step_id() const override; const ExecutorOpts& exec_opts() const override; size_t num_sends() const override; const string& send_key(size_t i) const override; Status SendValue(size_t i, Tensor* out_tensor) const override; size_t num_recvs() const override; const string& recv_key(size_t i) const override; bool is_partial() const override; bool is_last_partial_run() const override; const RunGraphRequest& ToProto() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; void set_session_handle(const string& handle) override; void set_create_worker_session_called(bool called) override; void set_graph_handle(const string& handle) override; void set_step_id(int64_t step_id) override; ExecutorOpts* mutable_exec_opts() override; Status AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) override; Status AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) override; void add_recv_key(const string& recv_key) override; void set_is_partial(bool is_partial) override; void set_is_last_partial_run(bool is_last_partial_run) override; void set_store_errors_in_response_body(bool store_errors) override; void set_request_id(int64_t request_id) override; private: string session_handle_; bool create_worker_session_called_ = false; string graph_handle_; int64_t step_id_; ExecutorOpts exec_opts_; gtl::InlinedVector<std::pair<string, Tensor>, 4> sends_; gtl::InlinedVector<string, 4> recvs_; bool is_partial_ = false; bool is_last_partial_run_ = false; bool store_errors_in_response_body_ = false; int64_t request_id_ = 0; mutable std::unique_ptr<RunGraphRequest> proto_version_; }; class MutableProtoRunGraphRequest : public MutableRunGraphRequestWrapper { public: const string& session_handle() const override; bool create_worker_session_called() const override; const string& graph_handle() const override; int64_t step_id() const override; const ExecutorOpts& exec_opts() const override; size_t num_sends() const override; const string& send_key(size_t i) const override; Status SendValue(size_t i, Tensor* out_tensor) const override; size_t num_recvs() const override; const string& recv_key(size_t i) const override; bool is_partial() const override; bool is_last_partial_run() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; const RunGraphRequest& ToProto() const override; void set_session_handle(const string& handle) override; void set_create_worker_session_called(bool called) override; void set_graph_handle(const string& handle) override; void set_step_id(int64_t step_id) override; ExecutorOpts* mutable_exec_opts() override; Status AddSendFromRunStepRequest( const RunStepRequestWrapper& run_step_request, size_t i, const string& send_key) override; Status AddSendFromRunCallableRequest( const RunCallableRequest& run_callable_request, size_t i, const string& send_key) override; void add_recv_key(const string& recv_key) override; void set_is_partial(bool is_partial) override; void set_is_last_partial_run(bool is_last_partial_run) override; void set_store_errors_in_response_body(bool store_errors) override; void set_request_id(int64_t request_id) override; private: RunGraphRequest request_; }; class ProtoRunGraphRequest : public RunGraphRequestWrapper { public: ProtoRunGraphRequest(const RunGraphRequest* request); const string& session_handle() const override; bool create_worker_session_called() const override; const string& graph_handle() const override; int64_t step_id() const override; const ExecutorOpts& exec_opts() const override; size_t num_sends() const override; const string& send_key(size_t i) const override; Status SendValue(size_t i, Tensor* out_tensor) const override; size_t num_recvs() const override; const string& recv_key(size_t i) const override; bool is_partial() const override; bool is_last_partial_run() const override; bool store_errors_in_response_body() const override; int64_t request_id() const override; const RunGraphRequest& ToProto() const override; private: const RunGraphRequest* const request_; }; class MutableRunGraphResponseWrapper { public: virtual ~MutableRunGraphResponseWrapper() {} virtual size_t num_recvs() const = 0; virtual const string& recv_key(size_t i) const = 0; virtual Status RecvValue(size_t i, TensorProto* out_tensor) = 0; virtual Status RecvValue(size_t i, Tensor* out_tensor) = 0; virtual void AddRecv(const string& key, const Tensor& value) = 0; virtual StepStats* mutable_step_stats() = 0; virtual CostGraphDef* mutable_cost_graph() = 0; virtual size_t num_partition_graphs() const = 0; virtual GraphDef* mutable_partition_graph(size_t i) = 0; virtual void AddPartitionGraph(const GraphDef& partition_graph) = 0; virtual Status status() const = 0; virtual absl::StatusCode status_code() const = 0; virtual void set_status(const Status& status) = 0; protected: virtual RunGraphResponse* get_proto() = 0; friend class WorkerInterface; }; class InMemoryRunGraphResponse : public MutableRunGraphResponseWrapper { public: size_t num_recvs() const override; const string& recv_key(size_t i) const override; Status RecvValue(size_t i, TensorProto* out_tensor) override; Status RecvValue(size_t i, Tensor* out_tensor) override; void AddRecv(const string& key, const Tensor& value) override; StepStats* mutable_step_stats() override; CostGraphDef* mutable_cost_graph() override; size_t num_partition_graphs() const override; GraphDef* mutable_partition_graph(size_t i) override; void AddPartitionGraph(const GraphDef& partition_graph) override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunGraphResponse* get_proto() override; private: gtl::InlinedVector<std::pair<string, Tensor>, 4> recvs_; StepStats step_stats_; CostGraphDef cost_graph_; std::vector<GraphDef> partition_graphs_; Status status_; }; class OwnedProtoRunGraphResponse : public MutableRunGraphResponseWrapper { public: size_t num_recvs() const override; const string& recv_key(size_t i) const override; Status RecvValue(size_t i, TensorProto* out_tensor) override; Status RecvValue(size_t i, Tensor* out_tensor) override; void AddRecv(const string& key, const Tensor& value) override; StepStats* mutable_step_stats() override; CostGraphDef* mutable_cost_graph() override; size_t num_partition_graphs() const override; GraphDef* mutable_partition_graph(size_t i) override; void AddPartitionGraph(const GraphDef& partition_graph) override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunGraphResponse* get_proto() override; private: RunGraphResponse response_; }; class NonOwnedProtoRunGraphResponse : public MutableRunGraphResponseWrapper { public: NonOwnedProtoRunGraphResponse(RunGraphResponse* response); size_t num_recvs() const override; const string& recv_key(size_t i) const override; Status RecvValue(size_t i, TensorProto* out_tensor) override; Status RecvValue(size_t i, Tensor* out_tensor) override; void AddRecv(const string& key, const Tensor& value) override; StepStats* mutable_step_stats() override; CostGraphDef* mutable_cost_graph() override; size_t num_partition_graphs() const override; GraphDef* mutable_partition_graph(size_t i) override; void AddPartitionGraph(const GraphDef& partition_graph) override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunGraphResponse* get_proto() override; private: RunGraphResponse* const response_; }; class MutableRunStepResponseWrapper { public: virtual ~MutableRunStepResponseWrapper(); virtual size_t num_tensors() const = 0; virtual const string& tensor_name(size_t i) const = 0; virtual Status TensorValue(size_t i, Tensor* out_tensor) const = 0; virtual Status AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) = 0; virtual const RunMetadata& metadata() const = 0; virtual RunMetadata* mutable_metadata() = 0; virtual Status status() const = 0; virtual absl::StatusCode status_code() const = 0; virtual void set_status(const Status& status) = 0; protected: virtual RunStepResponse* get_proto() = 0; friend class MasterInterface; }; class InMemoryRunStepResponse : public MutableRunStepResponseWrapper { public: size_t num_tensors() const override; const string& tensor_name(size_t i) const override; Status TensorValue(size_t i, Tensor* out_tensor) const override; Status AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) override; const RunMetadata& metadata() const override; RunMetadata* mutable_metadata() override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunStepResponse* get_proto() override; private: gtl::InlinedVector<std::pair<string, Tensor>, 4> tensors_; RunMetadata metadata_; Status status_; }; class OwnedProtoRunStepResponse : public MutableRunStepResponseWrapper { public: size_t num_tensors() const override; const string& tensor_name(size_t i) const override; Status TensorValue(size_t i, Tensor* out_tensor) const override; Status AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) override; const RunMetadata& metadata() const override; RunMetadata* mutable_metadata() override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunStepResponse* get_proto() override; private: RunStepResponse response_; }; class NonOwnedProtoRunStepResponse : public MutableRunStepResponseWrapper { public: NonOwnedProtoRunStepResponse(RunStepResponse* response); size_t num_tensors() const override; const string& tensor_name(size_t i) const override; Status TensorValue(size_t i, Tensor* out_tensor) const override; Status AddTensorFromRunGraphResponse( const string& name, MutableRunGraphResponseWrapper* run_graph_response, size_t i) override; const RunMetadata& metadata() const override; RunMetadata* mutable_metadata() override; Status status() const override; absl::StatusCode status_code() const override; void set_status(const Status& status) override; protected: RunStepResponse* get_proto() override; private: RunStepResponse* response_; }; bool ParseTensorProtoToTensor(const TensorProto& tensor_proto, Tensor* out_tensor); } #endif #include "tensorflow/core/distributed_runtime/message_wrappers.h" #include "absl/status/status.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/protobuf/config.pb.h" #include "tensorflow/core/protobuf/named_tensor.pb.h" namespace tensorflow { bool ParseTensorProtoToTensor(const TensorProto& tensor_proto, Tensor* out_tensor) { if (tensor_proto.dtype() > 0 && tensor_proto.dtype() <= DataType_MAX) { Tensor parsed(tensor_proto.dtype()); if (parsed.FromProto(cpu_allocator(), tensor_proto)) { *out_tensor = parsed; return true; } } return false; } const string& InMemoryRunStepRequest::session_handle() const { return session_handle_; } void InMemoryRunStepRequest::set_session_handle(const string& handle) { session_handle_ = handle; } const string& InMemoryRunStepRequest::partial_run_handle() const { return partial_run_handle_; } void InMemoryRunStepRequest::set_partial_run_handle(const string& handle) { partial_run_handle_ = handle; } size_t InMemoryRunStepRequest::num_feeds() const { return feeds_.size(); } const string& InMemoryRunStepRequest::feed_name(size_t i) const { return feeds_[i].first; } Status InMemoryRunStepRequest::FeedValue(size_t i, Tensor* out_tensor) const { *out_tensor = feeds_[i].second; return absl::OkStatus(); } Status InMemoryRunStepRequest::FeedValue(size_t i,
#include "tensorflow/core/distributed_runtime/message_wrappers.h" #include "tensorflow/core/framework/cost_graph.pb.h" #include "tensorflow/core/framework/step_stats.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/config.pb.h" namespace tensorflow { namespace { Tensor TensorA() { Tensor a_tensor(DT_INT32, TensorShape({2, 2})); test::FillValues<int32>(&a_tensor, {3, 2, -1, 0}); return a_tensor; } Tensor TensorB() { Tensor b_tensor(DT_INT32, TensorShape({1, 2})); test::FillValues<int32>(&b_tensor, {1, 2}); return b_tensor; } void BuildRunStepRequest(MutableRunStepRequestWrapper* request) { request->set_session_handle("handle"); request->set_partial_run_handle("partial_handle"); request->add_feed("feed_a:0", TensorA()); request->add_feed("feed_b:0", TensorB()); request->add_fetch("fetch_x:0"); request->add_fetch("fetch_y:0"); request->add_target("target_i"); request->add_target("target_j"); request->mutable_options()->set_timeout_in_ms(37); } void CheckRunStepRequest(const RunStepRequestWrapper& request) { EXPECT_EQ("handle", request.session_handle()); EXPECT_EQ("partial_handle", request.partial_run_handle()); EXPECT_EQ(2, request.num_feeds()); EXPECT_EQ("feed_a:0", request.feed_name(0)); EXPECT_EQ("feed_b:0", request.feed_name(1)); Tensor val; TF_EXPECT_OK(request.FeedValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.FeedValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_EQ(2, request.num_fetches()); EXPECT_EQ("fetch_x:0", request.fetch_name(0)); EXPECT_EQ("fetch_y:0", request.fetch_name(1)); EXPECT_EQ("target_i", request.target_name(0)); EXPECT_EQ("target_j", request.target_name(1)); EXPECT_EQ(37, request.options().timeout_in_ms()); } void BuildRunGraphRequest(const RunStepRequestWrapper& run_step_request, MutableRunGraphRequestWrapper* run_graph_request) { run_graph_request->set_graph_handle("graph_handle"); run_graph_request->set_step_id(13); run_graph_request->mutable_exec_opts()->set_record_timeline(true); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 0, "send_0")); TF_EXPECT_OK(run_graph_request->AddSendFromRunStepRequest(run_step_request, 1, "send_1")); run_graph_request->add_recv_key("recv_2"); run_graph_request->add_recv_key("recv_3"); run_graph_request->set_is_partial(true); } void CheckRunGraphRequest(const RunGraphRequestWrapper& request) { EXPECT_EQ("graph_handle", request.graph_handle()); EXPECT_EQ(13, request.step_id()); EXPECT_FALSE(request.exec_opts().record_costs()); EXPECT_TRUE(request.exec_opts().record_timeline()); EXPECT_FALSE(request.exec_opts().record_partition_graphs()); EXPECT_EQ(2, request.num_sends()); Tensor val; TF_EXPECT_OK(request.SendValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(request.SendValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); EXPECT_TRUE(request.is_partial()); EXPECT_FALSE(request.is_last_partial_run()); } void BuildRunGraphResponse(MutableRunGraphResponseWrapper* run_graph_response) { run_graph_response->AddRecv("recv_2", TensorA()); run_graph_response->AddRecv("recv_3", TensorB()); run_graph_response->mutable_step_stats()->add_dev_stats()->set_device( "/cpu:0"); run_graph_response->mutable_cost_graph()->add_node()->set_name("cost_node"); GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); run_graph_response->AddPartitionGraph(graph_def); } void CheckRunGraphResponse(MutableRunGraphResponseWrapper* response) { ASSERT_EQ(2, response->num_recvs()); EXPECT_EQ("recv_2", response->recv_key(0)); EXPECT_EQ("recv_3", response->recv_key(1)); Tensor val; TF_EXPECT_OK(response->RecvValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response->RecvValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response->mutable_step_stats()->dev_stats_size()); EXPECT_EQ("/cpu:0", response->mutable_step_stats()->dev_stats(0).device()); ASSERT_EQ(1, response->mutable_cost_graph()->node_size()); EXPECT_EQ("cost_node", response->mutable_cost_graph()->node(0).name()); ASSERT_EQ(1, response->num_partition_graphs()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().producer()); EXPECT_EQ(1234, response->mutable_partition_graph(0)->versions().min_consumer()); } void BuildRunStepResponse(MutableRunGraphResponseWrapper* run_graph_response, MutableRunStepResponseWrapper* run_step_response) { TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_x:0", run_graph_response, 0)); TF_EXPECT_OK(run_step_response->AddTensorFromRunGraphResponse( "fetch_y:0", run_graph_response, 1)); *run_step_response->mutable_metadata()->mutable_step_stats() = *run_graph_response->mutable_step_stats(); protobuf::RepeatedPtrField<GraphDef>* partition_graph_defs = run_step_response->mutable_metadata()->mutable_partition_graphs(); for (size_t i = 0; i < run_graph_response->num_partition_graphs(); i++) { partition_graph_defs->Add()->Swap( run_graph_response->mutable_partition_graph(i)); } } void CheckRunStepResponse(const MutableRunStepResponseWrapper& response) { ASSERT_EQ(2, response.num_tensors()); EXPECT_EQ("fetch_x:0", response.tensor_name(0)); EXPECT_EQ("fetch_y:0", response.tensor_name(1)); Tensor val; TF_EXPECT_OK(response.TensorValue(0, &val)); test::ExpectTensorEqual<int32>(TensorA(), val); TF_EXPECT_OK(response.TensorValue(1, &val)); test::ExpectTensorEqual<int32>(TensorB(), val); ASSERT_EQ(1, response.metadata().step_stats().dev_stats_size()); EXPECT_EQ("/cpu:0", response.metadata().step_stats().dev_stats(0).device()); ASSERT_EQ(1, response.metadata().partition_graphs_size()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().producer()); EXPECT_EQ(1234, response.metadata().partition_graphs(0).versions().min_consumer()); } TEST(MessageWrappers, RunStepRequest_Basic) { InMemoryRunStepRequest in_memory_request; BuildRunStepRequest(&in_memory_request); CheckRunStepRequest(in_memory_request); MutableProtoRunStepRequest proto_request; BuildRunStepRequest(&proto_request); CheckRunStepRequest(proto_request); CheckRunStepRequest(ProtoRunStepRequest(&in_memory_request.ToProto())); CheckRunStepRequest(ProtoRunStepRequest(&proto_request.ToProto())); } TEST(MessageWrappers, RunGraphRequest_Basic) { InMemoryRunStepRequest in_memory_run_step_request; BuildRunStepRequest(&in_memory_run_step_request); MutableProtoRunStepRequest mutable_proto_run_step_request; BuildRunStepRequest(&mutable_proto_run_step_request); ProtoRunStepRequest proto_run_step_request( &mutable_proto_run_step_request.ToProto()); { InMemoryRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { InMemoryRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(in_memory_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(mutable_proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } { MutableProtoRunGraphRequest request; BuildRunGraphRequest(proto_run_step_request, &request); CheckRunGraphRequest(request); CheckRunGraphRequest(ProtoRunGraphRequest(&request.ToProto())); } } TEST(MessageWrappers, RunGraphResponse_Basic) { InMemoryRunGraphResponse in_memory_response; BuildRunGraphResponse(&in_memory_response); CheckRunGraphResponse(&in_memory_response); OwnedProtoRunGraphResponse owned_proto_response; BuildRunGraphResponse(&owned_proto_response); CheckRunGraphResponse(&owned_proto_response); RunGraphResponse response_proto; NonOwnedProtoRunGraphResponse non_owned_proto_response(&response_proto); BuildRunGraphResponse(&non_owned_proto_response); CheckRunGraphResponse(&non_owned_proto_response); } TEST(MessageWrappers, RunStepResponse_Basic) { { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { InMemoryRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { OwnedProtoRunGraphResponse run_graph_response; BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); InMemoryRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); OwnedProtoRunStepResponse response; BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } { RunGraphResponse run_graph_response_proto; NonOwnedProtoRunGraphResponse run_graph_response(&run_graph_response_proto); BuildRunGraphResponse(&run_graph_response); RunStepResponse response_proto; NonOwnedProtoRunStepResponse response(&response_proto); BuildRunStepResponse(&run_graph_response, &response); CheckRunStepResponse(response); } } } }
16
#include "gmock/gmock-cardinalities.h" #include <limits.h> #include <ostream> #include <sstream> #include <string> #include "gmock/internal/gmock-internal-utils.h" #include "gtest/gtest.h" namespace testing { namespace { class BetweenCardinalityImpl : public CardinalityInterface { public: BetweenCardinalityImpl(int min, int max) : min_(min >= 0 ? min : 0), max_(max >= min_ ? max : min_) { std::stringstream ss; if (min < 0) { ss << "The invocation lower bound must be >= 0, " << "but is actually " << min << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (max < 0) { ss << "The invocation upper bound must be >= 0, " << "but is actually " << max << "."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } else if (min > max) { ss << "The invocation upper bound (" << max << ") must be >= the invocation lower bound (" << min << ")."; internal::Expect(false, __FILE__, __LINE__, ss.str()); } } int ConservativeLowerBound() const override { return min_; } int ConservativeUpperBound() const override { return max_; } bool IsSatisfiedByCallCount(int call_count) const override { return min_ <= call_count && call_count <= max_; } bool IsSaturatedByCallCount(int call_count) const override { return call_count >= max_; } void DescribeTo(::std::ostream* os) const override; private: const int min_; const int max_; BetweenCardinalityImpl(const BetweenCardinalityImpl&) = delete; BetweenCardinalityImpl& operator=(const BetweenCardinalityImpl&) = delete; }; inline std::string FormatTimes(int n) { if (n == 1) { return "once"; } else if (n == 2) { return "twice"; } else { std::stringstream ss; ss << n << " times"; return ss.str(); } } void BetweenCardinalityImpl::DescribeTo(::std::ostream* os) const { if (min_ == 0) { if (max_ == 0) { *os << "never called"; } else if (max_ == INT_MAX) { *os << "called any number of times"; } else { *os << "called at most " << FormatTimes(max_); } } else if (min_ == max_) { *os << "called " << FormatTimes(min_); } else if (max_ == INT_MAX) { *os << "called at least " << FormatTimes(min_); } else { *os << "called between " << min_ << " and " << max_ << " times"; } } } void Cardinality::DescribeActualCallCountTo(int actual_call_count, ::std::ostream* os) { if (actual_call_count > 0) { *os << "called " << FormatTimes(actual_call_count); } else { *os << "never called"; } } GTEST_API_ Cardinality AtLeast(int n) { return Between(n, INT_MAX); } GTEST_API_ Cardinality AtMost(int n) { return Between(0, n); } GTEST_API_ Cardinality AnyNumber() { return AtLeast(0); } GTEST_API_ Cardinality Between(int min, int max) { return Cardinality(new BetweenCardinalityImpl(min, max)); } GTEST_API_ Cardinality Exactly(int n) { return Between(n, n); } }
#include <ostream> #include "gmock/gmock.h" #include "gtest/gtest-spi.h" #include "gtest/gtest.h" namespace { using std::stringstream; using testing::AnyNumber; using testing::AtLeast; using testing::AtMost; using testing::Between; using testing::Cardinality; using testing::CardinalityInterface; using testing::Exactly; using testing::IsSubstring; using testing::MakeCardinality; class MockFoo { public: MockFoo() = default; MOCK_METHOD0(Bar, int()); private: MockFoo(const MockFoo&) = delete; MockFoo& operator=(const MockFoo&) = delete; }; TEST(CardinalityTest, IsDefaultConstructable) { Cardinality c; } TEST(CardinalityTest, IsCopyable) { Cardinality c = Exactly(1); EXPECT_FALSE(c.IsSatisfiedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(1)); EXPECT_TRUE(c.IsSaturatedByCallCount(1)); c = Exactly(2); EXPECT_FALSE(c.IsSatisfiedByCallCount(1)); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_TRUE(c.IsSaturatedByCallCount(2)); } TEST(CardinalityTest, IsOverSaturatedByCallCountWorks) { const Cardinality c = AtMost(5); EXPECT_FALSE(c.IsOverSaturatedByCallCount(4)); EXPECT_FALSE(c.IsOverSaturatedByCallCount(5)); EXPECT_TRUE(c.IsOverSaturatedByCallCount(6)); } TEST(CardinalityTest, CanDescribeActualCallCount) { stringstream ss0; Cardinality::DescribeActualCallCountTo(0, &ss0); EXPECT_EQ("never called", ss0.str()); stringstream ss1; Cardinality::DescribeActualCallCountTo(1, &ss1); EXPECT_EQ("called once", ss1.str()); stringstream ss2; Cardinality::DescribeActualCallCountTo(2, &ss2); EXPECT_EQ("called twice", ss2.str()); stringstream ss3; Cardinality::DescribeActualCallCountTo(3, &ss3); EXPECT_EQ("called 3 times", ss3.str()); } TEST(AnyNumber, Works) { const Cardinality c = AnyNumber(); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(1)); EXPECT_FALSE(c.IsSaturatedByCallCount(1)); EXPECT_TRUE(c.IsSatisfiedByCallCount(9)); EXPECT_FALSE(c.IsSaturatedByCallCount(9)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "called any number of times", ss.str()); } TEST(AnyNumberTest, HasCorrectBounds) { const Cardinality c = AnyNumber(); EXPECT_EQ(0, c.ConservativeLowerBound()); EXPECT_EQ(INT_MAX, c.ConservativeUpperBound()); } TEST(AtLeastTest, OnNegativeNumber) { EXPECT_NONFATAL_FAILURE( { AtLeast(-1); }, "The invocation lower bound must be >= 0"); } TEST(AtLeastTest, OnZero) { const Cardinality c = AtLeast(0); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(1)); EXPECT_FALSE(c.IsSaturatedByCallCount(1)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "any number of times", ss.str()); } TEST(AtLeastTest, OnPositiveNumber) { const Cardinality c = AtLeast(2); EXPECT_FALSE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_FALSE(c.IsSatisfiedByCallCount(1)); EXPECT_FALSE(c.IsSaturatedByCallCount(1)); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_FALSE(c.IsSaturatedByCallCount(2)); stringstream ss1; AtLeast(1).DescribeTo(&ss1); EXPECT_PRED_FORMAT2(IsSubstring, "at least once", ss1.str()); stringstream ss2; c.DescribeTo(&ss2); EXPECT_PRED_FORMAT2(IsSubstring, "at least twice", ss2.str()); stringstream ss3; AtLeast(3).DescribeTo(&ss3); EXPECT_PRED_FORMAT2(IsSubstring, "at least 3 times", ss3.str()); } TEST(AtLeastTest, HasCorrectBounds) { const Cardinality c = AtLeast(2); EXPECT_EQ(2, c.ConservativeLowerBound()); EXPECT_EQ(INT_MAX, c.ConservativeUpperBound()); } TEST(AtMostTest, OnNegativeNumber) { EXPECT_NONFATAL_FAILURE( { AtMost(-1); }, "The invocation upper bound must be >= 0"); } TEST(AtMostTest, OnZero) { const Cardinality c = AtMost(0); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_TRUE(c.IsSaturatedByCallCount(0)); EXPECT_FALSE(c.IsSatisfiedByCallCount(1)); EXPECT_TRUE(c.IsSaturatedByCallCount(1)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "never called", ss.str()); } TEST(AtMostTest, OnPositiveNumber) { const Cardinality c = AtMost(2); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(1)); EXPECT_FALSE(c.IsSaturatedByCallCount(1)); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_TRUE(c.IsSaturatedByCallCount(2)); stringstream ss1; AtMost(1).DescribeTo(&ss1); EXPECT_PRED_FORMAT2(IsSubstring, "called at most once", ss1.str()); stringstream ss2; c.DescribeTo(&ss2); EXPECT_PRED_FORMAT2(IsSubstring, "called at most twice", ss2.str()); stringstream ss3; AtMost(3).DescribeTo(&ss3); EXPECT_PRED_FORMAT2(IsSubstring, "called at most 3 times", ss3.str()); } TEST(AtMostTest, HasCorrectBounds) { const Cardinality c = AtMost(2); EXPECT_EQ(0, c.ConservativeLowerBound()); EXPECT_EQ(2, c.ConservativeUpperBound()); } TEST(BetweenTest, OnNegativeStart) { EXPECT_NONFATAL_FAILURE( { Between(-1, 2); }, "The invocation lower bound must be >= 0, but is actually -1"); } TEST(BetweenTest, OnNegativeEnd) { EXPECT_NONFATAL_FAILURE( { Between(1, -2); }, "The invocation upper bound must be >= 0, but is actually -2"); } TEST(BetweenTest, OnStartBiggerThanEnd) { EXPECT_NONFATAL_FAILURE( { Between(2, 1); }, "The invocation upper bound (1) must be >= " "the invocation lower bound (2)"); } TEST(BetweenTest, OnZeroStartAndZeroEnd) { const Cardinality c = Between(0, 0); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_TRUE(c.IsSaturatedByCallCount(0)); EXPECT_FALSE(c.IsSatisfiedByCallCount(1)); EXPECT_TRUE(c.IsSaturatedByCallCount(1)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "never called", ss.str()); } TEST(BetweenTest, OnZeroStartAndNonZeroEnd) { const Cardinality c = Between(0, 2); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_TRUE(c.IsSaturatedByCallCount(2)); EXPECT_FALSE(c.IsSatisfiedByCallCount(4)); EXPECT_TRUE(c.IsSaturatedByCallCount(4)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "called at most twice", ss.str()); } TEST(BetweenTest, OnSameStartAndEnd) { const Cardinality c = Between(3, 3); EXPECT_FALSE(c.IsSatisfiedByCallCount(2)); EXPECT_FALSE(c.IsSaturatedByCallCount(2)); EXPECT_TRUE(c.IsSatisfiedByCallCount(3)); EXPECT_TRUE(c.IsSaturatedByCallCount(3)); EXPECT_FALSE(c.IsSatisfiedByCallCount(4)); EXPECT_TRUE(c.IsSaturatedByCallCount(4)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "called 3 times", ss.str()); } TEST(BetweenTest, OnDifferentStartAndEnd) { const Cardinality c = Between(3, 5); EXPECT_FALSE(c.IsSatisfiedByCallCount(2)); EXPECT_FALSE(c.IsSaturatedByCallCount(2)); EXPECT_TRUE(c.IsSatisfiedByCallCount(3)); EXPECT_FALSE(c.IsSaturatedByCallCount(3)); EXPECT_TRUE(c.IsSatisfiedByCallCount(5)); EXPECT_TRUE(c.IsSaturatedByCallCount(5)); EXPECT_FALSE(c.IsSatisfiedByCallCount(6)); EXPECT_TRUE(c.IsSaturatedByCallCount(6)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "called between 3 and 5 times", ss.str()); } TEST(BetweenTest, HasCorrectBounds) { const Cardinality c = Between(3, 5); EXPECT_EQ(3, c.ConservativeLowerBound()); EXPECT_EQ(5, c.ConservativeUpperBound()); } TEST(ExactlyTest, OnNegativeNumber) { EXPECT_NONFATAL_FAILURE( { Exactly(-1); }, "The invocation lower bound must be >= 0"); } TEST(ExactlyTest, OnZero) { const Cardinality c = Exactly(0); EXPECT_TRUE(c.IsSatisfiedByCallCount(0)); EXPECT_TRUE(c.IsSaturatedByCallCount(0)); EXPECT_FALSE(c.IsSatisfiedByCallCount(1)); EXPECT_TRUE(c.IsSaturatedByCallCount(1)); stringstream ss; c.DescribeTo(&ss); EXPECT_PRED_FORMAT2(IsSubstring, "never called", ss.str()); } TEST(ExactlyTest, OnPositiveNumber) { const Cardinality c = Exactly(2); EXPECT_FALSE(c.IsSatisfiedByCallCount(0)); EXPECT_FALSE(c.IsSaturatedByCallCount(0)); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_TRUE(c.IsSaturatedByCallCount(2)); stringstream ss1; Exactly(1).DescribeTo(&ss1); EXPECT_PRED_FORMAT2(IsSubstring, "called once", ss1.str()); stringstream ss2; c.DescribeTo(&ss2); EXPECT_PRED_FORMAT2(IsSubstring, "called twice", ss2.str()); stringstream ss3; Exactly(3).DescribeTo(&ss3); EXPECT_PRED_FORMAT2(IsSubstring, "called 3 times", ss3.str()); } TEST(ExactlyTest, HasCorrectBounds) { const Cardinality c = Exactly(3); EXPECT_EQ(3, c.ConservativeLowerBound()); EXPECT_EQ(3, c.ConservativeUpperBound()); } class EvenCardinality : public CardinalityInterface { public: bool IsSatisfiedByCallCount(int call_count) const override { return (call_count % 2 == 0); } bool IsSaturatedByCallCount(int ) const override { return false; } void DescribeTo(::std::ostream* ss) const override { *ss << "called even number of times"; } }; TEST(MakeCardinalityTest, ConstructsCardinalityFromInterface) { const Cardinality c = MakeCardinality(new EvenCardinality); EXPECT_TRUE(c.IsSatisfiedByCallCount(2)); EXPECT_FALSE(c.IsSatisfiedByCallCount(3)); EXPECT_FALSE(c.IsSaturatedByCallCount(10000)); stringstream ss; c.DescribeTo(&ss); EXPECT_EQ("called even number of times", ss.str()); } }
17
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_AND_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_AND_H_ #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct AndOp { struct Attributes {}; }; AndOp Create(AndOp::Attributes); absl::Status Prepare(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output); absl::Status Evaluate(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output); } #endif #include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; AndOp Create(AndOp::Attributes) { return {}; } absl::Status Prepare(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(lhs.shape(), rhs.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR( CheckSupportedTypes(CheckCtx("and"), lhs, IsBoolTensor, IsIntTensor)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), lhs, output)); SHLO_REF_RETURN_ON_ERROR(CheckSameBaselineType(CheckCtx("and"), rhs, output)); return absl::OkStatus(); } absl::Status Evaluate(AndOp& op, const Tensor& lhs, const Tensor& rhs, Tensor& output) { if (IsIntTensor(lhs)) { And<DataType::kSI32> and_func; DISPATCH_INT(detail::EvaluateNoQuantization, lhs.tensor_element_type(), and_func, lhs, rhs, output); } else if (IsBoolTensor(lhs)) { And<DataType::kI1> and_func; detail::EvaluateNoQuantization<DataType::kI1>(and_func, lhs, rhs, output); return absl::OkStatus(); } return absl::FailedPreconditionError( "stablehlo.and: Unsupported tensor type in Evaluate."); } }
#include "tensorflow/lite/experimental/shlo/ops/and.h" #include <functional> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/data_type.h" #include "tensorflow/lite/experimental/shlo/ops/binary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::FloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<AndOp> { static std::string Get() { return "And"; } }; template <DataType> struct And : std::bit_and<void> {}; template <> struct And<DataType::kI1> : std::logical_and<void> {}; template <> struct SupportedOpDataType<AndOp> { static constexpr DataType kStorageType = DataType::kSI32; }; namespace { INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseOpShapePropagationTest, AndOp, TestParamNames); using MultipyBaselineContraintTypes = BinaryElementwiseBaselineConstraintTypes< AndOp, ConcatTypes<BoolTestType, BaselineConstraintIntTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P( And, BinaryElementwiseSameBaselineElementTypeConstraintTest, MultipyBaselineContraintTypes, TestParamNames); using UnsupportedTypes = WithOpTypes<AndOp, ConcatTypes<FloatTestTypes, PerTensorQuantizedTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(And, BinaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); using SupportedTypes = ConcatTypes<BoolTestType, IntTestTypes>; template <class T> struct AndTest : ::testing::Test {}; TYPED_TEST_SUITE(AndTest, SupportedTypes, TestParamNames); TYPED_TEST(AndTest, ArithmeticTestTypesTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> lhs_data = RandomBuffer<TypeParam::kStorage>(shape, -50, 50); Vector<StorageT> rhs_data = RandomBuffer<TypeParam::kStorage>(shape, 1, 5); Vector<StorageT> output_data(shape.NumElements()); Tensor lhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = lhs_data.data()}; Tensor rhs_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = rhs_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(lhs_data, rhs_data, expected_data.begin(), And<TypeParam::kStorage>()); auto op = Create(AndOp::Attributes{}); ASSERT_OK(Prepare(op, lhs_tensor, rhs_tensor, output_tensor)); ASSERT_OK(Evaluate(op, lhs_tensor, rhs_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(FloatEq(), expected_data)); } } }
18
#ifndef I18N_ADDRESSINPUT_LOCALIZATION_H_ #define I18N_ADDRESSINPUT_LOCALIZATION_H_ #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <string> namespace i18n { namespace addressinput { struct AddressData; class Localization { public: Localization(const Localization&) = delete; Localization& operator=(const Localization&) = delete; Localization(); ~Localization() = default; std::string GetString(int message_id) const; std::string GetErrorMessage(const AddressData& address, AddressField field, AddressProblem problem, bool enable_examples, bool enable_links) const; void SetGetter(std::string (*getter)(int)); private: std::string GetErrorMessageForPostalCode( AddressProblem problem, bool uses_postal_code_as_label, const std::string& postal_code_example, const std::string& post_service_url) const; std::string (*get_string_)(int); }; } } #endif #include <libaddressinput/localization.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <cassert> #include <cstddef> #include <string> #include <vector> #include "messages.h" #include "region_data_constants.h" #include "rule.h" #include "util/string_split.h" #include "util/string_util.h" namespace { void PushBackUrl(const std::string& url, std::vector<std::string>* parameters) { assert(parameters != nullptr); parameters->push_back("<a href=\"" + url + "\">"); parameters->emplace_back("</a>"); } } namespace i18n { namespace addressinput { namespace { #include "en_messages.cc" std::string GetEnglishString(int message_id) { const char* str = GetString(message_id); return str != nullptr ? std::string(str) : std::string(); } } Localization::Localization() : get_string_(&GetEnglishString) {} std::string Localization::GetString(int message_id) const { return get_string_(message_id); } std::string Localization::GetErrorMessage(const AddressData& address, AddressField field, AddressProblem problem, bool enable_examples, bool enable_links) const { if (field == POSTAL_CODE) { Rule rule; rule.CopyFrom(Rule::GetDefault()); std::string postal_code_example, post_service_url; if (rule.ParseSerializedRule( RegionDataConstants::GetRegionData(address.region_code))) { if (enable_examples) { std::vector<std::string> examples_list; SplitString(rule.GetPostalCodeExample(), ',', &examples_list); if (!examples_list.empty()) { postal_code_example = examples_list.front(); } } if (enable_links) { post_service_url = rule.GetPostServiceUrl(); } } else { assert(false); } bool uses_postal_code_as_label = rule.GetPostalCodeNameMessageId() == IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL; return GetErrorMessageForPostalCode(problem, uses_postal_code_as_label, postal_code_example, post_service_url); } else { if (problem == MISSING_REQUIRED_FIELD) { return get_string_(IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD); } else if (problem == UNKNOWN_VALUE) { std::vector<std::string> parameters; if (AddressData::IsRepeatedFieldValue(field)) { const auto& values = address.GetRepeatedFieldValue(field); assert(!values.empty()); parameters.push_back(values.front()); } else { parameters.push_back(address.GetFieldValue(field)); } return DoReplaceStringPlaceholders( get_string_(IDS_LIBADDRESSINPUT_UNKNOWN_VALUE), parameters); } else if (problem == USES_P_O_BOX) { return get_string_(IDS_LIBADDRESSINPUT_PO_BOX_FORBIDDEN_VALUE); } else { assert(false); return ""; } } } void Localization::SetGetter(std::string (*getter)(int)) { assert(getter != nullptr); get_string_ = getter; } std::string Localization::GetErrorMessageForPostalCode( AddressProblem problem, bool uses_postal_code_as_label, const std::string& postal_code_example, const std::string& post_service_url) const { int message_id; std::vector<std::string> parameters; if (problem == MISSING_REQUIRED_FIELD) { if (!postal_code_example.empty() && !post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE_AND_URL : IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE_AND_URL; parameters.push_back(postal_code_example); PushBackUrl(post_service_url, &parameters); } else if (!postal_code_example.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE : IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE; parameters.push_back(postal_code_example); } else { message_id = IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else if (problem == INVALID_FORMAT) { if (!postal_code_example.empty() && !post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE_AND_URL : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE_AND_URL; parameters.push_back(postal_code_example); PushBackUrl(post_service_url, &parameters); } else if (!postal_code_example.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE; parameters.push_back(postal_code_example); } else { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE : IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else if (problem == MISMATCHING_VALUE) { if (!post_service_url.empty()) { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE_URL : IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP_URL; PushBackUrl(post_service_url, &parameters); } else { message_id = uses_postal_code_as_label ? IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE : IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP; } return DoReplaceStringPlaceholders(get_string_(message_id), parameters); } else { assert(false); return ""; } } } }
#include <libaddressinput/localization.h> #include <libaddressinput/address_data.h> #include <libaddressinput/address_field.h> #include <libaddressinput/address_problem.h> #include <string> #include <vector> #include <gtest/gtest.h> #include "grit.h" #include "messages.h" namespace { using i18n::addressinput::AddressData; using i18n::addressinput::AddressField; using i18n::addressinput::INVALID_MESSAGE_ID; using i18n::addressinput::Localization; using i18n::addressinput::COUNTRY; using i18n::addressinput::ADMIN_AREA; using i18n::addressinput::LOCALITY; using i18n::addressinput::DEPENDENT_LOCALITY; using i18n::addressinput::SORTING_CODE; using i18n::addressinput::POSTAL_CODE; using i18n::addressinput::STREET_ADDRESS; using i18n::addressinput::ORGANIZATION; using i18n::addressinput::RECIPIENT; using i18n::addressinput::MISSING_REQUIRED_FIELD; using i18n::addressinput::UNKNOWN_VALUE; using i18n::addressinput::INVALID_FORMAT; using i18n::addressinput::MISMATCHING_VALUE; using i18n::addressinput::USES_P_O_BOX; class LocalizationTest : public testing::TestWithParam<int> { public: LocalizationTest(const LocalizationTest&) = delete; LocalizationTest& operator=(const LocalizationTest&) = delete; protected: LocalizationTest() = default; Localization localization_; }; const char kValidMessage[] = "Data"; std::string GetValidMessage(int message_id) { return kValidMessage; } TEST_P(LocalizationTest, ValidStringGetterCanBeUsed) { localization_.SetGetter(&GetValidMessage); EXPECT_EQ(kValidMessage, localization_.GetString(GetParam())); } TEST_P(LocalizationTest, DefaultStringIsNotEmpty) { EXPECT_FALSE(localization_.GetString(GetParam()).empty()); } TEST_P(LocalizationTest, NoNewline) { EXPECT_EQ(std::string::npos, localization_.GetString(GetParam()).find('\n')); } TEST_P(LocalizationTest, NoDoubleSpace) { EXPECT_EQ(std::string::npos, localization_.GetString(GetParam()).find(std::string(2U, ' '))); } INSTANTIATE_TEST_SUITE_P( AllMessages, LocalizationTest, testing::Values( IDS_LIBADDRESSINPUT_COUNTRY_OR_REGION_LABEL, IDS_LIBADDRESSINPUT_LOCALITY_LABEL, IDS_LIBADDRESSINPUT_ADDRESS_LINE_1_LABEL, IDS_LIBADDRESSINPUT_PIN_CODE_LABEL, IDS_LIBADDRESSINPUT_POSTAL_CODE_LABEL, IDS_LIBADDRESSINPUT_ZIP_CODE_LABEL, IDS_LIBADDRESSINPUT_AREA, IDS_LIBADDRESSINPUT_COUNTY, IDS_LIBADDRESSINPUT_DEPARTMENT, IDS_LIBADDRESSINPUT_DISTRICT, IDS_LIBADDRESSINPUT_DO_SI, IDS_LIBADDRESSINPUT_EMIRATE, IDS_LIBADDRESSINPUT_ISLAND, IDS_LIBADDRESSINPUT_PARISH, IDS_LIBADDRESSINPUT_PREFECTURE, IDS_LIBADDRESSINPUT_PROVINCE, IDS_LIBADDRESSINPUT_STATE, IDS_LIBADDRESSINPUT_ORGANIZATION_LABEL, IDS_LIBADDRESSINPUT_RECIPIENT_LABEL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_FIELD, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_POSTAL_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_MISSING_REQUIRED_ZIP_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNKNOWN_VALUE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_POSTAL_CODE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE_AND_URL, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP_CODE_EXAMPLE, IDS_LIBADDRESSINPUT_UNRECOGNIZED_FORMAT_ZIP, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE_URL, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_POSTAL_CODE, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP_URL, IDS_LIBADDRESSINPUT_MISMATCHING_VALUE_ZIP, IDS_LIBADDRESSINPUT_PO_BOX_FORBIDDEN_VALUE)); TEST_F(LocalizationTest, InvalidMessageIsEmptyString) { EXPECT_TRUE(localization_.GetString(INVALID_MESSAGE_ID).empty()); } TEST(LocalizationGetErrorMessageTest, MissingRequiredPostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("You must provide a postal code, for example 2544." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You must provide a postal code, for example 2544.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, true)); } TEST(LocalizationGetErrorMessageTest, MissingRequiredZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("You must provide a ZIP code, for example 95014." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You must provide a ZIP code, for example 95014.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage(address, POSTAL_CODE, MISSING_REQUIRED_FIELD, false, true)); } TEST(LocalizationGetErrorMessageTest, MissingRequiredOtherFields) { Localization localization; const AddressData address{.region_code = "US"}; const std::vector<AddressField> other_fields{ COUNTRY, ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; for (AddressField field : other_fields) { EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, true, true)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, true, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, false, false)); EXPECT_EQ("You can't leave this empty.", localization.GetErrorMessage( address, field, MISSING_REQUIRED_FIELD, false, true)); } } TEST(LocalizationGetErrorMessageTest, UnknownValueOtherFields) { Localization localization; const AddressData address{ .region_code = "US", .address_line{ "bad address line 1", "bad address line 2", }, .administrative_area = "bad admin area", .locality = "bad locality", .dependent_locality = "bad dependent locality", .sorting_code = "bad sorting code", .organization = "bad organization", .recipient = "bad recipient", }; EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("US " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, COUNTRY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad admin area " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ADMIN_AREA, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, LOCALITY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad dependent locality " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, DEPENDENT_LOCALITY, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad sorting code " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, SORTING_CODE, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad address line 1 " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, STREET_ADDRESS, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad organization " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, ORGANIZATION, UNKNOWN_VALUE, false, true)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, true, true)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, true, false)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, false, false)); EXPECT_EQ("bad recipient " "is not recognized as a known value for this field.", localization.GetErrorMessage( address, RECIPIENT, UNKNOWN_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, InvalidFormatPostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("This postal code format is not recognized. Example " "of a valid postal code: 2544." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, true)); EXPECT_EQ("This postal code format is not recognized. Example " "of a valid postal code: 2544.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, false)); EXPECT_EQ("This postal code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, false)); EXPECT_EQ("This postal code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, true)); } TEST(LocalizationGetErrorMessageTest, InvalidFormatZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("This ZIP code format is not recognized. Example of " "a valid ZIP code: 95014." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, true)); EXPECT_EQ("This ZIP code format is not recognized. Example of " "a valid ZIP code: 95014.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, true, false)); EXPECT_EQ("This ZIP code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, false)); EXPECT_EQ("This ZIP code format is not recognized.", localization.GetErrorMessage(address, POSTAL_CODE, INVALID_FORMAT, false, true)); } TEST(LocalizationGetErrorMessageTest, MismatchingValuePostalCode) { Localization localization; const AddressData address{.region_code = "CH"}; EXPECT_EQ("This postal code does not appear to match the rest " "of this address." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, true)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, false)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, false)); EXPECT_EQ("This postal code does not appear to match the rest " "of this address." " Don't know your postal code? Find it out" " <a href=\"http: "here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, MismatchingValueZipCode) { Localization localization; const AddressData address{.region_code = "US"}; EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, true)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, true, false)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, false)); EXPECT_EQ("This ZIP code does not appear to match the rest of " "this address." " Don't know your ZIP code? Find it out" " <a href=\"https: "input.action\">here</a>.", localization.GetErrorMessage(address, POSTAL_CODE, MISMATCHING_VALUE, false, true)); } TEST(LocalizationGetErrorMessageTest, UsesPOBoxOtherFields) { Localization localization; const AddressData address{.region_code = "US"}; const std::vector<AddressField> other_fields{ COUNTRY, ADMIN_AREA, LOCALITY, DEPENDENT_LOCALITY, SORTING_CODE, STREET_ADDRESS, ORGANIZATION, RECIPIENT, }; for (AddressField field : other_fields) { EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, true, true)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, true, false)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, false, false)); EXPECT_EQ("This address line appears to contain a post " "office box. Please use a street" " or building address.", localization.GetErrorMessage( address, field, USES_P_O_BOX, false, true)); } } }
19
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_QUANTIZE_AND_DEQUANTIZE_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_GL_KERNELS_QUANTIZE_AND_DEQUANTIZE_H_ #include <memory> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/node_shader.h" namespace tflite { namespace gpu { namespace gl { std::unique_ptr<NodeShader> NewQuantizeAndDequantizeNodeShader(); } } } #endif #include "tensorflow/lite/delegates/gpu/gl/kernels/quantize_and_dequantize.h" #include <any> #include <memory> #include <string> #include "absl/memory/memory.h" #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { namespace gl { namespace { class QuantizeAndDequantize : public NodeShader { public: absl::Status GenerateCode(const GenerationContext& ctx, GeneratedCode* generated_code) const final { std::string code = R"( value_0 = clamp(value_0, vec4($quant_min$), vec4($quant_max$)); value_0 = (value_0 - vec4($quant_min$)) / vec4($quant_scale$); value_0 = floor(value_0 + vec4(0.5)); value_0 = value_0 * vec4($quant_scale$) + vec4($quant_min$); )"; const auto& attr = std::any_cast<const QuantizeAndDequantizeAttributes&>(ctx.op_attr); *generated_code = { {{"quant_min", attr.min}, {"quant_max", attr.max}, {"quant_scale", attr.scale}}, {}, {}, uint3(), uint3(), code, IOStructure::AUTO, IOStructure::AUTO, }; return absl::OkStatus(); } }; } std::unique_ptr<NodeShader> NewQuantizeAndDequantizeNodeShader() { return std::make_unique<QuantizeAndDequantize>(); } } } }
#include "tensorflow/lite/delegates/gpu/gl/kernels/quantize_and_dequantize.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/gl/kernels/test_util.h" #include "tensorflow/lite/kernels/internal/quantization_util.h" using ::testing::FloatNear; using ::testing::Pointwise; namespace tflite { namespace gpu { namespace gl { namespace { TEST(QuantizeAndDequantizeTest, Dim2Bits8) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 2, 1); const int num_bits = 8; const int quant_min = 0; const int quant_max = (1 << num_bits) - 1; QuantizeAndDequantizeAttributes attr; NudgeQuantizationRange( 0.0, 1.0, quant_min, quant_max, &attr.min, &attr.max, &attr.scale); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 2, 1); SingleOpModel model({ToString(OperationType::QUANTIZE_AND_DEQUANTIZE), attr}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {0.0, 1.0, 0.25, 0.50, 0.4444444, 0.00001})); ASSERT_OK(model.Invoke(*NewQuantizeAndDequantizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0f, 1.0f, 0.25098f, 0.498039f, 0.443137f, 0.0f})); } TEST(QuantizeAndDequantizeTest, Dim3Bits8_NegativeRange) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 1, 2); const int num_bits = 8; const int quant_min = 0; const int quant_max = (1 << num_bits) - 1; QuantizeAndDequantizeAttributes attr; NudgeQuantizationRange( -0.9, 0.9, quant_min, quant_max, &attr.min, &attr.max, &attr.scale); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 1, 2); SingleOpModel model({ToString(OperationType::QUANTIZE_AND_DEQUANTIZE), attr}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {0.0, -0.9, 0.25, 0.50, 0.4444444, -0.00001})); ASSERT_OK(model.Invoke(*NewQuantizeAndDequantizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0f, -0.896471f, 0.247059f, 0.501176f, 0.444706f, 0.0f})); } TEST(QuantizeAndDequantizeTest, Dim3Bits16) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 1, 2); const int num_bits = 16; const int quant_min = 0; const int quant_max = (1 << num_bits) - 1; QuantizeAndDequantizeAttributes attr; NudgeQuantizationRange( 0.0, 1.0, quant_min, quant_max, &attr.min, &attr.max, &attr.scale); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 1, 2); SingleOpModel model({ToString(OperationType::QUANTIZE_AND_DEQUANTIZE), attr}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {0.0, 1.0, 0.25, 0.50, 0.4444444, 0.00001})); ASSERT_OK(model.Invoke(*NewQuantizeAndDequantizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0f, 1.0f, 0.250004f, 0.500008f, 0.44445f, 1.5259e-05f})); } TEST(QuantizeAndDequantizeTest, Dim2Bits16_NegativeRange) { TensorRef<BHWC> input; input.type = DataType::FLOAT32; input.ref = 0; input.shape = BHWC(1, 3, 2, 1); const int num_bits = 16; const int quant_min = 0; const int quant_max = (1 << num_bits) - 1; QuantizeAndDequantizeAttributes attr; NudgeQuantizationRange( -0.9, 0.9, quant_min, quant_max, &attr.min, &attr.max, &attr.scale); TensorRef<BHWC> output; output.type = DataType::FLOAT32; output.ref = 1; output.shape = BHWC(1, 3, 2, 1); SingleOpModel model({ToString(OperationType::QUANTIZE_AND_DEQUANTIZE), attr}, {input}, {output}); ASSERT_TRUE( model.PopulateTensor(0, {0.0, -0.9, 0.25, 0.50, 0.4444444, -0.00001})); ASSERT_OK(model.Invoke(*NewQuantizeAndDequantizeNodeShader())); EXPECT_THAT(model.GetOutput(0), Pointwise(FloatNear(1e-6), {0.0f, -0.900014f, 0.249998f, 0.499995f, 0.444431f, 0.0f})); } } } } }
20
#ifndef AROLLA_EXPR_VISITORS_SUBSTITUTION_H_ #define AROLLA_EXPR_VISITORS_SUBSTITUTION_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/statusor.h" #include "arolla/expr/expr_node.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { absl::StatusOr<ExprNodePtr> SubstituteByName( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs); absl::StatusOr<ExprNodePtr> SubstituteLeaves( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs); absl::StatusOr<ExprNodePtr> SubstitutePlaceholders( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs, bool must_substitute_all = false); absl::StatusOr<ExprNodePtr> SubstituteByFingerprint( ExprNodePtr expr, const absl::flat_hash_map<Fingerprint, ExprNodePtr>& subs); } #endif #include "arolla/expr/visitors/substitution.h" #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/expr/annotation_utils.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/expr_visitor.h" #include "arolla/util/fingerprint.h" namespace arolla::expr { namespace { template <class Key, class KeyFn> absl::StatusOr<ExprNodePtr> Substitute( ExprNodePtr expr, const absl::flat_hash_map<Key, ExprNodePtr>& subs, KeyFn key_fn) { return PostOrderTraverse( expr, [&](const ExprNodePtr& node, absl::Span<const ExprNodePtr* const> visits) -> absl::StatusOr<ExprNodePtr> { if (auto key = key_fn(node); key.has_value()) { if (auto it = subs.find(*key); it != subs.end()) { return it->second; } } return WithNewDependencies(node, DereferenceVisitPointers(visits)); }); } } absl::StatusOr<ExprNodePtr> SubstituteByName( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs) { return Substitute(expr, subs, [](const auto& expr) -> std::optional<std::string> { if (IsNameAnnotation(expr)) { return std::string(ReadNameAnnotation(expr)); } return std::nullopt; }); } absl::StatusOr<ExprNodePtr> SubstituteLeaves( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs) { return Substitute(expr, subs, [](const auto& expr) -> std::optional<std::string> { if (expr->is_leaf()) return expr->leaf_key(); return std::nullopt; }); } absl::StatusOr<ExprNodePtr> SubstitutePlaceholders( ExprNodePtr expr, const absl::flat_hash_map<std::string, ExprNodePtr>& subs, bool must_substitute_all) { return PostOrderTraverse( expr, [&](const ExprNodePtr& node, absl::Span<const ExprNodePtr* const> visits) -> absl::StatusOr<ExprNodePtr> { if (node->is_placeholder()) { if (subs.contains(node->placeholder_key())) { return subs.at(node->placeholder_key()); } else if (must_substitute_all) { return absl::InvalidArgumentError(absl::StrFormat( "No value was provided for P.%s, but substitution of all " "placeholders was requested.", node->placeholder_key())); } } return WithNewDependencies(node, DereferenceVisitPointers(visits)); }); } absl::StatusOr<ExprNodePtr> SubstituteByFingerprint( ExprNodePtr expr, const absl::flat_hash_map<Fingerprint, ExprNodePtr>& subs) { return Substitute(expr, subs, [](const auto& expr) -> std::optional<Fingerprint> { return expr->fingerprint(); }); } }
#include "arolla/expr/visitors/substitution.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/container/flat_hash_map.h" #include "arolla/expr/expr.h" #include "arolla/expr/expr_node.h" #include "arolla/expr/testing/testing.h" #include "arolla/util/fingerprint.h" #include "arolla/util/init_arolla.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla::expr { namespace { using ::arolla::testing::EqualsExpr; using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::WithNameAnnotation; class SubstitutionTest : public ::testing::Test { void SetUp() override { ASSERT_OK(InitArolla()); } }; TEST_F(SubstitutionTest, SubsByName) { ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(Leaf("x"), "lx")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(Leaf("y"), "ly")); ASSERT_OK_AND_ASSIGN(auto z, WithNameAnnotation(Leaf("z"), "lz")); ASSERT_OK_AND_ASSIGN(ExprNodePtr expr, CallOp("math.add", {x, y})); ASSERT_OK_AND_ASSIGN(ExprNodePtr expected_expr, CallOp("math.add", {x, z})); EXPECT_THAT(SubstituteByName(expr, {{"ly", z}}), IsOkAndHolds(EqualsExpr(expected_expr))); } TEST_F(SubstitutionTest, SubstituteLeavesByName) { ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(Leaf("x"), "lx")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(Leaf("y"), "ly")); EXPECT_THAT(SubstituteByName(x, {{"lx", y}}), IsOkAndHolds(EqualsExpr(y))); } TEST_F(SubstitutionTest, SubstitutePlaceholdersByName) { ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(Placeholder("x"), "px")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(Placeholder("y"), "py")); EXPECT_THAT(SubstituteByName(x, {{"px", y}}), IsOkAndHolds(EqualsExpr(y))); EXPECT_THAT(SubstituteByName(x, {{"x", y}}), IsOkAndHolds(EqualsExpr(x))); } TEST_F(SubstitutionTest, SubstitutePlaceholders) { auto px = Placeholder("x"); auto py = Placeholder("y"); ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(px, "name")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(py, "name")); EXPECT_THAT(SubstitutePlaceholders(x, {{"x", py}}), IsOkAndHolds(EqualsExpr(y))); EXPECT_THAT(SubstitutePlaceholders(x, {{"name", py}}), IsOkAndHolds(EqualsExpr(x))); } TEST_F(SubstitutionTest, SubstituteLeaves) { auto lx = Leaf("x"); auto ly = Leaf("y"); ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(lx, "name")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(ly, "name")); EXPECT_THAT(SubstituteLeaves(x, {{"x", ly}}), IsOkAndHolds(EqualsExpr(y))); EXPECT_THAT(SubstituteLeaves(x, {{"name", ly}}), IsOkAndHolds(EqualsExpr(x))); } TEST_F(SubstitutionTest, SubsByFingerprint) { ASSERT_OK_AND_ASSIGN(auto x, WithNameAnnotation(Leaf("x"), "lx")); ASSERT_OK_AND_ASSIGN(auto y, WithNameAnnotation(Leaf("y"), "lx")); ASSERT_OK_AND_ASSIGN(auto z, WithNameAnnotation(Leaf("z"), "lz")); ASSERT_OK_AND_ASSIGN(auto x_add_expr, CallOp("math.add", {x, x})); ASSERT_OK_AND_ASSIGN(auto expr, CallOp("math.add", {x_add_expr, y})); absl::flat_hash_map<Fingerprint, ExprNodePtr> subs = { {x->fingerprint(), y}, {x_add_expr->fingerprint(), z}, {y->fingerprint(), x}}; ASSERT_OK_AND_ASSIGN(ExprNodePtr expected_expr, CallOp("math.add", {z, x})); EXPECT_THAT(SubstituteByFingerprint(expr, subs), IsOkAndHolds(EqualsExpr(expected_expr))); } } }
21
#ifndef AROLLA_QEXPR_OPERATOR_ERRORS_H_ #define AROLLA_QEXPR_OPERATOR_ERRORS_H_ #include <string> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" namespace arolla { absl::Status OperatorNotDefinedError(absl::string_view operator_name, absl::Span<const QTypePtr> input_types, absl::string_view extra_message = ""); absl::Status VerifyInputSlotTypes(absl::Span<const TypedSlot> slots, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name); absl::Status VerifyOutputSlotType(TypedSlot slot, QTypePtr expected_type, absl::string_view operator_name); absl::Status VerifyInputValueTypes(absl::Span<const TypedValue> values, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name); absl::Status VerifyInputValueTypes(absl::Span<const TypedRef> values, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name); absl::Status VerifyOutputValueType(const TypedValue& value, QTypePtr expected_type, absl::string_view operator_name); std::string GuessLibraryName(absl::string_view operator_name); std::string GuessOperatorLibraryName(absl::string_view operator_name); std::string SuggestMissingDependency(); std::string SuggestAvailableOverloads( absl::string_view operator_name, absl::Span<const QExprOperatorSignature* const> supported_qtypes); } #endif #include "arolla/qexpr/operator_errors.h" #include <cstddef> #include <initializer_list> #include <string> #include <vector> #include "absl/status/status.h" #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_value.h" namespace arolla { namespace { absl::Status SlotTypesMismatchError(absl::string_view operator_name, absl::string_view slots_kind, absl::Span<const QTypePtr> expected_types, absl::Span<const QTypePtr> got_types) { return absl::FailedPreconditionError(absl::StrFormat( "incorrect %s types for operator %s: expected %s, got %s", slots_kind, operator_name, FormatTypeVector(expected_types), FormatTypeVector(got_types))); } template <typename T> std::vector<QTypePtr> GetQTypes(absl::Span<const T> objects) { std::vector<QTypePtr> types; types.reserve(objects.size()); for (const auto& o : objects) { types.push_back(o.GetType()); } return types; } template <typename T> absl::Status VerifyTypes(absl::Span<const T> objects, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name, absl::string_view slots_kind) { if (objects.size() != expected_types.size()) { return SlotTypesMismatchError(operator_name, slots_kind, expected_types, GetQTypes(objects)); } for (size_t i = 0; i < objects.size(); ++i) { if (objects[i].GetType() != expected_types[i]) { return SlotTypesMismatchError(operator_name, slots_kind, expected_types, GetQTypes(objects)); } } return absl::OkStatus(); } } absl::Status OperatorNotDefinedError(absl::string_view operator_name, absl::Span<const QTypePtr> input_types, absl::string_view extra_message) { return absl::NotFoundError(absl::StrCat( "operator ", operator_name, " is not defined for argument types ", FormatTypeVector(input_types), extra_message.empty() ? "" : ": ", extra_message)); } absl::Status VerifyInputSlotTypes(absl::Span<const TypedSlot> slots, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name) { return VerifyTypes(slots, expected_types, operator_name, "input"); } absl::Status VerifyOutputSlotType(TypedSlot slot, QTypePtr expected_type, absl::string_view operator_name) { return VerifyTypes<TypedSlot>({slot}, {expected_type}, operator_name, "output"); } absl::Status VerifyInputValueTypes(absl::Span<const TypedValue> values, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name) { return VerifyTypes(values, expected_types, operator_name, "input"); } absl::Status VerifyInputValueTypes(absl::Span<const TypedRef> values, absl::Span<const QTypePtr> expected_types, absl::string_view operator_name) { return VerifyTypes(values, expected_types, operator_name, "input"); } absl::Status VerifyOutputValueType(const TypedValue& value, QTypePtr expected_type, absl::string_view operator_name) { return VerifyTypes<TypedValue>({value}, {expected_type}, operator_name, "output"); } std::string GuessLibraryName(absl::string_view operator_name) { std::string path = absl::StrReplaceAll( operator_name.substr(0, operator_name.rfind('.')), {{".", "/"}}); return absl::StrCat(" } std::string GuessOperatorLibraryName(absl::string_view operator_name) { return absl::StrFormat("%s:operator_%s", GuessLibraryName(operator_name), absl::AsciiStrToLower(operator_name.substr( operator_name.rfind('.') + 1))); } std::string SuggestMissingDependency() { return "adding \"@arolla: "build dependency may help"; } std::string SuggestAvailableOverloads( absl::string_view operator_name, absl::Span<const QExprOperatorSignature* const> supported_qtypes) { std::vector<std::string> available_overloads; for (const auto type : supported_qtypes) { available_overloads.push_back(absl::StrFormat( "%s(%s) -> %s", operator_name, JoinTypeNames(type->input_types()), type->output_type()->name())); } return absl::StrFormat("available overloads:\n %s", absl::StrJoin(available_overloads, ",\n ")); } }
#include "arolla/qexpr/operator_errors.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/frame.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/testing/status_matchers_backport.h" namespace arolla { namespace { using ::arolla::testing::IsOk; using ::arolla::testing::StatusIs; using ::testing::Eq; TEST(OperatorErrorsTest, OperatorNotDefinedError) { absl::string_view op_name = "test.Not"; EXPECT_THAT( OperatorNotDefinedError(op_name, {GetQType<int>(), GetQType<float>()}), StatusIs(absl::StatusCode::kNotFound, "operator test.Not is not defined for argument types " "(INT32,FLOAT32)")); EXPECT_THAT(OperatorNotDefinedError(op_name, {GetQType<int>()}, "Oops"), StatusIs(absl::StatusCode::kNotFound, "operator test.Not is not defined for argument types " "(INT32): Oops")); } TEST(OperatorErrorsTest, VerifySlotTypes) { absl::string_view op_name = "test.Not"; FrameLayout::Builder builder; auto int_slot = builder.AddSlot<int>(); auto double_slot = builder.AddSlot<double>(); EXPECT_THAT( VerifyInputSlotTypes(ToTypedSlots(int_slot, double_slot), {GetQType<int>(), GetQType<double>()}, op_name), IsOk()); EXPECT_THAT( VerifyInputSlotTypes(ToTypedSlots(int_slot, double_slot), {GetQType<int>(), GetQType<float>()}, op_name), StatusIs(absl::StatusCode::kFailedPrecondition, "incorrect input types for operator test.Not: expected " "(INT32,FLOAT32), got (INT32,FLOAT64)")); } TEST(OperatorErrorsTest, VerifyValueTypes) { absl::string_view op_name = "test.Not"; auto int_value = TypedValue::FromValue(57); auto double_value = TypedValue::FromValue(5.7); EXPECT_THAT( VerifyInputValueTypes({int_value, double_value}, {GetQType<int>(), GetQType<double>()}, op_name), IsOk()); EXPECT_THAT( VerifyInputValueTypes({int_value, double_value}, {GetQType<int>(), GetQType<float>()}, op_name), StatusIs(absl::StatusCode::kFailedPrecondition, "incorrect input types for operator test.Not: expected " "(INT32,FLOAT32), got (INT32,FLOAT64)")); } TEST(OperatorErrorsTest, GuessLibraryName) { EXPECT_THAT(GuessLibraryName("math.add"), Eq(" EXPECT_THAT(GuessLibraryName("math.complex.add"), Eq(" } TEST(OperatorErrorsTest, GuessOperatorLibraryName) { EXPECT_THAT(GuessOperatorLibraryName("math.add"), Eq(" EXPECT_THAT( GuessOperatorLibraryName("math.complex.add"), Eq(" } } }
22
#ifndef TENSORFLOW_CORE_TFRT_UTILS_DEBUG_NODE_IO_DUMP_REWRITER_H_ #define TENSORFLOW_CORE_TFRT_UTILS_DEBUG_NODE_IO_DUMP_REWRITER_H_ #include <string> #include "absl/container/flat_hash_set.h" #include "absl/strings/string_view.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace tensorflow { namespace tfrt_stub { Status InsertDumpOps(Graph& graph, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir = ""); Status InsertDumpOps(MetaGraphDef& meta_graph_def, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir = ""); } } #endif #include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <cstdlib> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/core/common_runtime/function_body.h" #include "tensorflow/core/common_runtime/function_def_utils.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/node_builder.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/platform/status.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace tensorflow { namespace tfrt_stub { namespace { absl::StatusOr<std::string> GetDumpDir(absl::string_view dump_dir) { if (!dump_dir.empty()) return std::string(dump_dir); const char* prefix = getenv("TF_DUMP_GRAPH_PREFIX"); if (prefix != nullptr) return std::string(prefix); return errors::InvalidArgument("TF_DUMP_GRAPH_PREFIX not specified"); } Status InsertDumpOpsForNode(Graph& graph, Node& node, absl::string_view dump_dir) { auto insert = [&](bool is_input, const std::vector<const Edge*> edges) { for (const Edge* edge : edges) { if (edge->IsControlEdge()) continue; Node* dump_node; TF_RETURN_IF_ERROR( NodeBuilder(absl::StrCat(edge->src()->name(), "/", edge->src_output(), "/debug_identity"), "DebugIdentityV3") .Attr("io_of_node", node.name()) .Attr("is_input", is_input) .Attr("io_index", is_input ? edge->dst_input() : edge->src_output()) .Attr("tensor_name", absl::StrCat(edge->src()->name(), ":", edge->src_output())) .Attr("debug_urls", {absl::StrCat("file: .Input(edge->src(), edge->src_output()) .Finalize(&graph, &dump_node)); TF_RETURN_IF_ERROR( graph.UpdateEdge(dump_node, 0, edge->dst(), edge->dst_input())); } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(true, {node.in_edges().begin(), node.in_edges().end()})); TF_RETURN_IF_ERROR(insert( false, {node.out_edges().begin(), node.out_edges().end()})); return absl::OkStatus(); } } Status InsertDumpOps(Graph& graph, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { TF_ASSIGN_OR_RETURN(auto dir, GetDumpDir(dump_dir)); auto insert = [&](Graph& graph) { for (Node* node : graph.op_nodes()) { if (nodes_to_dump.contains(node->name())) { TF_RETURN_IF_ERROR(InsertDumpOpsForNode(graph, *node, dir)); } } return absl::OkStatus(); }; TF_RETURN_IF_ERROR(insert(graph)); for (const auto& fname : graph.flib_def().ListFunctionNames()) { std::unique_ptr<FunctionBody> fbody; TF_RETURN_IF_ERROR(FunctionDefToBodyHelper( *graph.flib_def().Find(fname), AttrSlice(), &graph.flib_def(), &fbody)); TF_RETURN_IF_ERROR(insert(*fbody->graph)); FunctionDef new_fdef; TF_RETURN_IF_ERROR(GraphToFunctionDef(*fbody->graph, fname, &new_fdef)); TF_RETURN_IF_ERROR( graph.mutable_flib_def()->ReplaceFunction(fname, new_fdef)); } return absl::OkStatus(); } Status InsertDumpOps(MetaGraphDef& meta_graph_def, const absl::flat_hash_set<std::string>& nodes_to_dump, absl::string_view dump_dir) { Graph graph(OpRegistry::Global()); TF_RETURN_IF_ERROR( ConvertGraphDefToGraph({}, meta_graph_def.graph_def(), &graph)); TF_RETURN_IF_ERROR(InsertDumpOps(graph, nodes_to_dump, dump_dir)); graph.ToGraphDef(meta_graph_def.mutable_graph_def()); return absl::OkStatus(); } } }
#include "tensorflow/core/tfrt/utils/debug/node_io_dump_rewriter.h" #include <dirent.h> #include <cstddef> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/cc/ops/array_ops.h" #include "tensorflow/cc/ops/math_ops.h" #include "tensorflow/cc/saved_model/reader.h" #include "tensorflow/core/common_runtime/function_utils.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" #include "tensorflow/core/tfrt/saved_model/saved_model.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace tensorflow { namespace tfrt_stub { namespace { constexpr absl::string_view kDumpSubDirName = "node-io-dump"; const Node* FindNode(const Graph* graph, absl::string_view node_name) { for (Node* node : graph->nodes()) { if (node->name() == node_name) return node; } return nullptr; } const Node* GetInputNode(const Node* node, size_t index) { const Node* input_node; CHECK_OK(node->input_node(index, &input_node)); return input_node; } const Node* GetOutputNode(const Node* node, size_t index) { for (const Edge* edge : node->out_edges()) { if (edge->src_output() == index) return edge->dst(); } return nullptr; } absl::StatusOr<std::vector<std::string>> GetFilenames( absl::string_view dump_dir) { auto dump_sub_dir = absl::StrCat(dump_dir, "/", kDumpSubDirName); DIR* dir = opendir(dump_sub_dir.data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", dump_sub_dir)); } std::vector<std::string> step_dirs; struct dirent* entry; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type != DT_DIR) { return absl::InternalError(absl::StrCat( "Found non-directory entry under dump_sub_dir: ", entry->d_name)); } step_dirs.push_back(absl::StrCat(dump_sub_dir, "/", entry->d_name)); } closedir(dir); CHECK_EQ(step_dirs.size(), 1); dir = opendir(step_dirs[0].data()); if (dir == nullptr) { return absl::InvalidArgumentError( absl::StrCat("can't open directory: ", step_dirs[0])); } std::vector<std::string> filenames; while ((entry = readdir(dir)) != nullptr) { if (strcmp(entry->d_name, ".") == 0 || strcmp(entry->d_name, "..") == 0) { continue; } if (entry->d_type == DT_DIR) { return absl::InternalError(absl::StrCat( "Found directory entry under step_dir: ", entry->d_name)); } filenames.push_back(entry->d_name); } closedir(dir); return filenames; } TEST(NodeIoDumpRewriterTest, OnGraph) { auto graph = std::make_unique<Graph>(OpRegistry::Global()); Scope scope = Scope::NewRootScope().WithDevice("/device:CPU:0"); auto input_a = ops::Placeholder(scope.WithOpName("input_a"), DT_INT32); auto input_b = ops::Placeholder(scope.WithOpName("input_b"), DT_INT32); auto add = ops::Add(scope.WithOpName("add"), input_a, input_b); auto output = ops::Identity(scope.WithOpName("output"), add); TF_ASSERT_OK(scope.ToGraph(graph.get())); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnGraph"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(*graph, {"add"}, dump_dir)); auto* node = FindNode(graph.get(), "add"); EXPECT_EQ(node->num_inputs(), 2); EXPECT_EQ(GetInputNode(node, 0)->name(), "input_a/0/debug_identity"); EXPECT_EQ(GetInputNode(node, 1)->name(), "input_b/0/debug_identity"); EXPECT_EQ(node->num_outputs(), 1); EXPECT_EQ(GetOutputNode(node, 0)->name(), "add/0/debug_identity"); } TEST(NodeIoDumpRewriterTest, OnSavedModelV1) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v1/1"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV1"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"Add"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "another_toy", inputs, &outputs)); ASSERT_EQ(outputs.size(), 2); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[1]), ::testing::ElementsAreArray({12})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "Add:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "Add:in:0_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "Add:in:1_")); } TEST(NodeIoDumpRewriterTest, OnSavedModelV2) { std::string saved_model_dir = GetDataDependencyFilepath( "tensorflow/core/tfrt/saved_model/tests/toy_v2"); MetaGraphDef meta_graph_def; TF_ASSERT_OK(ReadMetaGraphDefFromSavedModel(saved_model_dir, {"serve"}, &meta_graph_def)); Env* env = Env::Default(); const string dump_dir = ::tsl::io::JoinPath(::tsl::testing::TmpDir(), "OnSavedModelV2"); if (!env->FileExists(dump_dir).ok()) { ASSERT_TRUE(env->RecursivelyCreateDir(dump_dir).ok()); } TF_ASSERT_OK(InsertDumpOps(meta_graph_def, {"result"}, dump_dir)); auto runtime = DefaultTfrtRuntime(1); SavedModel::Options options(runtime.get()); options.graph_execution_options.compile_options.enable_grappler = false; TF_ASSERT_OK_AND_ASSIGN( auto saved_model, SavedModelImpl::LoadSavedModel(options, meta_graph_def, saved_model_dir)); std::vector<tensorflow::Tensor> inputs; inputs.push_back( CreateTfTensor<int32_t>({1, 3}, {1, 1, 1})); std::vector<tensorflow::Tensor> outputs; TF_ASSERT_OK(saved_model->Run({}, "serving_default", inputs, &outputs)); ASSERT_EQ(outputs.size(), 1); EXPECT_THAT(GetTfTensorData<int32_t>(outputs[0]), ::testing::ElementsAreArray({6})); ASSERT_OK_AND_ASSIGN(auto filenames, GetFilenames(dump_dir)); ASSERT_EQ(filenames.size(), 3); EXPECT_TRUE(absl::StartsWith(filenames[0], "result:out:0_")); EXPECT_TRUE(absl::StartsWith(filenames[1], "result:in:1_")); EXPECT_TRUE(absl::StartsWith(filenames[2], "result:in:0_")); } } } }
23
#ifndef TENSORFLOW_DTENSOR_MLIR_SPMD_EXPANDER_H_ #define TENSORFLOW_DTENSOR_MLIR_SPMD_EXPANDER_H_ #include <memory> #include <string> #include "absl/types/optional.h" #include "mlir/IR/Builders.h" #include "mlir/IR/Operation.h" #include "mlir/IR/UseDefLists.h" #include "tensorflow/core/framework/registration/registration.h" #include "tensorflow/dtensor/cc/dstatus.h" #include "tensorflow/dtensor/cc/tensor_layout.h" #include "tensorflow/dtensor/mlir/spmd_expander_common.h" namespace tensorflow { namespace dtensor { class SPMDExpanderBase { public: virtual ~SPMDExpanderBase() = default; virtual StatusOr<mlir::Operation*> ExpandOp(mlir::Operation* op) = 0; virtual StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts); virtual StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts); virtual StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& output_layouts); virtual StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts); Status ExpandOpAndSetLayout(mlir::Operation* op, mlir::Operation** output); }; Status RunSPMDExpansion(mlir::Operation* op, mlir::Operation** output); class SPMDExpanderRegistry { public: ~SPMDExpanderRegistry() = default; static SPMDExpanderRegistry* Global(); bool IsOpSupported(const std::string& full_op_name) { return GetPropagateFnForFullOpName(full_op_name) != nullptr; } SPMDExpanderBase* GetPropagateFnForOp(mlir::Operation* op); SPMDExpanderBase* GetPropagateFnForFullOpName( const std::string& full_op_name); InitOnStartupMarker RegisterPropagateFn( std::string opName, std::unique_ptr<SPMDExpanderBase> prop); private: absl::flat_hash_map<std::string, std::unique_ptr<SPMDExpanderBase>> op_to_propagate_fn_map_; }; #define REGISTER_SPMD(name, op, prop, ...) \ static ::tensorflow::InitOnStartupMarker const spmd_##name = \ InitOnStartupMarker{} \ << dtensor::SPMDExpanderRegistry::Global()->RegisterPropagateFn( \ mlir::op::getOperationName().str(), \ std::make_unique<prop>(__VA_ARGS__)) #define REGISTER_SPMD_BY_OP_NAME(expander_name, op_name, prop, ...) \ static ::tensorflow::InitOnStartupMarker const spmd_##expander_name = \ InitOnStartupMarker{} \ << dtensor::SPMDExpanderRegistry::Global()->RegisterPropagateFn( \ op_name, std::make_unique<prop>(__VA_ARGS__)) } } #endif #include "tensorflow/dtensor/mlir/spmd_expander.h" #include <climits> #include <cstdint> #include <iterator> #include <memory> #include <optional> #include <string> #include "absl/container/flat_hash_map.h" #include "absl/strings/str_cat.h" #include "absl/types/optional.h" #include "llvm/ADT/DenseMap.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Operation.h" #include "mlir/IR/OperationSupport.h" #include "mlir/Support/LLVM.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/dtensor/cc/constants.h" #include "tensorflow/dtensor/cc/dstatus.h" #include "tensorflow/dtensor/cc/dtensor_utils.h" #include "tensorflow/dtensor/cc/tensor_layout.h" #include "tensorflow/dtensor/mlir/collectives.h" #include "tensorflow/dtensor/mlir/expansions/replicated_spmd_expander.h" #include "tensorflow/dtensor/mlir/ir/tf_dtensor.h" #include "tensorflow/dtensor/mlir/layout_parsing.h" #include "tensorflow/dtensor/mlir/op_utils.h" #include "tensorflow/dtensor/mlir/shape_utils.h" #include "tensorflow/dtensor/mlir/spmd_expander_common.h" #include "tensorflow/dtensor/proto/layout.pb.h" namespace tensorflow { namespace dtensor { namespace { Status AdjustPartedLayout(const llvm::DenseMap<int, Layout>& input_layouts, llvm::DenseMap<int, Layout>* computed_layouts) { bool input_has_parted_layout = false; for (const auto& input_layout : input_layouts) { if (input_layout.second.type() == Layout::LayoutType::kParted) { input_has_parted_layout = true; break; } } if (input_has_parted_layout) { for (auto& computed_layout : *computed_layouts) { TF_ASSIGN_OR_RETURN(Layout parted, computed_layout.second.ToParted()); computed_layout.getSecond() = parted; } } return absl::OkStatus(); } bool SkipExpansionForPartedLayout(mlir::Operation* op) { if (llvm::isa<mlir::func::ReturnOp, mlir::tf_device::ReturnOp>(op)) { return false; } auto status_or_input_layouts = ExtractRequiredLayoutFromOperands(op); if (!status_or_input_layouts.ok()) { return false; } bool operand_uses_parted_layout = false; for (const auto& layout : status_or_input_layouts.value()) { if (layout.type() == Layout::LayoutType::kParted) { operand_uses_parted_layout = true; break; } } return operand_uses_parted_layout; } } SPMDExpanderRegistry* SPMDExpanderRegistry::Global() { static SPMDExpanderRegistry* registry = new SPMDExpanderRegistry(); return registry; } SPMDExpanderBase* SPMDExpanderRegistry::GetPropagateFnForFullOpName( const std::string& full_op_name) { auto key = full_op_name; auto fn = op_to_propagate_fn_map_.find(key); if (fn == op_to_propagate_fn_map_.end()) { if (EnableReplicatedSpmdAsDefault(key)) { LOG(WARNING) << full_op_name << " is defaulting to ReplicatedOpSPMDExpander. This " << " has performance implications as all inputs and outputs " << " will be replicated if they are not already. Please file a " << " feature request to TF DTensor to implement an efficient " << " SPMD for this operation."; RegisterPropagateFn(key, std::make_unique<ReplicatedOpSPMDExpander>( true)); return op_to_propagate_fn_map_.find(key)->second.get(); } else { return nullptr; } } return fn->second.get(); } SPMDExpanderBase* SPMDExpanderRegistry::GetPropagateFnForOp( mlir::Operation* op) { return GetPropagateFnForFullOpName(OpName(op)); } InitOnStartupMarker SPMDExpanderRegistry::RegisterPropagateFn( std::string opName, std::unique_ptr<SPMDExpanderBase> prop) { CHECK(op_to_propagate_fn_map_ .insert_or_assign(opName, std::move(prop)) .second); return {}; } Status SPMDExpanderBase::ExpandOpAndSetLayout(mlir::Operation* op, mlir::Operation** output) { TF_ASSIGN_OR_RETURN(std::vector<std::optional<Layout>> computed_layout, ExtractLayoutFromOp(op)); if (computed_layout.empty() && op->getNumResults() != 0) { return errors::InvalidArgument( absl::StrCat("No attached layout found for op : ", OpName(op), " This might be due to an error in layout propagation.") .c_str()); } TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); bool skip_expansion_for_parted_layout = SkipExpansionForPartedLayout(op); if (mesh.IsSingleDevice() || mesh.use_xla_spmd() || skip_expansion_for_parted_layout) { if (skip_expansion_for_parted_layout) { *output = InferSPMDExpandedLocalShape(op); } else { *output = op; } SetLayoutOnOp(*output, absl::Span<std::optional<Layout>>( computed_layout.data(), computed_layout.size())); return absl::OkStatus(); } llvm::SmallVector<llvm::SmallVector<int64_t, 4>, 4> global_output_shapes; global_output_shapes.reserve(op->getNumResults()); for (auto output_value : op->getResults()) { auto maybe_ranked = mlir::dyn_cast<mlir::RankedTensorType>(output_value.getType()); if (llvm::isa<mlir::TF::RestoreV2Op, mlir::TF::DTensorRestoreV2Op>(op) && (!maybe_ranked || !maybe_ranked.hasStaticShape())) continue; TF_ASSIGN_OR_RETURN(auto global_shape, ExtractGlobalOutputShape(output_value)); global_output_shapes.emplace_back(llvm::SmallVector<int64_t, 4>{ global_shape.begin(), global_shape.end()}); } TF_ASSIGN_OR_RETURN(*output, this->ExpandOp(op)); SetLayoutOnOp(*output, absl::Span<std::optional<Layout>>( computed_layout.data(), computed_layout.size())); for (const auto& output_layout_and_index : llvm::enumerate(llvm::zip((*output)->getResults(), computed_layout))) { const int index = output_layout_and_index.index(); const auto& output_and_layout = output_layout_and_index.value(); auto output_value = std::get<0>(output_and_layout); auto local_expanded_shape_or_status = GetShapeOfValue(output_value); if (!local_expanded_shape_or_status.ok()) continue; const auto local_expanded_shape = local_expanded_shape_or_status.value(); const auto& layout = std::get<1>(output_and_layout); const auto expected_global_shape = layout->GlobalShapeFromLocalShape(local_expanded_shape); for (const auto& expanded_and_true_global_shape : llvm::zip(global_output_shapes[index], expected_global_shape)) { const auto expanded_shape = std::get<0>(expanded_and_true_global_shape); const auto expected_shape = std::get<1>(expanded_and_true_global_shape); if (expanded_shape <= 0 || expected_shape <= 0) continue; if (expanded_shape != expected_shape) { return errors::Internal( "SPMD expansion resulted in op output inconsistent with the " "provided layout. Expected shape: <", absl::StrJoin(expected_global_shape, ","), "> got shape: <", absl::StrJoin(global_output_shapes[index], ","), ">"); } } } return absl::OkStatus(); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts) { return errors::Unimplemented( "ComputeLayoutForward API must be implemented via the subclass."); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts) { TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); if (mesh.IsSingleDevice()) { TF_ASSIGN_OR_RETURN( Layout layout, Layout::GetLayout(Layout::LayoutType::kSingleDevice, {}, mesh)); auto layouts = llvm::DenseMap<int, Layout>{}; for (int i = 0; i < op->getNumResults(); ++i) { layouts.insert({i, layout}); } return layouts; } TF_ASSIGN_OR_RETURN(auto layouts, ComputeLayoutForward(op, input_layouts)); TF_RETURN_IF_ERROR(AdjustPartedLayout(input_layouts, &layouts)); return layouts; } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& output_layouts) { return errors::Unimplemented( "ComputeLayoutBackward API must be implemented via the subclass."); } StatusOr<llvm::DenseMap<int, Layout>> SPMDExpanderBase::ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts, const llvm::DenseMap<int, Layout>& output_layouts) { TF_ASSIGN_OR_RETURN(const Mesh& mesh, ExtractDeviceMeshEnclosingCluster(op)); if (mesh.IsSingleDevice()) { TF_ASSIGN_OR_RETURN( Layout layout, Layout::GetLayout(Layout::LayoutType::kSingleDevice, {}, mesh)); auto layouts = llvm::DenseMap<int, Layout>{}; for (int i = 0; i < op->getNumOperands(); ++i) { layouts.insert({i, layout}); } return layouts; } return ComputeLayoutBackward(op, output_layouts); } Status RunSPMDExpansion(mlir::Operation* op, mlir::Operation** output) { SPMDExpanderBase* expander = SPMDExpanderRegistry::Global()->GetPropagateFnForOp(op); if (expander != nullptr) { return expander->ExpandOpAndSetLayout(op, output); } else { VLOG(1) << "No expansion found for " << OpName(op) << "\n"; *output = op; } return absl::OkStatus(); } } }
#include "tensorflow/dtensor/mlir/spmd_expander.h" #include <memory> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "llvm/ADT/DenseMap.h" #include "mlir/IR/Operation.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_ops.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/dtensor/cc/dstatus.h" #include "tensorflow/dtensor/cc/tensor_layout.h" namespace tensorflow { namespace dtensor { namespace { using ::testing::IsNull; using ::testing::NotNull; class DummyExpander : public SPMDExpanderBase { StatusOr<mlir::Operation*> ExpandOp(mlir::Operation* op) override { return errors::Unimplemented(""); } StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutForward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& input_layouts) override { return errors::Unimplemented(""); } StatusOr<llvm::DenseMap<int, Layout>> ComputeLayoutBackward( mlir::Operation* op, const llvm::DenseMap<int, Layout>& output_layouts) override { return errors::Unimplemented(""); } }; class SPMDExpanderRegistryTest : public ::testing::Test { public: SPMDExpanderRegistryTest() { registry_.RegisterPropagateFn(mlir::TF::AddOp::getOperationName().str(), std::make_unique<DummyExpander>()); } protected: SPMDExpanderRegistry registry_; }; TEST_F(SPMDExpanderRegistryTest, LookupFromOpName) { EXPECT_THAT(registry_.GetPropagateFnForFullOpName("tf.Add"), NotNull()); EXPECT_THAT(registry_.GetPropagateFnForFullOpName("Unknown"), IsNull()); } } } }
24
#ifndef QUICHE_QUIC_CORE_UBER_RECEIVED_PACKET_MANAGER_H_ #define QUICHE_QUIC_CORE_UBER_RECEIVED_PACKET_MANAGER_H_ #include "quiche/quic/core/frames/quic_ack_frequency_frame.h" #include "quiche/quic/core/quic_received_packet_manager.h" namespace quic { class QUICHE_EXPORT UberReceivedPacketManager { public: explicit UberReceivedPacketManager(QuicConnectionStats* stats); UberReceivedPacketManager(const UberReceivedPacketManager&) = delete; UberReceivedPacketManager& operator=(const UberReceivedPacketManager&) = delete; virtual ~UberReceivedPacketManager(); void SetFromConfig(const QuicConfig& config, Perspective perspective); bool IsAwaitingPacket(EncryptionLevel decrypted_packet_level, QuicPacketNumber packet_number) const; void RecordPacketReceived(EncryptionLevel decrypted_packet_level, const QuicPacketHeader& header, QuicTime receipt_time, QuicEcnCodepoint ecn_codepoint); const QuicFrame GetUpdatedAckFrame(PacketNumberSpace packet_number_space, QuicTime approximate_now); void DontWaitForPacketsBefore(EncryptionLevel decrypted_packet_level, QuicPacketNumber least_unacked); void MaybeUpdateAckTimeout(bool should_last_packet_instigate_acks, EncryptionLevel decrypted_packet_level, QuicPacketNumber last_received_packet_number, QuicTime last_packet_receipt_time, QuicTime now, const RttStats* rtt_stats); void ResetAckStates(EncryptionLevel encryption_level); void EnableMultiplePacketNumberSpacesSupport(Perspective perspective); bool IsAckFrameUpdated() const; QuicPacketNumber GetLargestObserved( EncryptionLevel decrypted_packet_level) const; QuicTime GetAckTimeout(PacketNumberSpace packet_number_space) const; QuicTime GetEarliestAckTimeout() const; bool IsAckFrameEmpty(PacketNumberSpace packet_number_space) const; size_t min_received_before_ack_decimation() const; void set_min_received_before_ack_decimation(size_t new_value); void set_ack_frequency(size_t new_value); bool supports_multiple_packet_number_spaces() const { return supports_multiple_packet_number_spaces_; } const QuicAckFrame& ack_frame() const; const QuicAckFrame& GetAckFrame(PacketNumberSpace packet_number_space) const; void set_max_ack_ranges(size_t max_ack_ranges); void OnAckFrequencyFrame(const QuicAckFrequencyFrame& frame); void set_save_timestamps(bool save_timestamps); private: friend class test::QuicConnectionPeer; friend class test::UberReceivedPacketManagerPeer; QuicReceivedPacketManager received_packet_managers_[NUM_PACKET_NUMBER_SPACES]; bool supports_multiple_packet_number_spaces_; }; } #endif #include "quiche/quic/core/uber_received_packet_manager.h" #include <algorithm> #include "quiche/quic/core/quic_types.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_bug_tracker.h" namespace quic { UberReceivedPacketManager::UberReceivedPacketManager(QuicConnectionStats* stats) : supports_multiple_packet_number_spaces_(false) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.set_connection_stats(stats); } } UberReceivedPacketManager::~UberReceivedPacketManager() {} void UberReceivedPacketManager::SetFromConfig(const QuicConfig& config, Perspective perspective) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.SetFromConfig(config, perspective); } } bool UberReceivedPacketManager::IsAwaitingPacket( EncryptionLevel decrypted_packet_level, QuicPacketNumber packet_number) const { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].IsAwaitingPacket(packet_number); } return received_packet_managers_[QuicUtils::GetPacketNumberSpace( decrypted_packet_level)] .IsAwaitingPacket(packet_number); } const QuicFrame UberReceivedPacketManager::GetUpdatedAckFrame( PacketNumberSpace packet_number_space, QuicTime approximate_now) { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].GetUpdatedAckFrame(approximate_now); } return received_packet_managers_[packet_number_space].GetUpdatedAckFrame( approximate_now); } void UberReceivedPacketManager::RecordPacketReceived( EncryptionLevel decrypted_packet_level, const QuicPacketHeader& header, QuicTime receipt_time, QuicEcnCodepoint ecn_codepoint) { if (!supports_multiple_packet_number_spaces_) { received_packet_managers_[0].RecordPacketReceived(header, receipt_time, ecn_codepoint); return; } received_packet_managers_[QuicUtils::GetPacketNumberSpace( decrypted_packet_level)] .RecordPacketReceived(header, receipt_time, ecn_codepoint); } void UberReceivedPacketManager::DontWaitForPacketsBefore( EncryptionLevel decrypted_packet_level, QuicPacketNumber least_unacked) { if (!supports_multiple_packet_number_spaces_) { received_packet_managers_[0].DontWaitForPacketsBefore(least_unacked); return; } received_packet_managers_[QuicUtils::GetPacketNumberSpace( decrypted_packet_level)] .DontWaitForPacketsBefore(least_unacked); } void UberReceivedPacketManager::MaybeUpdateAckTimeout( bool should_last_packet_instigate_acks, EncryptionLevel decrypted_packet_level, QuicPacketNumber last_received_packet_number, QuicTime last_packet_receipt_time, QuicTime now, const RttStats* rtt_stats) { if (!supports_multiple_packet_number_spaces_) { received_packet_managers_[0].MaybeUpdateAckTimeout( should_last_packet_instigate_acks, last_received_packet_number, last_packet_receipt_time, now, rtt_stats); return; } received_packet_managers_[QuicUtils::GetPacketNumberSpace( decrypted_packet_level)] .MaybeUpdateAckTimeout(should_last_packet_instigate_acks, last_received_packet_number, last_packet_receipt_time, now, rtt_stats); } void UberReceivedPacketManager::ResetAckStates( EncryptionLevel encryption_level) { if (!supports_multiple_packet_number_spaces_) { received_packet_managers_[0].ResetAckStates(); return; } received_packet_managers_[QuicUtils::GetPacketNumberSpace(encryption_level)] .ResetAckStates(); if (encryption_level == ENCRYPTION_INITIAL) { received_packet_managers_[INITIAL_DATA].set_local_max_ack_delay( kAlarmGranularity); } } void UberReceivedPacketManager::EnableMultiplePacketNumberSpacesSupport( Perspective perspective) { if (supports_multiple_packet_number_spaces_) { QUIC_BUG(quic_bug_10495_1) << "Multiple packet number spaces has already been enabled"; return; } if (received_packet_managers_[0].GetLargestObserved().IsInitialized()) { QUIC_BUG(quic_bug_10495_2) << "Try to enable multiple packet number spaces support after any " "packet has been received."; return; } if (perspective == Perspective::IS_CLIENT) { received_packet_managers_[INITIAL_DATA].set_local_max_ack_delay( kAlarmGranularity); } received_packet_managers_[HANDSHAKE_DATA].set_local_max_ack_delay( kAlarmGranularity); supports_multiple_packet_number_spaces_ = true; } bool UberReceivedPacketManager::IsAckFrameUpdated() const { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].ack_frame_updated(); } for (const auto& received_packet_manager : received_packet_managers_) { if (received_packet_manager.ack_frame_updated()) { return true; } } return false; } QuicPacketNumber UberReceivedPacketManager::GetLargestObserved( EncryptionLevel decrypted_packet_level) const { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].GetLargestObserved(); } return received_packet_managers_[QuicUtils::GetPacketNumberSpace( decrypted_packet_level)] .GetLargestObserved(); } QuicTime UberReceivedPacketManager::GetAckTimeout( PacketNumberSpace packet_number_space) const { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].ack_timeout(); } return received_packet_managers_[packet_number_space].ack_timeout(); } QuicTime UberReceivedPacketManager::GetEarliestAckTimeout() const { QuicTime ack_timeout = QuicTime::Zero(); for (const auto& received_packet_manager : received_packet_managers_) { const QuicTime timeout = received_packet_manager.ack_timeout(); if (!ack_timeout.IsInitialized()) { ack_timeout = timeout; continue; } if (timeout.IsInitialized()) { ack_timeout = std::min(ack_timeout, timeout); } } return ack_timeout; } bool UberReceivedPacketManager::IsAckFrameEmpty( PacketNumberSpace packet_number_space) const { if (!supports_multiple_packet_number_spaces_) { return received_packet_managers_[0].IsAckFrameEmpty(); } return received_packet_managers_[packet_number_space].IsAckFrameEmpty(); } size_t UberReceivedPacketManager::min_received_before_ack_decimation() const { return received_packet_managers_[0].min_received_before_ack_decimation(); } void UberReceivedPacketManager::set_min_received_before_ack_decimation( size_t new_value) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.set_min_received_before_ack_decimation(new_value); } } void UberReceivedPacketManager::set_ack_frequency(size_t new_value) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.set_ack_frequency(new_value); } } const QuicAckFrame& UberReceivedPacketManager::ack_frame() const { QUICHE_DCHECK(!supports_multiple_packet_number_spaces_); return received_packet_managers_[0].ack_frame(); } const QuicAckFrame& UberReceivedPacketManager::GetAckFrame( PacketNumberSpace packet_number_space) const { QUICHE_DCHECK(supports_multiple_packet_number_spaces_); return received_packet_managers_[packet_number_space].ack_frame(); } void UberReceivedPacketManager::set_max_ack_ranges(size_t max_ack_ranges) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.set_max_ack_ranges(max_ack_ranges); } } void UberReceivedPacketManager::set_save_timestamps(bool save_timestamps) { for (auto& received_packet_manager : received_packet_managers_) { received_packet_manager.set_save_timestamps( save_timestamps, supports_multiple_packet_number_spaces_); } } void UberReceivedPacketManager::OnAckFrequencyFrame( const QuicAckFrequencyFrame& frame) { if (!supports_multiple_packet_number_spaces_) { QUIC_BUG(quic_bug_10495_3) << "Received AckFrequencyFrame when multiple packet number spaces " "is not supported"; return; } received_packet_managers_[APPLICATION_DATA].OnAckFrequencyFrame(frame); } }
#include "quiche/quic/core/uber_received_packet_manager.h" #include <algorithm> #include <memory> #include <utility> #include "quiche/quic/core/congestion_control/rtt_stats.h" #include "quiche/quic/core/crypto/crypto_protocol.h" #include "quiche/quic/core/quic_connection_stats.h" #include "quiche/quic/core/quic_utils.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { class UberReceivedPacketManagerPeer { public: static void SetAckDecimationDelay(UberReceivedPacketManager* manager, float ack_decimation_delay) { for (auto& received_packet_manager : manager->received_packet_managers_) { received_packet_manager.ack_decimation_delay_ = ack_decimation_delay; } } }; namespace { const bool kInstigateAck = true; const QuicTime::Delta kMinRttMs = QuicTime::Delta::FromMilliseconds(40); const QuicTime::Delta kDelayedAckTime = QuicTime::Delta::FromMilliseconds(GetDefaultDelayedAckTimeMs()); EncryptionLevel GetEncryptionLevel(PacketNumberSpace packet_number_space) { switch (packet_number_space) { case INITIAL_DATA: return ENCRYPTION_INITIAL; case HANDSHAKE_DATA: return ENCRYPTION_HANDSHAKE; case APPLICATION_DATA: return ENCRYPTION_FORWARD_SECURE; default: QUICHE_DCHECK(false); return NUM_ENCRYPTION_LEVELS; } } class UberReceivedPacketManagerTest : public QuicTest { protected: UberReceivedPacketManagerTest() { manager_ = std::make_unique<UberReceivedPacketManager>(&stats_); clock_.AdvanceTime(QuicTime::Delta::FromSeconds(1)); rtt_stats_.UpdateRtt(kMinRttMs, QuicTime::Delta::Zero(), QuicTime::Zero()); manager_->set_save_timestamps(true); } void RecordPacketReceipt(uint64_t packet_number) { RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, packet_number); } void RecordPacketReceipt(uint64_t packet_number, QuicTime receipt_time) { RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, packet_number, receipt_time); } void RecordPacketReceipt(EncryptionLevel decrypted_packet_level, uint64_t packet_number) { RecordPacketReceipt(decrypted_packet_level, packet_number, QuicTime::Zero()); } void RecordPacketReceipt(EncryptionLevel decrypted_packet_level, uint64_t packet_number, QuicTime receipt_time) { QuicPacketHeader header; header.packet_number = QuicPacketNumber(packet_number); manager_->RecordPacketReceived(decrypted_packet_level, header, receipt_time, ECN_NOT_ECT); } bool HasPendingAck() { if (!manager_->supports_multiple_packet_number_spaces()) { return manager_->GetAckTimeout(APPLICATION_DATA).IsInitialized(); } return manager_->GetEarliestAckTimeout().IsInitialized(); } void MaybeUpdateAckTimeout(bool should_last_packet_instigate_acks, uint64_t last_received_packet_number) { MaybeUpdateAckTimeout(should_last_packet_instigate_acks, ENCRYPTION_FORWARD_SECURE, last_received_packet_number); } void MaybeUpdateAckTimeout(bool should_last_packet_instigate_acks, EncryptionLevel decrypted_packet_level, uint64_t last_received_packet_number) { manager_->MaybeUpdateAckTimeout( should_last_packet_instigate_acks, decrypted_packet_level, QuicPacketNumber(last_received_packet_number), clock_.ApproximateNow(), clock_.ApproximateNow(), &rtt_stats_); } void CheckAckTimeout(QuicTime time) { QUICHE_DCHECK(HasPendingAck()); if (!manager_->supports_multiple_packet_number_spaces()) { QUICHE_DCHECK(manager_->GetAckTimeout(APPLICATION_DATA) == time); if (time <= clock_.ApproximateNow()) { manager_->ResetAckStates(ENCRYPTION_FORWARD_SECURE); QUICHE_DCHECK(!HasPendingAck()); } return; } QUICHE_DCHECK(manager_->GetEarliestAckTimeout() == time); for (int8_t i = INITIAL_DATA; i < NUM_PACKET_NUMBER_SPACES; ++i) { const QuicTime ack_timeout = manager_->GetAckTimeout(static_cast<PacketNumberSpace>(i)); if (!ack_timeout.IsInitialized() || ack_timeout > clock_.ApproximateNow()) { continue; } manager_->ResetAckStates( GetEncryptionLevel(static_cast<PacketNumberSpace>(i))); } } MockClock clock_; RttStats rtt_stats_; QuicConnectionStats stats_; std::unique_ptr<UberReceivedPacketManager> manager_; }; TEST_F(UberReceivedPacketManagerTest, DontWaitForPacketsBefore) { EXPECT_TRUE(manager_->IsAckFrameEmpty(APPLICATION_DATA)); RecordPacketReceipt(2); EXPECT_FALSE(manager_->IsAckFrameEmpty(APPLICATION_DATA)); RecordPacketReceipt(7); EXPECT_TRUE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(3u))); EXPECT_TRUE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(6u))); manager_->DontWaitForPacketsBefore(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(4)); EXPECT_FALSE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(3u))); EXPECT_TRUE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(6u))); } TEST_F(UberReceivedPacketManagerTest, GetUpdatedAckFrame) { QuicTime two_ms = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(2); EXPECT_FALSE(manager_->IsAckFrameUpdated()); RecordPacketReceipt(2, two_ms); EXPECT_TRUE(manager_->IsAckFrameUpdated()); QuicFrame ack = manager_->GetUpdatedAckFrame(APPLICATION_DATA, QuicTime::Zero()); manager_->ResetAckStates(ENCRYPTION_FORWARD_SECURE); EXPECT_FALSE(manager_->IsAckFrameUpdated()); EXPECT_EQ(QuicTime::Delta::Zero(), ack.ack_frame->ack_delay_time); EXPECT_EQ(1u, ack.ack_frame->received_packet_times.size()); QuicTime four_ms = QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(4); ack = manager_->GetUpdatedAckFrame(APPLICATION_DATA, four_ms); manager_->ResetAckStates(ENCRYPTION_FORWARD_SECURE); EXPECT_FALSE(manager_->IsAckFrameUpdated()); EXPECT_EQ(QuicTime::Delta::FromMilliseconds(2), ack.ack_frame->ack_delay_time); EXPECT_EQ(1u, ack.ack_frame->received_packet_times.size()); RecordPacketReceipt(999, two_ms); RecordPacketReceipt(4, two_ms); RecordPacketReceipt(1000, two_ms); EXPECT_TRUE(manager_->IsAckFrameUpdated()); ack = manager_->GetUpdatedAckFrame(APPLICATION_DATA, two_ms); manager_->ResetAckStates(ENCRYPTION_FORWARD_SECURE); EXPECT_FALSE(manager_->IsAckFrameUpdated()); EXPECT_EQ(2u, ack.ack_frame->received_packet_times.size()); } TEST_F(UberReceivedPacketManagerTest, UpdateReceivedConnectionStats) { EXPECT_FALSE(manager_->IsAckFrameUpdated()); RecordPacketReceipt(1); EXPECT_TRUE(manager_->IsAckFrameUpdated()); RecordPacketReceipt(6); RecordPacketReceipt(2, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1)); EXPECT_EQ(4u, stats_.max_sequence_reordering); EXPECT_EQ(1000, stats_.max_time_reordering_us); EXPECT_EQ(1u, stats_.packets_reordered); } TEST_F(UberReceivedPacketManagerTest, LimitAckRanges) { manager_->set_max_ack_ranges(10); EXPECT_FALSE(manager_->IsAckFrameUpdated()); for (int i = 0; i < 100; ++i) { RecordPacketReceipt(1 + 2 * i); EXPECT_TRUE(manager_->IsAckFrameUpdated()); manager_->GetUpdatedAckFrame(APPLICATION_DATA, QuicTime::Zero()); EXPECT_GE(10u, manager_->ack_frame().packets.NumIntervals()); EXPECT_EQ(QuicPacketNumber(1u + 2 * i), manager_->ack_frame().packets.Max()); for (int j = 0; j < std::min(10, i + 1); ++j) { ASSERT_GE(i, j); EXPECT_TRUE(manager_->ack_frame().packets.Contains( QuicPacketNumber(1 + (i - j) * 2))); if (i > j) { EXPECT_FALSE(manager_->ack_frame().packets.Contains( QuicPacketNumber((i - j) * 2))); } } } } TEST_F(UberReceivedPacketManagerTest, IgnoreOutOfOrderTimestamps) { EXPECT_FALSE(manager_->IsAckFrameUpdated()); RecordPacketReceipt(1, QuicTime::Zero()); EXPECT_TRUE(manager_->IsAckFrameUpdated()); EXPECT_EQ(1u, manager_->ack_frame().received_packet_times.size()); RecordPacketReceipt(2, QuicTime::Zero() + QuicTime::Delta::FromMilliseconds(1)); EXPECT_EQ(2u, manager_->ack_frame().received_packet_times.size()); RecordPacketReceipt(3, QuicTime::Zero()); EXPECT_EQ(2u, manager_->ack_frame().received_packet_times.size()); } TEST_F(UberReceivedPacketManagerTest, OutOfOrderReceiptCausesAckSent) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 2); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 1); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 4); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } TEST_F(UberReceivedPacketManagerTest, OutOfOrderAckReceiptCausesNoAck) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 2); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 1); EXPECT_FALSE(HasPendingAck()); } TEST_F(UberReceivedPacketManagerTest, AckReceiptCausesAckSend) { EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(1, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 1); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(2, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 2); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(3, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 3); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); clock_.AdvanceTime(kDelayedAckTime); CheckAckTimeout(clock_.ApproximateNow()); RecordPacketReceipt(4, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 4); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(5, clock_.ApproximateNow()); MaybeUpdateAckTimeout(!kInstigateAck, 5); EXPECT_FALSE(HasPendingAck()); } TEST_F(UberReceivedPacketManagerTest, AckSentEveryNthPacket) { EXPECT_FALSE(HasPendingAck()); manager_->set_ack_frequency(3); for (size_t i = 1; i <= 39; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 3 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } } TEST_F(UberReceivedPacketManagerTest, AckDecimationReducesAcks) { EXPECT_FALSE(HasPendingAck()); manager_->set_min_received_before_ack_decimation(10); for (size_t i = 1; i <= 29; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i <= 10) { if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } continue; } if (i == 20) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kMinRttMs * 0.25); } } RecordPacketReceipt(30, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, 30); CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(UberReceivedPacketManagerTest, SendDelayedAckDecimation) { EXPECT_FALSE(HasPendingAck()); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.25; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (uint64_t i = 1; i < 10; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(UberReceivedPacketManagerTest, SendDelayedAckDecimationUnlimitedAggregation) { EXPECT_FALSE(HasPendingAck()); QuicConfig config; QuicTagVector connection_options; connection_options.push_back(kAKDU); config.SetConnectionOptionsToSend(connection_options); manager_->SetFromConfig(config, Perspective::IS_CLIENT); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.25; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (int i = 1; i <= 18; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(ack_time); } TEST_F(UberReceivedPacketManagerTest, SendDelayedAckDecimationEighthRtt) { EXPECT_FALSE(HasPendingAck()); UberReceivedPacketManagerPeer::SetAckDecimationDelay(manager_.get(), 0.125); QuicTime ack_time = clock_.ApproximateNow() + kMinRttMs * 0.125; uint64_t kFirstDecimatedPacket = 101; for (uint64_t i = 1; i < kFirstDecimatedPacket; ++i) { RecordPacketReceipt(i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, i); if (i % 2 == 0) { CheckAckTimeout(clock_.ApproximateNow()); } else { CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); } } RecordPacketReceipt(kFirstDecimatedPacket, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket); CheckAckTimeout(ack_time); for (uint64_t i = 1; i < 10; ++i) { RecordPacketReceipt(kFirstDecimatedPacket + i, clock_.ApproximateNow()); MaybeUpdateAckTimeout(kInstigateAck, kFirstDecimatedPacket + i); } CheckAckTimeout(clock_.ApproximateNow()); } TEST_F(UberReceivedPacketManagerTest, DontWaitForPacketsBeforeMultiplePacketNumberSpaces) { manager_->EnableMultiplePacketNumberSpacesSupport(Perspective::IS_CLIENT); EXPECT_FALSE( manager_->GetLargestObserved(ENCRYPTION_HANDSHAKE).IsInitialized()); EXPECT_FALSE( manager_->GetLargestObserved(ENCRYPTION_FORWARD_SECURE).IsInitialized()); RecordPacketReceipt(ENCRYPTION_HANDSHAKE, 2); RecordPacketReceipt(ENCRYPTION_HANDSHAKE, 4); RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, 3); RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, 7); EXPECT_EQ(QuicPacketNumber(4), manager_->GetLargestObserved(ENCRYPTION_HANDSHAKE)); EXPECT_EQ(QuicPacketNumber(7), manager_->GetLargestObserved(ENCRYPTION_FORWARD_SECURE)); EXPECT_TRUE( manager_->IsAwaitingPacket(ENCRYPTION_HANDSHAKE, QuicPacketNumber(3))); EXPECT_FALSE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(3))); EXPECT_TRUE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(4))); manager_->DontWaitForPacketsBefore(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(5)); EXPECT_TRUE( manager_->IsAwaitingPacket(ENCRYPTION_HANDSHAKE, QuicPacketNumber(3))); EXPECT_FALSE(manager_->IsAwaitingPacket(ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(4))); } TEST_F(UberReceivedPacketManagerTest, AckSendingDifferentPacketNumberSpaces) { manager_->EnableMultiplePacketNumberSpacesSupport(Perspective::IS_SERVER); EXPECT_FALSE(HasPendingAck()); EXPECT_FALSE(manager_->IsAckFrameUpdated()); RecordPacketReceipt(ENCRYPTION_INITIAL, 3); EXPECT_TRUE(manager_->IsAckFrameUpdated()); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_INITIAL, 3); EXPECT_TRUE(HasPendingAck()); CheckAckTimeout(clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(25)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(25)); CheckAckTimeout(clock_.ApproximateNow()); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(ENCRYPTION_INITIAL, 4); EXPECT_TRUE(manager_->IsAckFrameUpdated()); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_INITIAL, 4); EXPECT_TRUE(HasPendingAck()); CheckAckTimeout(clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); CheckAckTimeout(clock_.ApproximateNow()); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(ENCRYPTION_HANDSHAKE, 3); EXPECT_TRUE(manager_->IsAckFrameUpdated()); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_HANDSHAKE, 3); EXPECT_TRUE(HasPendingAck()); CheckAckTimeout(clock_.ApproximateNow() + QuicTime::Delta::FromMilliseconds(1)); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); CheckAckTimeout(clock_.ApproximateNow()); EXPECT_FALSE(HasPendingAck()); RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, 3); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_FORWARD_SECURE, 3); EXPECT_TRUE(HasPendingAck()); CheckAckTimeout(clock_.ApproximateNow() + kDelayedAckTime); RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, 2); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_FORWARD_SECURE, 2); CheckAckTimeout(clock_.ApproximateNow()); EXPECT_FALSE(HasPendingAck()); } TEST_F(UberReceivedPacketManagerTest, AckTimeoutForPreviouslyUndecryptablePackets) { manager_->EnableMultiplePacketNumberSpacesSupport(Perspective::IS_SERVER); EXPECT_FALSE(HasPendingAck()); EXPECT_FALSE(manager_->IsAckFrameUpdated()); const QuicTime packet_receipt_time4 = clock_.ApproximateNow(); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); RecordPacketReceipt(ENCRYPTION_HANDSHAKE, 5); MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_HANDSHAKE, 5); EXPECT_TRUE(HasPendingAck()); RecordPacketReceipt(ENCRYPTION_FORWARD_SECURE, 4); manager_->MaybeUpdateAckTimeout(kInstigateAck, ENCRYPTION_FORWARD_SECURE, QuicPacketNumber(4), packet_receipt_time4, clock_.ApproximateNow(), &rtt_stats_); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); CheckAckTimeout(clock_.ApproximateNow()); EXPECT_TRUE(HasPendingAck()); CheckAckTimeout(clock_.ApproximateNow() - QuicTime::Delta::FromMilliseconds(11) + kDelayedAckTime); } } } }
25
#ifndef AROLLA_DECISION_FOREST_BATCHED_EVALUATION_BATCHED_FOREST_EVALUATOR_H_ #define AROLLA_DECISION_FOREST_BATCHED_EVALUATION_BATCHED_FOREST_EVALUATOR_H_ #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/types/span.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/pointwise_evaluation/forest_evaluator.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/indestructible.h" #include "arolla/util/threading.h" namespace arolla { class BatchedForestEvaluator { public: struct CompilationParams { static constexpr CompilationParams Default() { return {}; } int64_t optimal_splits_per_evaluator = 500000; }; struct SlotMapping { int input_index; TypedSlot pointwise_slot; }; static absl::StatusOr<std::unique_ptr<BatchedForestEvaluator>> Compile( const DecisionForest& decision_forest, absl::Span<const TreeFilter> groups = {{}}, const CompilationParams& params = CompilationParams::Default()); absl::Status EvalBatch(absl::Span<const TypedSlot> input_slots, absl::Span<const TypedSlot> output_slots, FramePtr frame, RawBufferFactory* = GetHeapBufferFactory(), std::optional<int64_t> row_count = {}) const; static void SetThreading(std::unique_ptr<ThreadingInterface> threading, int64_t min_rows_per_thread = 128) { *threading_ = std::move(threading); min_rows_per_thread_ = min_rows_per_thread; } private: static ::arolla::Indestructible<std::unique_ptr<ThreadingInterface>> threading_; static int64_t min_rows_per_thread_; BatchedForestEvaluator(FrameLayout&& pointwise_layout, std::vector<SlotMapping>&& input_mapping, std::vector<TypedSlot>&& output_pointwise_slots, std::vector<ForestEvaluator>&& pointwise_evaluators) : pointwise_layout_(std::move(pointwise_layout)), input_mapping_(std::move(input_mapping)), output_pointwise_slots_(output_pointwise_slots), pointwise_evaluators_(std::move(pointwise_evaluators)) { input_pointwise_slots_.reserve(input_mapping_.size()); input_count_ = 0; for (const auto& m : input_mapping_) { input_pointwise_slots_.push_back(m.pointwise_slot); input_count_ = std::max(input_count_, m.input_index + 1); } } absl::Status GetInputsFromSlots(absl::Span<const TypedSlot> input_slots, ConstFramePtr frame, std::vector<TypedRef>* input_arrays) const; FrameLayout pointwise_layout_; std::vector<SlotMapping> input_mapping_; std::vector<TypedSlot> input_pointwise_slots_; std::vector<TypedSlot> output_pointwise_slots_; int input_count_; std::vector<ForestEvaluator> pointwise_evaluators_; }; } #endif #include "arolla/decision_forest/batched_evaluation/batched_forest_evaluator.h" #include <algorithm> #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/memory/memory.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/types/span.h" #include "arolla/array/array.h" #include "arolla/array/qtype/types.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/pointwise_evaluation/forest_evaluator.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/buffer.h" #include "arolla/memory/frame.h" #include "arolla/memory/raw_buffer_factory.h" #include "arolla/qtype/array_like/array_like_qtype.h" #include "arolla/qtype/array_like/frame_iter.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/typed_value.h" #include "arolla/util/indestructible.h" #include "arolla/util/threading.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { absl::StatusOr<TypedValue> AddFullFloatArrays(TypedRef a, TypedRef b) { if (a.GetType() == GetDenseArrayQType<float>() && b.GetType() == GetDenseArrayQType<float>()) { const auto& va = a.UnsafeAs<DenseArray<float>>(); const auto& vb = b.UnsafeAs<DenseArray<float>>(); DCHECK_EQ(va.size(), vb.size()); DCHECK(va.IsFull() && vb.IsFull()); Buffer<float>::Builder bldr(va.size()); auto sa = va.values.span(); auto sb = vb.values.span(); auto sr = bldr.GetMutableSpan(); for (int64_t i = 0; i < va.size(); ++i) { sr[i] = sa[i] + sb[i]; } return TypedValue::FromValue(DenseArray<float>{std::move(bldr).Build()}); } else if (a.GetType() == GetArrayQType<float>() && b.GetType() == GetArrayQType<float>()) { const auto& va = a.UnsafeAs<Array<float>>(); const auto& vb = b.UnsafeAs<Array<float>>(); DCHECK_EQ(va.size(), vb.size()); DCHECK(va.IsFullForm() && vb.IsFullForm()); Buffer<float>::Builder bldr(va.size()); auto sa = va.dense_data().values.span(); auto sb = vb.dense_data().values.span(); auto sr = bldr.GetMutableSpan(); for (int64_t i = 0; i < va.size(); ++i) { sr[i] = sa[i] + sb[i]; } return TypedValue::FromValue(Array<float>{std::move(bldr).Build()}); } else { return absl::InternalError("Invalid type in BatchedForestEvaluator/Add"); } } absl::StatusOr<std::vector<ForestEvaluator>> CreatePointwiseEvaluators( const BatchedForestEvaluator::CompilationParams& params, const DecisionForest& decision_forest, const std::vector<TypedSlot>& inputs, const std::vector<ForestEvaluator::Output>& outputs) { int64_t split_count = 0; for (const auto& tree : decision_forest.GetTrees()) { split_count += tree.split_nodes.size(); } int64_t evaluator_count = std::max<int64_t>( 1, (split_count + params.optimal_splits_per_evaluator - 1) / params.optimal_splits_per_evaluator); std::vector<ForestEvaluator> evaluators; evaluators.reserve(evaluator_count); if (evaluator_count == 1) { ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile(decision_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); return evaluators; } int64_t splits_per_evaluator = (split_count + evaluator_count - 1) / evaluator_count; int64_t estimated_trees_per_evaluator = (decision_forest.GetTrees().size() + evaluator_count - 1) / evaluator_count; std::vector<DecisionTree> trees; trees.reserve(estimated_trees_per_evaluator); int64_t current_split_count = 0; for (const auto& tree : decision_forest.GetTrees()) { trees.push_back(tree); current_split_count += tree.split_nodes.size(); if (current_split_count >= splits_per_evaluator) { ASSIGN_OR_RETURN(auto partial_forest, DecisionForest::FromTrees(std::move(trees))); ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile( *partial_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); trees.clear(); trees.reserve(estimated_trees_per_evaluator); current_split_count = 0; } } if (!trees.empty()) { ASSIGN_OR_RETURN(auto partial_forest, DecisionForest::FromTrees(std::move(trees))); ASSIGN_OR_RETURN(auto evaluator, ForestEvaluator::Compile(*partial_forest, inputs, outputs)); evaluators.push_back(std::move(evaluator)); } return evaluators; } } Indestructible<std::unique_ptr<ThreadingInterface>> BatchedForestEvaluator::threading_; int64_t BatchedForestEvaluator::min_rows_per_thread_; absl::StatusOr<std::unique_ptr<BatchedForestEvaluator>> BatchedForestEvaluator::Compile(const DecisionForest& decision_forest, absl::Span<const TreeFilter> groups, const CompilationParams& params) { FrameLayout::Builder bldr; std::vector<SlotMapping> input_slots_mapping; TypedSlot placeholder = TypedSlot::FromSlot(FrameLayout::Slot<float>::UnsafeUninitializedSlot()); std::vector<TypedSlot> input_pointwise_slots; for (const auto& kv : decision_forest.GetRequiredQTypes()) { TypedSlot pointwise_slot = AddSlot(kv.second, &bldr); while (input_pointwise_slots.size() <= kv.first) { input_pointwise_slots.push_back(placeholder); } input_pointwise_slots[kv.first] = pointwise_slot; input_slots_mapping.push_back({kv.first, pointwise_slot}); } std::vector<ForestEvaluator::Output> pointwise_outputs; std::vector<TypedSlot> output_pointwise_slots; pointwise_outputs.reserve(groups.size()); output_pointwise_slots.reserve(groups.size()); for (const TreeFilter& filter : groups) { auto slot = bldr.AddSlot<float>(); pointwise_outputs.push_back({filter, slot}); output_pointwise_slots.push_back(TypedSlot::FromSlot(slot)); } auto pointwise_layout = std::move(bldr).Build(); ASSIGN_OR_RETURN( std::vector<ForestEvaluator> pointwise_evaluators, CreatePointwiseEvaluators(params, decision_forest, input_pointwise_slots, pointwise_outputs)); return absl::WrapUnique(new BatchedForestEvaluator( std::move(pointwise_layout), std::move(input_slots_mapping), std::move(output_pointwise_slots), std::move(pointwise_evaluators))); } absl::Status BatchedForestEvaluator::GetInputsFromSlots( absl::Span<const TypedSlot> input_slots, ConstFramePtr frame, std::vector<TypedRef>* input_arrays) const { if (input_slots.size() < input_count_) { return absl::InvalidArgumentError( absl::StrFormat("not enough inputs: at least %d expected, %d found", input_count_, input_slots.size())); } for (auto m : input_mapping_) { input_arrays->push_back( TypedRef::FromSlot(input_slots[m.input_index], frame)); } return absl::OkStatus(); } absl::Status BatchedForestEvaluator::EvalBatch( absl::Span<const TypedSlot> input_slots, absl::Span<const TypedSlot> output_slots, FramePtr frame, RawBufferFactory* buffer_factory, std::optional<int64_t> row_count) const { std::vector<TypedRef> input_arrays; input_arrays.reserve(input_mapping_.size()); RETURN_IF_ERROR(GetInputsFromSlots(input_slots, frame, &input_arrays)); if (!row_count.has_value()) { if (!input_arrays.empty()) { ASSIGN_OR_RETURN(row_count, GetArraySize(input_arrays[0])); } else if (!input_slots.empty()) { ASSIGN_OR_RETURN(row_count, GetArraySize(TypedRef::FromSlot(input_slots[0], frame))); } } int thread_count = 1; auto run_evaluator = [&](const ForestEvaluator& eval) -> absl::Status { ASSIGN_OR_RETURN( auto frame_iterator, FrameIterator::Create( input_arrays, {input_pointwise_slots_.data(), input_arrays.size()}, output_slots, output_pointwise_slots_, &pointwise_layout_, FrameIterator::Options{.row_count = row_count, .frame_buffer_count = 64 * thread_count, .buffer_factory = buffer_factory})); if (thread_count > 1) { frame_iterator.ForEachFrame([&eval](FramePtr f) { eval.Eval(f, f); }, **threading_, thread_count); } else { frame_iterator.ForEachFrame([&eval](FramePtr f) { eval.Eval(f, f); }); } return frame_iterator.StoreOutput(frame); }; if (pointwise_evaluators_.size() == 1) { return run_evaluator(pointwise_evaluators_.front()); } else { std::vector<TypedValue> res_sum; res_sum.reserve(output_slots.size()); RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_.front())); for (const auto& s : output_slots) { res_sum.push_back(TypedValue::FromSlot(s, frame)); } for (int eval_id = 1; eval_id < pointwise_evaluators_.size() - 1; ++eval_id) { RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_[eval_id])); for (int i = 0; i < output_slots.size(); ++i) { ASSIGN_OR_RETURN( res_sum[i], AddFullFloatArrays(res_sum[i].AsRef(), TypedRef::FromSlot(output_slots[i], frame))); } } RETURN_IF_ERROR(run_evaluator(pointwise_evaluators_.back())); for (int i = 0; i < output_slots.size(); ++i) { ASSIGN_OR_RETURN( TypedValue full_sum, AddFullFloatArrays(res_sum[i].AsRef(), TypedRef::FromSlot(output_slots[i], frame))); RETURN_IF_ERROR(full_sum.CopyToSlot(output_slots[i], frame)); } return absl::OkStatus(); } } }
#include "arolla/decision_forest/batched_evaluation/batched_forest_evaluator.h" #include <cmath> #include <cstdint> #include <limits> #include <memory> #include <utility> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/random/distributions.h" #include "absl/random/random.h" #include "absl/status/statusor.h" #include "arolla/array/array.h" #include "arolla/array/qtype/types.h" #include "arolla/decision_forest/decision_forest.h" #include "arolla/decision_forest/split_conditions/interval_split_condition.h" #include "arolla/decision_forest/split_conditions/set_of_values_split_condition.h" #include "arolla/decision_forest/testing/test_util.h" #include "arolla/dense_array/dense_array.h" #include "arolla/dense_array/qtype/types.h" #include "arolla/memory/frame.h" #include "arolla/memory/memory_allocation.h" #include "arolla/qtype/typed_slot.h" #include "arolla/util/threading.h" namespace arolla { namespace { absl::StatusOr<DecisionForestPtr> CreateTestForest() { constexpr float kInf = std::numeric_limits<float>::infinity(); constexpr auto S = DecisionTreeNodeId::SplitNodeId; constexpr auto A = DecisionTreeNodeId::AdjustmentId; std::vector<DecisionTree> trees(2); trees[0].tag = {.submodel_id = 0}; trees[0].adjustments = {0.5, 1.5, 2.5, 3.5}; trees[0].split_nodes = { {S(1), S(2), IntervalSplit(0, 1.5, kInf)}, {A(0), A(2), SetOfValuesSplit<int64_t>(1, {1, 2}, false)}, {A(1), A(3), IntervalSplit(0, -kInf, 10)}}; trees[1].tag = {.submodel_id = 1}; trees[1].adjustments = {-1.0, 1.0}; trees[1].split_nodes = {{A(0), A(1), IntervalSplit(0, 1, 5)}}; return DecisionForest::FromTrees(std::move(trees)); } TEST(BatchedForestEvaluator, EvalBatch) { ASSERT_OK_AND_ASSIGN(auto forest, CreateTestForest()); std::vector<TreeFilter> groups{{.submodels = {0}}, {.submodels = {1}}}; ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest, groups)); FrameLayout::Builder bldr; auto in1_slot = bldr.AddSlot<DenseArray<float>>(); auto in2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto out1_slot = bldr.AddSlot<DenseArray<float>>(); auto out2_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in1_slot, CreateDenseArray<float>({0, 0, 1.2, 1.6, 7.0, 13.5, NAN})); frame.Set(in2_slot, CreateDenseArray<int64_t>({3, 1, 1, 1, 1, 1, {}})); { ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); } frame.Set(out1_slot, DenseArray<float>()); frame.Set(out2_slot, DenseArray<float>()); { BatchedForestEvaluator::SetThreading(std::make_unique<StdThreading>(2)); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); BatchedForestEvaluator::SetThreading(nullptr); } frame.Set(out1_slot, DenseArray<float>()); frame.Set(out2_slot, DenseArray<float>()); { BatchedForestEvaluator::SetThreading(std::make_unique<StdThreading>(2), 1); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out1_slot), TypedSlot::FromSlot(out2_slot)}, frame)); EXPECT_THAT(frame.Get(out1_slot), ::testing::ElementsAre(0.5, 2.5, 2.5, 3.5, 3.5, 1.5, 0.5)); EXPECT_THAT(frame.Get(out2_slot), ::testing::ElementsAre(-1, -1, 1, 1, -1, -1, -1)); BatchedForestEvaluator::SetThreading(nullptr); } } TEST(BatchedForestEvaluator, UnusedInputs) { constexpr auto A = DecisionTreeNodeId::AdjustmentId; DecisionTree tree; tree.adjustments = {-1, 1}; tree.split_nodes = {{A(0), A(1), IntervalSplit(2, 0, 1)}}; ASSERT_OK_AND_ASSIGN(auto forest, DecisionForest::FromTrees({tree})); ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest)); FrameLayout::Builder bldr; auto unused1_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto unused2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto in_slot = bldr.AddSlot<DenseArray<float>>(); auto out_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in_slot, CreateDenseArray<float>({-1, 0.5, 2})); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(unused1_slot), TypedSlot::FromSlot(unused2_slot), TypedSlot::FromSlot(in_slot)}, {TypedSlot::FromSlot(out_slot)}, frame)); EXPECT_THAT(frame.Get(out_slot), ::testing::ElementsAre(-1, 1, -1)); } TEST(BatchedForestEvaluator, AllInputUnused) { std::vector<DecisionTree> trees(1); trees[0].adjustments = {1.5}; ASSERT_OK_AND_ASSIGN(DecisionForestPtr forest, DecisionForest::FromTrees(std::move(trees))); std::vector<TreeFilter> groups{{.submodels = {0}}}; ASSERT_OK_AND_ASSIGN(auto eval, BatchedForestEvaluator::Compile(*forest, groups)); FrameLayout::Builder bldr; auto in1_slot = bldr.AddSlot<DenseArray<float>>(); auto in2_slot = bldr.AddSlot<DenseArray<int64_t>>(); auto out_slot = bldr.AddSlot<DenseArray<float>>(); FrameLayout layout = std::move(bldr).Build(); MemoryAllocation alloc(&layout); FramePtr frame = alloc.frame(); frame.Set(in1_slot, CreateDenseArray<float>({0, 0, 1.2, 1.6, 7.0, 13.5, NAN})); frame.Set(in2_slot, CreateDenseArray<int64_t>({3, 1, 1, 1, 1, 1, {}})); ASSERT_OK(eval->EvalBatch( {TypedSlot::FromSlot(in1_slot), TypedSlot::FromSlot(in2_slot)}, {TypedSlot::FromSlot(out_slot)}, frame)); EXPECT_THAT(frame.Get(out_slot), ::testing::ElementsAre(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5)); } TEST(BatchedForestEvaluator, SplitCountPerEvaluator) { constexpr int64_t min_num_splits = 10; constexpr int64_t max_num_splits = 30; constexpr int64_t num_trees = 100; constexpr int64_t batch_size = 10; absl::BitGen rnd; constexpr int64_t min_total_split_count = num_trees * min_num_splits; int64_t split_count_per_evaluator = absl::Uniform<int64_t>( rnd, min_total_split_count / 5, min_total_split_count * 4 / 5); auto forest = CreateRandomFloatForest(&rnd, 10, true, min_num_splits, max_num_splits, num_trees); ASSERT_OK_AND_ASSIGN(auto evaluator, BatchedForestEvaluator::Compile(*forest)); ASSERT_OK_AND_ASSIGN( auto subdivided_evaluator, BatchedForestEvaluator::Compile(*forest, {TreeFilter()}, {split_count_per_evaluator})); std::vector<TypedSlot> slots; FrameLayout::Builder layout_builder; ASSERT_OK(CreateArraySlotsForForest(*forest, &layout_builder, &slots)); auto dense_array_output_slot = layout_builder.AddSlot<DenseArray<float>>(); auto array_output_slot = layout_builder.AddSlot<Array<float>>(); FrameLayout layout = std::move(layout_builder).Build(); MemoryAllocation ctx(&layout); FramePtr frame = ctx.frame(); for (auto slot : slots) { ASSERT_OK(FillArrayWithRandomValues(batch_size, slot, frame, &rnd)); } ASSERT_OK(evaluator->EvalBatch(slots, {TypedSlot::FromSlot(dense_array_output_slot)}, frame, nullptr, batch_size)); ASSERT_OK(evaluator->EvalBatch(slots, {TypedSlot::FromSlot(array_output_slot)}, frame, nullptr, batch_size)); DenseArray<float> dense_array1 = frame.Get(dense_array_output_slot); Array<float> array1 = frame.Get(array_output_slot); frame.Set(dense_array_output_slot, DenseArray<float>()); frame.Set(array_output_slot, Array<float>()); ASSERT_OK(subdivided_evaluator->EvalBatch( slots, {TypedSlot::FromSlot(dense_array_output_slot)}, frame, nullptr, batch_size)); ASSERT_OK(subdivided_evaluator->EvalBatch( slots, {TypedSlot::FromSlot(array_output_slot)}, frame, nullptr, batch_size)); DenseArray<float> dense_array2 = frame.Get(dense_array_output_slot); Array<float> array2 = frame.Get(array_output_slot); ASSERT_EQ(dense_array1.size(), batch_size); ASSERT_EQ(array1.size(), batch_size); ASSERT_EQ(dense_array2.size(), batch_size); ASSERT_EQ(array2.size(), batch_size); for (int64_t i = 0; i < batch_size; ++i) { bool present = array1[i].present; EXPECT_EQ(array2[i].present, present); EXPECT_EQ(dense_array1[i].present, present); EXPECT_EQ(dense_array2[i].present, present); if (present) { float value = array1[i].value; EXPECT_FLOAT_EQ(array2[i].value, value); EXPECT_FLOAT_EQ(dense_array1[i].value, value); EXPECT_FLOAT_EQ(dense_array2[i].value, value); } } } } }
26
#ifndef ABSL_STRINGS_CORD_BUFFER_H_ #define ABSL_STRINGS_CORD_BUFFER_H_ #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <memory> #include <utility> #include "absl/base/config.h" #include "absl/base/macros.h" #include "absl/numeric/bits.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/types/span.h" namespace absl { ABSL_NAMESPACE_BEGIN class Cord; class CordBufferTestPeer; class CordBuffer { public: static constexpr size_t kDefaultLimit = cord_internal::kMaxFlatLength; static constexpr size_t kCustomLimit = 64U << 10; CordBuffer() = default; ~CordBuffer(); CordBuffer(CordBuffer&& rhs) noexcept; CordBuffer& operator=(CordBuffer&&) noexcept; CordBuffer(const CordBuffer&) = delete; CordBuffer& operator=(const CordBuffer&) = delete; static constexpr size_t MaximumPayload(); static constexpr size_t MaximumPayload(size_t block_size); static CordBuffer CreateWithDefaultLimit(size_t capacity); static CordBuffer CreateWithCustomLimit(size_t block_size, size_t capacity); absl::Span<char> available(); absl::Span<char> available_up_to(size_t size); char* data(); const char* data() const; size_t length() const; size_t capacity() const; void IncreaseLengthBy(size_t n); void SetLength(size_t length); private: static_assert(kCustomLimit <= cord_internal::kMaxLargeFlatSize, ""); static constexpr size_t kMaxPageSlop = 128; static constexpr size_t kOverhead = cord_internal::kFlatOverhead; using CordRepFlat = cord_internal::CordRepFlat; struct Rep { static constexpr size_t kInlineCapacity = sizeof(intptr_t) * 2 - 1; Rep() : short_rep{} {} explicit Rep(cord_internal::CordRepFlat* rep) : long_rep{rep} { assert(rep != nullptr); } bool is_short() const { constexpr size_t offset = offsetof(Short, raw_size); return (reinterpret_cast<const char*>(this)[offset] & 1) != 0; } absl::Span<char> short_available() { const size_t length = short_length(); return absl::Span<char>(short_rep.data + length, kInlineCapacity - length); } absl::Span<char> long_available() const { assert(!is_short()); const size_t length = long_rep.rep->length; return absl::Span<char>(long_rep.rep->Data() + length, long_rep.rep->Capacity() - length); } size_t short_length() const { assert(is_short()); return static_cast<size_t>(short_rep.raw_size >> 1); } void set_short_length(size_t length) { short_rep.raw_size = static_cast<char>((length << 1) + 1); } void add_short_length(size_t n) { assert(is_short()); short_rep.raw_size += static_cast<char>(n << 1); } char* data() { assert(is_short()); return short_rep.data; } const char* data() const { assert(is_short()); return short_rep.data; } cord_internal::CordRepFlat* rep() const { assert(!is_short()); return long_rep.rep; } #if defined(ABSL_IS_BIG_ENDIAN) struct Long { explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {} void* padding; cord_internal::CordRepFlat* rep; }; struct Short { char data[sizeof(Long) - 1]; char raw_size = 1; }; #else struct Long { explicit Long(cord_internal::CordRepFlat* rep_arg) : rep(rep_arg) {} cord_internal::CordRepFlat* rep; void* padding; }; struct Short { char raw_size = 1; char data[sizeof(Long) - 1]; }; #endif union { Long long_rep; Short short_rep; }; }; static bool IsPow2(size_t size) { return absl::has_single_bit(size); } static size_t Log2Floor(size_t size) { return static_cast<size_t>(absl::bit_width(size) - 1); } static size_t Log2Ceil(size_t size) { return static_cast<size_t>(absl::bit_width(size - 1)); } template <typename... AllocationHints> static CordBuffer CreateWithCustomLimitImpl(size_t block_size, size_t capacity, AllocationHints... hints); cord_internal::CordRep* ConsumeValue(absl::string_view& short_value) { cord_internal::CordRep* rep = nullptr; if (rep_.is_short()) { short_value = absl::string_view(rep_.data(), rep_.short_length()); } else { rep = rep_.rep(); } rep_.set_short_length(0); return rep; } explicit CordBuffer(cord_internal::CordRepFlat* rep) : rep_(rep) { assert(rep != nullptr); } Rep rep_; friend class Cord; friend class CordBufferTestPeer; }; inline constexpr size_t CordBuffer::MaximumPayload() { return cord_internal::kMaxFlatLength; } inline constexpr size_t CordBuffer::MaximumPayload(size_t block_size) { return (std::min)(kCustomLimit, block_size) - cord_internal::kFlatOverhead; } inline CordBuffer CordBuffer::CreateWithDefaultLimit(size_t capacity) { if (capacity > Rep::kInlineCapacity) { auto* rep = cord_internal::CordRepFlat::New(capacity); rep->length = 0; return CordBuffer(rep); } return CordBuffer(); } template <typename... AllocationHints> inline CordBuffer CordBuffer::CreateWithCustomLimitImpl( size_t block_size, size_t capacity, AllocationHints... hints) { assert(IsPow2(block_size)); capacity = (std::min)(capacity, kCustomLimit); block_size = (std::min)(block_size, kCustomLimit); if (capacity + kOverhead >= block_size) { capacity = block_size; } else if (capacity <= kDefaultLimit) { capacity = capacity + kOverhead; } else if (!IsPow2(capacity)) { const size_t rounded_up = size_t{1} << Log2Ceil(capacity); const size_t slop = rounded_up - capacity; if (slop >= kOverhead && slop <= kMaxPageSlop + kOverhead) { capacity = rounded_up; } else { const size_t rounded_down = size_t{1} << Log2Floor(capacity); capacity = rounded_down; } } const size_t length = capacity - kOverhead; auto* rep = CordRepFlat::New(CordRepFlat::Large(), length, hints...); rep->length = 0; return CordBuffer(rep); } inline CordBuffer CordBuffer::CreateWithCustomLimit(size_t block_size, size_t capacity) { return CreateWithCustomLimitImpl(block_size, capacity); } inline CordBuffer::~CordBuffer() { if (!rep_.is_short()) { cord_internal::CordRepFlat::Delete(rep_.rep()); } } inline CordBuffer::CordBuffer(CordBuffer&& rhs) noexcept : rep_(rhs.rep_) { rhs.rep_.set_short_length(0); } inline CordBuffer& CordBuffer::operator=(CordBuffer&& rhs) noexcept { if (!rep_.is_short()) cord_internal::CordRepFlat::Delete(rep_.rep()); rep_ = rhs.rep_; rhs.rep_.set_short_length(0); return *this; } inline absl::Span<char> CordBuffer::available() { return rep_.is_short() ? rep_.short_available() : rep_.long_available(); } inline absl::Span<char> CordBuffer::available_up_to(size_t size) { return available().subspan(0, size); } inline char* CordBuffer::data() { return rep_.is_short() ? rep_.data() : rep_.rep()->Data(); } inline const char* CordBuffer::data() const { return rep_.is_short() ? rep_.data() : rep_.rep()->Data(); } inline size_t CordBuffer::capacity() const { return rep_.is_short() ? Rep::kInlineCapacity : rep_.rep()->Capacity(); } inline size_t CordBuffer::length() const { return rep_.is_short() ? rep_.short_length() : rep_.rep()->length; } inline void CordBuffer::SetLength(size_t length) { ABSL_HARDENING_ASSERT(length <= capacity()); if (rep_.is_short()) { rep_.set_short_length(length); } else { rep_.rep()->length = length; } } inline void CordBuffer::IncreaseLengthBy(size_t n) { ABSL_HARDENING_ASSERT(n <= capacity() && length() + n <= capacity()); if (rep_.is_short()) { rep_.add_short_length(n); } else { rep_.rep()->length += n; } } ABSL_NAMESPACE_END } #endif #include "absl/strings/cord_buffer.h" #include <cstddef> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL constexpr size_t CordBuffer::kDefaultLimit; constexpr size_t CordBuffer::kCustomLimit; #endif ABSL_NAMESPACE_END }
#include "absl/strings/cord_buffer.h" #include <algorithm> #include <cstring> #include <limits> #include <string> #include <utility> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/config.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/cord_rep_flat.h" #include "absl/strings/internal/cord_rep_test_util.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" using testing::Eq; using testing::Ge; using testing::Le; using testing::Ne; namespace absl { ABSL_NAMESPACE_BEGIN class CordBufferTestPeer { public: static cord_internal::CordRep* ConsumeValue(CordBuffer& buffer, absl::string_view& short_value) { return buffer.ConsumeValue(short_value); } }; namespace { using ::absl::cordrep_testing::CordToString; constexpr size_t kInlinedSize = sizeof(CordBuffer) - 1; constexpr size_t kDefaultLimit = CordBuffer::kDefaultLimit; constexpr size_t kCustomLimit = CordBuffer::kCustomLimit; constexpr size_t kMaxFlatSize = cord_internal::kMaxFlatSize; constexpr size_t kMaxFlatLength = cord_internal::kMaxFlatLength; constexpr size_t kFlatOverhead = cord_internal::kFlatOverhead; constexpr size_t k8KiB = 8 << 10; constexpr size_t k16KiB = 16 << 10; constexpr size_t k64KiB = 64 << 10; constexpr size_t k1MB = 1 << 20; class CordBufferTest : public testing::TestWithParam<size_t> {}; INSTANTIATE_TEST_SUITE_P(MediumSize, CordBufferTest, testing::Values(1, kInlinedSize - 1, kInlinedSize, kInlinedSize + 1, kDefaultLimit - 1, kDefaultLimit)); TEST_P(CordBufferTest, MaximumPayload) { EXPECT_THAT(CordBuffer::MaximumPayload(), Eq(kMaxFlatLength)); EXPECT_THAT(CordBuffer::MaximumPayload(512), Eq(512 - kFlatOverhead)); EXPECT_THAT(CordBuffer::MaximumPayload(k64KiB), Eq(k64KiB - kFlatOverhead)); EXPECT_THAT(CordBuffer::MaximumPayload(k1MB), Eq(k64KiB - kFlatOverhead)); } TEST(CordBufferTest, ConstructDefault) { CordBuffer buffer; EXPECT_THAT(buffer.capacity(), Eq(sizeof(CordBuffer) - 1)); EXPECT_THAT(buffer.length(), Eq(0)); EXPECT_THAT(buffer.data(), Ne(nullptr)); EXPECT_THAT(buffer.available().data(), Eq(buffer.data())); EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity())); memset(buffer.data(), 0xCD, buffer.capacity()); } TEST(CordBufferTest, CreateSsoWithDefaultLimit) { CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(3); EXPECT_THAT(buffer.capacity(), Ge(3)); EXPECT_THAT(buffer.capacity(), Le(sizeof(CordBuffer))); EXPECT_THAT(buffer.length(), Eq(0)); memset(buffer.data(), 0xCD, buffer.capacity()); memcpy(buffer.data(), "Abc", 3); buffer.SetLength(3); EXPECT_THAT(buffer.length(), Eq(3)); absl::string_view short_value; EXPECT_THAT(CordBufferTestPeer::ConsumeValue(buffer, short_value), Eq(nullptr)); EXPECT_THAT(absl::string_view(buffer.data(), 3), Eq("Abc")); EXPECT_THAT(short_value, Eq("Abc")); } TEST_P(CordBufferTest, Available) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested); EXPECT_THAT(buffer.available().data(), Eq(buffer.data())); EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity())); buffer.SetLength(2); EXPECT_THAT(buffer.available().data(), Eq(buffer.data() + 2)); EXPECT_THAT(buffer.available().size(), Eq(buffer.capacity() - 2)); } TEST_P(CordBufferTest, IncreaseLengthBy) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested); buffer.IncreaseLengthBy(2); EXPECT_THAT(buffer.length(), Eq(2)); buffer.IncreaseLengthBy(5); EXPECT_THAT(buffer.length(), Eq(7)); } TEST_P(CordBufferTest, AvailableUpTo) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested); size_t expected_up_to = std::min<size_t>(3, buffer.capacity()); EXPECT_THAT(buffer.available_up_to(3).data(), Eq(buffer.data())); EXPECT_THAT(buffer.available_up_to(3).size(), Eq(expected_up_to)); buffer.SetLength(2); expected_up_to = std::min<size_t>(3, buffer.capacity() - 2); EXPECT_THAT(buffer.available_up_to(3).data(), Eq(buffer.data() + 2)); EXPECT_THAT(buffer.available_up_to(3).size(), Eq(expected_up_to)); } size_t MaxCapacityFor(size_t block_size, size_t requested) { requested = (std::min)(requested, cord_internal::kMaxLargeFlatSize); return block_size - kFlatOverhead; } TEST_P(CordBufferTest, CreateWithDefaultLimit) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested); EXPECT_THAT(buffer.capacity(), Ge(requested)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, requested))); EXPECT_THAT(buffer.length(), Eq(0)); memset(buffer.data(), 0xCD, buffer.capacity()); std::string data(requested - 1, 'x'); memcpy(buffer.data(), data.c_str(), requested); buffer.SetLength(requested); EXPECT_THAT(buffer.length(), Eq(requested)); EXPECT_THAT(absl::string_view(buffer.data()), Eq(data)); } TEST(CordBufferTest, CreateWithDefaultLimitAskingFor2GB) { constexpr size_t k2GiB = 1U << 31; CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(k2GiB); EXPECT_THAT(buffer.capacity(), Le(2 * CordBuffer::kDefaultLimit)); EXPECT_THAT(buffer.length(), Eq(0)); EXPECT_THAT(buffer.data(), Ne(nullptr)); memset(buffer.data(), 0xCD, buffer.capacity()); } TEST_P(CordBufferTest, MoveConstruct) { const size_t requested = GetParam(); CordBuffer from = CordBuffer::CreateWithDefaultLimit(requested); const size_t capacity = from.capacity(); memcpy(from.data(), "Abc", 4); from.SetLength(4); CordBuffer to(std::move(from)); EXPECT_THAT(to.capacity(), Eq(capacity)); EXPECT_THAT(to.length(), Eq(4)); EXPECT_THAT(absl::string_view(to.data()), Eq("Abc")); EXPECT_THAT(from.length(), Eq(0)); } TEST_P(CordBufferTest, MoveAssign) { const size_t requested = GetParam(); CordBuffer from = CordBuffer::CreateWithDefaultLimit(requested); const size_t capacity = from.capacity(); memcpy(from.data(), "Abc", 4); from.SetLength(4); CordBuffer to; to = std::move(from); EXPECT_THAT(to.capacity(), Eq(capacity)); EXPECT_THAT(to.length(), Eq(4)); EXPECT_THAT(absl::string_view(to.data()), Eq("Abc")); EXPECT_THAT(from.length(), Eq(0)); } TEST_P(CordBufferTest, ConsumeValue) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(requested); memcpy(buffer.data(), "Abc", 4); buffer.SetLength(3); absl::string_view short_value; if (cord_internal::CordRep* rep = CordBufferTestPeer::ConsumeValue(buffer, short_value)) { EXPECT_THAT(CordToString(rep), Eq("Abc")); cord_internal::CordRep::Unref(rep); } else { EXPECT_THAT(short_value, Eq("Abc")); } EXPECT_THAT(buffer.length(), Eq(0)); } TEST_P(CordBufferTest, CreateWithCustomLimitWithinDefaultLimit) { const size_t requested = GetParam(); CordBuffer buffer = CordBuffer::CreateWithCustomLimit(kMaxFlatSize, requested); EXPECT_THAT(buffer.capacity(), Ge(requested)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, requested))); EXPECT_THAT(buffer.length(), Eq(0)); memset(buffer.data(), 0xCD, buffer.capacity()); std::string data(requested - 1, 'x'); memcpy(buffer.data(), data.c_str(), requested); buffer.SetLength(requested); EXPECT_THAT(buffer.length(), Eq(requested)); EXPECT_THAT(absl::string_view(buffer.data()), Eq(data)); } TEST(CordLargeBufferTest, CreateAtOrBelowDefaultLimit) { CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k64KiB, kDefaultLimit); EXPECT_THAT(buffer.capacity(), Ge(kDefaultLimit)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, kDefaultLimit))); buffer = CordBuffer::CreateWithCustomLimit(k64KiB, 3178); EXPECT_THAT(buffer.capacity(), Ge(3178)); } TEST(CordLargeBufferTest, CreateWithCustomLimit) { ASSERT_THAT((kMaxFlatSize & (kMaxFlatSize - 1)) == 0, "Must be power of 2"); for (size_t size = kMaxFlatSize; size <= kCustomLimit; size *= 2) { CordBuffer buffer = CordBuffer::CreateWithCustomLimit(size, size); size_t expected = size - kFlatOverhead; ASSERT_THAT(buffer.capacity(), Ge(expected)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(size, expected))); } } TEST(CordLargeBufferTest, CreateWithTooLargeLimit) { CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k64KiB, k1MB); ASSERT_THAT(buffer.capacity(), Ge(k64KiB - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k64KiB, k1MB))); } TEST(CordLargeBufferTest, CreateWithHugeValueForOverFlowHardening) { for (size_t dist_from_max = 0; dist_from_max <= 32; ++dist_from_max) { size_t capacity = std::numeric_limits<size_t>::max() - dist_from_max; CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(capacity); ASSERT_THAT(buffer.capacity(), Ge(kDefaultLimit)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(kMaxFlatSize, capacity))); for (size_t limit = kMaxFlatSize; limit <= kCustomLimit; limit *= 2) { CordBuffer buffer = CordBuffer::CreateWithCustomLimit(limit, capacity); ASSERT_THAT(buffer.capacity(), Ge(limit - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(limit, capacity))); } } } TEST(CordLargeBufferTest, CreateWithSmallLimit) { CordBuffer buffer = CordBuffer::CreateWithCustomLimit(512, 1024); ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 1024))); buffer = CordBuffer::CreateWithCustomLimit(512, 512); ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 512))); buffer = CordBuffer::CreateWithCustomLimit(512, 511); ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 511))); buffer = CordBuffer::CreateWithCustomLimit(512, 498); ASSERT_THAT(buffer.capacity(), Ge(512 - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(512, 498))); } TEST(CordLargeBufferTest, CreateWasteFull) { const size_t requested = (15 << 10); CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k16KiB, requested); ASSERT_THAT(buffer.capacity(), Ge(k8KiB - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k8KiB, requested))); } TEST(CordLargeBufferTest, CreateSmallSlop) { const size_t requested = k16KiB - 2 * kFlatOverhead; CordBuffer buffer = CordBuffer::CreateWithCustomLimit(k16KiB, requested); ASSERT_THAT(buffer.capacity(), Ge(k16KiB - kFlatOverhead)); EXPECT_THAT(buffer.capacity(), Le(MaxCapacityFor(k16KiB, requested))); } } ABSL_NAMESPACE_END }
27
#ifndef TENSORFLOW_CORE_KERNELS_DATA_REPEAT_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_REPEAT_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class RepeatDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "Repeat"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kCount = "count"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit RepeatDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; private: class Dataset; }; } } #endif #include "tensorflow/core/kernels/data/repeat_dataset_op.h" #include <cstdint> #include <cstdlib> #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/global_shuffle_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const RepeatDatasetOp::kDatasetType; constexpr const char* const RepeatDatasetOp::kInputDataset; constexpr const char* const RepeatDatasetOp::kCount; constexpr const char* const RepeatDatasetOp::kOutputTypes; constexpr const char* const RepeatDatasetOp::kOutputShapes; namespace { constexpr char kForeverRepeat[] = "ForeverRepeat"; constexpr char kEmptyRepeat[] = "EmptyRepeat"; constexpr char kFiniteRepeat[] = "FiniteRepeat"; constexpr char kCurIteration[] = "i"; constexpr char kInputImplEmpty[] = "input_impl_empty"; constexpr char kUninitialized[] = "uninitialized"; constexpr int64_t kKnownRatio = 1; std::string nested_prefix(const std::string& prefix, int64_t epoch) { return strings::StrCat(prefix, "[", epoch, "]"); } bool HasDataServiceInput(const DatasetBase* dataset) { DCHECK(dataset != nullptr); if (absl::StartsWith(dataset->type_string(), "DataServiceDataset")) { return true; } std::vector<const DatasetBase*> inputs; Status s = dataset->InputDatasets(&inputs); if (!s.ok()) { return false; } for (const DatasetBase* input : inputs) { if (HasDataServiceInput(input)) { return true; } } return false; } class RepeatedSplitProvider : public SplitProvider { public: explicit RepeatedSplitProvider(std::unique_ptr<SplitProvider> split_provider, int64_t count) : split_provider_(std::move(split_provider)), count_(count) {} int64_t Cardinality() const override { if (split_provider_->Cardinality() == 0 || count_ == 0) { return 0; } if (count_ < 0) { return kInfiniteCardinality; } if (split_provider_->Cardinality() < 0) { return split_provider_->Cardinality(); } return split_provider_->Cardinality() * count_; } absl::Status GetNext(Tensor* split, bool* end_of_splits) override { return split_provider_->GetNext(split, end_of_splits); } absl::Status Reset() override { return split_provider_->Reset(); } absl::Status Save(std::function<std::string(std::string)> full_name, IteratorStateWriter* writer) override { return split_provider_->Save(full_name, writer); } absl::Status Restore(std::function<std::string(std::string)> full_name, IteratorStateReader* reader) override { return split_provider_->Restore(full_name, reader); } void Cancel() override { split_provider_->Cancel(); } private: const std::unique_ptr<SplitProvider> split_provider_; const int64_t count_; }; } class RepeatDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, int64_t count, const DatasetBase* input) : DatasetBase(DatasetContext(ctx)), count_(count), input_(input) { input_->Ref(); if (input_ != nullptr && !input_->RandomIndexingCompatible().ok()) { random_indexing_compatible_ = input_->RandomIndexingCompatible(); } else if (count <= 0) { random_indexing_compatible_ = absl::FailedPreconditionError( absl::StrCat("`repeat(", count, ")` does not support random access of tf.data " "datasets.")); } else { random_indexing_compatible_ = absl::OkStatus(); } } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { if (count_ < 0) { return std::make_unique<ForeverIterator>(ForeverIterator::Params{ this, name_utils::IteratorPrefix(kForeverRepeat, prefix)}); } else if (count_ == 0) { return std::make_unique<EmptyIterator>(EmptyIterator::Params{ this, name_utils::IteratorPrefix(kEmptyRepeat, prefix)}); } else { return std::make_unique<FiniteIterator>(FiniteIterator::Params{ this, name_utils::IteratorPrefix(kFiniteRepeat, prefix)}); } } absl::Status MakeSplitProviders(std::vector<std::unique_ptr<SplitProvider>>* split_providers) const override { std::vector<std::unique_ptr<SplitProvider>> input_split_providers; TF_RETURN_IF_ERROR(input_->MakeSplitProviders(&input_split_providers)); split_providers->clear(); for (auto& split_provider : input_split_providers) { split_providers->push_back(std::make_unique<RepeatedSplitProvider>( std::move(split_provider), count_)); } return absl::OkStatus(); } const DataTypeVector& output_dtypes() const override { return input_->output_dtypes(); } const std::vector<PartialTensorShape>& output_shapes() const override { return input_->output_shapes(); } string DebugString() const override { return name_utils::DatasetDebugString(RepeatDatasetOp::kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { int64_t n = input_->Cardinality(options); if (count_ < 0) { if (n == 0) { return 0; } return kInfiniteCardinality; } if (count_ == 0) { return 0; } if (n == kInfiniteCardinality || n == kUnknownCardinality) { return n; } return count_ * n; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { return input_->CheckExternalState(); } Status Get(OpKernelContext* ctx, int64 index, std::vector<Tensor>* out_tensors) const override { TF_RETURN_IF_ERROR(CheckRandomAccessCompatible(index)); return input_->Get(ctx, index % input_->Cardinality(), out_tensors); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); Node* count = nullptr; TF_RETURN_IF_ERROR(b->AddScalar(count_, &count)); TF_RETURN_IF_ERROR(b->AddDataset(this, {input_graph_node, count}, output)); return absl::OkStatus(); } private: class EmptyIterator : public DatasetIterator<Dataset> { public: explicit EmptyIterator(const Params& params) : DatasetIterator<Dataset>(params) {} bool SymbolicCheckpointCompatible() const override { return true; } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { *end_of_sequence = true; return absl::OkStatus(); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), kKnownRatio); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { return absl::OkStatus(); } }; class FiniteIterator : public DatasetIterator<Dataset> { public: explicit FiniteIterator(const Params& params) : DatasetIterator<Dataset>(params), i_(0) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); return dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } while (i_ < dataset()->count_) { IteratorContextWithIndexMapper ctx_with_index_mapper(ctx, this); TF_RETURN_IF_ERROR(input_impl_->GetNext(ctx_with_index_mapper.Get(), out_tensors, end_of_sequence)); ctx_with_index_mapper.MergeCheckpoint(); if (!*end_of_sequence) { return absl::OkStatus(); } ctx->PurgeCheckpoint(nested_prefix(prefix(), i_)); ++i_; input_impl_.reset(); for (const auto& provider : ctx->split_providers()) { TF_RETURN_IF_ERROR(provider->Reset()); } TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_)); } *end_of_sequence = true; input_impl_.reset(); return absl::OkStatus(); } IndexMapperFn GetIndexMapper(IndexMapperFn parent_index_mapper) const override TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { int64_t input_cardinality = dataset()->input_->Cardinality(); int64_t repeat_count = i_; return [parent_index_mapper, input_cardinality, repeat_count](size_t element_position) -> absl::StatusOr<size_t> { if (element_position >= input_cardinality) { return element_position; } size_t repeated_element_position = repeat_count * input_cardinality + element_position; TF_ASSIGN_OR_RETURN(size_t shuffled_element_position, parent_index_mapper(repeated_element_position)); return shuffled_element_position % input_cardinality; }; } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), kKnownRatio); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kCurIteration, i_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); if (ctx->restored_element_count().has_value()) { CardinalityOptions options; options.set_compute_level( CardinalityOptions::CARDINALITY_COMPUTE_MODERATE); const int64_t input_cardinality = dataset()->input_->Cardinality(std::move(options)); i_ = *ctx->restored_element_count() / input_cardinality; IteratorContext::Params params(ctx); params.restored_element_count = *ctx->restored_element_count() % input_cardinality; params.index_mapper = GetIndexMapper(ctx->index_mapper()); IteratorContext ctx_with_restored_element_count(params); return RestoreInput(&ctx_with_restored_element_count, reader, input_impl_); } TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kCurIteration, &i_)); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (static_cast<bool>(!input_empty)) { TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); } else { input_impl_.reset(); } return absl::OkStatus(); } private: mutex mu_; int64_t i_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); }; class ForeverIterator : public DatasetIterator<Dataset> { public: explicit ForeverIterator(const Params& params) : DatasetIterator<Dataset>(params), has_data_service_input_(HasDataServiceInput(dataset())), input_impl_(nullptr), i_(0), first_call_(true) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); return dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { mutex_lock l(mu_); do { if (!input_impl_) { TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_)); } TF_RETURN_IF_ERROR( input_impl_->GetNext(ctx, out_tensors, end_of_sequence)); DCHECK(!*end_of_sequence || out_tensors->empty()); if (first_call_ && *end_of_sequence && ctx->split_providers().empty()) { if (!has_data_service_input_) { input_impl_.reset(); return absl::OkStatus(); } } first_call_ = false; if (!*end_of_sequence) { return absl::OkStatus(); } ctx->PurgeCheckpoint(nested_prefix(prefix(), i_)); ++i_; for (const auto& provider : ctx->split_providers()) { TF_RETURN_IF_ERROR(provider->Reset()); } input_impl_.reset(); first_call_ = true; } while (true); } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeKnownRatioNode(std::move(args), kKnownRatio); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar(prefix(), kCurIteration, i_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kInputImplEmpty, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override { mutex_lock l(mu_); TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kCurIteration, &i_)); int64_t input_empty; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kInputImplEmpty, &input_empty)); if (static_cast<bool>(input_empty)) { input_impl_.reset(); first_call_ = true; } else { TF_RETURN_IF_ERROR(dataset()->input_->MakeIterator( ctx, this, nested_prefix(prefix(), i_), &input_impl_)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); first_call_ = false; } return absl::OkStatus(); } private: const bool has_data_service_input_; mutex mu_; std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); int64_t i_ TF_GUARDED_BY(mu_); bool first_call_ TF_GUARDED_BY(mu_); }; const int64_t count_; const DatasetBase* const input_; absl::Status random_indexing_compatible_; }; RepeatDatasetOp::RepeatDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void RepeatDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { int64_t count; OP_REQUIRES_OK(ctx, ParseScalarArgument<int64_t>(ctx, kCount, &count)); *output = new Dataset(ctx, count, input); } namespace { REGISTER_KERNEL_BUILDER(Name("RepeatDataset").Device(DEVICE_CPU), RepeatDatasetOp); } } }
#include "tensorflow/core/kernels/data/repeat_dataset_op.h" #include <string> #include <utility> #include "tensorflow/core/data/dataset_test_base.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/serialization_utils.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "repeat_dataset"; class RepeatDatasetParams : public DatasetParams { public: template <typename T> RepeatDatasetParams(T input_dataset_params, int64_t count, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), count_(count) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return {CreateTensor<int64_t>(TensorShape({}), {count_})}; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->clear(); input_names->emplace_back(RepeatDatasetOp::kInputDataset); input_names->emplace_back(RepeatDatasetOp::kCount); return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->clear(); attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); attr_vector->emplace_back("metadata", ""); return absl::OkStatus(); } string dataset_type() const override { return RepeatDatasetOp::kDatasetType; } private: int64_t count_; }; class RepeatDatasetOpTest : public DatasetOpsTestBase {}; RepeatDatasetParams FiniteRepeatDatasetParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{2, 2}, {1, 2, 3, 4}), CreateTensor<tstring>(TensorShape{2, 1}, {"a", "b"})}, "tensor_slice"); return RepeatDatasetParams( std::move(tensor_slice_dataset_params), 2, {DT_INT64, DT_STRING}, {PartialTensorShape({2}), PartialTensorShape({1})}, kNodeName); } RepeatDatasetParams EmptyRepeatDatasetParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{2, 2}, {1, 2, 3, 4}), CreateTensor<tstring>(TensorShape{2, 1}, {"a", "b"})}, "tensor_slice"); return RepeatDatasetParams( std::move(tensor_slice_dataset_params), 0, {DT_INT64, DT_STRING}, {PartialTensorShape({2}), PartialTensorShape({1})}, kNodeName); } RepeatDatasetParams ForeverRepeatDatasetParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{2, 1}, {1, 2})}, "tensor_slice"); return RepeatDatasetParams( std::move(tensor_slice_dataset_params), -1, {DT_INT64, DT_STRING}, {PartialTensorShape({2}), PartialTensorShape({1})}, kNodeName); } std::vector<GetNextTestCase<RepeatDatasetParams>> GetNextTestCases() { return {{FiniteRepeatDatasetParams(), {CreateTensor<int64_t>(TensorShape{2}, {1, 2}), CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{2}, {3, 4}), CreateTensor<tstring>(TensorShape{1}, {"b"}), CreateTensor<int64_t>(TensorShape{2}, {1, 2}), CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{2}, {3, 4}), CreateTensor<tstring>(TensorShape{1}, {"b"})}}, {EmptyRepeatDatasetParams(), {}}, { ForeverRepeatDatasetParams(), {CreateTensor<int64_t>(TensorShape{1}, {1}), CreateTensor<int64_t>(TensorShape{1}, {2})}}}; } class ParameterizedIteratorGetNextOpTest : public RepeatDatasetOpTest, public ::testing::WithParamInterface< GetNextTestCase<RepeatDatasetParams>> {}; TEST_P(ParameterizedIteratorGetNextOpTest, GetNext) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); auto expected_outputs_it = test_case.expected_outputs.begin(); bool end_of_sequence = false; std::vector<Tensor> out_tensors; if (dataset_->Cardinality() == kInfiniteCardinality) { for (int i = 0; i < 100; ++i) { out_tensors.clear(); TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); for (const auto& tensor : out_tensors) { TF_EXPECT_OK(ExpectEqual(tensor, *expected_outputs_it)); expected_outputs_it++; if (expected_outputs_it == test_case.expected_outputs.end()) { expected_outputs_it = test_case.expected_outputs.begin(); } } } EXPECT_FALSE(end_of_sequence); } else { while (!end_of_sequence) { TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (!end_of_sequence) { for (const auto& tensor : out_tensors) { EXPECT_NE(expected_outputs_it, test_case.expected_outputs.end()); TF_EXPECT_OK(ExpectEqual(tensor, *expected_outputs_it)); expected_outputs_it++; } } } EXPECT_EQ(expected_outputs_it, test_case.expected_outputs.end()); } } INSTANTIATE_TEST_SUITE_P(RepeatDatasetOpTest, ParameterizedIteratorGetNextOpTest, ::testing::ValuesIn(GetNextTestCases())); TEST_F(RepeatDatasetOpTest, DatasetNodeName) { auto dataset_params = FiniteRepeatDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(RepeatDatasetOpTest, DatasetTypeString) { auto dataset_params = FiniteRepeatDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(RepeatDatasetOp::kDatasetType))); } std::vector<DatasetOutputDtypesTestCase<RepeatDatasetParams>> DatasetOutputDtypesTestCases() { return {{FiniteRepeatDatasetParams(), {DT_INT64, DT_STRING}}, {EmptyRepeatDatasetParams(), {DT_INT64, DT_STRING}}, {ForeverRepeatDatasetParams(), {DT_INT64}}}; } DATASET_OUTPUT_DTYPES_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, DatasetOutputDtypesTestCases()) std::vector<DatasetOutputShapesTestCase<RepeatDatasetParams>> DatasetOutputShapesTestCases() { return {{FiniteRepeatDatasetParams(), {PartialTensorShape({2}), PartialTensorShape({1})}}, {EmptyRepeatDatasetParams(), {PartialTensorShape({2}), PartialTensorShape({1})}}, {ForeverRepeatDatasetParams(), {PartialTensorShape({1})}}}; } DATASET_OUTPUT_SHAPES_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, DatasetOutputShapesTestCases()) std::vector<CardinalityTestCase<RepeatDatasetParams>> DatasetCardinalityTestCases() { return {{FiniteRepeatDatasetParams(), 4}, {EmptyRepeatDatasetParams(), 0}, {ForeverRepeatDatasetParams(), kInfiniteCardinality}}; } DATASET_CARDINALITY_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, DatasetCardinalityTestCases()) std::vector<IteratorOutputDtypesTestCase<RepeatDatasetParams>> IteratorOutputDtypesTestCases() { return {{FiniteRepeatDatasetParams(), {DT_INT64, DT_STRING}}, {EmptyRepeatDatasetParams(), {DT_INT64, DT_STRING}}, {ForeverRepeatDatasetParams(), {DT_INT64}}}; } ITERATOR_OUTPUT_DTYPES_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, IteratorOutputDtypesTestCases()) std::vector<IteratorOutputShapesTestCase<RepeatDatasetParams>> IteratorOutputShapesTestCases() { return {{FiniteRepeatDatasetParams(), {PartialTensorShape({2}), PartialTensorShape({1})}}, {EmptyRepeatDatasetParams(), {PartialTensorShape({2}), PartialTensorShape({1})}}, {ForeverRepeatDatasetParams(), {PartialTensorShape({1})}}}; } ITERATOR_OUTPUT_SHAPES_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, IteratorOutputShapesTestCases()) std::vector<IteratorPrefixTestCase<RepeatDatasetParams>> IteratorPrefixTestCases() { return { {FiniteRepeatDatasetParams(), name_utils::IteratorPrefix( "FiniteRepeat", FiniteRepeatDatasetParams().iterator_prefix())}, {EmptyRepeatDatasetParams(), name_utils::IteratorPrefix( "EmptyRepeat", EmptyRepeatDatasetParams().iterator_prefix())}, {ForeverRepeatDatasetParams(), name_utils::IteratorPrefix( "ForeverRepeat", ForeverRepeatDatasetParams().iterator_prefix())}}; } ITERATOR_PREFIX_TEST_P(RepeatDatasetOpTest, RepeatDatasetParams, IteratorPrefixTestCases()) std::vector<IteratorSaveAndRestoreTestCase<RepeatDatasetParams>> IteratorSaveAndRestoreTestCases() { return {{FiniteRepeatDatasetParams(), {0, 1, 3}, {CreateTensor<int64_t>(TensorShape{2}, {1, 2}), CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{2}, {3, 4}), CreateTensor<tstring>(TensorShape{1}, {"b"}), CreateTensor<int64_t>(TensorShape{2}, {1, 2}), CreateTensor<tstring>(TensorShape{1}, {"a"}), CreateTensor<int64_t>(TensorShape{2}, {3, 4}), CreateTensor<tstring>(TensorShape{1}, {"b"})}}, {EmptyRepeatDatasetParams(), {0, 1, 3}, {}}, { ForeverRepeatDatasetParams(), {0, 1, 3}, {CreateTensor<int64_t>(TensorShape{1}, {1}), CreateTensor<int64_t>(TensorShape{1}, {2})}}}; } class ParameterizedIteratorSaveAndRestoreTest : public RepeatDatasetOpTest, public ::testing::WithParamInterface< IteratorSaveAndRestoreTestCase<RepeatDatasetParams>> {}; TEST_P(ParameterizedIteratorSaveAndRestoreTest, Roundtrip) { auto test_case = GetParam(); TF_ASSERT_OK(Initialize(test_case.dataset_params)); std::unique_ptr<SerializationContext> serialization_ctx; TF_ASSERT_OK(CreateSerializationContext(&serialization_ctx)); auto expected_outputs_it = test_case.expected_outputs.begin(); bool end_of_sequence = dataset_->Cardinality() == 0; std::vector<Tensor> out_tensors; int cur_iteration = 0; std::vector<int> breakpoints = GetParam().breakpoints; for (int breakpoint : breakpoints) { VariantTensorDataWriter writer; TF_EXPECT_OK(iterator_->Save(serialization_ctx.get(), &writer)); std::vector<const VariantTensorData*> data; writer.GetData(&data); VariantTensorDataReader reader(data); TF_EXPECT_OK(RestoreIterator(iterator_ctx_.get(), &reader, test_case.dataset_params.iterator_prefix(), *dataset_, &iterator_)); while (cur_iteration < breakpoint) { out_tensors.clear(); TF_EXPECT_OK(iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence)); if (!end_of_sequence) { for (auto& tensor : out_tensors) { EXPECT_NE(expected_outputs_it, test_case.expected_outputs.end()); TF_EXPECT_OK(ExpectEqual(tensor, *expected_outputs_it)); expected_outputs_it++; } } cur_iteration++; if (dataset_->Cardinality() == kInfiniteCardinality && expected_outputs_it == test_case.expected_outputs.end()) { expected_outputs_it = test_case.expected_outputs.begin(); } } if (breakpoint >= dataset_->Cardinality()) { if (dataset_->Cardinality() == kInfiniteCardinality) { EXPECT_FALSE(end_of_sequence); } else { EXPECT_TRUE(end_of_sequence); EXPECT_EQ(expected_outputs_it, test_case.expected_outputs.end()); } } else { EXPECT_FALSE(end_of_sequence); } } } INSTANTIATE_TEST_SUITE_P( RepeatDatasetOpTest, ParameterizedIteratorSaveAndRestoreTest, ::testing::ValuesIn(IteratorSaveAndRestoreTestCases())); } } }
28
#ifndef QUICHE_QUIC_QBONE_PLATFORM_RTNETLINK_MESSAGE_H_ #define QUICHE_QUIC_QBONE_PLATFORM_RTNETLINK_MESSAGE_H_ #include <linux/netlink.h> #include <linux/rtnetlink.h> #include <stdint.h> #include <sys/socket.h> #include <sys/uio.h> #include <memory> #include <vector> #include "quiche/quic/platform/api/quic_logging.h" namespace quic { class RtnetlinkMessage { public: virtual ~RtnetlinkMessage(); enum class Operation { NEW, DEL, GET, }; virtual void AppendAttribute(uint16_t type, const void* data, uint16_t data_length); std::unique_ptr<struct iovec[]> BuildIoVec() const; size_t IoVecSize() const; protected: RtnetlinkMessage(uint16_t type, uint16_t flags, uint32_t seq, uint32_t pid, const void* payload_header, size_t payload_header_length); void AdjustMessageLength(size_t additional_data_length); private: struct nlmsghdr* MessageHeader(); std::vector<struct iovec> message_; }; class LinkMessage : public RtnetlinkMessage { public: static LinkMessage New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct ifinfomsg* interface_info_header); private: using RtnetlinkMessage::RtnetlinkMessage; }; class AddressMessage : public RtnetlinkMessage { public: static AddressMessage New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct ifaddrmsg* interface_address_header); private: using RtnetlinkMessage::RtnetlinkMessage; }; class RouteMessage : public RtnetlinkMessage { public: static RouteMessage New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct rtmsg* route_message_header); private: using RtnetlinkMessage::RtnetlinkMessage; }; class RuleMessage : public RtnetlinkMessage { public: static RuleMessage New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct rtmsg* rule_message_header); private: using RtnetlinkMessage::RtnetlinkMessage; }; } #endif #include "quiche/quic/qbone/platform/rtnetlink_message.h" #include <memory> #include <utility> namespace quic { RtnetlinkMessage::RtnetlinkMessage(uint16_t type, uint16_t flags, uint32_t seq, uint32_t pid, const void* payload_header, size_t payload_header_length) { auto* buf = new uint8_t[NLMSG_SPACE(payload_header_length)]; memset(buf, 0, NLMSG_SPACE(payload_header_length)); auto* message_header = reinterpret_cast<struct nlmsghdr*>(buf); message_header->nlmsg_len = NLMSG_LENGTH(payload_header_length); message_header->nlmsg_type = type; message_header->nlmsg_flags = flags; message_header->nlmsg_seq = seq; message_header->nlmsg_pid = pid; if (payload_header != nullptr) { memcpy(NLMSG_DATA(message_header), payload_header, payload_header_length); } message_.push_back({buf, NLMSG_SPACE(payload_header_length)}); } RtnetlinkMessage::~RtnetlinkMessage() { for (const auto& iov : message_) { delete[] reinterpret_cast<uint8_t*>(iov.iov_base); } } void RtnetlinkMessage::AppendAttribute(uint16_t type, const void* data, uint16_t data_length) { auto* buf = new uint8_t[RTA_SPACE(data_length)]; memset(buf, 0, RTA_SPACE(data_length)); auto* rta = reinterpret_cast<struct rtattr*>(buf); static_assert(sizeof(uint16_t) == sizeof(rta->rta_len), "struct rtattr uses unsigned short, it's no longer 16bits"); static_assert(sizeof(uint16_t) == sizeof(rta->rta_type), "struct rtattr uses unsigned short, it's no longer 16bits"); rta->rta_len = RTA_LENGTH(data_length); rta->rta_type = type; memcpy(RTA_DATA(rta), data, data_length); message_.push_back({buf, RTA_SPACE(data_length)}); AdjustMessageLength(rta->rta_len); } std::unique_ptr<struct iovec[]> RtnetlinkMessage::BuildIoVec() const { auto message = std::make_unique<struct iovec[]>(message_.size()); int idx = 0; for (const auto& vec : message_) { message[idx++] = vec; } return message; } size_t RtnetlinkMessage::IoVecSize() const { return message_.size(); } void RtnetlinkMessage::AdjustMessageLength(size_t additional_data_length) { MessageHeader()->nlmsg_len = NLMSG_ALIGN(MessageHeader()->nlmsg_len) + additional_data_length; } struct nlmsghdr* RtnetlinkMessage::MessageHeader() { return reinterpret_cast<struct nlmsghdr*>(message_[0].iov_base); } LinkMessage LinkMessage::New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct ifinfomsg* interface_info_header) { uint16_t request_type; switch (request_operation) { case RtnetlinkMessage::Operation::NEW: request_type = RTM_NEWLINK; break; case RtnetlinkMessage::Operation::DEL: request_type = RTM_DELLINK; break; case RtnetlinkMessage::Operation::GET: request_type = RTM_GETLINK; break; } bool is_get = request_type == RTM_GETLINK; if (is_get) { struct rtgenmsg g = {AF_UNSPEC}; return LinkMessage(request_type, flags, seq, pid, &g, sizeof(g)); } return LinkMessage(request_type, flags, seq, pid, interface_info_header, sizeof(struct ifinfomsg)); } AddressMessage AddressMessage::New( RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct ifaddrmsg* interface_address_header) { uint16_t request_type; switch (request_operation) { case RtnetlinkMessage::Operation::NEW: request_type = RTM_NEWADDR; break; case RtnetlinkMessage::Operation::DEL: request_type = RTM_DELADDR; break; case RtnetlinkMessage::Operation::GET: request_type = RTM_GETADDR; break; } bool is_get = request_type == RTM_GETADDR; if (is_get) { struct rtgenmsg g = {AF_UNSPEC}; return AddressMessage(request_type, flags, seq, pid, &g, sizeof(g)); } return AddressMessage(request_type, flags, seq, pid, interface_address_header, sizeof(struct ifaddrmsg)); } RouteMessage RouteMessage::New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct rtmsg* route_message_header) { uint16_t request_type; switch (request_operation) { case RtnetlinkMessage::Operation::NEW: request_type = RTM_NEWROUTE; break; case RtnetlinkMessage::Operation::DEL: request_type = RTM_DELROUTE; break; case RtnetlinkMessage::Operation::GET: request_type = RTM_GETROUTE; break; } return RouteMessage(request_type, flags, seq, pid, route_message_header, sizeof(struct rtmsg)); } RuleMessage RuleMessage::New(RtnetlinkMessage::Operation request_operation, uint16_t flags, uint32_t seq, uint32_t pid, const struct rtmsg* rule_message_header) { uint16_t request_type; switch (request_operation) { case RtnetlinkMessage::Operation::NEW: request_type = RTM_NEWRULE; break; case RtnetlinkMessage::Operation::DEL: request_type = RTM_DELRULE; break; case RtnetlinkMessage::Operation::GET: request_type = RTM_GETRULE; break; } return RuleMessage(request_type, flags, seq, pid, rule_message_header, sizeof(rtmsg)); } }
#include "quiche/quic/qbone/platform/rtnetlink_message.h" #include <net/if_arp.h> #include <string> #include "quiche/quic/platform/api/quic_ip_address.h" #include "quiche/quic/platform/api/quic_test.h" namespace quic { namespace { using ::testing::StrEq; TEST(RtnetlinkMessageTest, LinkMessageCanBeCreatedForGetOperation) { uint16_t flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH; uint32_t seq = 42; uint32_t pid = 7; auto message = LinkMessage::New(RtnetlinkMessage::Operation::GET, flags, seq, pid, nullptr); EXPECT_EQ(1, message.IoVecSize()); auto iov = message.BuildIoVec(); EXPECT_EQ(NLMSG_SPACE(sizeof(struct rtgenmsg)), iov[0].iov_len); auto* netlink_message = reinterpret_cast<struct nlmsghdr*>(iov[0].iov_base); EXPECT_EQ(NLMSG_LENGTH(sizeof(struct rtgenmsg)), netlink_message->nlmsg_len); EXPECT_EQ(RTM_GETLINK, netlink_message->nlmsg_type); EXPECT_EQ(flags, netlink_message->nlmsg_flags); EXPECT_EQ(seq, netlink_message->nlmsg_seq); EXPECT_EQ(pid, netlink_message->nlmsg_pid); EXPECT_EQ(NLMSG_LENGTH(sizeof(struct rtgenmsg)), netlink_message->nlmsg_len); } TEST(RtnetlinkMessageTest, LinkMessageCanBeCreatedForNewOperation) { struct ifinfomsg interface_info_header = {AF_INET, 0, ARPHRD_TUNNEL, 3, 0, 0xffffffff}; uint16_t flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH; uint32_t seq = 42; uint32_t pid = 7; auto message = LinkMessage::New(RtnetlinkMessage::Operation::NEW, flags, seq, pid, &interface_info_header); std::string device_name = "device0"; message.AppendAttribute(IFLA_IFNAME, device_name.c_str(), device_name.size()); EXPECT_EQ(2, message.IoVecSize()); auto iov = message.BuildIoVec(); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct ifinfomsg))), iov[0].iov_len); auto* netlink_message = reinterpret_cast<struct nlmsghdr*>(iov[0].iov_base); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct ifinfomsg))) + RTA_LENGTH(device_name.size()), netlink_message->nlmsg_len); EXPECT_EQ(RTM_NEWLINK, netlink_message->nlmsg_type); EXPECT_EQ(flags, netlink_message->nlmsg_flags); EXPECT_EQ(seq, netlink_message->nlmsg_seq); EXPECT_EQ(pid, netlink_message->nlmsg_pid); auto* parsed_header = reinterpret_cast<struct ifinfomsg*>(NLMSG_DATA(netlink_message)); EXPECT_EQ(interface_info_header.ifi_family, parsed_header->ifi_family); EXPECT_EQ(interface_info_header.ifi_type, parsed_header->ifi_type); EXPECT_EQ(interface_info_header.ifi_index, parsed_header->ifi_index); EXPECT_EQ(interface_info_header.ifi_flags, parsed_header->ifi_flags); EXPECT_EQ(interface_info_header.ifi_change, parsed_header->ifi_change); EXPECT_EQ(RTA_SPACE(device_name.size()), iov[1].iov_len); auto* rta = reinterpret_cast<struct rtattr*>(iov[1].iov_base); EXPECT_EQ(IFLA_IFNAME, rta->rta_type); EXPECT_EQ(RTA_LENGTH(device_name.size()), rta->rta_len); EXPECT_THAT(device_name, StrEq(std::string(reinterpret_cast<char*>(RTA_DATA(rta)), RTA_PAYLOAD(rta)))); } TEST(RtnetlinkMessageTest, AddressMessageCanBeCreatedForGetOperation) { uint16_t flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH; uint32_t seq = 42; uint32_t pid = 7; auto message = AddressMessage::New(RtnetlinkMessage::Operation::GET, flags, seq, pid, nullptr); EXPECT_EQ(1, message.IoVecSize()); auto iov = message.BuildIoVec(); EXPECT_EQ(NLMSG_SPACE(sizeof(struct rtgenmsg)), iov[0].iov_len); auto* netlink_message = reinterpret_cast<struct nlmsghdr*>(iov[0].iov_base); EXPECT_EQ(NLMSG_LENGTH(sizeof(struct rtgenmsg)), netlink_message->nlmsg_len); EXPECT_EQ(RTM_GETADDR, netlink_message->nlmsg_type); EXPECT_EQ(flags, netlink_message->nlmsg_flags); EXPECT_EQ(seq, netlink_message->nlmsg_seq); EXPECT_EQ(pid, netlink_message->nlmsg_pid); EXPECT_EQ(NLMSG_LENGTH(sizeof(struct rtgenmsg)), netlink_message->nlmsg_len); } TEST(RtnetlinkMessageTest, AddressMessageCanBeCreatedForNewOperation) { struct ifaddrmsg interface_address_header = {AF_INET, 24, 0, RT_SCOPE_LINK, 4}; uint16_t flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH; uint32_t seq = 42; uint32_t pid = 7; auto message = AddressMessage::New(RtnetlinkMessage::Operation::NEW, flags, seq, pid, &interface_address_header); QuicIpAddress ip; QUICHE_CHECK(ip.FromString("10.0.100.3")); message.AppendAttribute(IFA_ADDRESS, ip.ToPackedString().c_str(), ip.ToPackedString().size()); EXPECT_EQ(2, message.IoVecSize()); auto iov = message.BuildIoVec(); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct ifaddrmsg))), iov[0].iov_len); auto* netlink_message = reinterpret_cast<struct nlmsghdr*>(iov[0].iov_base); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct ifaddrmsg))) + RTA_LENGTH(ip.ToPackedString().size()), netlink_message->nlmsg_len); EXPECT_EQ(RTM_NEWADDR, netlink_message->nlmsg_type); EXPECT_EQ(flags, netlink_message->nlmsg_flags); EXPECT_EQ(seq, netlink_message->nlmsg_seq); EXPECT_EQ(pid, netlink_message->nlmsg_pid); auto* parsed_header = reinterpret_cast<struct ifaddrmsg*>(NLMSG_DATA(netlink_message)); EXPECT_EQ(interface_address_header.ifa_family, parsed_header->ifa_family); EXPECT_EQ(interface_address_header.ifa_prefixlen, parsed_header->ifa_prefixlen); EXPECT_EQ(interface_address_header.ifa_flags, parsed_header->ifa_flags); EXPECT_EQ(interface_address_header.ifa_scope, parsed_header->ifa_scope); EXPECT_EQ(interface_address_header.ifa_index, parsed_header->ifa_index); EXPECT_EQ(RTA_SPACE(ip.ToPackedString().size()), iov[1].iov_len); auto* rta = reinterpret_cast<struct rtattr*>(iov[1].iov_base); EXPECT_EQ(IFA_ADDRESS, rta->rta_type); EXPECT_EQ(RTA_LENGTH(ip.ToPackedString().size()), rta->rta_len); EXPECT_THAT(ip.ToPackedString(), StrEq(std::string(reinterpret_cast<char*>(RTA_DATA(rta)), RTA_PAYLOAD(rta)))); } TEST(RtnetlinkMessageTest, RouteMessageCanBeCreatedFromNewOperation) { struct rtmsg route_message_header = {AF_INET6, 48, 0, 0, RT_TABLE_MAIN, RTPROT_STATIC, RT_SCOPE_LINK, RTN_LOCAL, 0}; uint16_t flags = NLM_F_REQUEST | NLM_F_ROOT | NLM_F_MATCH; uint32_t seq = 42; uint32_t pid = 7; auto message = RouteMessage::New(RtnetlinkMessage::Operation::NEW, flags, seq, pid, &route_message_header); QuicIpAddress preferred_source; QUICHE_CHECK(preferred_source.FromString("ff80::1")); message.AppendAttribute(RTA_PREFSRC, preferred_source.ToPackedString().c_str(), preferred_source.ToPackedString().size()); EXPECT_EQ(2, message.IoVecSize()); auto iov = message.BuildIoVec(); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct rtmsg))), iov[0].iov_len); auto* netlink_message = reinterpret_cast<struct nlmsghdr*>(iov[0].iov_base); EXPECT_EQ(NLMSG_ALIGN(NLMSG_LENGTH(sizeof(struct rtmsg))) + RTA_LENGTH(preferred_source.ToPackedString().size()), netlink_message->nlmsg_len); EXPECT_EQ(RTM_NEWROUTE, netlink_message->nlmsg_type); EXPECT_EQ(flags, netlink_message->nlmsg_flags); EXPECT_EQ(seq, netlink_message->nlmsg_seq); EXPECT_EQ(pid, netlink_message->nlmsg_pid); auto* parsed_header = reinterpret_cast<struct rtmsg*>(NLMSG_DATA(netlink_message)); EXPECT_EQ(route_message_header.rtm_family, parsed_header->rtm_family); EXPECT_EQ(route_message_header.rtm_dst_len, parsed_header->rtm_dst_len); EXPECT_EQ(route_message_header.rtm_src_len, parsed_header->rtm_src_len); EXPECT_EQ(route_message_header.rtm_tos, parsed_header->rtm_tos); EXPECT_EQ(route_message_header.rtm_table, parsed_header->rtm_table); EXPECT_EQ(route_message_header.rtm_protocol, parsed_header->rtm_protocol); EXPECT_EQ(route_message_header.rtm_scope, parsed_header->rtm_scope); EXPECT_EQ(route_message_header.rtm_type, parsed_header->rtm_type); EXPECT_EQ(route_message_header.rtm_flags, parsed_header->rtm_flags); EXPECT_EQ(RTA_SPACE(preferred_source.ToPackedString().size()), iov[1].iov_len); auto* rta = reinterpret_cast<struct rtattr*>(iov[1].iov_base); EXPECT_EQ(RTA_PREFSRC, rta->rta_type); EXPECT_EQ(RTA_LENGTH(preferred_source.ToPackedString().size()), rta->rta_len); EXPECT_THAT(preferred_source.ToPackedString(), StrEq(std::string(reinterpret_cast<char*>(RTA_DATA(rta)), RTA_PAYLOAD(rta)))); } } }
29
#ifndef TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_SAVE_H_ #define TENSORFLOW_CC_EXPERIMENTAL_LIBEXPORT_SAVE_H_ #include <string> #include "tensorflow/core/platform/status.h" namespace tensorflow { namespace libexport { TF_EXPORT Status Save(const std::string& export_dir); } } #endif #include "tensorflow/cc/experimental/libexport/save.h" #include "tensorflow/core/platform/env.h" namespace tensorflow { namespace libexport { Status Save(const std::string& export_dir) { TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir(export_dir)); return absl::OkStatus(); } } }
#include "tensorflow/cc/experimental/libexport/save.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/path.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace libexport { namespace { TEST(SaveTest, TestDirectoryStructure) { const string base_dir = tensorflow::io::JoinPath( tensorflow::testing::TmpDir(), "test_directory_structure"); TF_ASSERT_OK(Save(base_dir)); TF_ASSERT_OK(Env::Default()->IsDirectory(base_dir)); } } } }
30
#ifndef XLA_SERVICE_GPU_RUNTIME_CONVOLUTION_THUNK_H_ #define XLA_SERVICE_GPU_RUNTIME_CONVOLUTION_THUNK_H_ #include <cstdint> #include <memory> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/inlined_vector.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/stream_executor.h" namespace xla { namespace gpu { class ConvolutionThunk : public Thunk { public: ConvolutionThunk(ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice); ConvolutionThunk(const ConvolutionThunk&) = delete; ConvolutionThunk& operator=(const ConvolutionThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: std::vector<BufferAllocation::Slice> operand_buffers_; std::vector<BufferAllocation::Slice> result_buffers_; BufferAllocation::Slice scratch_buffer_; GenericConvRunner& GetOrCreateRunner(const stream_executor::Stream* stream, bool* runner_created); const GpuConvConfig config_; absl::Mutex mu_; absl::flat_hash_map<const stream_executor::Stream*, std::unique_ptr<GenericConvRunner>> runner_cache_ ABSL_GUARDED_BY(mu_); }; class ConvolutionReorderThunk : public Thunk { public: ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices); ConvolutionReorderThunk(const ConvolutionReorderThunk&) = delete; ConvolutionReorderThunk& operator=(const ConvolutionReorderThunk&) = delete; absl::Status ExecuteOnStream(const ExecuteParams& params) override; private: static se::dnn::FilterDescriptor CreateFilterDescriptor( absl::Span<int64_t> filter_nchw); const se::dnn::FilterDescriptor filter_descriptor_; absl::InlinedVector<BufferAllocation::Slice, 2> operand_buffers_; absl::InlinedVector<BufferAllocation::Slice, 2> result_buffers_; }; } } #endif #include "xla/service/gpu/runtime/convolution_thunk.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/container/inlined_vector.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "xla/service/buffer_assignment.h" #if TENSORFLOW_USE_ROCM #include "xla/service/gpu/stream_executor_util.h" #endif #include "xla/service/gpu/gpu_conv_runner.h" #include "xla/service/gpu/runtime/thunk.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/dnn.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" #include "xla/util.h" #include "tsl/platform/errors.h" namespace xla { namespace gpu { ConvolutionThunk::ConvolutionThunk( ThunkInfo thunk_info, GpuConvConfig config, std::vector<BufferAllocation::Slice> operand_slices, std::vector<BufferAllocation::Slice> result_slices, BufferAllocation::Slice scratch_slice) : Thunk(Kind::kConvolution, thunk_info), operand_buffers_(std::move(operand_slices)), result_buffers_(std::move(result_slices)), scratch_buffer_(scratch_slice), config_(std::move(config)) {} GenericConvRunner& ConvolutionThunk::GetOrCreateRunner( const stream_executor::Stream* stream, bool* runner_created) { absl::MutexLock lock(&mu_); auto it = runner_cache_.find(stream); *runner_created = (it == runner_cache_.end()); if (*runner_created) { it = runner_cache_ .insert({stream, std::make_unique<GenericConvRunner>(config_)}) .first; } return *it->second; } absl::Status ConvolutionThunk::ExecuteOnStream(const ExecuteParams& params) { const auto& buffer_allocations = *params.buffer_allocations; std::vector<se::DeviceMemoryBase> operand_se_buffers, result_se_buffers; operand_se_buffers.reserve(operand_buffers_.size()); for (BufferAllocation::Slice buffer : operand_buffers_) { operand_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } result_se_buffers.reserve(result_buffers_.size()); for (BufferAllocation::Slice buffer : result_buffers_) { result_se_buffers.push_back(buffer_allocations.GetDeviceAddress(buffer)); } se::DeviceMemoryBase scratch = buffer_allocations.GetDeviceAddress(scratch_buffer_); bool runner_created = false; RunConvOptions opts; opts.runner_cache = &GetOrCreateRunner(params.stream, &runner_created); #if TENSORFLOW_USE_ROCM if (runner_created) { TF_ASSIGN_OR_RETURN( GpuConvParams conv_params, GetGpuConvParams(config_, operand_se_buffers, result_se_buffers)); TF_ASSIGN_OR_RETURN(se::dnn::ConvolutionKind kind, GetDNNConvKindFromCudnnConvKind(config_.kind)); TF_ASSIGN_OR_RETURN(se::dnn::DataType input_type, GetDNNDataTypeFromPrimitiveType(config_.input_type)); TF_ASSIGN_OR_RETURN(se::dnn::DataType output_type, GetDNNDataTypeFromPrimitiveType(config_.output_type)); TF_ASSIGN_OR_RETURN(auto dnn, se::dnn::internal::GetDnnFromStream(params.stream)); se::OwningScratchAllocator<> scratch_allocator( buffer_allocations.device_ordinal(), buffer_allocations.memory_allocator()); std::vector<se::dnn::ProfileResult> profile_results; dnn->GetMIOpenConvolveAlgorithms( kind, input_type, output_type, params.stream, config_.input_descriptor, conv_params.input_buf, config_.filter_descriptor, conv_params.filter_buf, config_.output_descriptor, conv_params.output_buf, config_.conv_desc, &scratch_allocator, &profile_results); } #endif TF_RETURN_IF_ERROR(RunGpuConv(config_, absl::MakeSpan(operand_se_buffers), absl::MakeSpan(result_se_buffers), scratch, params.stream, opts)); if (!params.stream->ok()) { return Internal("ConvolutionThunk::ExecuteOnStream failed."); } return absl::OkStatus(); } ConvolutionReorderThunk::ConvolutionReorderThunk( ThunkInfo thunk_info, absl::Span<int64_t> filter_nchw, absl::InlinedVector<BufferAllocation::Slice, 2> operand_slices, absl::InlinedVector<BufferAllocation::Slice, 2> result_slices) : Thunk(Kind::kConvolutionReorder, thunk_info), filter_descriptor_(CreateFilterDescriptor(filter_nchw)), operand_buffers_(operand_slices), result_buffers_(result_slices) {} absl::Status ConvolutionReorderThunk::ExecuteOnStream( const ExecuteParams& params) { bool has_bias = operand_buffers_.size() > 1; CHECK_EQ(operand_buffers_.size(), result_buffers_.size()); const auto& buffer_allocations = *params.buffer_allocations; auto filter_input = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(operand_buffers_[0])); auto filter_output = se::DeviceMemory<int8_t>( buffer_allocations.GetDeviceAddress(result_buffers_[0])); auto bias_input = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(operand_buffers_[1]))) : std::nullopt; auto bias_output = has_bias ? std::make_optional(se::DeviceMemory<float>( buffer_allocations.GetDeviceAddress(result_buffers_[1]))) : std::nullopt; auto dnn = params.stream->parent()->AsDnn(); if (dnn == nullptr) { return absl::InternalError("No DNN for stream."); } return dnn->CudnnReorderConvolutionFilterAndBias( params.stream, filter_descriptor_, filter_input, &filter_output, std::move(bias_input), std::move(bias_output)); } se::dnn::FilterDescriptor ConvolutionReorderThunk::CreateFilterDescriptor( absl::Span<int64_t> filter_nchw) { CHECK_EQ(filter_nchw.size(), 4); se::dnn::FilterDescriptor filter_desc(2); filter_desc.set_layout(se::dnn::FilterLayout::kOutputInputYX32); filter_desc.set_output_feature_map_count(filter_nchw[0]); filter_desc.set_input_feature_map_count(filter_nchw[1]); filter_desc.set_input_filter_height(filter_nchw[2]); filter_desc.set_input_filter_width(filter_nchw[3]); return filter_desc; } } }
#include "xla/service/cpu/runtime/convolution_thunk.h" #include <cstddef> #include <cstdint> #include <functional> #include <memory> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/status/status.h" #include "Eigen/Core" #include "xla/primitive_util.h" #include "xla/service/buffer_assignment.h" #include "xla/service/cpu/runtime/buffer_allocations.h" #include "xla/service/cpu/runtime/thunk.h" #include "xla/service/maybe_owning_device_memory.h" #include "xla/shape.h" #include "xla/shape_util.h" #include "xla/stream_executor/device_memory.h" #include "xla/tsl/concurrency/async_value_ref.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace xla::cpu { namespace { struct ConvolutionDimensions { int batch_size = 1; int input_size = 3; int input_channels = 5; int kernel_size = 3; int output_channels = 3; int output_size = input_size - kernel_size + 1; }; template <typename T> class ConvolutionThunkTypedTest : public ::testing::Test {}; using CorrectTypes = ::testing::Types<float, Eigen::half>; TYPED_TEST_SUITE(ConvolutionThunkTypedTest, CorrectTypes); std::vector<int64_t> MakeInputDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> input_dims = {dims.batch_size}; for (int i = 0; i < convolution_rank; ++i) { input_dims.push_back(dims.input_size); } input_dims.push_back(dims.input_channels); return input_dims; } std::vector<int64_t> MakeKernelDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> kernel_dims = {}; for (int i = 0; i < convolution_rank; ++i) { kernel_dims.push_back(dims.kernel_size); } kernel_dims.push_back(dims.input_channels); kernel_dims.push_back(dims.output_channels); return kernel_dims; } std::vector<int64_t> MakeOutputDims( int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { std::vector<int64_t> output_dims = {dims.batch_size}; for (int i = 0; i < convolution_rank; ++i) { output_dims.push_back(dims.output_size); } output_dims.push_back(dims.output_channels); return output_dims; } template <typename ElementType> std::vector<ElementType> MakeDataVector(const std::vector<int64_t>& dims) { auto size = absl::c_accumulate(dims, 1, std::multiplies<int>()); return std::vector<ElementType>(size, ElementType(0.0)); } template <typename ElementType> std::vector<MaybeOwningDeviceMemory> MakeBuffers( const std::vector<ElementType>& input, const std::vector<ElementType>& kernel, const std::vector<ElementType>& output) { std::vector<MaybeOwningDeviceMemory> buffers; size_t input_size_in_bytes = input.size() * sizeof(ElementType); buffers.emplace_back(se::DeviceMemoryBase(input.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(kernel.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output.size() * sizeof(ElementType); buffers.emplace_back( se::DeviceMemoryBase(output.data(), output_size_in_bytes)); return buffers; } ConvolutionThunk::Options MakeConvolutionOptions() { ConvolutionThunk::Options options; options.multi_threaded = false; options.use_acl = false; return options; } ConvolutionDimensionNumbers MakeConvolutionDimensionNumbers( int convolution_rank) { ConvolutionDimensionNumbers dnums; int dim = 0; dnums.set_input_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_input_spatial_dimensions(dim++); } dnums.set_input_feature_dimension(dim++); dim = 0; for (int i = 0; i < convolution_rank; ++i) { dnums.add_kernel_spatial_dimensions(dim++); } dnums.set_kernel_input_feature_dimension(dim++); dnums.set_kernel_output_feature_dimension(dim++); dim = 0; dnums.set_output_batch_dimension(dim++); for (int i = 0; i < convolution_rank; ++i) { dnums.add_output_spatial_dimensions(dim++); } dnums.set_output_feature_dimension(dim++); return dnums; } Window MakeWindow(int convolution_rank) { Window window; for (int i = 0; i < convolution_rank; ++i) { WindowDimension* window_dim = window.add_dimensions(); window_dim->set_stride(1); window_dim->set_padding_low(0); window_dim->set_padding_high(0); window_dim->set_window_dilation(1); window_dim->set_base_dilation(1); } return window; } template <typename ElementType> class ConvolutionThunkBuilder { public: auto Build(int convolution_rank, ConvolutionDimensions dims = ConvolutionDimensions()) { auto input_dims = MakeInputDims(convolution_rank, dims); auto kernel_dims = MakeKernelDims(convolution_rank, dims); auto output_dims = MakeOutputDims(convolution_rank, dims); input_ = MakeDataVector<ElementType>(input_dims); kernel_ = MakeDataVector<ElementType>(kernel_dims); output_ = MakeDataVector<ElementType>(output_dims); size_t input_size_in_bytes = input_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(input_.data(), input_size_in_bytes)); size_t kernel_size_in_bytes = kernel_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(kernel_.data(), kernel_size_in_bytes)); size_t output_size_in_bytes = output_.size() * sizeof(ElementType); buffers_.emplace_back( se::DeviceMemoryBase(output_.data(), output_size_in_bytes)); allocations_ = std::make_unique<BufferAllocations>(buffers_); input_alloc_ = std::make_unique<BufferAllocation>(0, input_size_in_bytes, 0); kernel_alloc_ = std::make_unique<BufferAllocation>(1, kernel_size_in_bytes, 0); output_alloc_ = std::make_unique<BufferAllocation>(2, output_size_in_bytes, 0); BufferAllocation::Slice input_slice(input_alloc_.get(), 0, input_size_in_bytes); BufferAllocation::Slice kernel_slice(kernel_alloc_.get(), 0, kernel_size_in_bytes); BufferAllocation::Slice output_slice(output_alloc_.get(), 0, output_size_in_bytes); auto primitive_type = primitive_util::NativeToPrimitiveType<ElementType>(); Shape input_shape = ShapeUtil::MakeShape(primitive_type, input_dims); Shape kernel_shape = ShapeUtil::MakeShape(primitive_type, kernel_dims); Shape output_shape = ShapeUtil::MakeShape(primitive_type, output_dims); auto options = MakeConvolutionOptions(); auto dnums = MakeConvolutionDimensionNumbers(convolution_rank); auto window = MakeWindow(convolution_rank); return ConvolutionThunk::Create( {"convolution"}, options, std::move(input_slice), input_shape, std::move(kernel_slice), kernel_shape, std::move(output_slice), output_shape, dnums, window, 1); } auto GetExecutionParams() { return Thunk::ExecuteParams{nullptr, allocations_.get()}; } private: std::vector<ElementType> input_; std::vector<ElementType> kernel_; std::vector<ElementType> output_; std::vector<MaybeOwningDeviceMemory> buffers_; std::unique_ptr<BufferAllocations> allocations_; std::unique_ptr<BufferAllocation> input_alloc_; std::unique_ptr<BufferAllocation> kernel_alloc_; std::unique_ptr<BufferAllocation> output_alloc_; }; template <typename ElementType> void SuccessfulConvolution(int convolution_rank) { ConvolutionThunkBuilder<ElementType> builder; TF_ASSERT_OK_AND_ASSIGN(auto thunk, builder.Build(convolution_rank)) Thunk::ExecuteParams params = builder.GetExecutionParams(); auto execute_event = thunk->Execute(params); tsl::BlockUntilReady(execute_event); ASSERT_FALSE(execute_event.IsError()) << execute_event.GetError(); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution1D) { SuccessfulConvolution<TypeParam>(1); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution2D) { SuccessfulConvolution<TypeParam>(2); } TYPED_TEST(ConvolutionThunkTypedTest, SuccessfulConvolution3D) { SuccessfulConvolution<TypeParam>(3); } TEST(ConvolutionThunkTest, CreationErrorOnUnsupportedType) { ConvolutionThunkBuilder<int> builder; auto status_or_thunk = builder.Build(2); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Unsupported element type (S32)")); } TEST(ConvolutionThunkTest, CreationErrorOnIncorrectConvolutionRank) { ConvolutionThunkBuilder<float> builder; auto status_or_thunk = builder.Build(4); EXPECT_EQ(status_or_thunk.status().code(), absl::StatusCode::kInvalidArgument); EXPECT_THAT(status_or_thunk.status().message(), ::testing::HasSubstr("Incorrect convolution rank (4)")); } } }
31
#include "phonenumbers/logger.h" #include <cstddef> namespace i18n { namespace phonenumbers { Logger* Logger::impl_ = NULL; } }
#include <string> #include <gtest/gtest.h> #include "phonenumbers/base/memory/scoped_ptr.h" #include "phonenumbers/default_logger.h" #include "phonenumbers/logger.h" namespace i18n { namespace phonenumbers { class StringLogger : public Logger { public: virtual ~StringLogger() {} const string& message() const { return msg_; } virtual void WriteMessage(const string& msg) { msg_ += msg; } private: string msg_; }; class LoggerTest : public ::testing::Test { protected: virtual void SetUp() { test_logger_.reset(new StringLogger()); test_logger_->set_level(LOG_INFO); old_logger_ = Logger::mutable_logger_impl(); Logger::set_logger_impl(test_logger_.get()); } virtual void TearDown() { Logger::set_logger_impl(old_logger_); } scoped_ptr<StringLogger> test_logger_; Logger* old_logger_; }; TEST_F(LoggerTest, LoggerIgnoresHigherVerbosity) { LOG(LOG_DEBUG) << "Hello"; EXPECT_EQ("", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsNewline) { LOG(LOG_INFO) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerLogsEqualVerbosity) { LOG(LOG_INFO) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerLogsMoreSeriousMessages) { LOG(LOG_WARNING) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerConcatenatesMessages) { LOG(LOG_INFO) << "Hello"; ASSERT_EQ("Hello\n", test_logger_->message()); LOG(LOG_INFO) << " World"; EXPECT_EQ("Hello\n World\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerHandlesDifferentTypes) { LOG(LOG_INFO) << "Hello " << 42; EXPECT_EQ("Hello 42\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerIgnoresVerboseLogs) { VLOG(1) << "Hello"; EXPECT_EQ("", test_logger_->message()); VLOG(0) << "Hello"; EXPECT_EQ("", test_logger_->message()); test_logger_->set_level(LOG_DEBUG); VLOG(1) << "Hello"; EXPECT_EQ("", test_logger_->message()); VLOG(0) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerShowsDebugLogsAtDebugLevel) { test_logger_->set_level(LOG_DEBUG); LOG(LOG_DEBUG) << "Debug hello"; EXPECT_EQ("Debug hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsDebugLogsWhenVerbositySet) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); LOG(LOG_DEBUG) << "Debug hello"; EXPECT_EQ("Debug hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsErrorLogsWhenVerbositySet) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); LOG(ERROR) << "Error hello"; EXPECT_EQ("Error hello\n", test_logger_->message()); } TEST_F(LoggerTest, LoggerOutputsLogsAccordingToVerbosity) { int verbose_log_level = 2; test_logger_->set_verbosity_level(verbose_log_level); VLOG(verbose_log_level + 1) << "Hello 3"; EXPECT_EQ("", test_logger_->message()); VLOG(verbose_log_level - 1) << "Hello"; EXPECT_EQ("Hello\n", test_logger_->message()); VLOG(verbose_log_level) << "Hello 2"; EXPECT_EQ("Hello\nHello 2\n", test_logger_->message()); } } }
32
#ifndef TENSORFLOW_CC_TOOLS_FREEZE_SAVED_MODEL_H_ #define TENSORFLOW_CC_TOOLS_FREEZE_SAVED_MODEL_H_ #include <unordered_set> #include "tensorflow/cc/saved_model/loader.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/lib/core/status.h" namespace tensorflow { Status FreezeSavedModel(const SavedModelBundle& saved_model_bundle, GraphDef* frozen_graph_def, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs); } #endif #include "tensorflow/cc/tools/freeze_saved_model.h" #include <iostream> #include <queue> #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/function.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/protobuf/meta_graph.pb.h" namespace tensorflow { namespace { void GetTensorNamesFromTensorInfo(const TensorInfo& tensor_info, std::unordered_set<string>* tensor_names) { if (tensor_info.has_coo_sparse()) { const TensorInfo_CooSparse& coo_sparse = tensor_info.coo_sparse(); tensor_names->insert(coo_sparse.values_tensor_name()); tensor_names->insert(coo_sparse.indices_tensor_name()); tensor_names->insert(coo_sparse.dense_shape_tensor_name()); } else if (tensor_info.has_composite_tensor()) { for (const auto& component : tensor_info.composite_tensor().components()) { tensor_names->insert(component.name()); } } else { tensor_names->insert(tensor_info.name()); } } void GetSignatureDefsInputsAndOutputs( const SavedModelBundle& saved_model_bundle, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { for (auto& sigdef_elem : saved_model_bundle.meta_graph_def.signature_def()) { const SignatureDef& signature_def = sigdef_elem.second; for (auto& input_elem : signature_def.inputs()) { GetTensorNamesFromTensorInfo(input_elem.second, inputs); } for (auto& output_elem : signature_def.outputs()) { GetTensorNamesFromTensorInfo(output_elem.second, outputs); } } } void GetNodeNameToNodeDefMap( GraphDef* graph_def, std::unordered_map<string, NodeDef*>* name_to_node_map) { for (size_t i = 0; i < graph_def->node_size(); i++) { NodeDef* node = graph_def->mutable_node(i); (*name_to_node_map)[node->name()] = node; } } const string GetNodeNameFromTensorName(string tensor_name) { if (tensor_name[0] == '^') { tensor_name.erase(0, 1); } std::vector<string> tensor_name_parts = str_util::Split(tensor_name, ':'); return tensor_name_parts[0]; } void GetReachableNodesAndVariables( GraphDef* graph_def, const std::unordered_set<string>& outputs, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string>* reachable_node_names, std::unordered_set<string>* variable_node_names) { static const std::unordered_set<string>* kVariableTypes = new std::unordered_set<string>({"Variable", "VariableV2", "VarHandleOp"}); std::queue<string> nodes_to_visit; for (const string& output_tensor_name : outputs) { nodes_to_visit.push(GetNodeNameFromTensorName(output_tensor_name)); } while (!nodes_to_visit.empty()) { const string node_name = nodes_to_visit.front(); nodes_to_visit.pop(); if (reachable_node_names->find(node_name) != reachable_node_names->end()) { continue; } reachable_node_names->insert(node_name); NodeDef* node = name_to_node_map.at(node_name); if (kVariableTypes->find(node->op()) != kVariableTypes->end()) { variable_node_names->insert(node->name()); } for (const string& input_tensor_name : node->input()) { nodes_to_visit.push(GetNodeNameFromTensorName(input_tensor_name)); } } } Status GetVariableNameToTensorMap( Session* session, const std::unordered_map<string, NodeDef*>& name_to_node_map, std::unordered_set<string> variable_names_set, std::unordered_map<string, Tensor>* variable_name_to_value_map) { if (variable_names_set.empty()) { return OkStatus(); } std::vector<string> variable_names; variable_names.reserve(variable_names_set.size()); std::vector<string> tensor_names; tensor_names.reserve(variable_names_set.size()); for (const string& node_name : variable_names_set) { variable_names.push_back(node_name); NodeDef* node_def = name_to_node_map.at(node_name); if (node_def->op() == "VarHandleOp") { tensor_names.push_back(node_name + "/Read/ReadVariableOp:0"); } else { tensor_names.push_back(node_name + ":0"); } } std::vector<Tensor> outputs; TF_RETURN_IF_ERROR( session->Run( {}, tensor_names, {}, &outputs)); for (size_t i = 0; i < variable_names.size(); i++) { (*variable_name_to_value_map)[variable_names[i]] = outputs[i]; } return OkStatus(); } void ConvertVariableToConstant(const NodeDef& variable_node, const Tensor& variable_value, NodeDef* const_node) { const_node->set_name(variable_node.name()); const_node->set_op("Const"); (*const_node->mutable_attr())["dtype"] = variable_node.attr().at("dtype"); variable_value.AsProtoTensorContent( (*const_node->mutable_attr())["value"].mutable_tensor()); } void ConvertReadVariableOpToIdentity(const NodeDef& node, NodeDef* identity_node) { identity_node->set_name(node.name()); identity_node->set_op("Identity"); (*identity_node->mutable_attr())["T"] = node.attr().at("dtype"); identity_node->add_input(node.input(0)); } StatusOr<string> GetVarHandleName( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name) { const NodeDef* node = name_to_node_map.at(node_name); while (node->input_size() > 0) { auto parent = name_to_node_map.find(node->input(0)); if (parent == name_to_node_map.end()) break; node = parent->second; if (node->op() != "Identity") { VLOG(2) << "Stopping at non-identity node " << node->op(); break; } } if (node->op() == "VarHandleOp") { return node->name(); } return absl::NotFoundError("No VarHandleOp ancestor found"); } StatusOr<string> GetHandleNameIfNeedsToFreeze( const std::unordered_map<string, NodeDef*>& name_to_node_map, string node_name, const std::unordered_set<string>& variable_node_names) { StatusOr<string> var_handle_name = GetVarHandleName(name_to_node_map, node_name); if (var_handle_name.ok() && variable_node_names.count(*var_handle_name)) { return var_handle_name; } return absl::NotFoundError("No VarHandleOp ancestor found"); } Status FreezeGraphDef(const SavedModelBundle& saved_model_bundle, const std::unordered_set<string>& outputs, GraphDef* frozen_graph_def) { GraphDef graph_def = saved_model_bundle.meta_graph_def.graph_def(); *frozen_graph_def->mutable_versions() = graph_def.versions(); *frozen_graph_def->mutable_library() = graph_def.library(); if (graph_def.node_size() == 0) { return OkStatus(); } std::unordered_map<string, NodeDef*> name_to_node_map; GetNodeNameToNodeDefMap(&graph_def, &name_to_node_map); std::unordered_set<string> reachable_node_names; std::unordered_set<string> variable_node_names; GetReachableNodesAndVariables(&graph_def, outputs, name_to_node_map, &reachable_node_names, &variable_node_names); std::unordered_map<string, Tensor> variable_to_value_map; TF_RETURN_IF_ERROR(GetVariableNameToTensorMap( saved_model_bundle.session.get(), name_to_node_map, variable_node_names, &variable_to_value_map)); for (const NodeDef& node : graph_def.node()) { if (reachable_node_names.find(node.name()) == reachable_node_names.end()) { continue; } if (variable_node_names.find(node.name()) != variable_node_names.end()) { ConvertVariableToConstant(node, variable_to_value_map[node.name()], frozen_graph_def->add_node()); continue; } else if (node.op() == "ReadVariableOp" && GetHandleNameIfNeedsToFreeze(name_to_node_map, node.name(), variable_node_names) .ok()) { ConvertReadVariableOpToIdentity(node, frozen_graph_def->add_node()); continue; } else if (node.op() == "Identity") { StatusOr<string> handle_name = GetHandleNameIfNeedsToFreeze( name_to_node_map, node.name(), variable_node_names); if (handle_name.ok()) { NodeDef* new_node = frozen_graph_def->add_node(); *new_node = node; (*new_node->mutable_attr())["T"] = name_to_node_map.at(*handle_name)->attr().at("dtype"); continue; } } *frozen_graph_def->add_node() = node; } return OkStatus(); } } Status FreezeSavedModel(const SavedModelBundle& saved_model_bundle, GraphDef* frozen_graph_def, std::unordered_set<string>* inputs, std::unordered_set<string>* outputs) { GetSignatureDefsInputsAndOutputs(saved_model_bundle, inputs, outputs); TF_RETURN_IF_ERROR( FreezeGraphDef(saved_model_bundle, *outputs, frozen_graph_def)); return OkStatus(); } }
#include "tensorflow/cc/tools/freeze_saved_model.h" #include "tensorflow/cc/ops/resource_variable_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/framework/versions.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/session.h" #include "tensorflow/core/public/session_options.h" namespace tensorflow { namespace { class FreezeTest : public ::testing::Test { protected: void GraphDefEqual(const GraphDef& actual, const GraphDef& expected) { EXPECT_EQ(actual.ShortDebugString(), expected.ShortDebugString()); } SignatureDef BuildSignatureDef(const std::unordered_set<string>& inputs, const std::unordered_set<string>& outputs) { SignatureDef signature_def; for (const string& input : inputs) { (*signature_def.mutable_inputs())[input].set_name(input); } for (const string& output : outputs) { (*signature_def.mutable_outputs())[output].set_name(output); } return signature_def; } void AddSignatureDefToSavedModelBundle(const SignatureDef& signature_def, const string& key, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; (*meta_graph_def->mutable_signature_def())[key] = signature_def; } Status InitializeSavedModelBundleSession( const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { SessionOptions session_options; saved_model_bundle->session.reset(NewSession(session_options)); TF_RETURN_IF_ERROR(saved_model_bundle->session->Create(graph_def)); if (!init_node.empty()) { std::vector<Tensor> outputs; return saved_model_bundle->session->Run( {}, {}, {init_node}, &outputs); } return OkStatus(); } Status AddGraphDefToSavedModelBundle(const GraphDef& graph_def, const string& init_node, SavedModelBundle* saved_model_bundle) { MetaGraphDef* meta_graph_def = &saved_model_bundle->meta_graph_def; *meta_graph_def->mutable_graph_def() = graph_def; return InitializeSavedModelBundleSession(graph_def, init_node, saved_model_bundle); } Status AddGraphDefWithOutputsToSavedModelBundle( const GraphDef& graph_def, const std::unordered_set<string>& outputs, const string& init_node, SavedModelBundle* saved_model_bundle) { SignatureDef signature_def = BuildSignatureDef(std::unordered_set<string>(), outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", saved_model_bundle); return AddGraphDefToSavedModelBundle(graph_def, init_node, saved_model_bundle); } void RunAndCompareFrozenAndUnfrozenGraphs(Session* unfrozen_session, const GraphDef& frozen_graph_def, const string& tensor_name) { std::vector<Tensor> unfrozen_outputs; TF_ASSERT_OK(unfrozen_session->Run( {}, {tensor_name}, {}, &unfrozen_outputs)); SessionOptions session_options; std::unique_ptr<Session> frozen_session(NewSession(session_options)); TF_ASSERT_OK(frozen_session->Create(frozen_graph_def)); std::vector<Tensor> frozen_outputs; TF_ASSERT_OK(frozen_session->Run( {}, {tensor_name}, {}, &frozen_outputs)); test::ExpectTensorEqual<float>(unfrozen_outputs[0], frozen_outputs[0]); } void TestFreezeGraphWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); Output read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), var, a); } TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDef expected_graph_def; Scope expected_scope = Scope::NewRootScope(); Output expected_a = ops::Const(expected_scope.WithOpName("a"), 10.0f, {}); Output expected_b = ops::Const(expected_scope.WithOpName("b"), 10.0f, {}); Output expected_c = ops::Mul(expected_scope.WithOpName("c"), expected_a, expected_b); TF_ASSERT_OK(expected_scope.ToGraphDef(&expected_graph_def)); GraphDefEqual(frozen_graph_def, expected_graph_def); RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithDependentVariables(bool use_resource, bool use_identity = false) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); if (use_identity) { Output identity = ops::Identity(scope.WithOpName("identity"), var); read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), identity, DataType::DT_FLOAT); } else { read_var = ops::ReadVariableOp(scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); } auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); } else { Output read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? (use_identity ? 5 : 4) : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } void TestFreezeGraphWithAndWithoutDependentVariables(bool use_resource) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output read_var; if (use_resource) { Output var = ops::VarHandleOp(scope.WithOpName("var"), DataType::DT_FLOAT, {}); read_var = ops::ReadVariableOp( scope.WithOpName("var/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign = ops::AssignVariableOp(scope.WithOpName("assign"), var, a); Output var_1 = ops::VarHandleOp(scope.WithOpName("var_1"), DataType::DT_FLOAT, {}); Output read_var_1 = ops::ReadVariableOp(scope.WithOpName("var_1/Read/ReadVariableOp"), var, DataType::DT_FLOAT); auto assign_1 = ops::AssignVariableOp(scope.WithOpName("assign_1"), var_1, a); } else { read_var = ops::Variable(scope.WithOpName("var"), {}, DataType::DT_FLOAT); Output assign = ops::Assign(scope.WithOpName("assign"), read_var, a); Output var_1 = ops::Variable(scope.WithOpName("var_1"), {}, DataType::DT_FLOAT); Output assign_1 = ops::Assign(scope.WithOpName("assign_1"), var_1, a); } Output c = ops::Mul(scope.WithOpName("c"), a, read_var); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle( graph_def, {"c:0"}, "assign", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); size_t expected_nodes = use_resource ? 4 : 3; EXPECT_EQ(frozen_graph_def.node_size(), expected_nodes); for (const NodeDef& node : frozen_graph_def.node()) { EXPECT_NE(node.op(), "Variable") << node.name(); EXPECT_NE(node.op(), "VariableV2") << node.name(); EXPECT_NE(node.op(), "VarHandleOp") << node.name(); EXPECT_NE(node.op(), "ReadVariableOp") << node.name(); } RunAndCompareFrozenAndUnfrozenGraphs(saved_model_bundle.session.get(), frozen_graph_def, "c:0"); } }; TEST_F(FreezeTest, InputsAndOutputsSingleSignatureDef) { SavedModelBundle saved_model_bundle; std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; SignatureDef signature_def = BuildSignatureDef(expected_inputs, expected_outputs); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsMultipleSignatureDefs) { SavedModelBundle saved_model_bundle; SignatureDef signature_def_0 = BuildSignatureDef({"input0:0"}, {"output0:0"}); SignatureDef signature_def_1 = BuildSignatureDef({"input1:0"}, {"output1:0"}); AddSignatureDefToSavedModelBundle(signature_def_0, "signature_def_0", &saved_model_bundle); AddSignatureDefToSavedModelBundle(signature_def_1, "signature_def_1", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input0:0", "input1:0"}; std::unordered_set<string> expected_outputs = {"output0:0", "output1:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, GraphDefVersionsAndLibrary) { SavedModelBundle saved_model_bundle; GraphDef graph_def; graph_def.mutable_versions()->set_producer(1234); graph_def.mutable_versions()->set_min_consumer(1234); *graph_def.mutable_library()->add_function() = test::function::NonZero(); TF_ASSERT_OK( AddGraphDefToSavedModelBundle(graph_def, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithNoVariables) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), 10.0f, {}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithMultiOutputOperation) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output a = ops::Const(scope.WithOpName("a"), {10.0f, 10.0f}, {2}); Output axis = ops::Const(scope.WithOpName("axis"), 0, {}); OutputList split = ops::Split(scope.WithOpName("split"), axis, a, 2).output; Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), split[1], b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithControlDependency) { SavedModelBundle saved_model_bundle; GraphDef graph_def; Scope scope = Scope::NewRootScope(); Output source = ops::Const(scope.WithOpName("source"), 10.0f, {}); Output a = ops::Const(scope.WithOpName("a").WithControlDependencies(source), {10.0f, 10.0f}, {2}); Output b = ops::Const(scope.WithOpName("b"), 10.0f, {}); Output c = ops::Mul(scope.WithOpName("c"), a, b); TF_ASSERT_OK(scope.ToGraphDef(&graph_def)); TF_ASSERT_OK(AddGraphDefWithOutputsToSavedModelBundle(graph_def, {"c:0"}, "", &saved_model_bundle)); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); GraphDefEqual(frozen_graph_def, graph_def); } TEST_F(FreezeTest, GraphDefWithoutDependentVariables) { TestFreezeGraphWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithoutDependentResourceVariables) { TestFreezeGraphWithoutDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentVariables) { TestFreezeGraphWithDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariables) { TestFreezeGraphWithDependentVariables(true); } TEST_F(FreezeTest, GraphDefWithDependentResourceVariablesAndIdentity) { TestFreezeGraphWithDependentVariables(true, true); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentVariables) { TestFreezeGraphWithAndWithoutDependentVariables(false); } TEST_F(FreezeTest, GraphDefWithAndWithoutDependentResourceVariables) { TestFreezeGraphWithAndWithoutDependentVariables(true); } TEST_F(FreezeTest, InputsAndOutputsCompositeTensorSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_composite_tensor()->add_components()->set_name("input1:0"); in.mutable_composite_tensor()->add_components()->set_name("input2:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_composite_tensor()->add_components()->set_name("output2:0"); out.mutable_composite_tensor()->add_components()->set_name("output1:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } TEST_F(FreezeTest, InputsAndOutputsSparseCooSignatureDef) { SavedModelBundle saved_model_bundle; SignatureDef signature_def; TensorInfo& in = (*signature_def.mutable_inputs())["input_arg"]; in.mutable_coo_sparse()->set_values_tensor_name("input1:0"); in.mutable_coo_sparse()->set_indices_tensor_name("input2:0"); in.mutable_coo_sparse()->set_dense_shape_tensor_name("input3:0"); TensorInfo& out = (*signature_def.mutable_outputs())["output_arg"]; out.mutable_coo_sparse()->set_values_tensor_name("output1:0"); out.mutable_coo_sparse()->set_indices_tensor_name("output2:0"); out.mutable_coo_sparse()->set_dense_shape_tensor_name("output3:0"); AddSignatureDefToSavedModelBundle(signature_def, "signature_def", &saved_model_bundle); GraphDef frozen_graph_def; std::unordered_set<string> inputs; std::unordered_set<string> outputs; TF_ASSERT_OK(FreezeSavedModel(saved_model_bundle, &frozen_graph_def, &inputs, &outputs)); std::unordered_set<string> expected_inputs = {"input1:0", "input2:0", "input3:0"}; std::unordered_set<string> expected_outputs = {"output1:0", "output2:0", "output3:0"}; EXPECT_EQ(expected_inputs, inputs); EXPECT_EQ(expected_outputs, outputs); } } }
33
#ifndef TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_H_ #define TENSORSTORE_INTERNAL_COMPRESSION_BLOSC_H_ #include <cstddef> #include <string> #include <string_view> #include "tensorstore/util/result.h" namespace tensorstore { namespace blosc { struct Options { const char* compressor; int clevel; int shuffle; size_t blocksize; size_t element_size; }; Result<std::string> Encode(std::string_view input, const Options& options); Result<std::string> Decode(std::string_view input); } } #endif #include "tensorstore/internal/compression/blosc.h" #include <cstddef> #include <string> #include <string_view> #include "absl/status/status.h" #include <blosc.h> #include "tensorstore/util/result.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace blosc { Result<std::string> Encode(std::string_view input, const Options& options) { if (input.size() > BLOSC_MAX_BUFFERSIZE) { return absl::InvalidArgumentError(tensorstore::StrCat( "Blosc compression input of ", input.size(), " bytes exceeds maximum size of ", BLOSC_MAX_BUFFERSIZE)); } std::string output(input.size() + BLOSC_MAX_OVERHEAD, '\0'); int shuffle = options.shuffle; if (shuffle == -1) { shuffle = options.element_size == 1 ? BLOSC_BITSHUFFLE : BLOSC_SHUFFLE; } const int n = blosc_compress_ctx( options.clevel, shuffle, options.element_size, input.size(), input.data(), output.data(), output.size(), options.compressor, options.blocksize, 1); if (n < 0) { return absl::InternalError( tensorstore::StrCat("Internal blosc error: ", n)); } output.erase(n); return output; } Result<std::string> Decode(std::string_view input) { size_t nbytes; if (blosc_cbuffer_validate(input.data(), input.size(), &nbytes) != 0) { return absl::InvalidArgumentError("Invalid blosc-compressed data"); } std::string output(nbytes, '\0'); if (nbytes > 0) { const int n = blosc_decompress_ctx(input.data(), output.data(), output.size(), 1); if (n <= 0) { return absl::InvalidArgumentError( tensorstore::StrCat("Blosc error: ", n)); } } return output; } } }
#include "tensorstore/internal/compression/blosc.h" #include <cstddef> #include <string> #include <string_view> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include <blosc.h> #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::MatchesStatus; namespace blosc = tensorstore::blosc; std::vector<blosc::Options> GetTestOptions() { return { blosc::Options{"lz4", 5, -1, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 0, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4hc", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 9, BLOSC_BITSHUFFLE, 0}, blosc::Options{"zlib", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"zstd", 1, BLOSC_SHUFFLE, 0}, blosc::Options{"blosclz", 1, BLOSC_BITSHUFFLE, 0}, blosc::Options{"snappy", 1, BLOSC_NOSHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 0}, blosc::Options{"lz4", 5, BLOSC_SHUFFLE, 256}, blosc::Options{"lz4", 1, BLOSC_NOSHUFFLE, 256}, }; } std::vector<std::string> GetTestArrays() { std::vector<std::string> arrays; arrays.emplace_back(); { std::string arr(100, '\0'); unsigned char v = 0; for (auto& x : arr) { x = (v += 7); } arrays.push_back(std::move(arr)); } arrays.push_back("The quick brown fox jumped over the lazy dog."); return arrays; } TEST(BloscTest, EncodeDecode) { for (blosc::Options options : GetTestOptions()) { for (const auto& array : GetTestArrays()) { for (const size_t element_size : {1, 2, 10}) { options.element_size = element_size; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto decoded, blosc::Decode(encoded)); EXPECT_EQ(array, decoded); } } } } TEST(BloscTest, CheckComplib) { const std::string_view array = "The quick brown fox jumped over the lazy dog."; const std::vector<std::pair<std::string, std::string>> cnames_and_complib_names{{BLOSC_BLOSCLZ_COMPNAME, BLOSC_BLOSCLZ_LIBNAME}, {BLOSC_LZ4_COMPNAME, BLOSC_LZ4_LIBNAME}, {BLOSC_LZ4HC_COMPNAME, BLOSC_LZ4_LIBNAME}, {BLOSC_SNAPPY_COMPNAME, BLOSC_SNAPPY_LIBNAME}, {BLOSC_ZLIB_COMPNAME, BLOSC_ZLIB_LIBNAME}, {BLOSC_ZSTD_COMPNAME, BLOSC_ZSTD_LIBNAME}}; for (const auto& pair : cnames_and_complib_names) { blosc::Options options{pair.first.c_str(), 5, -1, 0, 1}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); const char* complib = blosc_cbuffer_complib(encoded.data()); EXPECT_EQ(pair.second, complib); } } TEST(BloscTest, CheckShuffleAndElementSize) { const std::string_view array = "The quick brown fox jumped over the lazy dog."; for (int shuffle = -1; shuffle <= 2; ++shuffle) { for (const size_t element_size : {1, 2, 10}) { blosc::Options options{"lz4", 5, shuffle, 0, element_size}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); size_t typesize; int flags; blosc_cbuffer_metainfo(encoded.data(), &typesize, &flags); EXPECT_EQ(element_size, typesize); const bool expected_byte_shuffle = shuffle == 1 || (shuffle == -1 && element_size != 1); const bool expected_bit_shuffle = shuffle == 2 || (shuffle == -1 && element_size == 1); EXPECT_EQ(expected_byte_shuffle, static_cast<bool>(flags & BLOSC_DOSHUFFLE)); EXPECT_EQ(expected_bit_shuffle, static_cast<bool>(flags & BLOSC_DOBITSHUFFLE)); } } } TEST(BloscTest, CheckBlocksize) { const std::string array(100000, '\0'); for (size_t blocksize : {256, 512, 1024}) { blosc::Options options{"lz4", 0, 0, blocksize, 1}; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto encoded, blosc::Encode(array, options)); ASSERT_GE(encoded.size(), BLOSC_MIN_HEADER_LENGTH); size_t nbytes, cbytes, bsize; blosc_cbuffer_sizes(encoded.data(), &nbytes, &cbytes, &bsize); EXPECT_EQ(blocksize, bsize); } } TEST(BloscTest, TooLong) { blosc::Options options{"lz4", 5, -1, 0, 1}; EXPECT_THAT( blosc::Encode(std::string(BLOSC_MAX_BUFFERSIZE + 1, '\0'), options), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscTest, DecodeHeaderCorrupted) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); ASSERT_GE(encoded.size(), 1); std::string corrupted = std::move(encoded); corrupted[0] = 0; EXPECT_THAT(blosc::Decode(corrupted), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressorTest, DecodeHeaderTruncated) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); ASSERT_GE(encoded.size(), 5); EXPECT_THAT(blosc::Decode(std::string_view(encoded).substr(0, 5)), MatchesStatus(absl::StatusCode::kInvalidArgument)); } TEST(BloscCompressorTest, DecodeDataTruncated) { const std::string_view input = "The quick brown fox jumped over the lazy dog."; TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto encoded, blosc::Encode(input, blosc::Options{"lz4", 1, -1, 0, 1})); EXPECT_THAT(blosc::Decode( std::string_view(encoded).substr(0, BLOSC_MIN_HEADER_LENGTH)), MatchesStatus(absl::StatusCode::kInvalidArgument)); } }
34
#ifndef QUICHE_HTTP2_HPACK_DECODER_HPACK_ENTRY_TYPE_DECODER_H_ #define QUICHE_HTTP2_HPACK_DECODER_HPACK_ENTRY_TYPE_DECODER_H_ #include <cstdint> #include <string> #include "quiche/http2/decoder/decode_buffer.h" #include "quiche/http2/decoder/decode_status.h" #include "quiche/http2/hpack/http2_hpack_constants.h" #include "quiche/http2/hpack/varint/hpack_varint_decoder.h" #include "quiche/common/platform/api/quiche_export.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { class QUICHE_EXPORT HpackEntryTypeDecoder { public: DecodeStatus Start(DecodeBuffer* db); DecodeStatus Resume(DecodeBuffer* db) { return varint_decoder_.Resume(db); } HpackEntryType entry_type() const { return entry_type_; } uint64_t varint() const { return varint_decoder_.value(); } std::string DebugString() const; private: HpackVarintDecoder varint_decoder_; HpackEntryType entry_type_ = HpackEntryType::kIndexedHeader; }; QUICHE_EXPORT std::ostream& operator<<(std::ostream& out, const HpackEntryTypeDecoder& v); } #endif #include "quiche/http2/hpack/decoder/hpack_entry_type_decoder.h" #include <ios> #include <ostream> #include <string> #include "absl/strings/str_cat.h" #include "quiche/common/platform/api/quiche_bug_tracker.h" #include "quiche/common/platform/api/quiche_flag_utils.h" #include "quiche/common/platform/api/quiche_logging.h" namespace http2 { std::string HpackEntryTypeDecoder::DebugString() const { return absl::StrCat( "HpackEntryTypeDecoder(varint_decoder=", varint_decoder_.DebugString(), ", entry_type=", entry_type_, ")"); } std::ostream& operator<<(std::ostream& out, const HpackEntryTypeDecoder& v) { return out << v.DebugString(); } DecodeStatus HpackEntryTypeDecoder::Start(DecodeBuffer* db) { QUICHE_DCHECK(db != nullptr); QUICHE_DCHECK(db->HasData()); uint8_t byte = db->DecodeUInt8(); switch (byte) { case 0b00000000: case 0b00000001: case 0b00000010: case 0b00000011: case 0b00000100: case 0b00000101: case 0b00000110: case 0b00000111: case 0b00001000: case 0b00001001: case 0b00001010: case 0b00001011: case 0b00001100: case 0b00001101: case 0b00001110: entry_type_ = HpackEntryType::kUnindexedLiteralHeader; varint_decoder_.set_value(byte); return DecodeStatus::kDecodeDone; case 0b00001111: entry_type_ = HpackEntryType::kUnindexedLiteralHeader; return varint_decoder_.StartExtended(4, db); case 0b00010000: case 0b00010001: case 0b00010010: case 0b00010011: case 0b00010100: case 0b00010101: case 0b00010110: case 0b00010111: case 0b00011000: case 0b00011001: case 0b00011010: case 0b00011011: case 0b00011100: case 0b00011101: case 0b00011110: entry_type_ = HpackEntryType::kNeverIndexedLiteralHeader; varint_decoder_.set_value(byte & 0x0f); return DecodeStatus::kDecodeDone; case 0b00011111: entry_type_ = HpackEntryType::kNeverIndexedLiteralHeader; return varint_decoder_.StartExtended(4, db); case 0b00100000: case 0b00100001: case 0b00100010: case 0b00100011: case 0b00100100: case 0b00100101: case 0b00100110: case 0b00100111: case 0b00101000: case 0b00101001: case 0b00101010: case 0b00101011: case 0b00101100: case 0b00101101: case 0b00101110: case 0b00101111: case 0b00110000: case 0b00110001: case 0b00110010: case 0b00110011: case 0b00110100: case 0b00110101: case 0b00110110: case 0b00110111: case 0b00111000: case 0b00111001: case 0b00111010: case 0b00111011: case 0b00111100: case 0b00111101: case 0b00111110: entry_type_ = HpackEntryType::kDynamicTableSizeUpdate; varint_decoder_.set_value(byte & 0x01f); return DecodeStatus::kDecodeDone; case 0b00111111: entry_type_ = HpackEntryType::kDynamicTableSizeUpdate; return varint_decoder_.StartExtended(5, db); case 0b01000000: case 0b01000001: case 0b01000010: case 0b01000011: case 0b01000100: case 0b01000101: case 0b01000110: case 0b01000111: case 0b01001000: case 0b01001001: case 0b01001010: case 0b01001011: case 0b01001100: case 0b01001101: case 0b01001110: case 0b01001111: case 0b01010000: case 0b01010001: case 0b01010010: case 0b01010011: case 0b01010100: case 0b01010101: case 0b01010110: case 0b01010111: case 0b01011000: case 0b01011001: case 0b01011010: case 0b01011011: case 0b01011100: case 0b01011101: case 0b01011110: case 0b01011111: case 0b01100000: case 0b01100001: case 0b01100010: case 0b01100011: case 0b01100100: case 0b01100101: case 0b01100110: case 0b01100111: case 0b01101000: case 0b01101001: case 0b01101010: case 0b01101011: case 0b01101100: case 0b01101101: case 0b01101110: case 0b01101111: case 0b01110000: case 0b01110001: case 0b01110010: case 0b01110011: case 0b01110100: case 0b01110101: case 0b01110110: case 0b01110111: case 0b01111000: case 0b01111001: case 0b01111010: case 0b01111011: case 0b01111100: case 0b01111101: case 0b01111110: entry_type_ = HpackEntryType::kIndexedLiteralHeader; varint_decoder_.set_value(byte & 0x03f); return DecodeStatus::kDecodeDone; case 0b01111111: entry_type_ = HpackEntryType::kIndexedLiteralHeader; return varint_decoder_.StartExtended(6, db); case 0b10000000: case 0b10000001: case 0b10000010: case 0b10000011: case 0b10000100: case 0b10000101: case 0b10000110: case 0b10000111: case 0b10001000: case 0b10001001: case 0b10001010: case 0b10001011: case 0b10001100: case 0b10001101: case 0b10001110: case 0b10001111: case 0b10010000: case 0b10010001: case 0b10010010: case 0b10010011: case 0b10010100: case 0b10010101: case 0b10010110: case 0b10010111: case 0b10011000: case 0b10011001: case 0b10011010: case 0b10011011: case 0b10011100: case 0b10011101: case 0b10011110: case 0b10011111: case 0b10100000: case 0b10100001: case 0b10100010: case 0b10100011: case 0b10100100: case 0b10100101: case 0b10100110: case 0b10100111: case 0b10101000: case 0b10101001: case 0b10101010: case 0b10101011: case 0b10101100: case 0b10101101: case 0b10101110: case 0b10101111: case 0b10110000: case 0b10110001: case 0b10110010: case 0b10110011: case 0b10110100: case 0b10110101: case 0b10110110: case 0b10110111: case 0b10111000: case 0b10111001: case 0b10111010: case 0b10111011: case 0b10111100: case 0b10111101: case 0b10111110: case 0b10111111: case 0b11000000: case 0b11000001: case 0b11000010: case 0b11000011: case 0b11000100: case 0b11000101: case 0b11000110: case 0b11000111: case 0b11001000: case 0b11001001: case 0b11001010: case 0b11001011: case 0b11001100: case 0b11001101: case 0b11001110: case 0b11001111: case 0b11010000: case 0b11010001: case 0b11010010: case 0b11010011: case 0b11010100: case 0b11010101: case 0b11010110: case 0b11010111: case 0b11011000: case 0b11011001: case 0b11011010: case 0b11011011: case 0b11011100: case 0b11011101: case 0b11011110: case 0b11011111: case 0b11100000: case 0b11100001: case 0b11100010: case 0b11100011: case 0b11100100: case 0b11100101: case 0b11100110: case 0b11100111: case 0b11101000: case 0b11101001: case 0b11101010: case 0b11101011: case 0b11101100: case 0b11101101: case 0b11101110: case 0b11101111: case 0b11110000: case 0b11110001: case 0b11110010: case 0b11110011: case 0b11110100: case 0b11110101: case 0b11110110: case 0b11110111: case 0b11111000: case 0b11111001: case 0b11111010: case 0b11111011: case 0b11111100: case 0b11111101: case 0b11111110: entry_type_ = HpackEntryType::kIndexedHeader; varint_decoder_.set_value(byte & 0x07f); return DecodeStatus::kDecodeDone; case 0b11111111: entry_type_ = HpackEntryType::kIndexedHeader; return varint_decoder_.StartExtended(7, db); } QUICHE_BUG(http2_bug_66_1) << "Unreachable, byte=" << std::hex << static_cast<uint32_t>(byte); QUICHE_CODE_COUNT_N(decompress_failure_3, 17, 23); return DecodeStatus::kDecodeError; } }
#include "quiche/http2/hpack/decoder/hpack_entry_type_decoder.h" #include <vector> #include "quiche/http2/test_tools/hpack_block_builder.h" #include "quiche/http2/test_tools/random_decoder_test_base.h" #include "quiche/http2/test_tools/verify_macros.h" #include "quiche/common/platform/api/quiche_logging.h" #include "quiche/common/platform/api/quiche_test.h" using ::testing::AssertionSuccess; namespace http2 { namespace test { namespace { const bool kReturnNonZeroOnFirst = true; class HpackEntryTypeDecoderTest : public RandomDecoderTest { protected: DecodeStatus StartDecoding(DecodeBuffer* b) override { QUICHE_CHECK_LT(0u, b->Remaining()); return decoder_.Start(b); } DecodeStatus ResumeDecoding(DecodeBuffer* b) override { return decoder_.Resume(b); } HpackEntryTypeDecoder decoder_; }; TEST_F(HpackEntryTypeDecoderTest, DynamicTableSizeUpdate) { for (uint32_t size = 0; size < 1000 * 1000; size += 256) { HpackBlockBuilder bb; bb.AppendDynamicTableSizeUpdate(size); DecodeBuffer db(bb.buffer()); auto validator = [size, this]() -> AssertionResult { HTTP2_VERIFY_EQ(HpackEntryType::kDynamicTableSizeUpdate, decoder_.entry_type()); HTTP2_VERIFY_EQ(size, decoder_.varint()); return AssertionSuccess(); }; EXPECT_TRUE(DecodeAndValidateSeveralWays(&db, kReturnNonZeroOnFirst, ValidateDoneAndEmpty(validator))) << "\nentry_type=kDynamicTableSizeUpdate, size=" << size; EXPECT_TRUE(validator()); } } TEST_F(HpackEntryTypeDecoderTest, HeaderWithIndex) { std::vector<HpackEntryType> entry_types = { HpackEntryType::kIndexedHeader, HpackEntryType::kIndexedLiteralHeader, HpackEntryType::kUnindexedLiteralHeader, HpackEntryType::kNeverIndexedLiteralHeader, }; for (const HpackEntryType entry_type : entry_types) { const uint32_t first = entry_type == HpackEntryType::kIndexedHeader ? 1 : 0; for (uint32_t index = first; index < 1000; ++index) { HpackBlockBuilder bb; bb.AppendEntryTypeAndVarint(entry_type, index); DecodeBuffer db(bb.buffer()); auto validator = [entry_type, index, this]() -> AssertionResult { HTTP2_VERIFY_EQ(entry_type, decoder_.entry_type()); HTTP2_VERIFY_EQ(index, decoder_.varint()); return AssertionSuccess(); }; EXPECT_TRUE(DecodeAndValidateSeveralWays(&db, kReturnNonZeroOnFirst, ValidateDoneAndEmpty(validator))) << "\nentry_type=" << entry_type << ", index=" << index; EXPECT_TRUE(validator()); } } } } } }
35
#ifndef TENSORFLOW_TSL_PROFILER_LIB_PROFILER_LOCK_H_ #define TENSORFLOW_TSL_PROFILER_LIB_PROFILER_LOCK_H_ #include <utility> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "tsl/platform/statusor.h" namespace tsl { namespace profiler { constexpr absl::string_view kProfilerLockContention = "Another profiling session active."; class ProfilerLock { public: static bool HasActiveSession(); static absl::StatusOr<ProfilerLock> Acquire(); ProfilerLock() = default; ProfilerLock(const ProfilerLock&) = delete; ProfilerLock& operator=(const ProfilerLock&) = delete; ProfilerLock(ProfilerLock&& other) : active_(std::exchange(other.active_, false)) {} ProfilerLock& operator=(ProfilerLock&& other) { active_ = std::exchange(other.active_, false); return *this; } ~ProfilerLock() { ReleaseIfActive(); } void ReleaseIfActive(); bool Active() const { return active_; } private: explicit ProfilerLock(bool active) : active_(active) {} bool active_ = false; }; } } #endif #include "tsl/profiler/lib/profiler_lock.h" #include <atomic> #include "absl/status/statusor.h" #include "xla/tsl/util/env_var.h" #include "tsl/platform/errors.h" #include "tsl/platform/macros.h" namespace tsl { namespace profiler { namespace { std::atomic<int> g_session_active = ATOMIC_VAR_INIT(0); static_assert(ATOMIC_INT_LOCK_FREE == 2, "Assumed atomic<int> was lock free"); } bool ProfilerLock::HasActiveSession() { return g_session_active.load(std::memory_order_relaxed) != 0; } absl::StatusOr<ProfilerLock> ProfilerLock::Acquire() { static bool tf_profiler_disabled = [] { bool disabled = false; ReadBoolFromEnvVar("TF_DISABLE_PROFILING", false, &disabled).IgnoreError(); return disabled; }(); if (TF_PREDICT_FALSE(tf_profiler_disabled)) { return errors::AlreadyExists( "TensorFlow Profiler is permanently disabled by env var " "TF_DISABLE_PROFILING."); } int already_active = g_session_active.exchange(1, std::memory_order_acq_rel); if (already_active) { return errors::AlreadyExists(kProfilerLockContention); } return ProfilerLock(true); } void ProfilerLock::ReleaseIfActive() { if (active_) { g_session_active.store(0, std::memory_order_release); active_ = false; } } } }
#include "tsl/profiler/lib/profiler_lock.h" #include <utility> #include "absl/status/statusor.h" #include "tsl/platform/test.h" namespace tsl { namespace profiler { namespace { TEST(ProfilerLockTest, DefaultConstructorCreatesInactiveInstance) { ProfilerLock profiler_lock; EXPECT_FALSE(profiler_lock.Active()); } TEST(ProfilerLockTest, AcquireAndReleaseExplicitly) { absl::StatusOr<ProfilerLock> profiler_lock = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock.ok()); EXPECT_TRUE(profiler_lock->Active()); profiler_lock->ReleaseIfActive(); EXPECT_FALSE(profiler_lock->Active()); } TEST(ProfilerLockTest, AcquireAndReleaseOnDestruction) { absl::StatusOr<ProfilerLock> profiler_lock = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock.ok()); EXPECT_TRUE(profiler_lock->Active()); } TEST(ProfilerLockTest, ReacquireWithoutReleaseFails) { absl::StatusOr<ProfilerLock> profiler_lock_1 = ProfilerLock::Acquire(); absl::StatusOr<ProfilerLock> profiler_lock_2 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); EXPECT_TRUE(profiler_lock_1->Active()); EXPECT_FALSE(profiler_lock_2.ok()); } TEST(ProfilerLockTest, ReacquireAfterReleaseSucceeds) { auto profiler_lock_1 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); ASSERT_TRUE(profiler_lock_1->Active()); profiler_lock_1->ReleaseIfActive(); ASSERT_FALSE(profiler_lock_1->Active()); auto profiler_lock_2 = ProfilerLock::Acquire(); EXPECT_TRUE(profiler_lock_2.ok()); EXPECT_TRUE(profiler_lock_2->Active()); } TEST(ProfilerLockTest, InactiveAfterMove) { absl::StatusOr<ProfilerLock> profiler_lock_1 = ProfilerLock::Acquire(); ASSERT_TRUE(profiler_lock_1.ok()); ASSERT_TRUE(profiler_lock_1->Active()); ProfilerLock profiler_lock_2 = std::move(*profiler_lock_1); EXPECT_FALSE(profiler_lock_1->Active()); EXPECT_TRUE(profiler_lock_2.Active()); } } } }
36
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_VALUE_EXPORT_UTIL_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_VALUE_EXPORT_UTIL_H_ #include "google/protobuf/struct.pb.h" #include "google/protobuf/arena.h" #include "absl/status/status.h" #include "eval/public/cel_value.h" namespace google::api::expr::runtime { absl::Status ExportAsProtoValue(const CelValue& in_value, google::protobuf::Value* out_value, google::protobuf::Arena* arena); inline absl::Status ExportAsProtoValue(const CelValue& in_value, google::protobuf::Value* out_value) { google::protobuf::Arena arena; return ExportAsProtoValue(in_value, out_value, &arena); } } #endif #include "eval/public/value_export_util.h" #include <string> #include "google/protobuf/util/json_util.h" #include "google/protobuf/util/time_util.h" #include "absl/strings/escaping.h" #include "absl/strings/str_cat.h" #include "internal/proto_time_encoding.h" namespace google::api::expr::runtime { using google::protobuf::Duration; using google::protobuf::Timestamp; using google::protobuf::Value; using google::protobuf::util::TimeUtil; absl::Status KeyAsString(const CelValue& value, std::string* key) { switch (value.type()) { case CelValue::Type::kInt64: { *key = absl::StrCat(value.Int64OrDie()); break; } case CelValue::Type::kUint64: { *key = absl::StrCat(value.Uint64OrDie()); break; } case CelValue::Type::kString: { key->assign(value.StringOrDie().value().data(), value.StringOrDie().value().size()); break; } default: { return absl::InvalidArgumentError("Unsupported map type"); } } return absl::OkStatus(); } absl::Status ExportAsProtoValue(const CelValue& in_value, Value* out_value, google::protobuf::Arena* arena) { if (in_value.IsNull()) { out_value->set_null_value(google::protobuf::NULL_VALUE); return absl::OkStatus(); } switch (in_value.type()) { case CelValue::Type::kBool: { out_value->set_bool_value(in_value.BoolOrDie()); break; } case CelValue::Type::kInt64: { out_value->set_number_value(static_cast<double>(in_value.Int64OrDie())); break; } case CelValue::Type::kUint64: { out_value->set_number_value(static_cast<double>(in_value.Uint64OrDie())); break; } case CelValue::Type::kDouble: { out_value->set_number_value(in_value.DoubleOrDie()); break; } case CelValue::Type::kString: { auto value = in_value.StringOrDie().value(); out_value->set_string_value(value.data(), value.size()); break; } case CelValue::Type::kBytes: { absl::Base64Escape(in_value.BytesOrDie().value(), out_value->mutable_string_value()); break; } case CelValue::Type::kDuration: { Duration duration; auto status = cel::internal::EncodeDuration(in_value.DurationOrDie(), &duration); if (!status.ok()) { return status; } out_value->set_string_value(TimeUtil::ToString(duration)); break; } case CelValue::Type::kTimestamp: { Timestamp timestamp; auto status = cel::internal::EncodeTime(in_value.TimestampOrDie(), &timestamp); if (!status.ok()) { return status; } out_value->set_string_value(TimeUtil::ToString(timestamp)); break; } case CelValue::Type::kMessage: { google::protobuf::util::JsonPrintOptions json_options; json_options.preserve_proto_field_names = true; std::string json; auto status = google::protobuf::util::MessageToJsonString(*in_value.MessageOrDie(), &json, json_options); if (!status.ok()) { return absl::InternalError(status.ToString()); } google::protobuf::util::JsonParseOptions json_parse_options; status = google::protobuf::util::JsonStringToMessage(json, out_value, json_parse_options); if (!status.ok()) { return absl::InternalError(status.ToString()); } break; } case CelValue::Type::kList: { const CelList* cel_list = in_value.ListOrDie(); auto out_values = out_value->mutable_list_value(); for (int i = 0; i < cel_list->size(); i++) { auto status = ExportAsProtoValue((*cel_list).Get(arena, i), out_values->add_values(), arena); if (!status.ok()) { return status; } } break; } case CelValue::Type::kMap: { const CelMap* cel_map = in_value.MapOrDie(); CEL_ASSIGN_OR_RETURN(auto keys_list, cel_map->ListKeys(arena)); auto out_values = out_value->mutable_struct_value()->mutable_fields(); for (int i = 0; i < keys_list->size(); i++) { std::string key; CelValue map_key = (*keys_list).Get(arena, i); auto status = KeyAsString(map_key, &key); if (!status.ok()) { return status; } auto map_value_ref = (*cel_map).Get(arena, map_key); CelValue map_value = (map_value_ref) ? map_value_ref.value() : CelValue(); status = ExportAsProtoValue(map_value, &((*out_values)[key]), arena); if (!status.ok()) { return status; } } break; } default: { return absl::InvalidArgumentError("Unsupported value type"); } } return absl::OkStatus(); } }
#include "eval/public/value_export_util.h" #include <string> #include <utility> #include <vector> #include "absl/strings/str_cat.h" #include "eval/public/containers/container_backed_list_impl.h" #include "eval/public/containers/container_backed_map_impl.h" #include "eval/public/structs/cel_proto_wrapper.h" #include "eval/testutil/test_message.pb.h" #include "internal/status_macros.h" #include "internal/testing.h" #include "testutil/util.h" namespace google::api::expr::runtime { namespace { using google::protobuf::Duration; using google::protobuf::ListValue; using google::protobuf::Struct; using google::protobuf::Timestamp; using google::protobuf::Value; using google::protobuf::Arena; TEST(ValueExportUtilTest, ConvertBoolValue) { CelValue cel_value = CelValue::CreateBool(true); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kBoolValue); EXPECT_EQ(value.bool_value(), true); } TEST(ValueExportUtilTest, ConvertInt64Value) { CelValue cel_value = CelValue::CreateInt64(-1); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kNumberValue); EXPECT_DOUBLE_EQ(value.number_value(), -1); } TEST(ValueExportUtilTest, ConvertUint64Value) { CelValue cel_value = CelValue::CreateUint64(1); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kNumberValue); EXPECT_DOUBLE_EQ(value.number_value(), 1); } TEST(ValueExportUtilTest, ConvertDoubleValue) { CelValue cel_value = CelValue::CreateDouble(1.3); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kNumberValue); EXPECT_DOUBLE_EQ(value.number_value(), 1.3); } TEST(ValueExportUtilTest, ConvertStringValue) { std::string test = "test"; CelValue cel_value = CelValue::CreateString(&test); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStringValue); EXPECT_EQ(value.string_value(), "test"); } TEST(ValueExportUtilTest, ConvertBytesValue) { std::string test = "test"; CelValue cel_value = CelValue::CreateBytes(&test); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStringValue); EXPECT_EQ(value.string_value(), "dGVzdA=="); } TEST(ValueExportUtilTest, ConvertDurationValue) { Duration duration; duration.set_seconds(2); duration.set_nanos(3); CelValue cel_value = CelProtoWrapper::CreateDuration(&duration); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStringValue); EXPECT_EQ(value.string_value(), "2.000000003s"); } TEST(ValueExportUtilTest, ConvertTimestampValue) { Timestamp timestamp; timestamp.set_seconds(1000000000); timestamp.set_nanos(3); CelValue cel_value = CelProtoWrapper::CreateTimestamp(&timestamp); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStringValue); EXPECT_EQ(value.string_value(), "2001-09-09T01:46:40.000000003Z"); } TEST(ValueExportUtilTest, ConvertStructMessage) { Struct struct_msg; (*struct_msg.mutable_fields())["string_value"].set_string_value("test"); Arena arena; CelValue cel_value = CelProtoWrapper::CreateMessage(&struct_msg, &arena); Value value; EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); EXPECT_THAT(value.struct_value(), testutil::EqualsProto(struct_msg)); } TEST(ValueExportUtilTest, ConvertValueMessage) { Value value_in; (*value_in.mutable_struct_value()->mutable_fields())["boolean_value"] .set_bool_value(true); Arena arena; CelValue cel_value = CelProtoWrapper::CreateMessage(&value_in, &arena); Value value_out; EXPECT_OK(ExportAsProtoValue(cel_value, &value_out)); EXPECT_THAT(value_in, testutil::EqualsProto(value_out)); } TEST(ValueExportUtilTest, ConvertListValueMessage) { ListValue list_value; list_value.add_values()->set_string_value("test"); list_value.add_values()->set_bool_value(true); Arena arena; CelValue cel_value = CelProtoWrapper::CreateMessage(&list_value, &arena); Value value_out; EXPECT_OK(ExportAsProtoValue(cel_value, &value_out)); EXPECT_THAT(list_value, testutil::EqualsProto(value_out.list_value())); } TEST(ValueExportUtilTest, ConvertRepeatedBoolValue) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_bool_list(true); msg->add_bool_list(false); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("bool_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_EQ(list_value.list_value().values(0).bool_value(), true); EXPECT_EQ(list_value.list_value().values(1).bool_value(), false); } TEST(ValueExportUtilTest, ConvertRepeatedInt32Value) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_int32_list(2); msg->add_int32_list(3); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("int32_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_DOUBLE_EQ(list_value.list_value().values(0).number_value(), 2); EXPECT_DOUBLE_EQ(list_value.list_value().values(1).number_value(), 3); } TEST(ValueExportUtilTest, ConvertRepeatedInt64Value) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_int64_list(2); msg->add_int64_list(3); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("int64_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_EQ(list_value.list_value().values(0).string_value(), "2"); EXPECT_EQ(list_value.list_value().values(1).string_value(), "3"); } TEST(ValueExportUtilTest, ConvertRepeatedUint64Value) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_uint64_list(2); msg->add_uint64_list(3); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("uint64_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_EQ(list_value.list_value().values(0).string_value(), "2"); EXPECT_EQ(list_value.list_value().values(1).string_value(), "3"); } TEST(ValueExportUtilTest, ConvertRepeatedDoubleValue) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_double_list(2); msg->add_double_list(3); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("double_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_DOUBLE_EQ(list_value.list_value().values(0).number_value(), 2); EXPECT_DOUBLE_EQ(list_value.list_value().values(1).number_value(), 3); } TEST(ValueExportUtilTest, ConvertRepeatedStringValue) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_string_list("test1"); msg->add_string_list("test2"); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("string_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_EQ(list_value.list_value().values(0).string_value(), "test1"); EXPECT_EQ(list_value.list_value().values(1).string_value(), "test2"); } TEST(ValueExportUtilTest, ConvertRepeatedBytesValue) { Arena arena; Value value; TestMessage* msg = Arena::Create<TestMessage>(&arena); msg->add_bytes_list("test1"); msg->add_bytes_list("test2"); CelValue cel_value = CelProtoWrapper::CreateMessage(msg, &arena); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); Value list_value = value.struct_value().fields().at("bytes_list"); EXPECT_TRUE(list_value.has_list_value()); EXPECT_EQ(list_value.list_value().values(0).string_value(), "dGVzdDE="); EXPECT_EQ(list_value.list_value().values(1).string_value(), "dGVzdDI="); } TEST(ValueExportUtilTest, ConvertCelList) { Arena arena; Value value; std::vector<CelValue> values; values.push_back(CelValue::CreateInt64(2)); values.push_back(CelValue::CreateInt64(3)); CelList *cel_list = Arena::Create<ContainerBackedListImpl>(&arena, values); CelValue cel_value = CelValue::CreateList(cel_list); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kListValue); EXPECT_DOUBLE_EQ(value.list_value().values(0).number_value(), 2); EXPECT_DOUBLE_EQ(value.list_value().values(1).number_value(), 3); } TEST(ValueExportUtilTest, ConvertCelMapWithStringKey) { Value value; std::vector<std::pair<CelValue, CelValue>> map_entries; std::string key1 = "key1"; std::string key2 = "key2"; std::string value1 = "value1"; std::string value2 = "value2"; map_entries.push_back( {CelValue::CreateString(&key1), CelValue::CreateString(&value1)}); map_entries.push_back( {CelValue::CreateString(&key2), CelValue::CreateString(&value2)}); auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(map_entries)) .value(); CelValue cel_value = CelValue::CreateMap(cel_map.get()); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); const auto& fields = value.struct_value().fields(); EXPECT_EQ(fields.at(key1).string_value(), value1); EXPECT_EQ(fields.at(key2).string_value(), value2); } TEST(ValueExportUtilTest, ConvertCelMapWithInt64Key) { Value value; std::vector<std::pair<CelValue, CelValue>> map_entries; int key1 = -1; int key2 = 2; std::string value1 = "value1"; std::string value2 = "value2"; map_entries.push_back( {CelValue::CreateInt64(key1), CelValue::CreateString(&value1)}); map_entries.push_back( {CelValue::CreateInt64(key2), CelValue::CreateString(&value2)}); auto cel_map = CreateContainerBackedMap( absl::Span<std::pair<CelValue, CelValue>>(map_entries)) .value(); CelValue cel_value = CelValue::CreateMap(cel_map.get()); EXPECT_OK(ExportAsProtoValue(cel_value, &value)); EXPECT_EQ(value.kind_case(), Value::KindCase::kStructValue); const auto& fields = value.struct_value().fields(); EXPECT_EQ(fields.at(absl::StrCat(key1)).string_value(), value1); EXPECT_EQ(fields.at(absl::StrCat(key2)).string_value(), value2); } } }
37
#ifndef TENSORFLOW_TSL_LIB_IO_INPUTBUFFER_H_ #define TENSORFLOW_TSL_LIB_IO_INPUTBUFFER_H_ #include <string> #include "tsl/platform/coding.h" #include "tsl/platform/env.h" #include "tsl/platform/macros.h" #include "tsl/platform/status.h" #include "tsl/platform/types.h" namespace tsl { namespace io { class InputBuffer { public: InputBuffer(RandomAccessFile* file, size_t buffer_bytes); ~InputBuffer(); template <typename T> absl::Status ReadLine(T* result); absl::Status ReadNBytes(int64_t bytes_to_read, std::string* result); absl::Status ReadNBytes(int64_t bytes_to_read, char* result, size_t* bytes_read); absl::Status ReadVarint32(uint32* result); absl::Status ReadVarint64(uint64* result); absl::Status SkipNBytes(int64_t bytes_to_skip); absl::Status Seek(int64_t position); absl::Status Hint(int64_t bytes_to_read); int64_t Tell() const { return file_pos_ - (limit_ - pos_); } RandomAccessFile* file() const { return file_; } private: absl::Status FillBuffer(); absl::Status ReadVarint32Fallback(uint32* result); absl::Status ReadVarint64Fallback(uint64* result); template <typename T> absl::Status ReadVarintFallback(T* result, int max_bytes); RandomAccessFile* file_; int64_t file_pos_; size_t size_; char* buf_; char* pos_; char* limit_; InputBuffer(const InputBuffer&) = delete; void operator=(const InputBuffer&) = delete; }; extern template Status InputBuffer::ReadLine<std::string>(std::string* result); extern template Status InputBuffer::ReadLine<tstring>(tstring* result); inline absl::Status InputBuffer::ReadVarint32(uint32* result) { if (pos_ + core::kMaxVarint32Bytes <= limit_) { const char* offset = core::GetVarint32Ptr(pos_, limit_, result); if (offset == nullptr) return errors::OutOfRange("Parsed past limit."); pos_ = const_cast<char*>(offset); return absl::OkStatus(); } else { return ReadVarint32Fallback(result); } } inline absl::Status InputBuffer::ReadVarint64(uint64* result) { if (pos_ + core::kMaxVarint64Bytes <= limit_) { const char* offset = core::GetVarint64Ptr(pos_, limit_, result); if (offset == nullptr) return errors::OutOfRange("Parsed past limit."); pos_ = const_cast<char*>(offset); return absl::OkStatus(); } else { return ReadVarint64Fallback(result); } } } } #endif #include "tsl/lib/io/inputbuffer.h" #include <algorithm> #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" namespace tsl { namespace io { InputBuffer::InputBuffer(RandomAccessFile* file, size_t buffer_bytes) : file_(file), file_pos_(0), size_(buffer_bytes), buf_(new char[size_]), pos_(buf_), limit_(buf_) {} InputBuffer::~InputBuffer() { delete[] buf_; } absl::Status InputBuffer::FillBuffer() { StringPiece data; absl::Status s = file_->Read(file_pos_, size_, &data, buf_); if (data.data() != buf_) { memmove(buf_, data.data(), data.size()); } pos_ = buf_; limit_ = pos_ + data.size(); file_pos_ += data.size(); return s; } template <typename T> absl::Status InputBuffer::ReadLine(T* result) { result->clear(); absl::Status s; do { size_t buf_remain = limit_ - pos_; char* newline = static_cast<char*>(memchr(pos_, '\n', buf_remain)); if (newline != nullptr) { size_t result_len = newline - pos_; result->append(pos_, result_len); pos_ = newline + 1; if (!result->empty() && result->back() == '\r') { result->resize(result->size() - 1); } return absl::OkStatus(); } if (buf_remain > 0) result->append(pos_, buf_remain); s = FillBuffer(); DCHECK_EQ(pos_, buf_); } while (limit_ != buf_); if (!result->empty() && result->back() == '\r') { result->resize(result->size() - 1); } if (errors::IsOutOfRange(s) && !result->empty()) { return absl::OkStatus(); } return s; } template Status InputBuffer::ReadLine<std::string>(std::string* result); template Status InputBuffer::ReadLine<tstring>(tstring* result); absl::Status InputBuffer::ReadNBytes(int64_t bytes_to_read, std::string* result) { result->clear(); if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } result->resize(bytes_to_read); size_t bytes_read = 0; absl::Status status = ReadNBytes(bytes_to_read, &(*result)[0], &bytes_read); if (bytes_read < bytes_to_read) result->resize(bytes_read); return status; } absl::Status InputBuffer::ReadNBytes(int64_t bytes_to_read, char* result, size_t* bytes_read) { if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } absl::Status status; *bytes_read = 0; while (*bytes_read < static_cast<size_t>(bytes_to_read)) { if (pos_ == limit_) { status = FillBuffer(); if (limit_ == buf_) { break; } } const int64_t bytes_to_copy = std::min<int64_t>(limit_ - pos_, bytes_to_read - *bytes_read); memcpy(result + *bytes_read, pos_, bytes_to_copy); pos_ += bytes_to_copy; *bytes_read += bytes_to_copy; } if (errors::IsOutOfRange(status) && (*bytes_read == static_cast<size_t>(bytes_to_read))) { return absl::OkStatus(); } return status; } absl::Status InputBuffer::ReadVarint32Fallback(uint32* result) { absl::Status s = ReadVarintFallback(result, core::kMaxVarint32Bytes); if (errors::IsDataLoss(s)) { return errors::DataLoss("Stored data is too large to be a varint32."); } return s; } absl::Status InputBuffer::ReadVarint64Fallback(uint64* result) { absl::Status s = ReadVarintFallback(result, core::kMaxVarint64Bytes); if (errors::IsDataLoss(s)) { return errors::DataLoss("Stored data is too large to be a varint64."); } return s; } template <typename T> absl::Status InputBuffer::ReadVarintFallback(T* result, int max_bytes) { uint8 scratch = 0; auto* p = reinterpret_cast<char*>(&scratch); size_t unused_bytes_read = 0; *result = 0; for (int index = 0; index < max_bytes; index++) { int shift = 7 * index; TF_RETURN_IF_ERROR(ReadNBytes(1, p, &unused_bytes_read)); *result |= (static_cast<T>(scratch) & 127) << shift; if (!(scratch & 128)) return absl::OkStatus(); } return errors::DataLoss("Stored data longer than ", max_bytes, " bytes."); } absl::Status InputBuffer::SkipNBytes(int64_t bytes_to_skip) { if (bytes_to_skip < 0) { return errors::InvalidArgument("Can only skip forward, not ", bytes_to_skip); } int64_t bytes_skipped = 0; absl::Status s; while (bytes_skipped < bytes_to_skip) { if (pos_ == limit_) { s = FillBuffer(); if (limit_ == buf_) { break; } } const int64_t bytes_to_advance = std::min<int64_t>(limit_ - pos_, bytes_to_skip - bytes_skipped); bytes_skipped += bytes_to_advance; pos_ += bytes_to_advance; } if (errors::IsOutOfRange(s) && bytes_skipped == bytes_to_skip) { return absl::OkStatus(); } return s; } absl::Status InputBuffer::Seek(int64_t position) { if (position < 0) { return errors::InvalidArgument("Seeking to a negative position: ", position); } const int64_t bufpos = file_pos_ - static_cast<int64_t>(limit_ - buf_); if (position >= bufpos && position < file_pos_) { pos_ = buf_ + (position - bufpos); DCHECK(pos_ >= buf_ && pos_ < limit_); } else { pos_ = limit_ = buf_; file_pos_ = position; } return absl::OkStatus(); } absl::Status InputBuffer::Hint(int64_t bytes_to_read) { if (bytes_to_read < 0) { return errors::InvalidArgument("Can't read a negative number of bytes: ", bytes_to_read); } if (bytes_to_read > size_) { return absl::OkStatus(); } const int64_t bytes_remain_in_buf = static_cast<int64_t>(limit_ - pos_); if (bytes_to_read <= bytes_remain_in_buf) { return absl::OkStatus(); } memmove(buf_, pos_, bytes_remain_in_buf); pos_ = buf_; limit_ = buf_ + bytes_remain_in_buf; bytes_to_read -= bytes_remain_in_buf; StringPiece data; absl::Status s = file_->Read(file_pos_, bytes_to_read, &data, limit_); if (data.data() != limit_) { memmove(limit_, data.data(), data.size()); } limit_ += data.size(); file_pos_ += data.size(); if (errors::IsOutOfRange(s) && data.size() == bytes_to_read) { return absl::OkStatus(); } else { return s; } } } }
#include "tsl/lib/io/inputbuffer.h" #include <vector> #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/coding.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/logging.h" #include "tsl/platform/status.h" #include "tsl/platform/str_util.h" #include "tsl/platform/strcat.h" #include "tsl/platform/test.h" namespace tsl { namespace { static std::vector<int> BufferSizes() { return {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 65536}; } TEST(InputBuffer, ReadLine_Empty) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine1) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_CHECK_OK( WriteStringToFile(env, fname, "line one\nline two\nline three\n")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_NoTrailingNewLine) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\nline two\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_EmptyLines) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_CHECK_OK( WriteStringToFile(env, fname, "line one\n\n\nline two\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadLine_CRLF) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "line one\r\n\r\n\r\nline two\r\nline three")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string line; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line one"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, ""); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line two"); TF_CHECK_OK(in.ReadLine(&line)); EXPECT_EQ(line, "line three"); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); EXPECT_TRUE(errors::IsOutOfRange(in.ReadLine(&line))); } } TEST(InputBuffer, ReadNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); EXPECT_EQ(7, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); TF_CHECK_OK(in.ReadNBytes(0, &read)); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } size_t bytes_read; for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); char read[5]; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(3, read, &bytes_read)); EXPECT_EQ(StringPiece(read, 3), "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(StringPiece(read, 3), "012"); EXPECT_EQ(3, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(4, read, &bytes_read)); EXPECT_EQ(StringPiece(read, 4), "3456"); EXPECT_EQ(7, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(StringPiece(read, 4), "3456"); EXPECT_EQ(7, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, read, &bytes_read))); EXPECT_EQ(StringPiece(read, 3), "789"); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, read, &bytes_read))); EXPECT_EQ(StringPiece(read, 3), "789"); EXPECT_EQ(10, in.Tell()); TF_ASSERT_OK(in.ReadNBytes(0, read, &bytes_read)); EXPECT_EQ(StringPiece(read, 3), "789"); EXPECT_EQ(10, in.Tell()); } } TEST(InputBuffer, SkipNBytes) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); EXPECT_EQ(0, in.Tell()); TF_CHECK_OK(in.SkipNBytes(3)); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.SkipNBytes(0)); EXPECT_EQ(3, in.Tell()); TF_CHECK_OK(in.ReadNBytes(2, &read)); EXPECT_EQ(read, "34"); EXPECT_EQ(5, in.Tell()); TF_CHECK_OK(in.SkipNBytes(0)); EXPECT_EQ(5, in.Tell()); TF_CHECK_OK(in.SkipNBytes(2)); EXPECT_EQ(7, in.Tell()); TF_CHECK_OK(in.ReadNBytes(1, &read)); EXPECT_EQ(read, "7"); EXPECT_EQ(8, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.SkipNBytes(5))); EXPECT_EQ(10, in.Tell()); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(5, &read))); EXPECT_EQ(read, ""); EXPECT_EQ(10, in.Tell()); } } TEST(InputBuffer, Seek) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "345"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.Seek(3)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); TF_CHECK_OK(in.Seek(4)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "4567"); TF_CHECK_OK(in.Seek(1 << 25)); EXPECT_TRUE(errors::IsOutOfRange(in.ReadNBytes(1, &read))); EXPECT_TRUE(absl::StrContains(in.Seek(-1).ToString(), "negative position")); } } TEST(InputBuffer, ReadVarint32) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); std::vector<uint32> data; uint32 i = 0; for (; i < (1U << 10); i += 1) data.push_back(i); for (; i < (1U << 15); i += 5) data.push_back(i); for (; i < (1U << 31); i += 132817) data.push_back(i); data.push_back(std::numeric_limits<uint32>::max()); { std::unique_ptr<WritableFile> file; TF_CHECK_OK(env->NewWritableFile(fname, &file)); string varint; for (uint32 number : data) { varint.clear(); core::PutVarint32(&varint, number); TF_CHECK_OK(file->Append(StringPiece(varint))); } } for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); io::InputBuffer in(file.get(), buf_size); uint32 result = 0; for (uint32 expected : data) { TF_ASSERT_OK(in.ReadVarint32(&result)); EXPECT_EQ(expected, result); } EXPECT_TRUE(errors::IsOutOfRange(in.ReadVarint32(&result))); } } TEST(InputBuffer, ReadVarint64) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); std::vector<uint64> data; uint64 i = 0; for (; i < (1U << 10); i += 1) data.push_back(i); for (; i < (1U << 15); i += 5) data.push_back(i); for (; i < (1U << 31); i += 164817) data.push_back(i); for (; i < (1ULL << 63); i += 16481797854795663UL) data.push_back(i); data.push_back(std::numeric_limits<uint64>::max()); { std::unique_ptr<WritableFile> file; TF_CHECK_OK(env->NewWritableFile(fname, &file)); string varint; for (uint64 number : data) { varint.clear(); core::PutVarint64(&varint, number); TF_CHECK_OK(file->Append(StringPiece(varint))); } } for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); io::InputBuffer in(file.get(), buf_size); uint64 result = 0; for (uint64 expected : data) { TF_ASSERT_OK(in.ReadVarint64(&result)); EXPECT_EQ(expected, result); } EXPECT_TRUE(errors::IsOutOfRange(in.ReadVarint64(&result))); } } TEST(InputBuffer, Hint) { Env* env = Env::Default(); string fname; ASSERT_TRUE(env->LocalTempFilename(&fname)); TF_ASSERT_OK(WriteStringToFile(env, fname, "0123456789")); for (auto buf_size : BufferSizes()) { std::unique_ptr<RandomAccessFile> file; TF_CHECK_OK(env->NewRandomAccessFile(fname, &file)); string read; io::InputBuffer in(file.get(), buf_size); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.Hint(4)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "345"); TF_CHECK_OK(in.Hint(1)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "678"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.Hint(7)); TF_CHECK_OK(in.ReadNBytes(3, &read)); EXPECT_EQ(read, "012"); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "3456"); TF_CHECK_OK(in.Hint(2)); TF_CHECK_OK(in.Seek(4)); TF_CHECK_OK(in.ReadNBytes(4, &read)); EXPECT_EQ(read, "4567"); TF_CHECK_OK(in.Seek(0)); TF_CHECK_OK(in.Hint(1 << 25)); TF_CHECK_OK(in.Seek(1 << 25)); EXPECT_TRUE(errors::IsOutOfRange(in.Hint(1))); EXPECT_TRUE(errors::IsInvalidArgument(in.Hint(-1))); } } } }
38
#ifndef ABSL_FLAGS_INTERNAL_PROGRAM_NAME_H_ #define ABSL_FLAGS_INTERNAL_PROGRAM_NAME_H_ #include <string> #include "absl/base/config.h" #include "absl/strings/string_view.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { std::string ProgramInvocationName(); std::string ShortProgramInvocationName(); void SetProgramInvocationName(absl::string_view prog_name_str); } ABSL_NAMESPACE_END } #endif #include "absl/flags/internal/program_name.h" #include <string> #include "absl/base/attributes.h" #include "absl/base/config.h" #include "absl/base/const_init.h" #include "absl/base/thread_annotations.h" #include "absl/flags/internal/path_util.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { ABSL_CONST_INIT static absl::Mutex program_name_guard(absl::kConstInit); ABSL_CONST_INIT static std::string* program_name ABSL_GUARDED_BY(program_name_guard) = nullptr; std::string ProgramInvocationName() { absl::MutexLock l(&program_name_guard); return program_name ? *program_name : "UNKNOWN"; } std::string ShortProgramInvocationName() { absl::MutexLock l(&program_name_guard); return program_name ? std::string(flags_internal::Basename(*program_name)) : "UNKNOWN"; } void SetProgramInvocationName(absl::string_view prog_name_str) { absl::MutexLock l(&program_name_guard); if (!program_name) program_name = new std::string(prog_name_str); else program_name->assign(prog_name_str.data(), prog_name_str.size()); } } ABSL_NAMESPACE_END }
#include "absl/flags/internal/program_name.h" #include <string> #include "gtest/gtest.h" #include "absl/strings/match.h" #include "absl/strings/string_view.h" namespace { namespace flags = absl::flags_internal; TEST(FlagsPathUtilTest, TestProgamNameInterfaces) { flags::SetProgramInvocationName("absl/flags/program_name_test"); std::string program_name = flags::ProgramInvocationName(); for (char& c : program_name) if (c == '\\') c = '/'; #if !defined(__wasm__) && !defined(__asmjs__) const std::string expect_name = "absl/flags/program_name_test"; const std::string expect_basename = "program_name_test"; #else const std::string expect_name = "this.program"; const std::string expect_basename = "this.program"; #endif EXPECT_TRUE(absl::EndsWith(program_name, expect_name)) << program_name; EXPECT_EQ(flags::ShortProgramInvocationName(), expect_basename); flags::SetProgramInvocationName("a/my_test"); EXPECT_EQ(flags::ProgramInvocationName(), "a/my_test"); EXPECT_EQ(flags::ShortProgramInvocationName(), "my_test"); absl::string_view not_null_terminated("absl/aaa/bbb"); not_null_terminated = not_null_terminated.substr(1, 10); flags::SetProgramInvocationName(not_null_terminated); EXPECT_EQ(flags::ProgramInvocationName(), "bsl/aaa/bb"); EXPECT_EQ(flags::ShortProgramInvocationName(), "bb"); } }
39
#ifndef THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CEL_FUNCTION_REGISTRY_H_ #define THIRD_PARTY_CEL_CPP_EVAL_PUBLIC_CEL_FUNCTION_REGISTRY_H_ #include <initializer_list> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/container/node_hash_map.h" #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "base/function.h" #include "base/function_descriptor.h" #include "base/kind.h" #include "eval/public/cel_function.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "runtime/function_overload_reference.h" #include "runtime/function_registry.h" namespace google::api::expr::runtime { class CelFunctionRegistry { public: using LazyOverload = cel::FunctionRegistry::LazyOverload; CelFunctionRegistry() = default; ~CelFunctionRegistry() = default; using Registrar = absl::Status (*)(CelFunctionRegistry*, const InterpreterOptions&); absl::Status Register(std::unique_ptr<CelFunction> function) { auto descriptor = function->descriptor(); return Register(descriptor, std::move(function)); } absl::Status Register(const cel::FunctionDescriptor& descriptor, std::unique_ptr<cel::Function> implementation) { return modern_registry_.Register(descriptor, std::move(implementation)); } absl::Status RegisterAll(std::initializer_list<Registrar> registrars, const InterpreterOptions& opts); absl::Status RegisterLazyFunction(const CelFunctionDescriptor& descriptor) { return modern_registry_.RegisterLazyFunction(descriptor); } std::vector<const CelFunction*> FindOverloads( absl::string_view name, bool receiver_style, const std::vector<CelValue::Type>& types) const; std::vector<cel::FunctionOverloadReference> FindStaticOverloads( absl::string_view name, bool receiver_style, const std::vector<cel::Kind>& types) const { return modern_registry_.FindStaticOverloads(name, receiver_style, types); } std::vector<const CelFunctionDescriptor*> FindLazyOverloads( absl::string_view name, bool receiver_style, const std::vector<CelValue::Type>& types) const; std::vector<LazyOverload> ModernFindLazyOverloads( absl::string_view name, bool receiver_style, const std::vector<CelValue::Type>& types) const { return modern_registry_.FindLazyOverloads(name, receiver_style, types); } absl::node_hash_map<std::string, std::vector<const cel::FunctionDescriptor*>> ListFunctions() const { return modern_registry_.ListFunctions(); } const cel::FunctionRegistry& InternalGetRegistry() const { return modern_registry_; } cel::FunctionRegistry& InternalGetRegistry() { return modern_registry_; } private: cel::FunctionRegistry modern_registry_; mutable absl::Mutex mu_; mutable absl::flat_hash_map<const cel::Function*, std::unique_ptr<CelFunction>> functions_ ABSL_GUARDED_BY(mu_); }; } #endif #include "eval/public/cel_function_registry.h" #include <algorithm> #include <initializer_list> #include <iterator> #include <memory> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" #include "absl/types/span.h" #include "base/function.h" #include "base/function_descriptor.h" #include "base/type_provider.h" #include "common/type_manager.h" #include "common/value.h" #include "common/value_manager.h" #include "common/values/legacy_value_manager.h" #include "eval/internal/interop.h" #include "eval/public/cel_function.h" #include "eval/public/cel_options.h" #include "eval/public/cel_value.h" #include "extensions/protobuf/memory_manager.h" #include "internal/status_macros.h" #include "runtime/function_overload_reference.h" #include "google/protobuf/arena.h" namespace google::api::expr::runtime { namespace { using ::cel::extensions::ProtoMemoryManagerRef; class ProxyToModernCelFunction : public CelFunction { public: ProxyToModernCelFunction(const cel::FunctionDescriptor& descriptor, const cel::Function& implementation) : CelFunction(descriptor), implementation_(&implementation) {} absl::Status Evaluate(absl::Span<const CelValue> args, CelValue* result, google::protobuf::Arena* arena) const override { auto memory_manager = ProtoMemoryManagerRef(arena); cel::common_internal::LegacyValueManager manager( memory_manager, cel::TypeProvider::Builtin()); cel::FunctionEvaluationContext context(manager); std::vector<cel::Value> modern_args = cel::interop_internal::LegacyValueToModernValueOrDie(arena, args); CEL_ASSIGN_OR_RETURN(auto modern_result, implementation_->Invoke(context, modern_args)); *result = cel::interop_internal::ModernValueToLegacyValueOrDie( arena, modern_result); return absl::OkStatus(); } private: const cel::Function* implementation_; }; } absl::Status CelFunctionRegistry::RegisterAll( std::initializer_list<Registrar> registrars, const InterpreterOptions& opts) { for (Registrar registrar : registrars) { CEL_RETURN_IF_ERROR(registrar(this, opts)); } return absl::OkStatus(); } std::vector<const CelFunction*> CelFunctionRegistry::FindOverloads( absl::string_view name, bool receiver_style, const std::vector<CelValue::Type>& types) const { std::vector<cel::FunctionOverloadReference> matched_funcs = modern_registry_.FindStaticOverloads(name, receiver_style, types); std::vector<const CelFunction*> results; results.reserve(matched_funcs.size()); { absl::MutexLock lock(&mu_); for (cel::FunctionOverloadReference entry : matched_funcs) { std::unique_ptr<CelFunction>& legacy_impl = functions_[&entry.implementation]; if (legacy_impl == nullptr) { legacy_impl = std::make_unique<ProxyToModernCelFunction>( entry.descriptor, entry.implementation); } results.push_back(legacy_impl.get()); } } return results; } std::vector<const CelFunctionDescriptor*> CelFunctionRegistry::FindLazyOverloads( absl::string_view name, bool receiver_style, const std::vector<CelValue::Type>& types) const { std::vector<LazyOverload> lazy_overloads = modern_registry_.FindLazyOverloads(name, receiver_style, types); std::vector<const CelFunctionDescriptor*> result; result.reserve(lazy_overloads.size()); for (const LazyOverload& overload : lazy_overloads) { result.push_back(&overload.descriptor); } return result; } }
#include "eval/public/cel_function_registry.h" #include <memory> #include <tuple> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "base/kind.h" #include "eval/internal/adapter_activation_impl.h" #include "eval/public/activation.h" #include "eval/public/cel_function.h" #include "internal/testing.h" #include "runtime/function_overload_reference.h" namespace google::api::expr::runtime { namespace { using testing::ElementsAre; using testing::Eq; using testing::HasSubstr; using testing::Property; using testing::SizeIs; using testing::Truly; using cel::internal::StatusIs; class ConstCelFunction : public CelFunction { public: ConstCelFunction() : CelFunction(MakeDescriptor()) {} explicit ConstCelFunction(const CelFunctionDescriptor& desc) : CelFunction(desc) {} static CelFunctionDescriptor MakeDescriptor() { return {"ConstFunction", false, {}}; } absl::Status Evaluate(absl::Span<const CelValue> args, CelValue* output, google::protobuf::Arena* arena) const override { *output = CelValue::CreateInt64(42); return absl::OkStatus(); } }; TEST(CelFunctionRegistryTest, InsertAndRetrieveLazyFunction) { CelFunctionDescriptor lazy_function_desc{"LazyFunction", false, {}}; CelFunctionRegistry registry; Activation activation; ASSERT_OK(registry.RegisterLazyFunction(lazy_function_desc)); const auto descriptors = registry.FindLazyOverloads("LazyFunction", false, {}); EXPECT_THAT(descriptors, testing::SizeIs(1)); } TEST(CelFunctionRegistryTest, LazyAndStaticFunctionShareDescriptorSpace) { CelFunctionRegistry registry; CelFunctionDescriptor desc = ConstCelFunction::MakeDescriptor(); ASSERT_OK(registry.RegisterLazyFunction(desc)); absl::Status status = registry.Register(ConstCelFunction::MakeDescriptor(), std::make_unique<ConstCelFunction>()); EXPECT_FALSE(status.ok()); } TEST(CelFunctionRegistryTest, FindStaticOverloadsReturns) { CelFunctionRegistry registry; CelFunctionDescriptor desc = ConstCelFunction::MakeDescriptor(); ASSERT_OK(registry.Register(desc, std::make_unique<ConstCelFunction>(desc))); std::vector<cel::FunctionOverloadReference> overloads = registry.FindStaticOverloads(desc.name(), false, {}); EXPECT_THAT(overloads, ElementsAre(Truly( [](const cel::FunctionOverloadReference& overload) -> bool { return overload.descriptor.name() == "ConstFunction"; }))) << "Expected single ConstFunction()"; } TEST(CelFunctionRegistryTest, ListFunctions) { CelFunctionDescriptor lazy_function_desc{"LazyFunction", false, {}}; CelFunctionRegistry registry; ASSERT_OK(registry.RegisterLazyFunction(lazy_function_desc)); EXPECT_OK(registry.Register(ConstCelFunction::MakeDescriptor(), std::make_unique<ConstCelFunction>())); auto registered_functions = registry.ListFunctions(); EXPECT_THAT(registered_functions, SizeIs(2)); EXPECT_THAT(registered_functions["LazyFunction"], SizeIs(1)); EXPECT_THAT(registered_functions["ConstFunction"], SizeIs(1)); } TEST(CelFunctionRegistryTest, LegacyFindLazyOverloads) { CelFunctionDescriptor lazy_function_desc{"LazyFunction", false, {}}; CelFunctionRegistry registry; ASSERT_OK(registry.RegisterLazyFunction(lazy_function_desc)); ASSERT_OK(registry.Register(ConstCelFunction::MakeDescriptor(), std::make_unique<ConstCelFunction>())); EXPECT_THAT(registry.FindLazyOverloads("LazyFunction", false, {}), ElementsAre(Truly([](const CelFunctionDescriptor* descriptor) { return descriptor->name() == "LazyFunction"; }))) << "Expected single lazy overload for LazyFunction()"; } TEST(CelFunctionRegistryTest, DefaultLazyProvider) { CelFunctionDescriptor lazy_function_desc{"LazyFunction", false, {}}; CelFunctionRegistry registry; Activation activation; cel::interop_internal::AdapterActivationImpl modern_activation(activation); EXPECT_OK(registry.RegisterLazyFunction(lazy_function_desc)); EXPECT_OK(activation.InsertFunction( std::make_unique<ConstCelFunction>(lazy_function_desc))); auto providers = registry.ModernFindLazyOverloads("LazyFunction", false, {}); EXPECT_THAT(providers, testing::SizeIs(1)); ASSERT_OK_AND_ASSIGN(auto func, providers[0].provider.GetFunction( lazy_function_desc, modern_activation)); ASSERT_TRUE(func.has_value()); EXPECT_THAT(func->descriptor, Property(&cel::FunctionDescriptor::name, Eq("LazyFunction"))); } TEST(CelFunctionRegistryTest, DefaultLazyProviderNoOverloadFound) { CelFunctionRegistry registry; Activation legacy_activation; cel::interop_internal::AdapterActivationImpl activation(legacy_activation); CelFunctionDescriptor lazy_function_desc{"LazyFunction", false, {}}; EXPECT_OK(registry.RegisterLazyFunction(lazy_function_desc)); EXPECT_OK(legacy_activation.InsertFunction( std::make_unique<ConstCelFunction>(lazy_function_desc))); const auto providers = registry.ModernFindLazyOverloads("LazyFunction", false, {}); ASSERT_THAT(providers, testing::SizeIs(1)); const auto& provider = providers[0].provider; auto func = provider.GetFunction({"LazyFunc", false, {cel::Kind::kInt64}}, activation); ASSERT_OK(func.status()); EXPECT_EQ(*func, absl::nullopt); } TEST(CelFunctionRegistryTest, DefaultLazyProviderAmbiguousLookup) { CelFunctionRegistry registry; Activation legacy_activation; cel::interop_internal::AdapterActivationImpl activation(legacy_activation); CelFunctionDescriptor desc1{"LazyFunc", false, {CelValue::Type::kInt64}}; CelFunctionDescriptor desc2{"LazyFunc", false, {CelValue::Type::kUint64}}; CelFunctionDescriptor match_desc{"LazyFunc", false, {CelValue::Type::kAny}}; ASSERT_OK(registry.RegisterLazyFunction(match_desc)); ASSERT_OK(legacy_activation.InsertFunction( std::make_unique<ConstCelFunction>(desc1))); ASSERT_OK(legacy_activation.InsertFunction( std::make_unique<ConstCelFunction>(desc2))); auto providers = registry.ModernFindLazyOverloads("LazyFunc", false, {cel::Kind::kAny}); ASSERT_THAT(providers, testing::SizeIs(1)); const auto& provider = providers[0].provider; auto func = provider.GetFunction(match_desc, activation); EXPECT_THAT(std::string(func.status().message()), HasSubstr("Couldn't resolve function")); } TEST(CelFunctionRegistryTest, CanRegisterNonStrictFunction) { { CelFunctionRegistry registry; CelFunctionDescriptor descriptor("NonStrictFunction", false, {CelValue::Type::kAny}, false); ASSERT_OK(registry.Register( descriptor, std::make_unique<ConstCelFunction>(descriptor))); EXPECT_THAT(registry.FindStaticOverloads("NonStrictFunction", false, {CelValue::Type::kAny}), SizeIs(1)); } { CelFunctionRegistry registry; CelFunctionDescriptor descriptor("NonStrictLazyFunction", false, {CelValue::Type::kAny}, false); EXPECT_OK(registry.RegisterLazyFunction(descriptor)); EXPECT_THAT(registry.FindLazyOverloads("NonStrictLazyFunction", false, {CelValue::Type::kAny}), SizeIs(1)); } } using NonStrictTestCase = std::tuple<bool, bool>; using NonStrictRegistrationFailTest = testing::TestWithParam<NonStrictTestCase>; TEST_P(NonStrictRegistrationFailTest, IfOtherOverloadExistsRegisteringNonStrictFails) { bool existing_function_is_lazy, new_function_is_lazy; std::tie(existing_function_is_lazy, new_function_is_lazy) = GetParam(); CelFunctionRegistry registry; CelFunctionDescriptor descriptor("OverloadedFunction", false, {CelValue::Type::kAny}, true); if (existing_function_is_lazy) { ASSERT_OK(registry.RegisterLazyFunction(descriptor)); } else { ASSERT_OK(registry.Register( descriptor, std::make_unique<ConstCelFunction>(descriptor))); } CelFunctionDescriptor new_descriptor( "OverloadedFunction", false, {CelValue::Type::kAny, CelValue::Type::kAny}, false); absl::Status status; if (new_function_is_lazy) { status = registry.RegisterLazyFunction(new_descriptor); } else { status = registry.Register( new_descriptor, std::make_unique<ConstCelFunction>(new_descriptor)); } EXPECT_THAT(status, StatusIs(absl::StatusCode::kAlreadyExists, HasSubstr("Only one overload"))); } TEST_P(NonStrictRegistrationFailTest, IfOtherNonStrictExistsRegisteringStrictFails) { bool existing_function_is_lazy, new_function_is_lazy; std::tie(existing_function_is_lazy, new_function_is_lazy) = GetParam(); CelFunctionRegistry registry; CelFunctionDescriptor descriptor("OverloadedFunction", false, {CelValue::Type::kAny}, false); if (existing_function_is_lazy) { ASSERT_OK(registry.RegisterLazyFunction(descriptor)); } else { ASSERT_OK(registry.Register( descriptor, std::make_unique<ConstCelFunction>(descriptor))); } CelFunctionDescriptor new_descriptor( "OverloadedFunction", false, {CelValue::Type::kAny, CelValue::Type::kAny}, true); absl::Status status; if (new_function_is_lazy) { status = registry.RegisterLazyFunction(new_descriptor); } else { status = registry.Register( new_descriptor, std::make_unique<ConstCelFunction>(new_descriptor)); } EXPECT_THAT(status, StatusIs(absl::StatusCode::kAlreadyExists, HasSubstr("Only one overload"))); } TEST_P(NonStrictRegistrationFailTest, CanRegisterStrictFunctionsWithoutLimit) { bool existing_function_is_lazy, new_function_is_lazy; std::tie(existing_function_is_lazy, new_function_is_lazy) = GetParam(); CelFunctionRegistry registry; CelFunctionDescriptor descriptor("OverloadedFunction", false, {CelValue::Type::kAny}, true); if (existing_function_is_lazy) { ASSERT_OK(registry.RegisterLazyFunction(descriptor)); } else { ASSERT_OK(registry.Register( descriptor, std::make_unique<ConstCelFunction>(descriptor))); } CelFunctionDescriptor new_descriptor( "OverloadedFunction", false, {CelValue::Type::kAny, CelValue::Type::kAny}, true); absl::Status status; if (new_function_is_lazy) { status = registry.RegisterLazyFunction(new_descriptor); } else { status = registry.Register( new_descriptor, std::make_unique<ConstCelFunction>(new_descriptor)); } EXPECT_OK(status); } INSTANTIATE_TEST_SUITE_P(NonStrictRegistrationFailTest, NonStrictRegistrationFailTest, testing::Combine(testing::Bool(), testing::Bool())); } }
40
#ifndef ABSL_SYNCHRONIZATION_NOTIFICATION_H_ #define ABSL_SYNCHRONIZATION_NOTIFICATION_H_ #include <atomic> #include "absl/base/attributes.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN class Notification { public: Notification() : notified_yet_(false) {} explicit Notification(bool prenotify) : notified_yet_(prenotify) {} Notification(const Notification&) = delete; Notification& operator=(const Notification&) = delete; ~Notification(); ABSL_MUST_USE_RESULT bool HasBeenNotified() const { return HasBeenNotifiedInternal(&this->notified_yet_); } void WaitForNotification() const; bool WaitForNotificationWithTimeout(absl::Duration timeout) const; bool WaitForNotificationWithDeadline(absl::Time deadline) const; void Notify(); private: static inline bool HasBeenNotifiedInternal( const std::atomic<bool>* notified_yet) { return notified_yet->load(std::memory_order_acquire); } mutable Mutex mutex_; std::atomic<bool> notified_yet_; }; ABSL_NAMESPACE_END } #endif #include "absl/synchronization/notification.h" #include <atomic> #include "absl/base/internal/raw_logging.h" #include "absl/synchronization/mutex.h" #include "absl/time/time.h" namespace absl { ABSL_NAMESPACE_BEGIN void Notification::Notify() { MutexLock l(&this->mutex_); #ifndef NDEBUG if (ABSL_PREDICT_FALSE(notified_yet_.load(std::memory_order_relaxed))) { ABSL_RAW_LOG( FATAL, "Notify() method called more than once for Notification object %p", static_cast<void *>(this)); } #endif notified_yet_.store(true, std::memory_order_release); } Notification::~Notification() { MutexLock l(&this->mutex_); } void Notification::WaitForNotification() const { if (!HasBeenNotifiedInternal(&this->notified_yet_)) { this->mutex_.LockWhen(Condition(&HasBeenNotifiedInternal, &this->notified_yet_)); this->mutex_.Unlock(); } } bool Notification::WaitForNotificationWithTimeout( absl::Duration timeout) const { bool notified = HasBeenNotifiedInternal(&this->notified_yet_); if (!notified) { notified = this->mutex_.LockWhenWithTimeout( Condition(&HasBeenNotifiedInternal, &this->notified_yet_), timeout); this->mutex_.Unlock(); } return notified; } bool Notification::WaitForNotificationWithDeadline(absl::Time deadline) const { bool notified = HasBeenNotifiedInternal(&this->notified_yet_); if (!notified) { notified = this->mutex_.LockWhenWithDeadline( Condition(&HasBeenNotifiedInternal, &this->notified_yet_), deadline); this->mutex_.Unlock(); } return notified; } ABSL_NAMESPACE_END }
#include "absl/synchronization/notification.h" #include <thread> #include <vector> #include "gtest/gtest.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN class ThreadSafeCounter { public: ThreadSafeCounter() : count_(0) {} void Increment() { MutexLock lock(&mutex_); ++count_; } int Get() const { MutexLock lock(&mutex_); return count_; } void WaitUntilGreaterOrEqual(int n) { MutexLock lock(&mutex_); auto cond = [this, n]() { return count_ >= n; }; mutex_.Await(Condition(&cond)); } private: mutable Mutex mutex_; int count_; }; static void RunWorker(int i, ThreadSafeCounter* ready_counter, Notification* notification, ThreadSafeCounter* done_counter) { ready_counter->Increment(); notification->WaitForNotification(); done_counter->Increment(); } static void BasicTests(bool notify_before_waiting, Notification* notification) { EXPECT_FALSE(notification->HasBeenNotified()); EXPECT_FALSE( notification->WaitForNotificationWithTimeout(absl::Milliseconds(0))); EXPECT_FALSE(notification->WaitForNotificationWithDeadline(absl::Now())); const absl::Duration delay = absl::Milliseconds(50); const absl::Time start = absl::Now(); EXPECT_FALSE(notification->WaitForNotificationWithTimeout(delay)); const absl::Duration elapsed = absl::Now() - start; const absl::Duration slop = absl::Milliseconds(5); EXPECT_LE(delay - slop, elapsed) << "WaitForNotificationWithTimeout returned " << delay - elapsed << " early (with " << slop << " slop), start time was " << start; ThreadSafeCounter ready_counter; ThreadSafeCounter done_counter; if (notify_before_waiting) { notification->Notify(); } const int kNumThreads = 10; std::vector<std::thread> workers; for (int i = 0; i < kNumThreads; ++i) { workers.push_back(std::thread(&RunWorker, i, &ready_counter, notification, &done_counter)); } if (!notify_before_waiting) { ready_counter.WaitUntilGreaterOrEqual(kNumThreads); EXPECT_EQ(0, done_counter.Get()); notification->Notify(); } notification->WaitForNotification(); EXPECT_TRUE(notification->HasBeenNotified()); EXPECT_TRUE(notification->WaitForNotificationWithTimeout(absl::Seconds(0))); EXPECT_TRUE(notification->WaitForNotificationWithDeadline(absl::Now())); for (std::thread& worker : workers) { worker.join(); } EXPECT_EQ(kNumThreads, ready_counter.Get()); EXPECT_EQ(kNumThreads, done_counter.Get()); } TEST(NotificationTest, SanityTest) { Notification local_notification1, local_notification2; BasicTests(false, &local_notification1); BasicTests(true, &local_notification2); } ABSL_NAMESPACE_END }
41
#ifndef TENSORFLOW_CORE_API_DEF_UPDATE_API_DEF_H_ #define TENSORFLOW_CORE_API_DEF_UPDATE_API_DEF_H_ #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { string CreateApiDef(const OpDef& op); string RemoveDoc(const OpDef& op, const string& file_contents, size_t start_location); void CreateApiDefs(const OpList& ops, const string& api_def_dir, const string& op_file_pattern); } #endif #include "tensorflow/core/api_def/update_api_def.h" #include <ctype.h> #include <algorithm> #include <string> #include <vector> #include "tensorflow/core/api_def/excluded_ops.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/op_def_builder.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace { constexpr char kApiDefFileFormat[] = "api_def_%s.pbtxt"; constexpr char kDocStart[] = ".Doc(R\"doc("; constexpr char kDocEnd[] = ")doc\")"; void FillBaseApiDef(ApiDef* api_def, const OpDef& op) { api_def->set_graph_op_name(op.name()); for (auto& input_arg : op.input_arg()) { if (!input_arg.description().empty()) { auto* api_def_in_arg = api_def->add_in_arg(); api_def_in_arg->set_name(input_arg.name()); api_def_in_arg->set_description(input_arg.description()); } } for (auto& output_arg : op.output_arg()) { if (!output_arg.description().empty()) { auto* api_def_out_arg = api_def->add_out_arg(); api_def_out_arg->set_name(output_arg.name()); api_def_out_arg->set_description(output_arg.description()); } } for (auto& attr : op.attr()) { if (!attr.description().empty()) { auto* api_def_attr = api_def->add_attr(); api_def_attr->set_name(attr.name()); api_def_attr->set_description(attr.description()); } } api_def->set_summary(op.summary()); api_def->set_description(op.description()); } bool OpHasDocs(const OpDef& op) { if (!op.summary().empty() || !op.description().empty()) { return true; } for (const auto& arg : op.input_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& arg : op.output_arg()) { if (!arg.description().empty()) { return true; } } for (const auto& attr : op.attr()) { if (!attr.description().empty()) { return true; } } return false; } bool CheckDocsMatch(const OpDef& op1, const OpDef& op2) { if (op1.summary() != op2.summary() || op1.description() != op2.description() || op1.input_arg_size() != op2.input_arg_size() || op1.output_arg_size() != op2.output_arg_size() || op1.attr_size() != op2.attr_size()) { return false; } for (int i = 0; i < op1.input_arg_size(); ++i) { if (op1.input_arg(i).description() != op2.input_arg(i).description()) { return false; } } for (int i = 0; i < op1.output_arg_size(); ++i) { if (op1.output_arg(i).description() != op2.output_arg(i).description()) { return false; } } for (int i = 0; i < op1.attr_size(); ++i) { if (op1.attr(i).description() != op2.attr(i).description()) { return false; } } return true; } bool ValidateOpDocs(const OpDef& op, const string& doc) { OpDefBuilder b(op.name()); for (const auto& arg : op.input_arg()) { b.Input(arg.name() + ":string"); } for (const auto& arg : op.output_arg()) { b.Output(arg.name() + ":string"); } for (const auto& attr : op.attr()) { b.Attr(attr.name() + ":string"); } b.Doc(doc); OpRegistrationData op_reg_data; TF_CHECK_OK(b.Finalize(&op_reg_data)); return CheckDocsMatch(op, op_reg_data.op_def); } } string RemoveDoc(const OpDef& op, const string& file_contents, size_t start_location) { const auto doc_start_location = file_contents.find(kDocStart, start_location); const string format_error = strings::Printf( "Could not find %s doc for removal. Make sure the doc is defined with " "'%s' prefix and '%s' suffix or remove the doc manually.", op.name().c_str(), kDocStart, kDocEnd); if (doc_start_location == string::npos) { std::cerr << format_error << std::endl; LOG(ERROR) << "Didn't find doc start"; return file_contents; } const auto doc_end_location = file_contents.find(kDocEnd, doc_start_location); if (doc_end_location == string::npos) { LOG(ERROR) << "Didn't find doc start"; std::cerr << format_error << std::endl; return file_contents; } const auto doc_start_size = sizeof(kDocStart) - 1; string doc_text = file_contents.substr( doc_start_location + doc_start_size, doc_end_location - doc_start_location - doc_start_size); if (!ValidateOpDocs(op, doc_text)) { LOG(ERROR) << "Invalid doc: " << doc_text; std::cerr << format_error << std::endl; return file_contents; } auto before_doc = file_contents.substr(0, doc_start_location); absl::StripTrailingAsciiWhitespace(&before_doc); return before_doc + file_contents.substr(doc_end_location + sizeof(kDocEnd) - 1); } namespace { void RemoveDocs(const std::vector<const OpDef*>& ops, const std::vector<string>& op_files) { std::set<string> processed_ops; for (const auto& file : op_files) { string file_contents; bool file_contents_updated = false; TF_CHECK_OK(ReadFileToString(Env::Default(), file, &file_contents)); for (auto op : ops) { if (processed_ops.find(op->name()) != processed_ops.end()) { continue; } string register_call = strings::Printf("REGISTER_OP(\"%s\")", op->name().c_str()); const auto register_call_location = file_contents.find(register_call); if (register_call_location == string::npos) { continue; } std::cout << "Removing .Doc call for " << op->name() << " from " << file << "." << std::endl; file_contents = RemoveDoc(*op, file_contents, register_call_location); file_contents_updated = true; processed_ops.insert(op->name()); } if (file_contents_updated) { TF_CHECK_OK(WriteStringToFile(Env::Default(), file, file_contents)) << "Could not remove .Doc calls in " << file << ". Make sure the file is writable."; } } } } string CreateApiDef(const OpDef& op) { ApiDefs api_defs; FillBaseApiDef(api_defs.add_op(), op); const std::vector<string> multi_line_fields = {"description"}; std::string new_api_defs_str; ::tensorflow::protobuf::TextFormat::PrintToString(api_defs, &new_api_defs_str); return PBTxtToMultiline(new_api_defs_str, multi_line_fields); } void CreateApiDefs(const OpList& ops, const string& api_def_dir, const string& op_file_pattern) { auto* excluded_ops = GetExcludedOps(); std::vector<const OpDef*> new_ops_with_docs; for (const auto& op : ops.op()) { if (excluded_ops->find(op.name()) != excluded_ops->end()) { continue; } string file_path = io::JoinPath(tensorflow::string(api_def_dir), kApiDefFileFormat); file_path = strings::Printf(file_path.c_str(), op.name().c_str()); if (!Env::Default()->FileExists(file_path).ok()) { std::cout << "Creating ApiDef file " << file_path << std::endl; const auto& api_def_text = CreateApiDef(op); TF_CHECK_OK(WriteStringToFile(Env::Default(), file_path, api_def_text)); if (OpHasDocs(op)) { new_ops_with_docs.push_back(&op); } } } if (!op_file_pattern.empty()) { std::vector<string> op_files; TF_CHECK_OK(Env::Default()->GetMatchingPaths(op_file_pattern, &op_files)); RemoveDocs(new_ops_with_docs, op_files); } } }
#include "tensorflow/core/api_def/update_api_def.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TEST(UpdateApiDefTest, TestRemoveDocSingleOp) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Output("output: T") .Attr("b: type") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op1. Description for Op1. b : Description for b. a: Description for a. output: Description for output. )doc"); )opdef"; const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); EXPECT_EQ(op_def_text, RemoveDoc(op, op_def_text_with_doc, 0 )); } TEST(UpdateApiDefTest, TestRemoveDocMultipleOps) { const string op_def_text = R"opdef( REGISTER_OP("Op1") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape); )opdef"; const string op_def_text_with_doc = R"opdef( REGISTER_OP("Op1") .Input("a: T") .Doc(R"doc( Summary for Op1. )doc") .SetShapeFn(shape_inference::UnchangedShape); REGISTER_OP("Op2") .Input("a: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op2. )doc"); REGISTER_OP("Op3") .Input("c: T") .SetShapeFn(shape_inference::UnchangedShape) .Doc(R"doc( Summary for Op3. )doc"); )opdef"; const string op1_text = R"( name: "Op1" input_arg { name: "a" } summary: "Summary for Op1." )"; const string op2_text = R"( name: "Op2" input_arg { name: "a" } summary: "Summary for Op2." )"; const string op3_text = R"( name: "Op3" input_arg { name: "c" } summary: "Summary for Op3." )"; OpDef op1, op2, op3; protobuf::TextFormat::ParseFromString(op1_text, &op1); protobuf::TextFormat::ParseFromString(op2_text, &op2); protobuf::TextFormat::ParseFromString(op3_text, &op3); string updated_text = RemoveDoc(op2, op_def_text_with_doc, op_def_text_with_doc.find("Op2") ); EXPECT_EQ(string::npos, updated_text.find("Summary for Op2")); EXPECT_NE(string::npos, updated_text.find("Summary for Op1")); EXPECT_NE(string::npos, updated_text.find("Summary for Op3")); updated_text = RemoveDoc(op3, updated_text, updated_text.find("Op3") ); updated_text = RemoveDoc(op1, updated_text, updated_text.find("Op1") ); EXPECT_EQ(op_def_text, updated_text); } TEST(UpdateApiDefTest, TestCreateApiDef) { const string op_text = R"( name: "Op1" input_arg { name: "a" description: "Description for a." } output_arg { name: "output" description: "Description for output." } attr { name: "b" description: "Description for b." } summary: "Summary for Op1." description: "Description\nfor Op1." )"; OpDef op; protobuf::TextFormat::ParseFromString(op_text, &op); const string expected_api_def = R"(op { graph_op_name: "Op1" in_arg { name: "a" description: <<END Description for a. END } out_arg { name: "output" description: <<END Description for output. END } attr { name: "b" description: <<END Description for b. END } summary: "Summary for Op1." description: <<END Description for Op1. END } )"; EXPECT_EQ(expected_api_def, CreateApiDef(op)); } } }
42
#ifndef TENSORFLOW_LITE_SIMPLE_MEMORY_ARENA_H_ #define TENSORFLOW_LITE_SIMPLE_MEMORY_ARENA_H_ #include <cstddef> #include <cstdint> #include <string> #include <vector> #include "tensorflow/lite/core/c/common.h" namespace tflite { struct ArenaAllocWithUsageInterval { ArenaAllocWithUsageInterval() { reset(); } size_t offset; size_t size; int32_t tensor; int32_t first_node; int32_t last_node; inline void reset() { offset = 0; size = 0; tensor = -1; first_node = -1; last_node = -1; } inline bool operator<(const ArenaAllocWithUsageInterval& other) const { return offset < other.offset; } }; struct PointerAlignedPointerPair { char* pointer; char* aligned_pointer; }; class ResizableAlignedBuffer { public: ResizableAlignedBuffer(size_t alignment, int subgraph_index) : buffer_{nullptr, nullptr}, data_size_(0), alignment_(alignment), subgraph_index_(subgraph_index) { (void)subgraph_index_; } ~ResizableAlignedBuffer() { Release(); } bool Resize(size_t new_size); void Release(); char* GetPtr() const { return buffer_.aligned_pointer; } size_t GetSize() const { return data_size_; } size_t GetAlignment() const { return alignment_; } private: ResizableAlignedBuffer(const ResizableAlignedBuffer&) = delete; ResizableAlignedBuffer& operator=(const ResizableAlignedBuffer&) = delete; ResizableAlignedBuffer(ResizableAlignedBuffer&&) = delete; ResizableAlignedBuffer& operator=(ResizableAlignedBuffer&&) = delete; PointerAlignedPointerPair buffer_; size_t data_size_; size_t alignment_; int subgraph_index_; }; class SimpleMemoryArena { public: explicit SimpleMemoryArena(size_t arena_alignment, int subgraph_index = 0) : committed_(false), high_water_mark_(0), underlying_buffer_(arena_alignment, subgraph_index), active_allocs_() {} void ResetAllocs(); void PurgeActiveAllocs(int32_t node); void PurgeAfter(int32_t node); void CalculateActiveAllocs( const std::vector<ArenaAllocWithUsageInterval>& allocs, int32_t node); TfLiteStatus Allocate(TfLiteContext* context, size_t alignment, size_t size, int32_t tensor, int32_t first_node, int32_t last_node, ArenaAllocWithUsageInterval* new_alloc); TfLiteStatus Commit(bool* arena_reallocated); TfLiteStatus ResolveAlloc(TfLiteContext* context, const ArenaAllocWithUsageInterval& alloc, char** output_ptr); TfLiteStatus ClearPlan(); TfLiteStatus ReleaseBuffer(); size_t GetBufferSize() const { return underlying_buffer_.GetSize(); } std::intptr_t BasePointer() const { return reinterpret_cast<std::intptr_t>(underlying_buffer_.GetPtr()); } void DumpDebugInfo(const std::string& name, const std::vector<int>& execution_plan) const; private: bool committed_; size_t high_water_mark_; ResizableAlignedBuffer underlying_buffer_; std::vector<ArenaAllocWithUsageInterval> active_allocs_; }; } #endif #include "tensorflow/lite/simple_memory_arena.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <cstdlib> #include <cstring> #include <limits> #include <string> #include <vector> #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/macros.h" #ifdef TF_LITE_TENSORFLOW_PROFILER #include "tensorflow/lite/tensorflow_profiler_logger.h" #endif #if defined(__ANDROID__) #define TF_LITE_HAS_ALIGNED_ALLOC (__ANDROID_API__ >= 28) #elif defined(__APPLE__) #define TF_LITE_HAS_ALIGNED_ALLOC 0 #elif defined(_WIN32) #define TF_LITE_HAS_ALIGNED_ALLOC 0 #elif __cplusplus >= 201703L || __STDC_VERSION__ >= 201112L #define TF_LITE_HAS_ALIGNED_ALLOC 1 #endif namespace { template <typename T> T AlignTo(size_t alignment, T offset) { return offset % alignment == 0 ? offset : offset + (alignment - offset % alignment); } tflite::PointerAlignedPointerPair AlignedAlloc(size_t size, size_t alignment); void AlignedFree(const tflite::PointerAlignedPointerPair& buffer); tflite::PointerAlignedPointerPair AlignedRealloc( const tflite::PointerAlignedPointerPair& old_buffer, size_t old_size, size_t new_size, size_t alignment); #if defined(_WIN32) tflite::PointerAlignedPointerPair AlignedAlloc(size_t size, size_t alignment) { char* pointer = reinterpret_cast<char*>(_aligned_malloc(size, alignment)); char* aligned_ptr = pointer; return {pointer, aligned_ptr}; } void AlignedFree(const tflite::PointerAlignedPointerPair& buffer) { _aligned_free(buffer.pointer); } tflite::PointerAlignedPointerPair AlignedRealloc( const tflite::PointerAlignedPointerPair& old_buffer, size_t old_size, size_t new_size, size_t alignment) { char* pointer = reinterpret_cast<char*>( _aligned_realloc(old_buffer.pointer, new_size, alignment)); char* aligned_ptr = pointer; return {pointer, aligned_ptr}; } #else tflite::PointerAlignedPointerPair AlignedAlloc(size_t size, size_t alignment) { #if TF_LITE_HAS_ALIGNED_ALLOC const size_t allocation_size = AlignTo(alignment, size + alignment - 1); char* pointer = reinterpret_cast<char*>(::aligned_alloc(alignment, allocation_size)); char* aligned_ptr = pointer; #else const size_t allocation_size = size + alignment - 1; char* pointer = reinterpret_cast<char*>(std::malloc(allocation_size)); char* aligned_ptr = reinterpret_cast<char*>( AlignTo(alignment, reinterpret_cast<std::uintptr_t>(pointer))); #endif #if defined(__clang__) #if __has_feature(memory_sanitizer) std::memset(pointer, 0, allocation_size); #endif #endif return {pointer, aligned_ptr}; } void AlignedFree(const tflite::PointerAlignedPointerPair& buffer) { std::free(buffer.pointer); } tflite::PointerAlignedPointerPair AlignedRealloc( const tflite::PointerAlignedPointerPair& old_buffer, size_t old_size, size_t new_size, size_t alignment) { tflite::PointerAlignedPointerPair new_buffer = AlignedAlloc(new_size, alignment); if (new_size > 0 && old_size > 0) { const size_t copy_amount = std::min(new_size, old_size); std::memcpy(new_buffer.aligned_pointer, old_buffer.aligned_pointer, copy_amount); } AlignedFree(old_buffer); return new_buffer; } #endif } namespace tflite { bool ResizableAlignedBuffer::Resize(size_t new_size) { if (new_size <= data_size_) { return false; } #ifdef TF_LITE_TENSORFLOW_PROFILER PauseHeapMonitoring(true); OnTfLiteArenaAlloc(subgraph_index_, reinterpret_cast<std::uintptr_t>(this), new_size); if (data_size_ > 0) { OnTfLiteArenaDealloc(subgraph_index_, reinterpret_cast<std::uintptr_t>(this), data_size_); } #endif auto new_buffer = AlignedRealloc(buffer_, data_size_, new_size, alignment_); bool reallocated = (new_buffer.aligned_pointer != buffer_.aligned_pointer); buffer_ = new_buffer; data_size_ = new_size; #ifdef TF_LITE_TENSORFLOW_PROFILER PauseHeapMonitoring(false); #endif return reallocated; } void ResizableAlignedBuffer::Release() { if (buffer_.pointer == nullptr) { return; } #ifdef TF_LITE_TENSORFLOW_PROFILER OnTfLiteArenaDealloc(subgraph_index_, reinterpret_cast<std::uintptr_t>(this), data_size_); #endif AlignedFree(buffer_); buffer_.pointer = nullptr; buffer_.aligned_pointer = nullptr; data_size_ = 0; } void SimpleMemoryArena::PurgeAfter(int32_t node) { for (int i = 0; i < active_allocs_.size(); ++i) { if (active_allocs_[i].first_node > node) { active_allocs_[i].tensor = -1; } } active_allocs_.erase( std::remove_if(active_allocs_.begin(), active_allocs_.end(), [](ArenaAllocWithUsageInterval& alloc) { return alloc.tensor == -1; }), active_allocs_.end()); } void SimpleMemoryArena::PurgeActiveAllocs(int32_t node) { for (int i = 0; i < active_allocs_.size(); ++i) { if (active_allocs_[i].last_node < node) { active_allocs_[i].tensor = -1; } } active_allocs_.erase( std::remove_if(active_allocs_.begin(), active_allocs_.end(), [](ArenaAllocWithUsageInterval& alloc) { return alloc.tensor == -1; }), active_allocs_.end()); } void SimpleMemoryArena::CalculateActiveAllocs( const std::vector<ArenaAllocWithUsageInterval>& allocs, int32_t node) { active_allocs_.clear(); for (int i = 0; i < allocs.size(); ++i) { if (allocs[i].first_node <= node && allocs[i].last_node >= node) { active_allocs_.push_back(allocs[i]); } } std::sort(active_allocs_.begin(), active_allocs_.end()); } void SimpleMemoryArena::ResetAllocs() { active_allocs_.clear(); } TfLiteStatus SimpleMemoryArena::Allocate( TfLiteContext* context, size_t alignment, size_t size, int32_t tensor, int32_t first_node, int32_t last_node, ArenaAllocWithUsageInterval* new_alloc) { TF_LITE_ENSURE(context, alignment <= underlying_buffer_.GetAlignment()); new_alloc->tensor = tensor; new_alloc->first_node = first_node; new_alloc->last_node = last_node; new_alloc->size = size; if (size == 0) { new_alloc->offset = 0; return kTfLiteOk; } const size_t kOffsetNotAssigned = std::numeric_limits<size_t>::max(); size_t best_offset = kOffsetNotAssigned; size_t best_offset_fit = kOffsetNotAssigned; size_t current_offset = 0; for (const auto& alloc : active_allocs_) { if (alloc.last_node < first_node || alloc.first_node > last_node) { continue; } size_t aligned_current_offset = AlignTo(alignment, current_offset); if (aligned_current_offset + size <= alloc.offset && alloc.offset - aligned_current_offset < best_offset_fit) { best_offset = aligned_current_offset; best_offset_fit = alloc.offset - current_offset; } current_offset = std::max(current_offset, alloc.offset + alloc.size); if (best_offset_fit == 0) { break; } } if (best_offset == kOffsetNotAssigned) { best_offset = AlignTo(alignment, current_offset); } high_water_mark_ = std::max(high_water_mark_, best_offset + size); new_alloc->offset = best_offset; auto insertion_it = std::upper_bound(active_allocs_.begin(), active_allocs_.end(), *new_alloc); active_allocs_.insert(insertion_it, *new_alloc); return kTfLiteOk; } TfLiteStatus SimpleMemoryArena::Commit(bool* arena_reallocated) { *arena_reallocated = underlying_buffer_.Resize(high_water_mark_); committed_ = true; return kTfLiteOk; } TfLiteStatus SimpleMemoryArena::ResolveAlloc( TfLiteContext* context, const ArenaAllocWithUsageInterval& alloc, char** output_ptr) { TF_LITE_ENSURE(context, committed_); TF_LITE_ENSURE(context, output_ptr != nullptr); TF_LITE_ENSURE(context, underlying_buffer_.GetSize() >= (alloc.offset + alloc.size)); if (alloc.size == 0) { *output_ptr = nullptr; } else { *output_ptr = underlying_buffer_.GetPtr() + alloc.offset; } return kTfLiteOk; } TfLiteStatus SimpleMemoryArena::ClearPlan() { committed_ = false; high_water_mark_ = 0; active_allocs_.clear(); return kTfLiteOk; } TfLiteStatus SimpleMemoryArena::ReleaseBuffer() { committed_ = false; underlying_buffer_.Release(); return kTfLiteOk; } TFLITE_ATTRIBUTE_WEAK void DumpArenaInfo( const std::string& name, const std::vector<int>& execution_plan, size_t arena_size, const std::vector<ArenaAllocWithUsageInterval>& allocs) { } void SimpleMemoryArena::DumpDebugInfo( const std::string& name, const std::vector<int>& execution_plan) const { tflite::DumpArenaInfo(name, execution_plan, underlying_buffer_.GetSize(), active_allocs_); } }
#include "tensorflow/lite/simple_memory_arena.h" #include <gtest/gtest.h> #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace { void ReportError(TfLiteContext* context, const char* format, ...) {} TEST(SimpleMemoryArenaTest, BasicArenaOperations) { TfLiteContext context; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[6]; arena.Allocate(&context, 32, 2047, 0, 1, 3, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 2, 5, &allocs[1]); arena.Allocate(&context, 32, 2047, 2, 3, 6, &allocs[2]); arena.Allocate(&context, 32, 2047, 3, 5, 6, &allocs[3]); arena.Allocate(&context, 32, 1023, 4, 4, 6, &allocs[4]); arena.Allocate(&context, 32, 1023, 5, 6, 6, &allocs[5]); EXPECT_EQ(allocs[0].offset, 0); EXPECT_EQ(allocs[1].offset, 2048); EXPECT_EQ(allocs[2].offset, 4096); EXPECT_EQ(allocs[3].offset, 0); EXPECT_EQ(allocs[4].offset, 6144); EXPECT_EQ(allocs[5].offset, 2048); } TEST(SimpleMemoryArenaTest, BasicZeroAlloc) { TfLiteContext context; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval alloc; ASSERT_EQ(arena.Allocate(&context, 32, 0, 0, 1, 2, &alloc), kTfLiteOk); EXPECT_EQ(alloc.offset, 0); EXPECT_EQ(alloc.size, 0); char* resolved_ptr = nullptr; bool reallocated = false; ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); EXPECT_FALSE(reallocated); EXPECT_EQ(resolved_ptr, nullptr); } TEST(SimpleMemoryArenaTest, InterleavedZeroAlloc) { TfLiteContext context; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[4]; ASSERT_EQ(arena.Allocate(&context, 32, 2047, 0, 0, 4, &allocs[0]), kTfLiteOk); ASSERT_EQ(arena.Allocate(&context, 32, 0, 1, 1, 2, &allocs[1]), kTfLiteOk); ASSERT_EQ(arena.Allocate(&context, 32, 1023, 2, 1, 2, &allocs[2]), kTfLiteOk); ASSERT_EQ(arena.Allocate(&context, 32, 2047, 3, 3, 4, &allocs[3]), kTfLiteOk); EXPECT_EQ(allocs[0].offset, 0); EXPECT_EQ(allocs[1].offset, 0); EXPECT_EQ(allocs[2].offset, 2048); EXPECT_EQ(allocs[3].offset, 2048); } TEST(SimpleMemoryArenaTest, TestClearPlan) { TfLiteContext context; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[9]; arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); arena.Allocate(&context, 32, 2047, 2, 1, 2, &allocs[2]); bool reallocated = false; arena.Commit(&reallocated); ASSERT_TRUE(reallocated); EXPECT_EQ(allocs[0].offset, 0); EXPECT_EQ(allocs[1].offset, 2048); EXPECT_EQ(allocs[2].offset, 4096); arena.ClearPlan(); arena.Allocate(&context, 32, 1023, 3, 0, 2, &allocs[3]); arena.Allocate(&context, 32, 1023, 4, 1, 2, &allocs[4]); arena.Allocate(&context, 32, 1023, 5, 1, 2, &allocs[5]); arena.Commit(&reallocated); ASSERT_FALSE(reallocated); EXPECT_EQ(allocs[3].offset, 0); EXPECT_EQ(allocs[4].offset, 1024); EXPECT_EQ(allocs[5].offset, 2048); arena.ClearPlan(); arena.Allocate(&context, 32, 4095, 6, 0, 2, &allocs[6]); arena.Allocate(&context, 32, 4095, 7, 1, 2, &allocs[7]); arena.Allocate(&context, 32, 4095, 8, 1, 2, &allocs[8]); arena.Commit(&reallocated); ASSERT_TRUE(reallocated); EXPECT_EQ(allocs[6].offset, 0); EXPECT_EQ(allocs[7].offset, 4096); EXPECT_EQ(allocs[8].offset, 8192); } TEST(SimpleMemoryArenaTest, TestPurgeAllocs) { TfLiteContext context; context.ReportError = ReportError; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[5]; arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); arena.Allocate(&context, 32, 2047, 2, 2, 3, &allocs[2]); bool reallocated = false; ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); char* resolved_ptr0 = nullptr; char* resolved_ptr1 = nullptr; char* resolved_ptr2 = nullptr; char* resolved_ptr3 = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr0), kTfLiteOk); EXPECT_NE(resolved_ptr0, nullptr); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr1), kTfLiteOk); EXPECT_EQ(resolved_ptr1, resolved_ptr0 + 2048); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[2], &resolved_ptr2), kTfLiteOk); EXPECT_EQ(resolved_ptr2, resolved_ptr1 + 2048); arena.PurgeActiveAllocs(4); arena.Allocate(&context, 32, 13, 3, 4, 5, &allocs[4]); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[4], &resolved_ptr3), kTfLiteOk); ASSERT_EQ(allocs[4].offset, 0); arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[3], &resolved_ptr3), kTfLiteOk); ASSERT_EQ(allocs[0].offset, 0); } TEST(SimpleMemoryArenaTest, TestResetAllocs) { TfLiteContext context; context.ReportError = ReportError; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[9]; arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); arena.Allocate(&context, 32, 2047, 2, 2, 3, &allocs[2]); bool reallocated = false; ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); char* resolved_ptr0 = nullptr; char* resolved_ptr1 = nullptr; char* resolved_ptr2 = nullptr; char* resolved_ptr3 = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr0), kTfLiteOk); EXPECT_NE(resolved_ptr0, nullptr); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr1), kTfLiteOk); EXPECT_EQ(resolved_ptr1, resolved_ptr0 + 2048); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[2], &resolved_ptr2), kTfLiteOk); EXPECT_EQ(resolved_ptr2, resolved_ptr1 + 2048); arena.Allocate(&context, 32, 13, 0, 0, 3, &allocs[3]); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr0), kTfLiteOk); EXPECT_NE(resolved_ptr0, nullptr); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr1), kTfLiteOk); EXPECT_EQ(resolved_ptr1, resolved_ptr0 + 2048); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[2], &resolved_ptr2), kTfLiteOk); EXPECT_EQ(resolved_ptr2, resolved_ptr1 + 2048); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[3], &resolved_ptr3), kTfLiteOk); EXPECT_EQ(resolved_ptr3, resolved_ptr2 + 2048); arena.ResetAllocs(); arena.Allocate(&context, 32, 13, 0, 0, 2, &allocs[3]); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_EQ(arena.ResolveAlloc(&context, allocs[3], &resolved_ptr3), kTfLiteOk); ASSERT_EQ(allocs[3].offset, 0); } TEST(SimpleMemoryArenaTest, TestClearBuffer) { TfLiteContext context; context.ReportError = ReportError; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[9]; arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); ASSERT_EQ(arena.ReleaseBuffer(), kTfLiteOk); bool reallocated = false; ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); char* resolved_ptr = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr), kTfLiteOk); EXPECT_NE(resolved_ptr, nullptr); resolved_ptr = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr), kTfLiteOk); EXPECT_NE(resolved_ptr, nullptr); ASSERT_EQ(arena.ReleaseBuffer(), kTfLiteOk); ASSERT_EQ(arena.BasePointer(), 0); ASSERT_NE(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr), kTfLiteOk); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); ASSERT_NE(arena.BasePointer(), 0); resolved_ptr = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr), kTfLiteOk); EXPECT_NE(resolved_ptr, nullptr); resolved_ptr = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr), kTfLiteOk); EXPECT_NE(resolved_ptr, nullptr); } class BufferAndPlanClearingTest : public ::testing::Test, public ::testing::WithParamInterface<bool> {}; TEST_P(BufferAndPlanClearingTest, TestClearBufferAndClearPlan) { TfLiteContext context; context.ReportError = ReportError; SimpleMemoryArena arena(64); ArenaAllocWithUsageInterval allocs[9]; arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); bool reallocated = false; ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); if (GetParam()) { ASSERT_EQ(arena.ReleaseBuffer(), kTfLiteOk); ASSERT_EQ(arena.ClearPlan(), kTfLiteOk); } else { ASSERT_EQ(arena.ClearPlan(), kTfLiteOk); ASSERT_EQ(arena.ReleaseBuffer(), kTfLiteOk); } ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); EXPECT_FALSE(reallocated); char* resolved_ptr = nullptr; ASSERT_NE(arena.ResolveAlloc(&context, allocs[0], &resolved_ptr), kTfLiteOk); arena.Allocate(&context, 32, 2047, 0, 0, 2, &allocs[0]); arena.Allocate(&context, 32, 2047, 1, 1, 2, &allocs[1]); ASSERT_EQ(arena.Commit(&reallocated), kTfLiteOk); ASSERT_TRUE(reallocated); resolved_ptr = nullptr; ASSERT_EQ(arena.ResolveAlloc(&context, allocs[1], &resolved_ptr), kTfLiteOk); EXPECT_NE(resolved_ptr, nullptr); } INSTANTIATE_TEST_SUITE_P(BufferAndPlanClearingTest, BufferAndPlanClearingTest, ::testing::Values(true, false)); } }
43
#ifndef XLA_STREAM_EXECUTOR_GPU_REDZONE_ALLOCATOR_H_ #define XLA_STREAM_EXECUTOR_GPU_REDZONE_ALLOCATOR_H_ #include <cstdint> #include <string> #include <utility> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/scratch_allocator.h" #include "xla/stream_executor/stream_executor.h" namespace stream_executor { class RedzoneAllocator : public ScratchAllocator { public: static constexpr int64_t kDefaultRedzoneSize = 1LL << 23; static constexpr uint8_t kDefaultRedzonePattern = -1; RedzoneAllocator(Stream* stream, DeviceMemoryAllocator* memory_allocator, const GpuAsmOpts& gpu_compilation_opts_, int64_t memory_limit = (1LL << 32), int64_t redzone_size = kDefaultRedzoneSize, uint8_t redzone_pattern = kDefaultRedzonePattern); int64_t GetMemoryLimitInBytes() override { return memory_limit_; } int64_t TotalAllocatedBytesExcludingRedzones() const { return allocated_bytes_excluding_redzones_; } absl::StatusOr<DeviceMemory<uint8>> AllocateBytes(int64_t byte_size) override; struct RedzoneCheckStatus { RedzoneCheckStatus() = default; RedzoneCheckStatus(absl::string_view buffer_name, void* user_buffer_address, int64_t offset, uint64_t expected_value, uint64_t actual_value) : buffer_name(buffer_name), user_buffer_address(user_buffer_address), offset(offset), expected_value(expected_value), actual_value(actual_value) {} static RedzoneCheckStatus OK() { return {}; } bool ok() { return user_buffer_address == nullptr; } std::string RedzoneFailureMsg() const; std::string buffer_name = {}; void* user_buffer_address = nullptr; int64_t offset = 0; uint64_t expected_value = 0; uint64_t actual_value = 0; }; absl::StatusOr<RedzoneCheckStatus> CheckRedzones() const; Stream* stream() const { return stream_; } private: const int device_ordinal_; Stream* stream_; const int64_t memory_limit_; const int64_t redzone_size_; const uint8_t redzone_pattern_; DeviceMemoryAllocator* memory_allocator_; GpuAsmOpts gpu_compilation_opts_; std::vector<std::pair<OwningDeviceMemory, int64_t>> allocated_buffers_; int64_t allocated_bytes_excluding_redzones_ = 0; }; } #endif #include "xla/stream_executor/gpu/redzone_allocator.h" #include <algorithm> #include <array> #include <cstdint> #include <cstring> #include <memory> #include <string> #include <utility> #include "absl/container/fixed_array.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_handle.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/redzone_allocator_kernel.h" #include "xla/stream_executor/kernel.h" #include "xla/stream_executor/launch_dim.h" #include "xla/stream_executor/stream.h" #include "xla/stream_executor/stream_executor.h" #include "xla/tsl/framework/allocator.h" #include "tsl/lib/math/math_util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace stream_executor { template <typename T> static T RoundUpToNearest(T value, T divisor) { return tsl::MathUtil::CeilOfRatio(value, divisor) * divisor; } constexpr int64_t kRhsRedzoneAlign = 4; using RedzoneCheckStatus = RedzoneAllocator::RedzoneCheckStatus; RedzoneAllocator::RedzoneAllocator(Stream* stream, DeviceMemoryAllocator* memory_allocator, const GpuAsmOpts& gpu_compilation_opts, int64_t memory_limit, int64_t redzone_size, uint8_t redzone_pattern) : device_ordinal_(stream->parent()->device_ordinal()), stream_(stream), memory_limit_(memory_limit), redzone_size_(RoundUpToNearest( redzone_size, static_cast<int64_t>(tsl::Allocator::kAllocatorAlignment))), redzone_pattern_(redzone_pattern), memory_allocator_(memory_allocator), gpu_compilation_opts_(gpu_compilation_opts) {} absl::StatusOr<DeviceMemory<uint8_t>> RedzoneAllocator::AllocateBytes( int64_t byte_size) { CHECK_GE(byte_size, 0) << "byte_size must be positive."; if (byte_size > GetMemoryLimitInBytes()) { return absl::ResourceExhaustedError(absl::StrFormat( "Allocating %d bytes exceeds the memory limit of %d bytes.", byte_size, GetMemoryLimitInBytes())); } int64_t rhs_slop = RoundUpToNearest(byte_size, kRhsRedzoneAlign) - byte_size; TF_ASSIGN_OR_RETURN( OwningDeviceMemory allocated_buffer, memory_allocator_->Allocate(device_ordinal_, byte_size + 2 * redzone_size_ + rhs_slop, false)); allocated_bytes_excluding_redzones_ += byte_size; static_assert(sizeof(uint8_t) == 1, "Unexpected size"); DeviceMemory<uint8_t> allocated_buffer_memory(*allocated_buffer); DeviceMemory<uint8_t> lhs_redzone = allocated_buffer_memory.GetSlice(0, redzone_size_); DeviceMemory<uint8_t> data_chunk = allocated_buffer_memory.GetSlice(redzone_size_, byte_size); DeviceMemory<uint8_t> rhs_redzone_slop = allocated_buffer_memory.GetSlice(redzone_size_ + byte_size, rhs_slop); DeviceMemory<uint8_t> rhs_redzone_nonslop = allocated_buffer_memory.GetSlice( redzone_size_ + byte_size + rhs_slop, redzone_size_); uint8_t pattern_arr[] = {redzone_pattern_, redzone_pattern_, redzone_pattern_, redzone_pattern_}; uint32_t pattern32; std::memcpy(&pattern32, pattern_arr, sizeof(pattern32)); TF_RETURN_IF_ERROR(stream_->Memset32(&lhs_redzone, pattern32, redzone_size_)); if (rhs_slop != 0) { TF_RETURN_IF_ERROR( stream_->Memcpy(&rhs_redzone_slop, &pattern32, rhs_slop)); } TF_RETURN_IF_ERROR( stream_->Memset32(&rhs_redzone_nonslop, pattern32, redzone_size_)); allocated_buffers_.emplace_back(std::move(allocated_buffer), byte_size); return data_chunk; } static absl::StatusOr<RedzoneCheckStatus> CheckRedzoneHost( DeviceMemoryBase redzone, DeviceMemoryBase user_allocation, absl::string_view name, Stream* stream, uint8_t redzone_pattern) { uint64_t size = redzone.size(); auto redzone_data = std::make_unique<uint8_t[]>(size); TF_RETURN_IF_ERROR(stream->Memcpy(redzone_data.get(), redzone, size)); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); std::array<uint8_t, sizeof(uint64_t)> pattern_arr; pattern_arr.fill(redzone_pattern); uint64_t pattern64; std::memcpy(&pattern64, pattern_arr.data(), sizeof(uint64_t)); int64_t i; for (i = 0; i + 7 < size; i += sizeof(uint64_t)) { uint64_t rz_value = *reinterpret_cast<uint64_t*>(&redzone_data[i]); if (rz_value != pattern64) { return RedzoneCheckStatus(name, user_allocation.opaque(), i, pattern64, rz_value); } } for (; i < size; ++i) { uint8_t rz_value = redzone_data[i]; if (rz_value != redzone_pattern) { return RedzoneCheckStatus(name, user_allocation.opaque(), i, redzone_pattern, rz_value); } } return RedzoneCheckStatus::OK(); } static absl::Status RunRedzoneChecker( Stream* stream, const DeviceMemory<uint8_t>& redzone, uint8_t redzone_pattern, const DeviceMemory<uint64_t>& out_param, const ComparisonKernel& comparison_kernel) { StreamExecutor* executor = stream->parent(); if (redzone.size() == 0) { return absl::OkStatus(); } int64_t num_elements = redzone.size(); int64_t threads_per_block = std::min( executor->GetDeviceDescription().threads_per_block_limit(), num_elements); int64_t block_count = tsl::MathUtil::CeilOfRatio(num_elements, threads_per_block); TF_RETURN_IF_ERROR(stream->ThenLaunch( ThreadDim(threads_per_block), BlockDim(block_count), comparison_kernel, redzone, redzone_pattern, redzone.size(), out_param)); return absl::OkStatus(); } static absl::Status ReinitializeRedzone(Stream* stream, DeviceMemoryBase redzone, uint8_t redzone_pattern) { absl::FixedArray<uint8_t> redzone_array(redzone.size()); redzone_array.fill(redzone_pattern); TF_RETURN_IF_ERROR( stream->Memcpy(&redzone, redzone_array.data(), redzone.size())); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); return absl::OkStatus(); } static absl::StatusOr<RedzoneCheckStatus> CheckRedzonesForBuffer( Stream* stream, DeviceMemoryBase memory, const DeviceMemory<uint64_t>& out_param, const ComparisonKernel& comparison_kernel, int64_t user_allocation_size, uint64_t redzone_size, uint8_t redzone_pattern) { int64_t rhs_slop = RoundUpToNearest<int64_t>(user_allocation_size, kRhsRedzoneAlign) - user_allocation_size; CHECK_EQ(memory.size(), user_allocation_size + rhs_slop + 2 * redzone_size); DeviceMemory<uint8_t> buffer_uint8(memory); DeviceMemory<uint8_t> lhs_redzone = buffer_uint8.GetSlice(0, redzone_size); DeviceMemory<uint8_t> user_allocation = buffer_uint8.GetSlice(redzone_size, user_allocation_size); DeviceMemory<uint8_t> rhs_redzone = buffer_uint8.GetSlice(redzone_size + user_allocation_size, redzone_size + rhs_slop); TF_RETURN_IF_ERROR(RunRedzoneChecker(stream, lhs_redzone, redzone_pattern, out_param, comparison_kernel)); TF_RETURN_IF_ERROR(RunRedzoneChecker(stream, rhs_redzone, redzone_pattern, out_param, comparison_kernel)); int64_t result; CHECK_EQ(out_param.size(), sizeof(result)); TF_RETURN_IF_ERROR(stream->Memcpy(&result, out_param, sizeof(result))); TF_RETURN_IF_ERROR(stream->BlockHostUntilDone()); if (result != 0) { TF_ASSIGN_OR_RETURN(RedzoneCheckStatus lhs_check, CheckRedzoneHost(lhs_redzone, user_allocation, "LHS", stream, redzone_pattern)); TF_ASSIGN_OR_RETURN(RedzoneCheckStatus rhs_check, CheckRedzoneHost(rhs_redzone, user_allocation, "RHS", stream, redzone_pattern)); CHECK(!lhs_check.ok() || !rhs_check.ok()) << "Mismatched results with host and device comparison"; TF_RETURN_IF_ERROR( ReinitializeRedzone(stream, lhs_redzone, redzone_pattern)); TF_RETURN_IF_ERROR( ReinitializeRedzone(stream, rhs_redzone, redzone_pattern)); return !lhs_check.ok() ? lhs_check : rhs_check; } return RedzoneCheckStatus::OK(); } absl::StatusOr<RedzoneCheckStatus> RedzoneAllocator::CheckRedzones() const { StreamExecutor* executor = stream_->parent(); TF_ASSIGN_OR_RETURN( const ComparisonKernel* kernel, GetComparisonKernel(stream_->parent(), gpu_compilation_opts_)); stream_executor::DeviceMemoryHandle out_param( executor, executor->AllocateScalar<uint64_t>()); TF_RETURN_IF_ERROR( stream_->MemZero(out_param.memory_ptr(), sizeof(uint64_t))); for (const auto& buf_and_size : allocated_buffers_) { TF_ASSIGN_OR_RETURN( RedzoneCheckStatus redzone_status, CheckRedzonesForBuffer(stream_, *buf_and_size.first, DeviceMemory<uint64_t>(out_param.memory()), *kernel, buf_and_size.second, redzone_size_, redzone_pattern_)); if (!redzone_status.ok()) { return redzone_status; } } return RedzoneCheckStatus::OK(); } std::string RedzoneCheckStatus::RedzoneFailureMsg() const { return absl::StrFormat( "Redzone mismatch in %s redzone of buffer %p at offset %d; " "expected %08x but was %08x.", buffer_name, user_buffer_address, offset, expected_value, actual_value); } }
#include "xla/stream_executor/gpu/redzone_allocator.h" #include <cstdint> #include <vector> #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "xla/stream_executor/device_memory.h" #include "xla/stream_executor/device_memory_allocator.h" #include "xla/stream_executor/gpu/gpu_asm_opts.h" #include "xla/stream_executor/gpu/gpu_init.h" #include "xla/stream_executor/platform.h" #include "xla/stream_executor/platform_manager.h" #include "xla/stream_executor/stream_executor_memory_allocator.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" #include "tsl/platform/test.h" namespace stream_executor { namespace gpu { using RedzoneCheckStatus = RedzoneAllocator::RedzoneCheckStatus; static void EXPECT_REDZONE_OK(absl::StatusOr<RedzoneCheckStatus> status) { EXPECT_TRUE(status.ok()); EXPECT_TRUE(status.value().ok()); } static void EXPECT_REDZONE_VIOLATION( absl::StatusOr<RedzoneCheckStatus> status) { EXPECT_TRUE(status.ok()); EXPECT_FALSE(status.value().ok()); } TEST(RedzoneAllocatorTest, WriteToRedzone) { constexpr int64_t kRedzoneSize = 1 << 23; constexpr uint8_t kRedzonePattern = 0x7e; constexpr int64_t kAllocSize = (1 << 25) + 1; Platform* platform = PlatformManager::PlatformWithName(GpuPlatformName()).value(); StreamExecutor* stream_exec = platform->ExecutorForDevice(0).value(); GpuAsmOpts opts; StreamExecutorMemoryAllocator se_allocator(platform, {stream_exec}); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); RedzoneAllocator allocator(stream.get(), &se_allocator, opts, (1LL << 32), kRedzoneSize, kRedzonePattern); TF_ASSERT_OK_AND_ASSIGN(DeviceMemory<uint8_t> buf, allocator.AllocateBytes(kAllocSize)); EXPECT_REDZONE_OK(allocator.CheckRedzones()); char* buf_addr = reinterpret_cast<char*>(buf.opaque()); DeviceMemoryBase lhs_redzone(buf_addr - kRedzoneSize, kRedzoneSize); DeviceMemoryBase rhs_redzone(buf_addr + kAllocSize, kRedzoneSize); auto check_redzone = [&](DeviceMemoryBase redzone, absl::string_view name) { std::vector<uint8_t> host_buf(kRedzoneSize); TF_ASSERT_OK(stream->Memcpy(host_buf.data(), redzone, kRedzoneSize)); TF_ASSERT_OK(stream->BlockHostUntilDone()); const int64_t kMaxMismatches = 16; int64_t mismatches = 0; for (int64_t i = 0; i < host_buf.size(); ++i) { if (mismatches == kMaxMismatches) { ADD_FAILURE() << "Hit max number of mismatches; skipping others."; break; } if (host_buf[i] != kRedzonePattern) { ++mismatches; EXPECT_EQ(host_buf[i], kRedzonePattern) << "at index " << i << " of " << name << " redzone"; } } }; check_redzone(lhs_redzone, "lhs"); check_redzone(rhs_redzone, "rhs"); auto modify_redzone = [&](DeviceMemoryBase redzone, int64_t offset, absl::string_view name) { SCOPED_TRACE(absl::StrCat(name, ", offset=", offset)); DeviceMemoryBase redzone_at_offset( reinterpret_cast<char*>(redzone.opaque()) + offset, 1); char old_redzone_value = 0; { EXPECT_REDZONE_OK(allocator.CheckRedzones()); } TF_ASSERT_OK(stream->Memcpy(&old_redzone_value, redzone_at_offset, 1)); TF_ASSERT_OK(stream->MemZero(&redzone_at_offset, 1)); EXPECT_REDZONE_VIOLATION(allocator.CheckRedzones()); EXPECT_REDZONE_OK(allocator.CheckRedzones()); }; modify_redzone(lhs_redzone, 0, "lhs"); modify_redzone(lhs_redzone, kRedzoneSize - 1, "lhs"); modify_redzone(rhs_redzone, 0, "rhs"); modify_redzone(rhs_redzone, kRedzoneSize - 1, "rhs"); } TEST(RedzoneAllocatorTest, VeryLargeRedzone) { constexpr int64_t kRedzoneSize = 65535 * 1024 + 1; Platform* platform = PlatformManager::PlatformWithName(GpuPlatformName()).value(); StreamExecutor* stream_exec = platform->ExecutorForDevice(0).value(); GpuAsmOpts opts; StreamExecutorMemoryAllocator se_allocator(platform, {stream_exec}); TF_ASSERT_OK_AND_ASSIGN(auto stream, stream_exec->CreateStream()); RedzoneAllocator allocator(stream.get(), &se_allocator, opts, (1LL << 32), kRedzoneSize, -1); (void)allocator.AllocateBytes(1); EXPECT_REDZONE_OK(allocator.CheckRedzones()); } } }
44
#ifndef TENSORFLOW_CORE_GRAPH_OPTIMIZER_CSE_H_ #define TENSORFLOW_CORE_GRAPH_OPTIMIZER_CSE_H_ #include <sys/types.h> #include "tensorflow/core/graph/graph.h" namespace tensorflow { extern bool OptimizeCSE(Graph* g, const std::function<bool(const Node*)>& consider_fn); } #endif #include "tensorflow/core/graph/optimizer_cse.h" #include <iostream> #include <unordered_map> #include <utility> #include <vector> #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/framework/node_def_util.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph_node_util.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { class OptimizerCSE { public: explicit OptimizerCSE(Graph* g) : g_(g) {} bool Optimize(const std::function<bool(const Node*)>& consider_fn); private: static size_t NodeHash(const Node* n); static bool Equivalent(const Node* a, const Node* b, AttrSlice::Scratch* scratch); Graph* g_; }; static void FillInputs( const Node* n, absl::InlinedVector<const Node*, 4UL>* control_edges, absl::InlinedVector<std::pair<const Node*, int>, 4UL>* in) { DCHECK_EQ(in->size(), n->num_inputs()); control_edges->clear(); for (const Edge* e : n->in_edges()) { if (e->IsControlEdge()) { control_edges->push_back(e->src()); } else { (*in)[e->dst_input()] = std::make_pair(e->src(), e->src_output()); } } std::sort(control_edges->begin(), control_edges->end()); if (n->op_def().is_commutative()) { std::sort(in->begin(), in->end()); } } static size_t kIllegalNodeHash = 0; class Hasher { public: uint64 hash() { return h_ == kIllegalNodeHash ? kIllegalNodeHash + 1 : h_; } void MixString(const string& s) { h_ = Hash64(s.data(), s.size(), h_); } void MixInteger(size_t z) { h_ = Hash64Combine(h_, z); } void MixProto(const protobuf::MessageLite& msg) { msg.ByteSizeLong(); HashingOutputStream hasher; { protobuf::io::CodedOutputStream stream(&hasher); stream.EnableAliasing(true); stream.SetSerializationDeterministic(true); msg.SerializeWithCachedSizes(&stream); } h_ = Hash64Combine(h_, hasher.hash()); } private: class HashingOutputStream : public protobuf::io::ZeroCopyOutputStream { public: static constexpr size_t kBufSize = 228; static constexpr uint64 kDefaultSeed = 2570847921467975139ULL; bool Next(void** data, int* size) override { if (i_ == kBufSize) { Mix(buf_, kBufSize); *data = buf_; *size = kBufSize; } else { *data = buf_ + i_; *size = kBufSize - i_; } i_ = kBufSize; return true; } void BackUp(int count) override { i_ -= count; } int64_t ByteCount() const override { return byte_count_; } bool WriteAliasedRaw(const void* void_data, int size) override { const char* data = static_cast<const char*>(void_data); const auto remaining = kBufSize - i_; if (remaining > 0) { if (size < remaining) { memcpy(buf_ + i_, data, size); i_ += size; return true; } memcpy(buf_ + i_, data, remaining); i_ = kBufSize; data += remaining; size -= remaining; } if (i_ == kBufSize) { Mix(buf_, kBufSize); i_ = 0; } while (size >= kBufSize) { Mix(data, kBufSize); data += kBufSize; size -= kBufSize; } memcpy(buf_, data, size); i_ = size; return true; } bool AllowsAliasing() const override { return true; } uint64 hash() { if (i_ != 0) { Mix(buf_, i_); i_ = 0; } return h_; } private: void Mix(const char* p, size_t n) { byte_count_ += n; h_ = Hash64(p, n, h_); } char buf_[kBufSize]; int i_ = 0; int64_t byte_count_ = 0; uint64 h_ = kDefaultSeed; }; uint64 h_ = HashingOutputStream::kDefaultSeed; }; size_t OptimizerCSE::NodeHash(const Node* n) { Hasher hasher; hasher.MixString(n->type_string()); hasher.MixInteger(n->output_types().size()); for (DataType dt : n->output_types()) { hasher.MixInteger(dt); } hasher.MixInteger(n->num_inputs()); absl::InlinedVector<const Node*, 4UL> control_edges; absl::InlinedVector<std::pair<const Node*, int>, 4UL> in(n->num_inputs()); FillInputs(n, &control_edges, &in); for (const auto& edge : in) { hasher.MixInteger(edge.first->id()); hasher.MixInteger(edge.second); } #if !defined(__ANDROID__) size_t attr_hashes = 0; for (const auto& attr : n->attrs()) { Hasher h; h.MixString(attr.first); h.MixProto(attr.second); attr_hashes = Hash64CombineUnordered(attr_hashes, h.hash()); } hasher.MixInteger(attr_hashes); #endif return hasher.hash(); } static bool HasRefInput(const Node* n) { for (auto dt : n->input_types()) { if (IsRefType(dt)) return true; } return false; } bool OptimizerCSE::Equivalent(const Node* a, const Node* b, AttrSlice::Scratch* scratch) { if (a->type_string() != b->type_string()) return false; if (a->op_def().is_stateful()) return false; if (HasRefInput(a) || HasRefInput(b)) return false; if (!a->attrs().EqualAttrs(b->attrs(), scratch)) return false; if (a->num_inputs() != b->num_inputs()) return false; const int N_in = a->num_inputs(); absl::InlinedVector<const Node*, 4UL> a_control_edges; absl::InlinedVector<const Node*, 4UL> b_control_edges; absl::InlinedVector<std::pair<const Node*, int>, 4UL> a_in(N_in); absl::InlinedVector<std::pair<const Node*, int>, 4UL> b_in(N_in); FillInputs(a, &a_control_edges, &a_in); FillInputs(b, &b_control_edges, &b_in); if (a_in != b_in) return false; if (a_control_edges != b_control_edges) return false; return true; } bool OptimizerCSE::Optimize( const std::function<bool(const Node*)>& consider_fn) { std::vector<Node*> order; GetReversePostOrder(*g_, &order, NodeComparatorID()); std::unordered_map<size_t, Node*> available; bool changed = false; AttrSlice::Scratch scratch; for (Node* n : order) { if (!n->IsOp()) continue; if (n->type_string() == "Placeholder" || n->type_string() == "PlaceholderV2" || n->type_string() == "PlaceholderWithDefault") { continue; } if (consider_fn != nullptr && !consider_fn(n)) continue; size_t h = NodeHash(n); Node** candidate = &available[h]; if (*candidate == nullptr) { *candidate = n; } else if (Equivalent(*candidate, n, &scratch)) { VLOG(1) << "CSE: equivalent: " << (*candidate)->name() << " and " << n->name(); for (const Edge* e : n->out_edges()) { g_->AddEdge(*candidate, e->src_output(), e->dst(), e->dst_input()); } MergeDebugInfo(NodeDebugInfo(*n), *candidate); g_->RemoveNode(n); changed = true; } } return changed; } bool OptimizeCSE(Graph* g, const std::function<bool(const Node*)>& consider_fn) { OptimizerCSE opt(g); return opt.Optimize(consider_fn); } }
#include "tensorflow/core/graph/optimizer_cse.h" #include <utility> #include <vector> #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/framework/op.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/graph/graph.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/kernels/ops_util.h" #include "tensorflow/core/lib/random/simple_philox.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/stringprintf.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/test_benchmark.h" #include "tsl/platform/protobuf.h" namespace tensorflow { namespace { static void InitGraph(const string& s, Graph* graph) { GraphDef graph_def; auto parser = protobuf::TextFormat::Parser(); CHECK(parser.MergeFromString(s, &graph_def)) << s; GraphConstructorOptions opts; TF_CHECK_OK(ConvertGraphDefToGraph(opts, graph_def, graph)); } class OptimizerCSETest : public ::testing::Test { public: OptimizerCSETest() : graph_(OpRegistry::Global()) {} void InitGraph(const string& s) { ::tensorflow::InitGraph(s, &graph_); original_ = CanonicalGraphString(&graph_); } static bool IncludeNode(const Node* n) { return n->IsOp(); } static string EdgeId(const Node* n, int index) { if (index == 0) { return n->name(); } else if (index == Graph::kControlSlot) { return strings::StrCat(n->name(), ":control"); } else { return strings::StrCat(n->name(), ":", index); } } string CanonicalGraphString(Graph* g) { std::vector<string> nodes; std::vector<string> edges; for (const Node* n : g->nodes()) { if (IncludeNode(n)) { nodes.push_back(strings::StrCat(n->name(), "(", n->type_string(), ")")); } } for (const Edge* e : g->edges()) { if (IncludeNode(e->src()) && IncludeNode(e->dst())) { edges.push_back(strings::StrCat(EdgeId(e->src(), e->src_output()), "->", EdgeId(e->dst(), e->dst_input()))); } } std::sort(nodes.begin(), nodes.end()); std::sort(edges.begin(), edges.end()); return strings::StrCat(absl::StrJoin(nodes, ";"), "|", absl::StrJoin(edges, ";")); } string DoCSE(const std::function<bool(const Node*)>& consider_fn = nullptr) { string before = CanonicalGraphString(&graph_); LOG(ERROR) << "Before rewrites: " << before; OptimizeCSE(&graph_, consider_fn); string result = CanonicalGraphString(&graph_); LOG(ERROR) << "After rewrites: " << result; return result; } const string& OriginalGraph() const { return original_; } Graph graph_; string original_; }; REGISTER_OP("Input").Output("o: float").SetIsStateful(); TEST_F(OptimizerCSETest, Simple) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul)|" "A->C;B->C:1"); } TEST_F(OptimizerCSETest, Simple_ThreeEquivalent) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'E' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul)|" "A->C;B->C:1"); } TEST_F(OptimizerCSETest, Simple_WithFixups) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'E' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['C', 'D'] }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul);E(Mul)|" "A->C;B->C:1;C->E;C->E:1"); } TEST_F(OptimizerCSETest, Simple_Commutative) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['B', 'A'] }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul)|" "A->C;B->C:1"); } static bool IsNotMultiply(const Node* n) { return n->type_string() != "Mul"; } TEST_F(OptimizerCSETest, Simple_Filtered) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['B', 'A'] }"); EXPECT_EQ(DoCSE(IsNotMultiply), OriginalGraph()); } TEST_F(OptimizerCSETest, Simple_NotCommutative) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Sub' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Sub' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['B', 'A'] }"); EXPECT_EQ(DoCSE(), OriginalGraph()); } TEST_F(OptimizerCSETest, NotEquivalent_Ops) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'D' op: 'Sub' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }"); EXPECT_EQ(DoCSE(), OriginalGraph()); } TEST_F(OptimizerCSETest, Simple_SameOps_SameAttrs1) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] attr { key: 'shape'" " value { shape: { dim: { size: 37 name: 'SAME_NAME' } } } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] attr { key: 'shape'" " value { shape: { dim: { size: 37 name: 'SAME_NAME' } } } } }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul)|" "A->C;B->C:1"); } TEST_F(OptimizerCSETest, Simple_SameOps_SameAttrs2) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 'a' value { i: 3 } }" " attr { key: 't' value { type: DT_INT32 } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 't' value { type: DT_INT32 } }" " attr { key: 'a' value { i: 3 } } }"); EXPECT_EQ(DoCSE(), "A(Input);B(Input);C(Mul)|" "A->C;B->C:1"); } TEST_F(OptimizerCSETest, SameConstants) { InitGraph( "node { name: 'A' op: 'Const' " " attr { key: 'dtype' value { type: DT_INT32 } }" " attr { key: 'value' value {" " tensor { dtype: DT_INT32 tensor_shape { dim { size: 1 } } " " int_val: 0 } } } }" "node { name: 'B' op: 'Const' " " attr { key: 'dtype' value { type: DT_INT32 } }" " attr { key: 'value' value {" " tensor { dtype: DT_INT32 tensor_shape { dim { size: 1 } } " " int_val: 0 } } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_INT32 } }" " input: ['A', 'B'] }"); EXPECT_EQ(DoCSE(), "A(Const);D(Mul)|" "A->D;A->D:1"); } TEST_F(OptimizerCSETest, DifferentConstants) { InitGraph( "node { name: 'A' op: 'Const' " " attr { key: 'dtype' value { type: DT_INT32 } }" " attr { key: 'value' value {" " tensor { dtype: DT_INT32 tensor_shape { dim { size: 1 } } " " int_val: 0 } } } }" "node { name: 'B' op: 'Const' " " attr { key: 'dtype' value { type: DT_INT32 } }" " attr { key: 'value' value {" " tensor { dtype: DT_INT32 tensor_shape { dim { size: 1 } } " " int_val: 100000 } } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_INT32 } }" " input: ['A', 'B'] }"); EXPECT_EQ(DoCSE(), "A(Const);B(Const);D(Mul)|" "A->D;B->D:1"); } TEST_F(OptimizerCSETest, SameOps_DifferentAttrs1) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 'a' value { i: 3 } }" " attr { key: 't' value { type: DT_INT32 } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 't' value { type: DT_INT32 } }" " attr { key: 'a' value { i: 4 } } }"); EXPECT_EQ(DoCSE(), OriginalGraph()); } TEST_F(OptimizerCSETest, SameOps_DifferentAttrs2) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 'a' value { i: 3 } }" " attr { key: 't' value { type: DT_FLOAT } } }" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B']" " attr { key: 't' value { type: DT_INT32 } }" " attr { key: 'a' value { i: 3 } } }"); EXPECT_EQ(DoCSE(), OriginalGraph()); } TEST_F(OptimizerCSETest, NotEquivalent_Inputs) { InitGraph( "node { name: 'A' op: 'Input'}" "node { name: 'B' op: 'Input'}" "node { name: 'C' op: 'Input'}" "node { name: 'D' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'B'] }" "node { name: 'E' op: 'Mul' attr { key: 'T' value { type: DT_FLOAT } }" " input: ['A', 'C'] }"); EXPECT_EQ(DoCSE(), OriginalGraph()); } TEST_F(OptimizerCSETest, Constant_Dedup) { Tensor a(DT_FLOAT, TensorShape({1})); a.flat<float>()(0) = 1.0; Tensor b(DT_DOUBLE, TensorShape({1})); b.flat<double>()(0) = 1.0; Tensor c(DT_FLOAT, TensorShape({1, 1})); c.flat<float>()(0) = 1.0; Tensor d(DT_FLOAT, TensorShape({1})); d.flat<float>()(0) = 2.0; Graph g(OpRegistry::Global()); for (const auto& val : {a, b, c, d, d, c, b, a}) { test::graph::Constant(&g, val); } GraphDef gdef; test::graph::ToGraphDef(&g, &gdef); InitGraph(tsl::LegacyUnredactedDebugString(gdef)); EXPECT_EQ(OriginalGraph(), "n/_0(Const);n/_1(Const);n/_2(Const);n/_3(Const);" "n/_4(Const);n/_5(Const);n/_6(Const);n/_7(Const)|"); std::vector<string> nodes = str_util::Split(DoCSE(), ";|"); std::set<string> node_set(nodes.begin(), nodes.end()); EXPECT_EQ(node_set.count("n/_0(Const)") + node_set.count("n/_7(Const)"), 1); EXPECT_EQ(node_set.count("n/_1(Const)") + node_set.count("n/_6(Const)"), 1); EXPECT_EQ(node_set.count("n/_2(Const)") + node_set.count("n/_5(Const)"), 1); EXPECT_EQ(node_set.count("n/_3(Const)") + node_set.count("n/_4(Const)"), 1); } void BM_CSE(::testing::benchmark::State& state) { const int op_nodes = state.range(0); string s; for (int in = 0; in < 10; in++) { s += strings::Printf("node { name: 'in%04d' op: 'Input'}", in); } random::PhiloxRandom philox(301, 17); random::SimplePhilox rnd(&philox); for (int op = 0; op < op_nodes; op++) { s += strings::Printf( "node { name: 'op%04d' op: 'Mul' attr { key: 'T' value { " "type: DT_FLOAT } } input: ['in%04d', 'in%04d' ] }", op, rnd.Uniform(10), rnd.Uniform(10)); } bool first = true; for (auto i : state) { state.PauseTiming(); Graph* graph = new Graph(OpRegistry::Global()); InitGraph(s, graph); int N = graph->num_node_ids(); if (first) { state.SetLabel(strings::StrCat("Per graph node. Nodes: ", N)); first = false; } { state.ResumeTiming(); OptimizeCSE(graph, nullptr); state.PauseTiming(); } delete graph; state.ResumeTiming(); } } BENCHMARK(BM_CSE)->Arg(1000)->Arg(10000); } }
45
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_MEMORY_MANAGER_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_MEMORY_MANAGER_H_ #include <utility> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "common/memory.h" #include "google/protobuf/arena.h" namespace cel::extensions { MemoryManager ProtoMemoryManager(google::protobuf::Arena* arena); inline MemoryManager ProtoMemoryManagerRef(google::protobuf::Arena* arena) { return ProtoMemoryManager(arena); } absl::Nullable<google::protobuf::Arena*> ProtoMemoryManagerArena( MemoryManager memory_manager); template <typename T, typename... Args> ABSL_MUST_USE_RESULT T* NewInProtoArena(MemoryManager memory_manager, Args&&... args) { return google::protobuf::Arena::Create<T>(ProtoMemoryManagerArena(memory_manager), std::forward<Args>(args)...); } } #endif #include "extensions/protobuf/memory_manager.h" #include "absl/base/nullability.h" #include "common/memory.h" #include "google/protobuf/arena.h" namespace cel { namespace extensions { MemoryManagerRef ProtoMemoryManager(google::protobuf::Arena* arena) { return arena != nullptr ? MemoryManagerRef::Pooling(arena) : MemoryManagerRef::ReferenceCounting(); } absl::Nullable<google::protobuf::Arena*> ProtoMemoryManagerArena( MemoryManager memory_manager) { return memory_manager.arena(); } } }
#include "extensions/protobuf/memory_manager.h" #include "common/memory.h" #include "internal/testing.h" #include "google/protobuf/arena.h" namespace cel::extensions { namespace { using testing::Eq; using testing::IsNull; using testing::NotNull; TEST(ProtoMemoryManager, MemoryManagement) { google::protobuf::Arena arena; auto memory_manager = ProtoMemoryManager(&arena); EXPECT_EQ(memory_manager.memory_management(), MemoryManagement::kPooling); } TEST(ProtoMemoryManager, Arena) { google::protobuf::Arena arena; auto memory_manager = ProtoMemoryManager(&arena); EXPECT_THAT(ProtoMemoryManagerArena(memory_manager), NotNull()); } TEST(ProtoMemoryManagerRef, MemoryManagement) { google::protobuf::Arena arena; auto memory_manager = ProtoMemoryManagerRef(&arena); EXPECT_EQ(memory_manager.memory_management(), MemoryManagement::kPooling); memory_manager = ProtoMemoryManagerRef(nullptr); EXPECT_EQ(memory_manager.memory_management(), MemoryManagement::kReferenceCounting); } TEST(ProtoMemoryManagerRef, Arena) { google::protobuf::Arena arena; auto memory_manager = ProtoMemoryManagerRef(&arena); EXPECT_THAT(ProtoMemoryManagerArena(memory_manager), Eq(&arena)); memory_manager = ProtoMemoryManagerRef(nullptr); EXPECT_THAT(ProtoMemoryManagerArena(memory_manager), IsNull()); } } }
46
#ifndef TENSORFLOW_CORE_KERNELS_DATA_FLAT_MAP_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_FLAT_MAP_DATASET_OP_H_ #include "tensorflow/core/data/captured_function.h" #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class FlatMapDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "FlatMap"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kOtherArguments = "other_arguments"; static constexpr const char* const kFunc = "f"; static constexpr const char* const kTarguments = "Targuments"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit FlatMapDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; private: class Dataset; const int graph_def_version_; DataTypeVector output_types_; std::vector<PartialTensorShape> output_shapes_; std::shared_ptr<FunctionMetadata> func_metadata_ = nullptr; }; } } #endif #include "tensorflow/core/kernels/data/flat_map_dataset_op.h" #include <algorithm> #include <cstdint> #include <cstdlib> #include <string> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/graph_runner.h" #include "tensorflow/core/common_runtime/input_colocation_exemption_registry.h" #include "tensorflow/core/data/captured_function.h" #include "tensorflow/core/data/dataset_utils.h" #include "tensorflow/core/data/flat_map_utils.h" #include "tensorflow/core/data/name_utils.h" #include "tensorflow/core/data/serialization_utils.h" #include "tensorflow/core/framework/dataset.h" #include "tensorflow/core/framework/dataset_options.pb.h" #include "tensorflow/core/framework/graph.pb.h" #include "tensorflow/core/framework/partial_tensor_shape.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/lib/random/random.h" #include "tsl/platform/logging.h" #include "tsl/platform/statusor.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr const char* const FlatMapDatasetOp::kDatasetType; constexpr const char* const FlatMapDatasetOp::kInputDataset; constexpr const char* const FlatMapDatasetOp::kOtherArguments; constexpr const char* const FlatMapDatasetOp::kFunc; constexpr const char* const FlatMapDatasetOp::kTarguments; constexpr const char* const FlatMapDatasetOp::kOutputTypes; constexpr const char* const FlatMapDatasetOp::kOutputShapes; constexpr int64_t kMaxRandomIndexingCardinality = 100; constexpr char kCycleLength[] = "cycle_length"; constexpr char kElementIndex[] = "element_index"; constexpr char kInputsSize[] = "inputs_size"; constexpr char kInputs[] = "inputs"; constexpr char kCurrentElementIteratorUninitialized[] = "current_element_iterator_uninitialized"; constexpr char kExhausted[] = "exhausted"; class FlatMapDatasetOp::Dataset : public DatasetBase { public: Dataset(OpKernelContext* ctx, const DatasetBase* input, std::unique_ptr<CapturedFunction> captured_func, const DataTypeVector& output_types, const std::vector<PartialTensorShape>& output_shapes) : DatasetBase(DatasetContext(ctx)), input_(input), captured_func_(std::move(captured_func)), output_types_(output_types), output_shapes_(output_shapes), random_access_handler_(ctx, input, *captured_func_) { input_->Ref(); random_indexing_compatible_ = input_->RandomIndexingCompatible(); if (random_indexing_compatible_.ok() && input_->Cardinality() > kMaxRandomIndexingCardinality) { random_indexing_compatible_ = absl::FailedPreconditionError( absl::StrCat("The cardinality of the input to ", type_string(), " is too large to support global shuffling. It is ", input_->Cardinality(), ", which is greater than ", kMaxRandomIndexingCardinality)); } } ~Dataset() override { input_->Unref(); } std::unique_ptr<IteratorBase> MakeIteratorInternal( const string& prefix) const override { return std::make_unique<Iterator>(Iterator::Params{ this, name_utils::IteratorPrefix(kDatasetType, prefix)}); } const DataTypeVector& output_dtypes() const override { return output_types_; } const std::vector<PartialTensorShape>& output_shapes() const override { return output_shapes_; } string DebugString() const override { return name_utils::DatasetDebugString(kDatasetType); } int64_t CardinalityInternal(CardinalityOptions options) const override { if (options.compute_level() < CardinalityOptions::CARDINALITY_COMPUTE_MODERATE) { return kUnknownCardinality; } absl::StatusOr<int64_t> cardinality = random_access_handler_.Cardinality(); if (!cardinality.ok()) { LOG(ERROR) << "Unable to compute cardinality for dataset " << DebugString() << " due to error: " << cardinality.status(); return kUnknownCardinality; } return *cardinality; } Status InputDatasets(std::vector<const DatasetBase*>* inputs) const override { inputs->push_back(input_); return absl::OkStatus(); } Status CheckExternalState() const override { TF_RETURN_IF_ERROR(captured_func_->CheckExternalState()); return input_->CheckExternalState(); } absl::Status RandomIndexingCompatible() const override { return random_indexing_compatible_; } protected: Status AsGraphDefInternal(SerializationContext* ctx, DatasetGraphDefBuilder* b, Node** output) const override { Node* input_graph_node = nullptr; TF_RETURN_IF_ERROR(b->AddInputDataset(ctx, input_, &input_graph_node)); std::vector<Node*> other_arguments; DataTypeVector other_arguments_types; TF_RETURN_IF_ERROR(captured_func_->AddToGraph(ctx, b, &other_arguments, &other_arguments_types)); AttrValue f; b->BuildAttrValue(captured_func_->func(), &f); AttrValue other_arguments_types_attr; b->BuildAttrValue(other_arguments_types, &other_arguments_types_attr); TF_RETURN_IF_ERROR(b->AddDataset( this, {std::make_pair(0, input_graph_node)}, {std::make_pair(1, other_arguments)}, {std::make_pair(kFunc, f), std::make_pair(kTarguments, other_arguments_types_attr)}, output)); return absl::OkStatus(); } private: class Iterator : public DatasetIterator<Dataset> { public: explicit Iterator(const Params& params) : DatasetIterator<Dataset>(params) {} bool SymbolicCheckpointCompatible() const override { return true; } Status Initialize(IteratorContext* ctx) override { mutex_lock l(mu_); input_ckpt_ = std::make_unique<MemoryCheckpoint>(ctx->id_registry()); TF_RETURN_IF_ERROR( dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_)); return dataset()->captured_func_->Instantiate( ctx, &instantiated_captured_func_); } Status GetNextInternal(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) override { if (ctx->index_mapper()) { return Get(ctx, out_tensors, end_of_sequence); } mutex_lock l(mu_); do { if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } if (current_element_iterator_) { bool end_of_element; auto nested_ctx = MakeNestedIteratorContext(ctx); TF_RETURN_IF_ERROR(current_element_iterator_->GetNext( &nested_ctx, out_tensors, &end_of_element)); ctx->MergeCheckpoint(nested_ctx.checkpoint()); if (!end_of_element) { *end_of_sequence = false; return absl::OkStatus(); } ctx->MergeCheckpoint(input_ckpt_.get()); ctx->PurgeCheckpoint(current_element_iterator_->prefix()); current_element_iterator_.reset(); } inputs_.clear(); auto input_ctx = std::make_unique<IteratorContext>(*ctx); TF_RETURN_IF_ERROR( input_impl_->GetNext(input_ctx.get(), &inputs_, end_of_sequence)); input_ckpt_->Merge(input_ctx->checkpoint()); if (*end_of_sequence) { input_impl_.reset(); return absl::OkStatus(); } TF_RETURN_IF_ERROR( BuildCurrentElementIteratorLocked(ctx, true)); } while (true); } Status SkipInternal(IteratorContext* ctx, int num_to_skip, bool* end_of_sequence, int* num_skipped) override { mutex_lock l(mu_); *num_skipped = 0; while (*num_skipped < num_to_skip) { if (!input_impl_) { *end_of_sequence = true; return absl::OkStatus(); } if (current_element_iterator_) { bool end_of_element; auto nested_ctx = MakeNestedIteratorContext(ctx); int last_num_skipped; TF_RETURN_IF_ERROR(current_element_iterator_->Skip( &nested_ctx, num_to_skip - *num_skipped, &end_of_element, &last_num_skipped)); *num_skipped += last_num_skipped; ctx->MergeCheckpoint(nested_ctx.checkpoint()); if (!end_of_element) { if (*num_skipped != num_to_skip) { return absl::InternalError(absl::StrFormat( "Expected `num_skipped` and `num_to_skip` to be the same. Got" " %d(num_skipped) and %d(num_to_skip)", *num_skipped, num_to_skip)); } continue; } ctx->MergeCheckpoint(input_ckpt_.get()); ctx->PurgeCheckpoint(current_element_iterator_->prefix()); current_element_iterator_.reset(); } inputs_.clear(); auto input_ctx = std::make_unique<IteratorContext>(*ctx); TF_RETURN_IF_ERROR( input_impl_->GetNext(input_ctx.get(), &inputs_, end_of_sequence)); input_ckpt_->Merge(input_ctx->checkpoint()); if (*end_of_sequence) { input_impl_.reset(); *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR( BuildCurrentElementIteratorLocked(ctx, false)); } *end_of_sequence = false; return absl::OkStatus(); } absl::Status Get(IteratorContext* ctx, std::vector<Tensor>* out_tensors, bool* end_of_sequence) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); TF_ASSIGN_OR_RETURN(size_t parent_index, ctx->index_mapper()(element_count_)); FlatMapRandomAccessHandler& random_access = dataset()->random_access_handler_; absl::StatusOr<int64_t> dataset_index = random_access.GetDatasetIndex(parent_index); if (absl::IsOutOfRange(dataset_index.status())) { *end_of_sequence = true; return absl::OkStatus(); } TF_RETURN_IF_ERROR(dataset_index.status()); if (dataset_iterators_.empty()) { TF_ASSIGN_OR_RETURN( dataset_iterators_, random_access.MakeInputIterators(ctx, this, prefix())); next_positions_.resize(dataset_iterators_.size(), 0); input_element_counts_.resize(dataset_iterators_.size(), 0); } IteratorContext::Params params(ctx); params.index_mapper = GetFlatMapIndexMapper(ctx->index_mapper(), *dataset_index); IteratorContext global_shuffle_ctx(std::move(params)); TF_RETURN_IF_ERROR(dataset_iterators_[*dataset_index]->GetNext( &global_shuffle_ctx, out_tensors, end_of_sequence)); ctx->MergeCheckpoint(global_shuffle_ctx.checkpoint()); ++element_count_; ++input_element_counts_[*dataset_index]; return absl::OkStatus(); } IndexMapperFn GetFlatMapIndexMapper(IndexMapperFn parent_index_mapper, size_t input_dataset_index) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { absl::StatusOr<int64_t> cardinality = dataset()->random_access_handler_.Cardinality(); return [this, parent_index_mapper = std::move(parent_index_mapper), input_dataset_index, cardinality = std::move(cardinality)]( size_t element_position) -> absl::StatusOr<size_t> { if (!cardinality.ok() || *cardinality < 0) { return absl::FailedPreconditionError( "Global shuffling requires finite cardinalities."); } FlatMapRandomAccessHandler& random_access = dataset()->random_access_handler_; while (next_positions_[input_dataset_index] < *cardinality) { size_t index = next_positions_[input_dataset_index]; if (parent_index_mapper != nullptr) { TF_ASSIGN_OR_RETURN(index, parent_index_mapper(index)); } ++next_positions_[input_dataset_index]; TF_ASSIGN_OR_RETURN(int64_t shuffled_dataset_index, random_access.GetDatasetIndex(index)); if (input_dataset_index == shuffled_dataset_index) { if (input_dataset_index > 0) { TF_ASSIGN_OR_RETURN( int64_t cumulative_cardinality, random_access.CumulativeCardinality(input_dataset_index - 1)); index -= cumulative_cardinality; } return index; } } return *cardinality; }; } protected: std::shared_ptr<model::Node> CreateNode( IteratorContext* ctx, model::Node::Args args) const override { return model::MakeInterleaveManyNode( std::move(args), {model::MakeNonTunableParameter(kCycleLength, 1)}); } Status SaveInternal(SerializationContext* ctx, IteratorStateWriter* writer) override TF_LOCKS_EXCLUDED(mu_) { TF_RETURN_IF_ERROR(ctx->HandleCheckExternalStateStatus( dataset()->captured_func_->CheckExternalState())); mutex_lock l(mu_); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kExhausted, static_cast<int64_t>(!input_impl_))); if (input_impl_) { TF_RETURN_IF_ERROR(SaveInput(ctx, writer, input_impl_)); TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kElementIndex, element_index_)); TF_RETURN_IF_ERROR(writer->WriteScalar( prefix(), kCurrentElementIteratorUninitialized, static_cast<int64_t>(!current_element_iterator_))); if (current_element_iterator_ && !ctx->symbolic_checkpoint()) { TF_RETURN_IF_ERROR( writer->WriteScalar(prefix(), kInputsSize, inputs_.size())); for (int i = 0; i < inputs_.size(); i++) { TF_RETURN_IF_ERROR(writer->WriteTensor( prefix(), strings::StrCat(kInputs, "[", i, "]"), inputs_[i])); } TF_RETURN_IF_ERROR(SaveInput(ctx, writer, current_element_iterator_)); } } return absl::OkStatus(); } Status RestoreInternal(IteratorContext* ctx, IteratorStateReader* reader) override TF_LOCKS_EXCLUDED(mu_) { if (ctx->restored_element_count().has_value()) { return RestoreForGlobalShuffle(ctx, reader); } mutex_lock l(mu_); input_impl_.reset(); element_index_ = 0; current_element_iterator_.reset(); inputs_.clear(); int64_t input_exhausted; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kExhausted, &input_exhausted)); if (!static_cast<bool>(input_exhausted)) { TF_RETURN_IF_ERROR( dataset()->input_->MakeIterator(ctx, this, prefix(), &input_impl_)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, input_impl_)); { int64_t temp; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kElementIndex, &temp)); element_index_ = temp; } int64_t current_element_iterator_uninitialized; TF_RETURN_IF_ERROR( reader->ReadScalar(prefix(), kCurrentElementIteratorUninitialized, &current_element_iterator_uninitialized)); if (!static_cast<bool>(current_element_iterator_uninitialized)) { TF_RETURN_IF_ERROR(RestoreCurrentElementIterator(ctx, reader)); } } return absl::OkStatus(); } Status RestoreForGlobalShuffle(IteratorContext* ctx, IteratorStateReader* reader) TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); element_count_ = *ctx->restored_element_count(); FlatMapRandomAccessHandler& random_access = dataset()->random_access_handler_; TF_ASSIGN_OR_RETURN(int64_t cardinality, random_access.Cardinality()); if (dataset_iterators_.empty()) { TF_ASSIGN_OR_RETURN( dataset_iterators_, random_access.MakeInputIterators(ctx, this, prefix())); } input_element_counts_.resize(dataset_iterators_.size(), 0); next_positions_.resize(dataset_iterators_.size(), 0); std::fill(input_element_counts_.begin(), input_element_counts_.end(), 0); std::fill(next_positions_.begin(), next_positions_.end(), 0); for (size_t count = 0; count < element_count_ && count < cardinality; ++count) { TF_ASSIGN_OR_RETURN(size_t parent_index, ctx->index_mapper()(count)); absl::StatusOr<size_t> dataset_index = random_access.GetDatasetIndex(parent_index); if (absl::IsOutOfRange(dataset_index.status())) { break; } TF_RETURN_IF_ERROR(dataset_index.status()); ++input_element_counts_[*dataset_index]; next_positions_[*dataset_index] = count + 1; } for (size_t i = 0; i < dataset_iterators_.size(); ++i) { IteratorContext::Params params(ctx); params.restored_element_count = input_element_counts_[i]; IteratorContext ctx_copy(std::move(params)); TF_RETURN_IF_ERROR( RestoreInput(&ctx_copy, reader, dataset_iterators_[i])); ctx->MergeCheckpoint(ctx_copy.checkpoint()); } return absl::OkStatus(); } private: Status BuildCurrentElementIteratorLocked(IteratorContext* ctx, bool is_get_next) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { std::shared_ptr<model::Node> node = is_get_next ? model_node() : nullptr; return MakeIteratorFromInputElement( ctx, this, inputs_, element_index_++, *instantiated_captured_func_, prefix(), &current_element_iterator_, node); } Status RestoreCurrentElementIterator(IteratorContext* ctx, IteratorStateReader* reader) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { if (ctx->symbolic_checkpoint()) { return RestoreCurrentElementIteratorSymbolic(ctx, reader); } size_t inputs_size; { int64_t temp; TF_RETURN_IF_ERROR(reader->ReadScalar(prefix(), kInputsSize, &temp)); inputs_size = static_cast<size_t>(temp); } inputs_.reserve(inputs_size); for (int i = 0; i < inputs_size; i++) { inputs_.emplace_back(); TF_RETURN_IF_ERROR(reader->ReadTensor( ctx->flr(), prefix(), strings::StrCat(kInputs, "[", i, "]"), &inputs_.back())); } element_index_--; TF_RETURN_IF_ERROR( BuildCurrentElementIteratorLocked(ctx, false)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, current_element_iterator_)); return absl::OkStatus(); } Status RestoreCurrentElementIteratorSymbolic(IteratorContext* ctx, IteratorStateReader* reader) TF_EXCLUSIVE_LOCKS_REQUIRED(mu_) { bool end_of_sequence; auto input_ctx = std::make_unique<IteratorContext>(*ctx); TF_RETURN_IF_ERROR( input_impl_->GetNext(input_ctx.get(), &inputs_, &end_of_sequence)); if (end_of_sequence) { return absl::FailedPreconditionError( "Unexpected end of sequence while symbolically restoring " "FlatMapDataset. Please verify that the input produces data " "deterministically."); } input_ckpt_->Merge(input_ctx->checkpoint()); element_index_--; TF_RETURN_IF_ERROR( BuildCurrentElementIteratorLocked(ctx, false)); TF_RETURN_IF_ERROR(RestoreInput(ctx, reader, current_element_iterator_)); return absl::OkStatus(); } mutex mu_; size_t element_index_ TF_GUARDED_BY(mu_) = 0; std::unique_ptr<MemoryCheckpoint> input_ckpt_ TF_GUARDED_BY(mu_); std::vector<Tensor> inputs_ TF_GUARDED_BY(mu_); std::unique_ptr<InstantiatedCapturedFunction> instantiated_captured_func_; size_t element_count_ TF_GUARDED_BY(mu_) = 0; std::vector<int64_t> input_element_counts_ TF_GUARDED_BY(mu_); std::vector<size_t> next_positions_; std::vector<std::unique_ptr<IteratorBase>> dataset_iterators_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> input_impl_ TF_GUARDED_BY(mu_); std::unique_ptr<IteratorBase> current_element_iterator_ TF_GUARDED_BY(mu_); }; const DatasetBase* const input_; const std::unique_ptr<CapturedFunction> captured_func_; const DataTypeVector output_types_; const std::vector<PartialTensorShape> output_shapes_; absl::Status random_indexing_compatible_ = absl::OkStatus(); mutable FlatMapRandomAccessHandler random_access_handler_; }; FlatMapDatasetOp::FlatMapDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx), graph_def_version_(ctx->graph_def_version()) { OP_REQUIRES_OK(ctx, FunctionMetadata::Create(ctx, kFunc, {}, &func_metadata_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputTypes, &output_types_)); OP_REQUIRES_OK(ctx, ctx->GetAttr(kOutputShapes, &output_shapes_)); } void FlatMapDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { std::unique_ptr<CapturedFunction> captured_func; OP_REQUIRES_OK(ctx, CapturedFunction::Create(ctx, func_metadata_, kOtherArguments, &captured_func)); *output = new Dataset(ctx, input, std::move(captured_func), output_types_, output_shapes_); } namespace { REGISTER_KERNEL_BUILDER(Name("FlatMapDataset").Device(DEVICE_CPU), FlatMapDatasetOp); REGISTER_INPUT_COLOCATION_EXEMPTION("FlatMapDataset"); } } }
#include "tensorflow/core/kernels/data/flat_map_dataset_op.h" #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "flat_map_dataset"; class FlatMapDatasetParams : public DatasetParams { public: template <typename T> FlatMapDatasetParams(T input_dataset_params, std::vector<Tensor> other_arguments, FunctionDefHelper::AttrValueWrapper func, std::vector<FunctionDef> func_lib, DataTypeVector type_arguments, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), other_arguments_(std::move(other_arguments)), func_(std::move(func)), func_lib_(std::move(func_lib)), type_arguments_(std::move(type_arguments)) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return other_arguments_; } Status GetInputNames(std::vector<string>* input_names) const override { input_names->emplace_back(FlatMapDatasetOp::kInputDataset); for (int i = 0; i < other_arguments_.size(); ++i) { input_names->emplace_back( absl::StrCat(FlatMapDatasetOp::kOtherArguments, "_", i)); } return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { *attr_vector = {{"f", func_}, {"Targuments", type_arguments_}, {"output_shapes", output_shapes_}, {"output_types", output_dtypes_}, {"metadata", ""}}; return absl::OkStatus(); } string dataset_type() const override { return FlatMapDatasetOp::kDatasetType; } std::vector<FunctionDef> func_lib() const override { return func_lib_; } private: std::vector<Tensor> other_arguments_; FunctionDefHelper::AttrValueWrapper func_; std::vector<FunctionDef> func_lib_; DataTypeVector type_arguments_; }; class FlatMapDatasetOpTest : public DatasetOpsTestBase {}; FlatMapDatasetParams FlatMapDatasetParams1() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); auto func = FunctionDefHelper::FunctionRef( "MakeTensorSliceDataset", {{"Toutput_types", DataTypeVector({DT_INT64})}, {"output_shapes", std::vector<PartialTensorShape>({PartialTensorShape({1})})}}); return FlatMapDatasetParams( std::move(tensor_slice_dataset_params), {}, func, {test::function::MakeTensorSliceDataset()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } FlatMapDatasetParams InvalidFlatMapDatasetParams() { auto tensor_slice_dataset_params = TensorSliceDatasetParams( {CreateTensor<int64_t>(TensorShape{3, 3, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8})}, "tensor_slice"); auto func = FunctionDefHelper::FunctionRef( "NonZero", {{"T", DT_INT64}}); return FlatMapDatasetParams(std::move(tensor_slice_dataset_params), {}, func, {test::function::NonZero()}, {}, {DT_INT64}, {PartialTensorShape({1})}, kNodeName); } std::vector<GetNextTestCase<FlatMapDatasetParams>> GetNextTestCases() { return { {FlatMapDatasetParams1(), CreateTensors<int64_t>(TensorShape({1}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}})}}; } ITERATOR_GET_NEXT_TEST_P(FlatMapDatasetOpTest, FlatMapDatasetParams, GetNextTestCases()) std::vector<SkipTestCase<FlatMapDatasetParams>> SkipTestCases() { return {{FlatMapDatasetParams1(), 2, 2, true, CreateTensors<int64_t>(TensorShape({1}), {{2}})}, {FlatMapDatasetParams1(), 4, 4, true, CreateTensors<int64_t>(TensorShape({1}), {{4}})}, {FlatMapDatasetParams1(), 9, 9, false}, {FlatMapDatasetParams1(), 10, 9, false}}; } ITERATOR_SKIP_TEST_P(FlatMapDatasetOpTest, FlatMapDatasetParams, SkipTestCases()) TEST_F(FlatMapDatasetOpTest, DatasetNodeName) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetNodeName(dataset_params.node_name())); } TEST_F(FlatMapDatasetOpTest, DatasetTypeString) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetTypeString( name_utils::OpName(FlatMapDatasetOp::kDatasetType))); } TEST_F(FlatMapDatasetOpTest, DatasetOutputDtypes) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputDtypes(dataset_params.output_dtypes())); } TEST_F(FlatMapDatasetOpTest, DatasetOutputShapes) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetOutputShapes(dataset_params.output_shapes())); } TEST_F(FlatMapDatasetOpTest, Cardinality) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckDatasetCardinality(kUnknownCardinality)); } TEST_F(FlatMapDatasetOpTest, IteratorOutputDtypes) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputDtypes(dataset_params.output_dtypes())); } TEST_F(FlatMapDatasetOpTest, IteratorOutputShapes) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorOutputShapes(dataset_params.output_shapes())); } TEST_F(FlatMapDatasetOpTest, IteratorPrefix) { auto dataset_params = FlatMapDatasetParams1(); TF_ASSERT_OK(Initialize(dataset_params)); TF_ASSERT_OK(CheckIteratorPrefix(name_utils::IteratorPrefix( FlatMapDatasetOp::kDatasetType, dataset_params.iterator_prefix()))); } std::vector<IteratorSaveAndRestoreTestCase<FlatMapDatasetParams>> IteratorSaveAndRestoreTestCases() { return { {FlatMapDatasetParams1(), {0, 4, 11}, CreateTensors<int64_t>(TensorShape({1}), {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}})}}; } ITERATOR_SAVE_AND_RESTORE_TEST_P(FlatMapDatasetOpTest, FlatMapDatasetParams, IteratorSaveAndRestoreTestCases()) TEST_F(FlatMapDatasetOpTest, InvalidMapFunc) { auto dataset_params = InvalidFlatMapDatasetParams(); TF_ASSERT_OK(Initialize(dataset_params)); bool end_of_sequence = false; std::vector<Tensor> out_tensors; EXPECT_EQ( iterator_->GetNext(iterator_ctx_.get(), &out_tensors, &end_of_sequence) .code(), absl::StatusCode::kInvalidArgument); } } } }
47
#ifndef TENSORFLOW_COMPILER_MLIR_TFRT_TRANSFORMS_IFRT_IFRT_BACKEND_COMPILER_H_ #define TENSORFLOW_COMPILER_MLIR_TFRT_TRANSFORMS_IFRT_IFRT_BACKEND_COMPILER_H_ #include "absl/status/status.h" #include "mlir/IR/BuiltinOps.h" #include "tensorflow/compiler/mlir/tfrt/backend_compiler.h" #include "tensorflow/compiler/mlir/tfrt/transforms/tpu_passes.h" #include "tensorflow/core/tfrt/runtime/runtime.h" namespace tensorflow { namespace ifrt_serving { class IfrtBackendCompiler : public tensorflow::BackendCompiler { public: explicit IfrtBackendCompiler(TpuCompiler* tpu_compiler = nullptr) : tpu_compiler_(tpu_compiler) {} void GetDependentDialects(mlir::DialectRegistry& registry) const override { if (tpu_compiler_) { tpu_compiler_->RegisterTPUDialects(&registry); } } absl::Status CompileTensorflow( tensorflow::tfrt_stub::ModelRuntimeContext& model_context, mlir::ModuleOp module) const override; private: TpuCompiler* tpu_compiler_; }; } } #endif #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_backend_compiler.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include <vector> #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallVector.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Value.h" #include "mlir/IR/Verifier.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/error_util.h" #include "tensorflow/compiler/mlir/tensorflow/utils/visitor.h" #include "tensorflow/compiler/mlir/tf2xla/api/v2/cluster_tf.h" #include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/tf_ifrt_passes.h" #include "tensorflow/compiler/mlir/tfrt/transforms/tpu_passes.h" #include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace ifrt_serving { namespace { absl::StatusOr<std::vector<ServingExecutableRegistry::Handle>> CompileAndRegisterIfrtPrograms(absl::string_view model_name, mlir::ModuleOp module, IfrtModelContext& ifrt_model_context) { std::vector<ServingExecutableRegistry::Handle> handles; for (auto func : module.getOps<mlir::func::FuncOp>()) { int64_t program_id; if (auto attr = func->getAttrOfType<mlir::IntegerAttr>( "tfrt_ifrt_serving.program_id")) { program_id = attr.getInt(); } else { continue; } mlir::StatusScopedDiagnosticHandler diag_handler(module->getContext()); auto entry_function_name = func.getSymName(); auto submodule = mlir::TF::CreatePrunedModule(module, entry_function_name); if (mlir::failed(submodule)) { return diag_handler.ConsumeStatus(); } submodule->get()->removeAttr("tf_saved_model.semantics"); submodule->get().walk([&](mlir::func::FuncOp func) { if (func.getSymName() == entry_function_name) { func.setName("main"); func.setSymName("main"); func.setPublic(); } }); TF_ASSIGN_OR_RETURN( auto executable, IfrtServingExecutable::Create( program_id, model_name, entry_function_name.str(), *std::move(submodule), ifrt_model_context.GetClient(), &ifrt_model_context.GetThreadPool(), &ifrt_model_context.GetLoadedVariableRegistry(), &ifrt_model_context.GetRestoreTensorRegistry(), ifrt_model_context.checkpoint_loader_queue(), ifrt_model_context.GetDeviceMgr(), ifrt_model_context.GetShapeRepresentationFn(), ifrt_model_context.GetIfrtServingCoreSelector(), ifrt_model_context.GetCompilationEnvironmentProto())); TF_ASSIGN_OR_RETURN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); handles.push_back(std::move(handle)); } return handles; } absl::Status CompileTensorflowForIfrtServing( absl::string_view model_name, IfrtModelContext& ifrt_model_context, mlir::ModuleOp module) { tsl::profiler::TraceMe trace_me("CompileTensorflowForIfrtServing"); mlir::Builder builder(module.getContext()); TF_RETURN_IF_ERROR( RunClusterToIfrtRuntimeOpsPassPipeline(module, model_name)); TF_ASSIGN_OR_RETURN( auto handles, CompileAndRegisterIfrtPrograms(model_name, module, ifrt_model_context)); for (auto& handle : handles) { ifrt_model_context.RegisterHandle(std::move(handle)); } return absl::OkStatus(); } } absl::Status IfrtBackendCompiler::CompileTensorflow( tensorflow::tfrt_stub::ModelRuntimeContext& model_context, mlir::ModuleOp module) const { auto ifrt_model_context = model_context.resource_context().GetResource<IfrtModelContext>( kIfrtModelContextName); if (!ifrt_model_context.has_value()) { return absl::InternalError( "Failed to find model context for ifrt serving."); } mlir::StatusScopedDiagnosticHandler diag_handler(module->getContext()); if (VLOG_IS_ON(1)) { tensorflow::DumpMlirOpToFile("ifrt_tpu_bct_conversion_before", module); } if (tpu_compiler_ != nullptr) { if (mlir::failed( tpu_compiler_->RunTPUBackwardCompatConversion(module, {}))) { return diag_handler.Combine( absl::InternalError("Failed to handle legacy TPU Ops")); } } if (VLOG_IS_ON(1)) { tensorflow::DumpMlirOpToFile("ifrt_tpu_bct_conversion_after", module); } TF_RETURN_IF_ERROR(tensorflow::tf2xla::v2::RunFunctionTf2xlaClusteringBridge( module, true, false)); if (VLOG_IS_ON(1)) { tensorflow::DumpMlirOpToFile("before_ifrt_outlining", module); } TF_RETURN_IF_ERROR(CompileTensorflowForIfrtServing( model_context.name(), **ifrt_model_context, module)); if (VLOG_IS_ON(1)) { tensorflow::DumpMlirOpToFile("after_ifrt_outlining", module); } llvm::SmallVector<mlir::func::FuncOp> to_erase; for (auto func : module.getOps<mlir::func::FuncOp>()) { if (func->getAttr("tfrt_ifrt_serving.program_id")) { to_erase.push_back(func); } } for (auto func : to_erase) { func->erase(); } if (VLOG_IS_ON(1)) { tensorflow::DumpMlirOpToFile("after_ifrt_program_removal", module); } if (mlir::failed(mlir::verify(module))) { return diag_handler.ConsumeStatus(); } return absl::OkStatus(); } } }
#include "tensorflow/compiler/mlir/tfrt/transforms/ifrt/ifrt_backend_compiler.h" #include <memory> #include <string> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/InitAllDialects.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/test_util.h" #include "xla/tsl/framework/test_util/mock_serving_device_selector.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/graph_executor/graph_execution_options.h" #include "tensorflow/core/tfrt/ifrt/ifrt_model_context.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_core_selector.h" #include "tensorflow/core/tfrt/runtime/runtime.h" #include "tensorflow/core/tfrt/saved_model/saved_model_testutil.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tfrt/host_context/resource_context.h" namespace tensorflow { namespace ifrt_serving { namespace { tsl::thread::ThreadPool& GetThreadPool() { constexpr int kMaxParallelism = 16; static tsl::thread::ThreadPool* thread_pool = new tsl::thread::ThreadPool(tsl::Env::Default(), tsl::ThreadOptions(), "IfrtSharding", kMaxParallelism); return *thread_pool; } TEST(IfrtBackendCompilerTest, Basic) { constexpr absl::string_view kDataDirectory = "tensorflow/compiler/mlir/tfrt/transforms/ifrt/testdata"; std::string mlir_module_path = tensorflow::GetDataDependencyFilepath( absl::StrCat(kDataDirectory, "/ifrt_cluster.mlir")); mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); mlir::OwningOpRef<mlir::ModuleOp> mlir_module = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context); ASSERT_TRUE(mlir_module); ASSERT_TRUE(mlir_module.get() != nullptr); TF_ASSERT_OK_AND_ASSIGN(std::shared_ptr<xla::ifrt::Client> client, xla::ifrt::test_util::GetClient()); std::unique_ptr<tensorflow::tfrt_stub::Runtime> runtime = tensorflow::tfrt_stub::DefaultTfrtRuntime(1); tensorflow::tfrt_stub::GraphExecutionOptions graph_execution_options( runtime.get()); tfrt::ResourceContext resource_context; tensorflow::tfrt_stub::ModelRuntimeContext runtime_context( &graph_execution_options, "", &resource_context); tsl::test_util::MockServingDeviceSelector mock_serving_device_selector; IfrtServingCoreSelector core_selector(&mock_serving_device_selector, client->addressable_device_count()); runtime_context.resource_context().CreateResource<IfrtModelContext>( "IfrtModelContext", client, &core_selector, &GetThreadPool(), nullptr); IfrtBackendCompiler compiler; TF_ASSERT_OK(compiler.CompileTensorflow(runtime_context, mlir_module.get())); } } } }
48
#ifndef TENSORFLOW_TSL_PROFILER_UTILS_TIMESTAMP_UTILS_H_ #define TENSORFLOW_TSL_PROFILER_UTILS_TIMESTAMP_UTILS_H_ #include <cstdint> #include "tsl/profiler/protobuf/xplane.pb.h" namespace tsl { namespace profiler { void SetSessionTimestamps(uint64_t start_walltime_ns, uint64_t stop_walltime_ns, tensorflow::profiler::XSpace& space); } } #endif #include "tsl/profiler/utils/timestamp_utils.h" #include <cstdint> #include "absl/log/log.h" #include "tsl/profiler/protobuf/xplane.pb.h" #include "tsl/profiler/utils/xplane_builder.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_utils.h" namespace tsl { namespace profiler { void SetSessionTimestamps(uint64_t start_walltime_ns, uint64_t stop_walltime_ns, tensorflow::profiler::XSpace& space) { if (start_walltime_ns != 0 && stop_walltime_ns != 0) { tsl::profiler::XPlaneBuilder plane( tsl::profiler::FindOrAddMutablePlaneWithName( &space, tsl::profiler::kTaskEnvPlaneName)); plane.AddStatValue(*plane.GetOrCreateStatMetadata( GetTaskEnvStatTypeStr(kEnvProfileStartTime)), start_walltime_ns); plane.AddStatValue(*plane.GetOrCreateStatMetadata( GetTaskEnvStatTypeStr(kEnvProfileStopTime)), stop_walltime_ns); } else { LOG(WARNING) << "Not Setting Session Timestamps, (start_walltime_ns, " "stop_walltime_ns) : " << start_walltime_ns << ", " << stop_walltime_ns; } } } }
#include "tsl/profiler/utils/timestamp_utils.h" #include "tsl/platform/test.h" #include "tsl/profiler/utils/xplane_schema.h" #include "tsl/profiler/utils/xplane_utils.h" #include "tsl/profiler/utils/xplane_visitor.h" namespace tsl { namespace profiler { using ::testing::Eq; TEST(TimestampUtilsTest, StartAndStopTimestampAreAdded) { XSpace xspace; SetSessionTimestamps(1000, 2000, xspace); const XPlane* xplane = FindPlaneWithName(xspace, kTaskEnvPlaneName); XPlaneVisitor visitor(xplane, {}, {FindTaskEnvStatType}); auto start_time = visitor.GetStat(TaskEnvStatType::kEnvProfileStartTime); auto stop_time = visitor.GetStat(TaskEnvStatType::kEnvProfileStopTime); EXPECT_THAT(start_time->IntOrUintValue(), Eq(1000)); EXPECT_THAT(stop_time->IntOrUintValue(), Eq(2000)); } } }
49
#ifndef TENSORFLOW_CORE_DATA_SERVICE_BYTE_SIZE_H_ #define TENSORFLOW_CORE_DATA_SERVICE_BYTE_SIZE_H_ #include <cstddef> #include <ostream> #include <string> namespace tensorflow { namespace data { class ByteSize final { public: constexpr ByteSize() = default; constexpr ByteSize(const ByteSize&) = default; ByteSize& operator=(const ByteSize&) = default; constexpr static ByteSize Bytes(size_t n); template <class T> constexpr static ByteSize KB(T n); template <class T> constexpr static ByteSize MB(T n); template <class T> constexpr static ByteSize GB(T n); template <class T> constexpr static ByteSize TB(T n); ByteSize& operator+=(ByteSize rhs); ByteSize& operator-=(ByteSize rhs); template <class T> ByteSize& operator*=(T rhs); template <class T> ByteSize& operator/=(T rhs); size_t ToUnsignedBytes() const; double ToDoubleBytes() const; double ToDoubleKB() const; double ToDoubleMB() const; double ToDoubleGB() const; double ToDoubleTB() const; std::string DebugString() const; private: constexpr explicit ByteSize(double bytes) : bytes_(bytes) {} size_t bytes_ = 0; }; constexpr ByteSize ByteSize::Bytes(size_t n) { return ByteSize(n); }; template <class T> constexpr ByteSize ByteSize::KB(T n) { return ByteSize::Bytes(n * (size_t{1} << 10)); } template <class T> constexpr ByteSize ByteSize::MB(T n) { return ByteSize::Bytes(n * (size_t{1} << 20)); } template <class T> constexpr ByteSize ByteSize::GB(T n) { return ByteSize::Bytes(n * (size_t{1} << 30)); } template <class T> constexpr ByteSize ByteSize::TB(T n) { return ByteSize::Bytes(n * (size_t{1} << 40)); } inline ByteSize& ByteSize::operator+=(ByteSize rhs) { bytes_ += rhs.ToUnsignedBytes(); return *this; } inline ByteSize& ByteSize::operator-=(ByteSize rhs) { if (bytes_ < rhs.ToUnsignedBytes()) { bytes_ = 0; return *this; } bytes_ -= rhs.ToUnsignedBytes(); return *this; } template <class T> inline ByteSize& ByteSize::operator*=(T rhs) { bytes_ *= rhs; return *this; } template <class T> inline ByteSize& ByteSize::operator/=(T rhs) { bytes_ /= rhs; return *this; } inline ByteSize operator+(ByteSize lhs, ByteSize rhs) { return lhs += rhs; } inline ByteSize operator-(ByteSize lhs, ByteSize rhs) { return lhs -= rhs; } template <class T> inline ByteSize operator*(ByteSize lhs, T rhs) { return lhs *= rhs; } template <class T> inline ByteSize operator*(T lhs, ByteSize rhs) { return rhs *= lhs; } template <class T> inline ByteSize operator/(ByteSize lhs, T rhs) { return lhs /= rhs; } inline double operator/(ByteSize lhs, ByteSize rhs) { return lhs.ToDoubleBytes() / rhs.ToDoubleBytes(); } inline bool operator<(ByteSize lhs, ByteSize rhs) { return lhs.ToUnsignedBytes() < rhs.ToUnsignedBytes(); } inline bool operator>(ByteSize lhs, ByteSize rhs) { return rhs < lhs; } inline bool operator>=(ByteSize lhs, ByteSize rhs) { return !(lhs < rhs); } inline bool operator<=(ByteSize lhs, ByteSize rhs) { return !(rhs < lhs); } inline bool operator==(ByteSize lhs, ByteSize rhs) { return lhs.ToUnsignedBytes() == rhs.ToUnsignedBytes(); } inline bool operator!=(ByteSize lhs, ByteSize rhs) { return !(lhs == rhs); } inline std::ostream& operator<<(std::ostream& os, ByteSize byte_size) { return os << byte_size.DebugString(); } } } #endif #include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include "absl/strings/str_cat.h" namespace tensorflow { namespace data { size_t ByteSize::ToUnsignedBytes() const { return bytes_; } double ByteSize::ToDoubleBytes() const { return static_cast<double>(bytes_); } double ByteSize::ToDoubleKB() const { return *this / ByteSize::KB(1); } double ByteSize::ToDoubleMB() const { return *this / ByteSize::MB(1); } double ByteSize::ToDoubleGB() const { return *this / ByteSize::GB(1); } double ByteSize::ToDoubleTB() const { return *this / ByteSize::TB(1); } std::string ByteSize::DebugString() const { if (*this < ByteSize::KB(1)) { return absl::StrCat(ToUnsignedBytes(), "B"); } if (*this < ByteSize::MB(1)) { return absl::StrCat(ToDoubleKB(), "KB"); } if (*this < ByteSize::GB(1)) { return absl::StrCat(ToDoubleMB(), "MB"); } if (*this < ByteSize::TB(1)) { return absl::StrCat(ToDoubleGB(), "GB"); } return absl::StrCat(ToDoubleTB(), "TB"); } } }
#include "tensorflow/core/data/service/byte_size.h" #include <cstddef> #include <string> #include <vector> #include "absl/algorithm/container.h" #include "tsl/platform/test.h" namespace tensorflow { namespace data { namespace { using ::testing::Eq; using ::testing::Not; TEST(ByteSizeTest, Constructors) { EXPECT_EQ(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::Bytes(1024)); EXPECT_EQ(ByteSize::Bytes(1024), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 63), ByteSize::TB(size_t{1} << 23)); EXPECT_EQ(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1), ByteSize::Bytes(size_t{1} << 10)); EXPECT_EQ(ByteSize::KB(0.9), ByteSize::Bytes(1024 * 0.9)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::Bytes(1024 * 1.5)); EXPECT_EQ(ByteSize::KB(1.5), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(1024), ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1), ByteSize::Bytes(size_t{1} << 20)); EXPECT_EQ(ByteSize::MB(0.9), ByteSize::Bytes(size_t{1} << 20) * 0.9); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::Bytes(size_t{1} << 20) * 1.5); EXPECT_EQ(ByteSize::MB(1.5), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1024), ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1), ByteSize::Bytes(size_t{1} << 30)); EXPECT_EQ(ByteSize::GB(0.9), ByteSize::Bytes(size_t{1} << 30) * 0.9); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::Bytes(size_t{1} << 30) * 1.5); EXPECT_EQ(ByteSize::GB(1.5), ByteSize::GB(1.5)); EXPECT_EQ(ByteSize::GB(1024), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1), ByteSize::Bytes(size_t{1} << 40)); EXPECT_EQ(ByteSize::TB(0.9), ByteSize::Bytes(size_t{1} << 40) * 0.9); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::Bytes(size_t{1} << 40) * 1.5); EXPECT_EQ(ByteSize::TB(1.5), ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::TB(1024), ByteSize::TB(1024)); EXPECT_EQ(ByteSize::TB(size_t{1} << 23), ByteSize::TB(size_t{1} << 23)); EXPECT_THAT(ByteSize::Bytes(0), Not(Eq(ByteSize::Bytes(1)))); EXPECT_THAT(ByteSize::Bytes(1025), Not(Eq(ByteSize::KB(1)))); EXPECT_THAT(ByteSize::KB(1), Not(Eq(ByteSize::MB(1)))); EXPECT_THAT(ByteSize::MB(1), Not(Eq(ByteSize::GB(1)))); EXPECT_THAT(ByteSize::GB(1), Not(Eq(ByteSize::TB(1)))); EXPECT_THAT(ByteSize::TB(1), Not(Eq(ByteSize::TB(2)))); } TEST(ByteSizeTest, ConstexprConstruction) { constexpr ByteSize default_byte_size; EXPECT_EQ(default_byte_size, ByteSize::Bytes(0)); constexpr ByteSize bytes = ByteSize::Bytes(1); EXPECT_EQ(bytes, ByteSize::Bytes(1)); constexpr ByteSize kb = ByteSize::KB(1); EXPECT_EQ(kb, ByteSize::KB(1)); constexpr ByteSize mb = ByteSize::MB(1); EXPECT_EQ(mb, ByteSize::MB(1)); constexpr ByteSize gb = ByteSize::GB(1); EXPECT_EQ(gb, ByteSize::GB(1)); constexpr ByteSize tb = ByteSize::TB(1); EXPECT_EQ(tb, ByteSize::TB(1)); constexpr ByteSize tb_copy(tb); EXPECT_EQ(tb_copy, tb); } TEST(ByteSizeTest, ConvertToBytes) { EXPECT_EQ(ByteSize::Bytes(0).ToUnsignedBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleBytes(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleKB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleMB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleGB(), 0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0).ToDoubleTB(), 0); EXPECT_EQ(ByteSize::Bytes(1).ToUnsignedBytes(), 1); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleBytes(), 1.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleKB(), 1.0 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleMB(), 1.0 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleGB(), 1.0 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1).ToDoubleTB(), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::KB(0.25).ToUnsignedBytes(), 0.25 * (size_t{1} << 10)); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleBytes(), 0.25 * 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleKB(), 0.25); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleMB(), 0.25 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleGB(), 0.25 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(0.25).ToDoubleTB(), 0.25 / 1024 / 1024 / 1024); EXPECT_EQ(ByteSize::MB(0.5).ToUnsignedBytes(), 0.5 * (size_t{1} << 20)); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleBytes(), 0.5 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleKB(), 0.5 * 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleMB(), 0.5); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleGB(), 0.5 / 1024); EXPECT_DOUBLE_EQ(ByteSize::MB(0.5).ToDoubleTB(), 0.5 / 1024 / 1024); EXPECT_EQ(ByteSize::GB(10).ToUnsignedBytes(), 10.0 * (size_t{1} << 30)); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleBytes(), 10.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleKB(), 10.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleMB(), 10.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleGB(), 10.0); EXPECT_DOUBLE_EQ(ByteSize::GB(10).ToDoubleTB(), 10.0 / 1024); EXPECT_EQ(ByteSize::TB(1024).ToUnsignedBytes(), 1024 * (size_t{1} << 40)); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleBytes(), 1024.0 * 1024 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleKB(), 1024.0 * 1024 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleMB(), 1024.0 * 1024 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleGB(), 1024.0 * 1024); EXPECT_DOUBLE_EQ(ByteSize::TB(1024).ToDoubleTB(), 1024.0); } TEST(ByteSizeTest, Arithmetics) { EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) + ByteSize::Bytes(1), ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::Bytes(512), ByteSize::KB(1)); EXPECT_EQ(ByteSize::Bytes(512) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::KB(0.5) + ByteSize::KB(1), ByteSize::KB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::KB(512), ByteSize::MB(1.5)); EXPECT_EQ(ByteSize::MB(1) + ByteSize::Bytes(512), ByteSize::Bytes(1049088)); EXPECT_EQ(ByteSize::GB(0.5) + ByteSize::MB(256) + ByteSize::MB(256), ByteSize::GB(1)); std::vector<ByteSize> GBs(1024, ByteSize::GB(1)); EXPECT_EQ(absl::c_accumulate(GBs, ByteSize::Bytes(0)), ByteSize::TB(1)); EXPECT_EQ(ByteSize::TB(1) + ByteSize::TB(0.5) + ByteSize::GB(512), ByteSize::TB(2)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) - ByteSize::Bytes(512), ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::KB(512) - ByteSize::KB(512), ByteSize::MB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512), ByteSize::GB(0.5)); EXPECT_EQ(ByteSize::GB(0.5) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::GB(1) - ByteSize::MB(512) - ByteSize::MB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::TB(1) - ByteSize::GB(512) - ByteSize::GB(512), ByteSize::GB(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) - ByteSize::GB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::MB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::GB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::TB(1) * 0, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(1) * 1024, ByteSize::KB(1)); EXPECT_EQ(ByteSize::KB(1) * 1024, ByteSize::MB(1)); EXPECT_EQ(ByteSize::MB(1) * 1024, ByteSize::GB(1)); EXPECT_EQ(ByteSize::GB(1) * 1024, ByteSize::TB(1)); EXPECT_EQ(ByteSize::Bytes(1) * 1.1, ByteSize::Bytes(1)); EXPECT_EQ(ByteSize::KB(1) * 1.2, ByteSize::KB(1.2)); EXPECT_EQ(ByteSize::MB(1) * 1.3, ByteSize::MB(1.3)); EXPECT_EQ(ByteSize::GB(1) * 1.4, ByteSize::GB(1.4)); EXPECT_EQ(ByteSize::TB(1) * 1.5, ByteSize::TB(1.5)); EXPECT_EQ(ByteSize::KB(1) * 0.5, ByteSize::Bytes(512)); EXPECT_EQ(ByteSize::MB(1) * 0.5, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) * 0.5, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1) * 0.25, ByteSize::GB(256)); EXPECT_EQ(1024 * ByteSize::Bytes(1), ByteSize::KB(1)); EXPECT_EQ(1024 * ByteSize::KB(1), ByteSize::MB(1)); EXPECT_EQ(1024 * ByteSize::MB(1), ByteSize::GB(1)); EXPECT_EQ(1024 * ByteSize::GB(1), ByteSize::TB(1)); EXPECT_EQ(0.9 * ByteSize::TB(1), ByteSize::GB(921.6)); EXPECT_EQ(0 * ByteSize::TB(1), ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::Bytes(0) / 1, ByteSize::Bytes(0)); EXPECT_EQ(ByteSize::KB(1) / 2, ByteSize::KB(0.5)); EXPECT_EQ(ByteSize::MB(1) / 2, ByteSize::KB(512)); EXPECT_EQ(ByteSize::GB(1) / 2, ByteSize::MB(512)); EXPECT_EQ(ByteSize::TB(1.5) / 2, ByteSize::GB(768)); EXPECT_EQ(ByteSize::KB(1) / 0.5, ByteSize::KB(2)); EXPECT_EQ(ByteSize::MB(1) / 0.5, ByteSize::MB(2)); EXPECT_EQ(ByteSize::GB(1) / 0.5, ByteSize::GB(2)); EXPECT_EQ(ByteSize::TB(1) / 0.25, ByteSize::TB(4)); EXPECT_DOUBLE_EQ(ByteSize::Bytes(0) / ByteSize::KB(1), 0.0); EXPECT_DOUBLE_EQ(ByteSize::Bytes(1) / ByteSize::TB(1), 1.0 / 1024 / 1024 / 1024 / 1024); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::KB(2), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(512) / ByteSize::MB(1), 0.5); EXPECT_DOUBLE_EQ(ByteSize::KB(1) / ByteSize::MB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::MB(1) / ByteSize::GB(1), 1.0 / 1024.0); EXPECT_DOUBLE_EQ(ByteSize::GB(1) / ByteSize::TB(1), 1.0 / 1024.0); } TEST(ByteSizeTest, Assignments) { ByteSize byte_size; EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size = ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(1)); for (size_t i = 0; i < 1023; ++i) { byte_size += ByteSize::Bytes(1); } EXPECT_EQ(byte_size, ByteSize::KB(1)); for (size_t i = 0; i < 10; ++i) { byte_size *= 2; } EXPECT_EQ(byte_size, ByteSize::MB(1)); byte_size *= 1024 * 1024; EXPECT_EQ(byte_size, ByteSize::TB(1)); for (size_t i = 0; i < 10; ++i) { byte_size /= 2; } EXPECT_EQ(byte_size, ByteSize::GB(1)); for (size_t i = 0; i < 4; ++i) { byte_size -= ByteSize::MB(256); } EXPECT_EQ(byte_size, ByteSize::Bytes(0)); byte_size -= ByteSize::Bytes(1); EXPECT_EQ(byte_size, ByteSize::Bytes(0)); } TEST(ByteSizeTest, Comparisons) { EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::Bytes(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::Bytes(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::Bytes(1024 * 1024)); EXPECT_LT(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::Bytes(1024), ByteSize::KB(1.1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_LE(ByteSize::KB(1), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::KB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LE(ByteSize::KB(0.9), ByteSize::Bytes(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LE(ByteSize::KB(1), ByteSize::KB(1024)); EXPECT_LT(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LE(ByteSize::KB(1), ByteSize::MB(1)); EXPECT_LT(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::KB(1024), ByteSize::MB(1.1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::MB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LE(ByteSize::MB(0.9), ByteSize::KB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LE(ByteSize::MB(1), ByteSize::MB(1024)); EXPECT_LT(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LE(ByteSize::MB(1), ByteSize::GB(1)); EXPECT_LT(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::MB(1024), ByteSize::GB(1.1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::GB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LE(ByteSize::GB(0.9), ByteSize::MB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LE(ByteSize::GB(1), ByteSize::GB(1024)); EXPECT_LT(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LE(ByteSize::GB(1), ByteSize::TB(1)); EXPECT_LT(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::GB(1024), ByteSize::TB(1.1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_LT(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LE(ByteSize::TB(0), ByteSize::Bytes(1)); EXPECT_LT(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LE(ByteSize::TB(0.9), ByteSize::GB(1024)); EXPECT_LT(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LE(ByteSize::TB(1), ByteSize::TB(1024)); EXPECT_LT(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_LE(ByteSize::TB(1024), ByteSize::TB(1025)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::GB(1), ByteSize::MB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1)); EXPECT_GT(ByteSize::KB(1), ByteSize::Bytes(1)); EXPECT_GT(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1)); EXPECT_GT(ByteSize::TB(1), ByteSize::GB(1) + ByteSize::MB(1) + ByteSize::KB(1) + ByteSize::Bytes(1)); EXPECT_GT(ByteSize::GB(1), 0.0000001 * ByteSize::TB(1)); EXPECT_GT(ByteSize::MB(1), ByteSize::KB(1) * 1023); EXPECT_GT(ByteSize::KB(1), ByteSize::KB(3) / 4); EXPECT_GT(ByteSize::Bytes(1), ByteSize::TB(0)); EXPECT_GE(ByteSize::TB(0.5), ByteSize::GB(0.5)); EXPECT_GE(ByteSize::GB(0.5), ByteSize::MB(0.5)); EXPECT_GE(ByteSize::MB(0.5), ByteSize::KB(0.5)); EXPECT_GE(ByteSize::KB(0.5), ByteSize::Bytes(1)); EXPECT_GE(ByteSize::Bytes(1), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::TB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::GB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::MB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::KB(0), ByteSize::Bytes(0)); EXPECT_GE(ByteSize::Bytes(0), ByteSize::Bytes(0)); } TEST(ByteSizeTest, DebugString) { EXPECT_EQ(ByteSize::Bytes(0).DebugString(), "0B"); EXPECT_EQ(ByteSize::Bytes(1).DebugString(), "1B"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 10).DebugString(), "1KB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 20).DebugString(), "1MB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 30).DebugString(), "1GB"); EXPECT_EQ(ByteSize::Bytes(size_t{1} << 40).DebugString(), "1TB"); EXPECT_EQ(ByteSize::KB(0.5).DebugString(), "512B"); EXPECT_EQ(ByteSize::KB(1).DebugString(), "1KB"); EXPECT_EQ(ByteSize::KB(1.5).DebugString(), "1.5KB"); EXPECT_EQ(ByteSize::KB(1024).DebugString(), "1MB"); EXPECT_EQ(ByteSize::KB(1024 * 1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::KB(1024 * 1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::MB(0.5).DebugString(), "512KB"); EXPECT_EQ(ByteSize::MB(1).DebugString(), "1MB"); EXPECT_EQ(ByteSize::MB(1.5).DebugString(), "1.5MB"); EXPECT_EQ(ByteSize::MB(1024).DebugString(), "1GB"); EXPECT_EQ(ByteSize::MB(1024 * 1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::GB(0.5).DebugString(), "512MB"); EXPECT_EQ(ByteSize::GB(1).DebugString(), "1GB"); EXPECT_EQ(ByteSize::GB(1.5).DebugString(), "1.5GB"); EXPECT_EQ(ByteSize::GB(1024).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(0.5).DebugString(), "512GB"); EXPECT_EQ(ByteSize::TB(1).DebugString(), "1TB"); EXPECT_EQ(ByteSize::TB(1.5).DebugString(), "1.5TB"); EXPECT_EQ(ByteSize::TB(1024).DebugString(), "1024TB"); } } } }
50
#ifndef THIRD_PARTY_CEL_CPP_COMMON_VALUES_OPTIONAL_VALUE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_VALUES_OPTIONAL_VALUE_H_ #include <memory> #include <string> #include <utility> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "common/casting.h" #include "common/memory.h" #include "common/native_type.h" #include "common/type.h" #include "common/value_interface.h" #include "common/value_kind.h" #include "common/values/opaque_value.h" #include "internal/status_macros.h" namespace cel { class ValueView; class Value; class ValueManager; class OptionalValueInterface; class OptionalValue; class OptionalValueView; class OptionalValueInterface : public OpaqueValueInterface { public: using alternative_type = OptionalValue; using view_alternative_type = OptionalValueView; OptionalType GetType(TypeManager& type_manager) const { return Cast<OptionalType>(GetTypeImpl(type_manager)); } absl::string_view GetTypeName() const final { return "optional_type"; } std::string DebugString() const final; virtual bool HasValue() const = 0; absl::Status Equal(ValueManager& value_manager, ValueView other, cel::Value& result) const override; virtual void Value(cel::Value& scratch) const = 0; cel::Value Value() const; private: Type GetTypeImpl(TypeManager&) const override { return OptionalType(); } NativeTypeId GetNativeTypeId() const noexcept final { return NativeTypeId::For<OptionalValueInterface>(); } }; template <> struct SubsumptionTraits<OptionalValueInterface> { static bool IsA(const ValueInterface& interface) { return interface.kind() == ValueKind::kOpaque && NativeTypeId::Of(interface) == NativeTypeId::For<OptionalValueInterface>(); } }; class OptionalValue final : public OpaqueValue { public: using interface_type = OptionalValueInterface; using view_alternative_type = OptionalValueView; ABSL_ATTRIBUTE_PURE_FUNCTION static OptionalValue None(); static OptionalValue Of(MemoryManagerRef memory_manager, cel::Value value); explicit OptionalValue(OptionalValueView value); OptionalValue() : OptionalValue(None()) {} OptionalValue(const OptionalValue&) = default; OptionalValue(OptionalValue&&) = default; OptionalValue& operator=(const OptionalValue&) = default; OptionalValue& operator=(OptionalValue&&) = default; template <typename T, typename = std::enable_if_t<std::is_base_of_v< OptionalValueInterface, std::remove_const_t<T>>>> OptionalValue(Shared<T> interface) : OpaqueValue(std::move(interface)) {} OptionalType GetType(TypeManager& type_manager) const { return (*this)->GetType(type_manager); } bool HasValue() const { return (*this)->HasValue(); } void Value(cel::Value& result) const; cel::Value Value() const; const interface_type& operator*() const { return Cast<OptionalValueInterface>(OpaqueValue::operator*()); } absl::Nonnull<const interface_type*> operator->() const { return Cast<OptionalValueInterface>(OpaqueValue::operator->()); } private: friend struct SubsumptionTraits<OptionalValue>; explicit OptionalValue(OpaqueValue&& value) noexcept : OpaqueValue(std::move(value)) {} }; template <> struct SubsumptionTraits<OptionalValue> final { static bool IsA(const OpaqueValue& value) { return NativeTypeId::Of(value) == NativeTypeId::For<OptionalValueInterface>(); } static const OptionalValue& DownCast(const OpaqueValue& value) { ABSL_DCHECK(IsA(value)); return *reinterpret_cast<const OptionalValue*>(std::addressof(value)); } static OptionalValue& DownCast(OpaqueValue& value) { ABSL_DCHECK(IsA(value)); return *reinterpret_cast<OptionalValue*>(std::addressof(value)); } static OptionalValue DownCast(OpaqueValue&& value) { ABSL_DCHECK(IsA(value)); return OptionalValue(std::move(value)); } }; class OptionalValueView final : public OpaqueValueView { public: using interface_type = OptionalValueInterface; using alternative_type = OptionalValue; ABSL_ATTRIBUTE_PURE_FUNCTION static OptionalValueView None(); OptionalValueView() : OptionalValueView(None()) {} OptionalValueView(SharedView<const OptionalValueInterface> interface) : OpaqueValueView(interface) {} OptionalValueView( const OptionalValue& value ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept : OpaqueValueView(value) {} OptionalValueView& operator=( const OptionalValue& value ABSL_ATTRIBUTE_LIFETIME_BOUND) { OpaqueValueView::operator=(value); return *this; } OptionalValueView& operator=(OptionalValue&&) = delete; OptionalValueView(const OptionalValueView&) = default; OptionalValueView& operator=(const OptionalValueView&) = default; OptionalType GetType(TypeManager& type_manager) const { return (*this)->GetType(type_manager); } bool HasValue() const { return (*this)->HasValue(); } void Value(cel::Value& result) const; cel::Value Value() const; const interface_type& operator*() const { return Cast<OptionalValueInterface>(OpaqueValueView::operator*()); } absl::Nonnull<const interface_type*> operator->() const { return Cast<OptionalValueInterface>(OpaqueValueView::operator->()); } private: friend struct SubsumptionTraits<OptionalValueView>; explicit OptionalValueView(OpaqueValueView value) noexcept : OpaqueValueView(value) {} }; inline OptionalValue::OptionalValue(OptionalValueView value) : OpaqueValue(value) {} template <> struct SubsumptionTraits<OptionalValueView> final { static bool IsA(OpaqueValueView value) { return NativeTypeId::Of(value) == NativeTypeId::For<OptionalValueInterface>(); } static OptionalValueView DownCast(OpaqueValueView value) { ABSL_DCHECK(IsA(value)); return OptionalValueView(value); } }; } #endif #include <string> #include <utility> #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "common/casting.h" #include "common/memory.h" #include "common/native_type.h" #include "common/type.h" #include "common/value.h" #include "common/value_kind.h" namespace cel { namespace { class FullOptionalValue final : public OptionalValueInterface { public: explicit FullOptionalValue(cel::Value value) : value_(std::move(value)) {} bool HasValue() const override { return true; } void Value(cel::Value& result) const override { result = value_; } private: friend struct NativeTypeTraits<FullOptionalValue>; Type GetTypeImpl(TypeManager& type_manager) const override { return type_manager.CreateOptionalType(value_.GetType(type_manager)); } const cel::Value value_; }; } template <> struct NativeTypeTraits<FullOptionalValue> { static bool SkipDestructor(const FullOptionalValue& value) { return NativeType::SkipDestructor(value.value_); } }; std::string OptionalValueInterface::DebugString() const { if (HasValue()) { return absl::StrCat("optional(", Value().DebugString(), ")"); } return "optional.none()"; } OptionalValue OptionalValue::Of(MemoryManagerRef memory_manager, cel::Value value) { ABSL_DCHECK(value.kind() != ValueKind::kError && value.kind() != ValueKind::kUnknown); return OptionalValue( memory_manager.MakeShared<FullOptionalValue>(std::move(value))); } absl::Status OptionalValueInterface::Equal(ValueManager& value_manager, ValueView other, cel::Value& result) const { if (auto other_value = As<OptionalValueView>(other); other_value.has_value()) { if (HasValue() != other_value->HasValue()) { result = BoolValueView{false}; return absl::OkStatus(); } if (!HasValue()) { result = BoolValueView{true}; return absl::OkStatus(); } return Value().Equal(value_manager, other_value->Value(), result); return absl::OkStatus(); } result = BoolValueView{false}; return absl::OkStatus(); } }
#include <sstream> #include <utility> #include "absl/status/status.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/memory.h" #include "common/type.h" #include "common/value.h" #include "common/value_testing.h" #include "internal/testing.h" namespace cel { namespace { using testing::An; using testing::Ne; using testing::TestParamInfo; using cel::internal::StatusIs; class OptionalValueTest : public common_internal::ThreadCompatibleValueTest<> { public: OptionalValue OptionalNone() { return OptionalValue::None(); } OptionalValue OptionalOf(Value value) { return OptionalValue::Of(memory_manager(), std::move(value)); } }; TEST_P(OptionalValueTest, Kind) { auto value = OptionalNone(); EXPECT_EQ(value.kind(), OptionalValue::kKind); EXPECT_EQ(OpaqueValue(value).kind(), OptionalValue::kKind); EXPECT_EQ(Value(value).kind(), OptionalValue::kKind); } TEST_P(OptionalValueTest, Type) { auto value = OptionalNone(); EXPECT_EQ(value.GetType(type_manager()), OptionalType()); EXPECT_EQ(OpaqueValue(value).GetType(type_manager()), OptionalType()); EXPECT_EQ(Value(value).GetType(type_manager()), OptionalType()); } TEST_P(OptionalValueTest, DebugString) { auto value = OptionalNone(); { std::ostringstream out; out << value; EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OpaqueValue(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << Value(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OptionalOf(IntValue()); EXPECT_EQ(out.str(), "optional(0)"); } } TEST_P(OptionalValueTest, GetSerializedSize) { EXPECT_THAT(OptionalValue().GetSerializedSize(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, SerializeTo) { absl::Cord value; EXPECT_THAT(OptionalValue().SerializeTo(value_manager(), value), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, Serialize) { EXPECT_THAT(OptionalValue().Serialize(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, GetTypeUrl) { EXPECT_THAT(OptionalValue().GetTypeUrl(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, ConvertToAny) { EXPECT_THAT(OptionalValue().ConvertToAny(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, ConvertToJson) { EXPECT_THAT(OptionalValue().ConvertToJson(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueTest, InstanceOf) { auto value = OptionalNone(); EXPECT_TRUE(InstanceOf<OptionalValue>(value)); EXPECT_TRUE(InstanceOf<OptionalValue>(OpaqueValue(value))); EXPECT_TRUE(InstanceOf<OptionalValue>(Value(value))); } TEST_P(OptionalValueTest, Cast) { auto value = OptionalNone(); EXPECT_THAT(Cast<OptionalValue>(value), An<OptionalValue>()); EXPECT_THAT(Cast<OptionalValue>(OpaqueValue(value)), An<OptionalValue>()); EXPECT_THAT(Cast<OptionalValue>(Value(value)), An<OptionalValue>()); } TEST_P(OptionalValueTest, As) { auto value = OptionalNone(); EXPECT_THAT(As<OptionalValue>(value), Ne(absl::nullopt)); EXPECT_THAT(As<OptionalValue>(OpaqueValue(value)), Ne(absl::nullopt)); EXPECT_THAT(As<OptionalValue>(Value(value)), Ne(absl::nullopt)); } TEST_P(OptionalValueTest, HasValue) { auto value = OptionalNone(); EXPECT_FALSE(value.HasValue()); value = OptionalOf(IntValue()); EXPECT_TRUE(value.HasValue()); } TEST_P(OptionalValueTest, Value) { auto value = OptionalNone(); auto element = value.Value(); ASSERT_TRUE(InstanceOf<ErrorValue>(element)); EXPECT_THAT(Cast<ErrorValue>(element).NativeValue(), StatusIs(absl::StatusCode::kFailedPrecondition)); value = OptionalOf(IntValue()); element = value.Value(); ASSERT_TRUE(InstanceOf<IntValue>(element)); EXPECT_EQ(Cast<IntValue>(element), IntValue()); } INSTANTIATE_TEST_SUITE_P( OptionalValueTest, OptionalValueTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), OptionalValueTest::ToString); class OptionalValueViewTest : public common_internal::ThreadCompatibleValueTest<> { public: OptionalValueView OptionalNone() { return OptionalValueView::None(); } OptionalValue OptionalOf(Value value) { return OptionalValue::Of(memory_manager(), std::move(value)); } }; TEST_P(OptionalValueViewTest, Kind) { auto value = OptionalNone(); EXPECT_EQ(value.kind(), OptionalValueView::kKind); EXPECT_EQ(OpaqueValueView(value).kind(), OptionalValueView::kKind); EXPECT_EQ(ValueView(value).kind(), OptionalValueView::kKind); } TEST_P(OptionalValueViewTest, Type) { auto value = OptionalNone(); EXPECT_EQ(value.GetType(type_manager()), OptionalType()); EXPECT_EQ(OpaqueValueView(value).GetType(type_manager()), OptionalType()); EXPECT_EQ(ValueView(value).GetType(type_manager()), OptionalType()); } TEST_P(OptionalValueViewTest, DebugString) { auto value = OptionalNone(); { std::ostringstream out; out << value; EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OpaqueValueView(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << ValueView(value); EXPECT_EQ(out.str(), "optional.none()"); } { std::ostringstream out; out << OptionalOf(IntValue()); EXPECT_EQ(out.str(), "optional(0)"); } } TEST_P(OptionalValueViewTest, GetSerializedSize) { EXPECT_THAT(OptionalValueView().GetSerializedSize(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, SerializeTo) { absl::Cord value; EXPECT_THAT(OptionalValueView().SerializeTo(value_manager(), value), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, Serialize) { EXPECT_THAT(OptionalValueView().Serialize(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, GetTypeUrl) { EXPECT_THAT(OptionalValueView().GetTypeUrl(), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, ConvertToAny) { EXPECT_THAT(OptionalValueView().ConvertToAny(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, ConvertToJson) { EXPECT_THAT(OptionalValueView().ConvertToJson(value_manager()), StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST_P(OptionalValueViewTest, InstanceOf) { auto value = OptionalNone(); EXPECT_TRUE(InstanceOf<OptionalValueView>(value)); EXPECT_TRUE(InstanceOf<OptionalValueView>(OpaqueValueView(value))); EXPECT_TRUE(InstanceOf<OptionalValueView>(ValueView(value))); } TEST_P(OptionalValueViewTest, Cast) { auto value = OptionalNone(); EXPECT_THAT(Cast<OptionalValueView>(value), An<OptionalValueView>()); EXPECT_THAT(Cast<OptionalValueView>(OpaqueValueView(value)), An<OptionalValueView>()); EXPECT_THAT(Cast<OptionalValueView>(ValueView(value)), An<OptionalValueView>()); } TEST_P(OptionalValueViewTest, As) { auto value = OptionalNone(); EXPECT_THAT(As<OptionalValueView>(value), Ne(absl::nullopt)); EXPECT_THAT(As<OptionalValueView>(OpaqueValueView(value)), Ne(absl::nullopt)); EXPECT_THAT(As<OptionalValueView>(ValueView(value)), Ne(absl::nullopt)); } TEST_P(OptionalValueViewTest, HasValue) { auto value_view = OptionalNone(); EXPECT_FALSE(value_view.HasValue()); auto value = OptionalOf(IntValue()); EXPECT_TRUE(OptionalValueView(value).HasValue()); } TEST_P(OptionalValueViewTest, Value) { auto value_view = OptionalNone(); auto element = value_view.Value(); ASSERT_TRUE(InstanceOf<ErrorValue>(element)); EXPECT_THAT(Cast<ErrorValue>(element).NativeValue(), StatusIs(absl::StatusCode::kFailedPrecondition)); auto value = OptionalOf(IntValue()); element = OptionalValueView(value).Value(); ASSERT_TRUE(InstanceOf<IntValue>(element)); EXPECT_EQ(Cast<IntValue>(element), IntValue()); } INSTANTIATE_TEST_SUITE_P( OptionalValueViewTest, OptionalValueViewTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), OptionalValueViewTest::ToString); } }
51
#include "sample2.h" #include <string.h> const char* MyString::CloneCString(const char* a_c_string) { if (a_c_string == nullptr) return nullptr; const size_t len = strlen(a_c_string); char* const clone = new char[len + 1]; memcpy(clone, a_c_string, len + 1); return clone; } void MyString::Set(const char* a_c_string) { const char* const temp = MyString::CloneCString(a_c_string); delete[] c_string_; c_string_ = temp; }
#include "sample2.h" #include "gtest/gtest.h" namespace { TEST(MyString, DefaultConstructor) { const MyString s; EXPECT_STREQ(nullptr, s.c_string()); EXPECT_EQ(0u, s.Length()); } const char kHelloString[] = "Hello, world!"; TEST(MyString, ConstructorFromCString) { const MyString s(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); EXPECT_EQ(sizeof(kHelloString) / sizeof(kHelloString[0]) - 1, s.Length()); } TEST(MyString, CopyConstructor) { const MyString s1(kHelloString); const MyString s2 = s1; EXPECT_EQ(0, strcmp(s2.c_string(), kHelloString)); } TEST(MyString, Set) { MyString s; s.Set(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); s.Set(s.c_string()); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); s.Set(nullptr); EXPECT_STREQ(nullptr, s.c_string()); } }
52
#ifndef TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_PERIODIC_FUNCTION_H_ #define TENSORFLOW_CORE_KERNELS_BATCHING_UTIL_PERIODIC_FUNCTION_H_ #include <functional> #include <memory> #include <string> #include "absl/functional/any_invocable.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace serving { namespace internal { class PeriodicFunctionTestAccess; } class PeriodicFunction { public: struct Options { Options() {} ThreadOptions thread_options; string thread_name_prefix = "periodic_function"; Env* env = Env::Default(); int64_t startup_delay_micros = 0; }; PeriodicFunction(absl::AnyInvocable<void()> function, int64_t interval_micros, const Options& options = Options()); ~PeriodicFunction(); private: friend class internal::PeriodicFunctionTestAccess; void NotifyStop(); void RunLoop(int64_t start); absl::AnyInvocable<void()> function_; const int64_t interval_micros_; const Options options_; Notification stop_thread_; std::unique_ptr<Thread> thread_ = nullptr; PeriodicFunction(const PeriodicFunction&) = delete; void operator=(const PeriodicFunction&) = delete; }; } } #endif #include "tensorflow/core/kernels/batching_util/periodic_function.h" #include <algorithm> #include <utility> #include "absl/functional/any_invocable.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" namespace tensorflow { namespace serving { PeriodicFunction::PeriodicFunction(absl::AnyInvocable<void()> function, const int64_t interval_micros, const Options& options) : function_(std::move(function)), interval_micros_([interval_micros]() -> int64 { if (interval_micros < 0) { const string error = strings::StrCat( " The value of 'interval_micros' should be >= 0: ", interval_micros, ". "); DCHECK(false) << error; LOG(WARNING) << error << "Resetting it to 0."; return 0; } return interval_micros; }()), options_(options) { thread_.reset(options_.env->StartThread( options_.thread_options, options_.thread_name_prefix, [this]() { RunLoop(options_.env->NowMicros()); })); } PeriodicFunction::~PeriodicFunction() { NotifyStop(); thread_.reset(); } void PeriodicFunction::NotifyStop() { if (!stop_thread_.HasBeenNotified()) { stop_thread_.Notify(); } } void PeriodicFunction::RunLoop(const int64_t start) { { if (options_.startup_delay_micros > 0) { const int64_t deadline = start + options_.startup_delay_micros; options_.env->SleepForMicroseconds(deadline - start); } while (!stop_thread_.HasBeenNotified()) { VLOG(3) << "Running function."; const int64_t begin = options_.env->NowMicros(); function_(); const int64_t end = std::max(static_cast<int64_t>(options_.env->NowMicros()), begin); const int64_t deadline = begin + interval_micros_; if (deadline > end) { if (end > begin) { VLOG(3) << "Reducing interval_micros from " << interval_micros_ << " to " << (deadline - end); } options_.env->SleepForMicroseconds(deadline - end); } else { VLOG(3) << "Function took longer than interval_micros, so not sleeping"; } } } } } }
#include "tensorflow/core/kernels/batching_util/periodic_function.h" #include <memory> #include <string> #include "tensorflow/core/kernels/batching_util/fake_clock_env.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace serving { namespace internal { class PeriodicFunctionTestAccess { public: explicit PeriodicFunctionTestAccess(PeriodicFunction* periodic_function) : periodic_function_(periodic_function) {} void NotifyStop() { periodic_function_->NotifyStop(); } private: PeriodicFunction* const periodic_function_; }; } namespace { using test_util::FakeClockEnv; void StopPeriodicFunction(PeriodicFunction* periodic_function, FakeClockEnv* fake_clock_env, const uint64 pf_interval_micros) { fake_clock_env->BlockUntilThreadsAsleep(1); internal::PeriodicFunctionTestAccess(periodic_function).NotifyStop(); fake_clock_env->AdvanceByMicroseconds(pf_interval_micros); } TEST(PeriodicFunctionTest, ObeyInterval) { const int64_t kPeriodMicros = 2; const int kCalls = 10; int actual_calls = 0; { FakeClockEnv fake_clock_env(Env::Default()); PeriodicFunction::Options options; options.env = &fake_clock_env; PeriodicFunction periodic_function([&actual_calls]() { ++actual_calls; }, kPeriodMicros, options); for (int i = 0; i < kCalls; ++i) { fake_clock_env.BlockUntilThreadsAsleep(1); fake_clock_env.AdvanceByMicroseconds(kPeriodMicros); } StopPeriodicFunction(&periodic_function, &fake_clock_env, kPeriodMicros); } ASSERT_EQ(actual_calls, kCalls + 1); } TEST(PeriodicFunctionTest, ObeyStartupDelay) { const int64_t kDelayMicros = 10; const int64_t kPeriodMicros = kDelayMicros / 10; int actual_calls = 0; { PeriodicFunction::Options options; options.startup_delay_micros = kDelayMicros; FakeClockEnv fake_clock_env(Env::Default()); options.env = &fake_clock_env; PeriodicFunction periodic_function([&actual_calls]() { ++actual_calls; }, kPeriodMicros, options); fake_clock_env.BlockUntilThreadsAsleep(1); EXPECT_EQ(0, actual_calls); fake_clock_env.AdvanceByMicroseconds(kDelayMicros); StopPeriodicFunction(&periodic_function, &fake_clock_env, kDelayMicros); } EXPECT_EQ(1, actual_calls); } TEST(PeriodicFunctionTest, StartupDelayRace) { const int64_t kDelayMicros = 10; const int64_t kPeriodMicros = kDelayMicros / 10; mutex mu; int counter = 0; std::unique_ptr<Notification> listener(new Notification); FakeClockEnv fake_clock_env(Env::Default()); PeriodicFunction::Options options; options.env = &fake_clock_env; options.startup_delay_micros = kDelayMicros; PeriodicFunction periodic_function( [&mu, &counter, &listener]() { mutex_lock l(mu); counter++; listener->Notify(); }, kPeriodMicros, options); fake_clock_env.BlockUntilThreadsAsleep(1); fake_clock_env.AdvanceByMicroseconds(kDelayMicros); listener->WaitForNotification(); { mutex_lock l(mu); EXPECT_EQ(1, counter); listener.reset(new Notification); } fake_clock_env.BlockUntilThreadsAsleep(1); fake_clock_env.AdvanceByMicroseconds(kPeriodMicros); listener->WaitForNotification(); { mutex_lock l(mu); EXPECT_EQ(2, counter); } StopPeriodicFunction(&periodic_function, &fake_clock_env, kPeriodMicros); } TEST(PeriodicFunctionTest, MinInterval) { PeriodicFunction periodic_function( []() { Env::Default()->SleepForMicroseconds(20 * 1000); }, 0); } class PeriodicFunctionWithFakeClockEnvTest : public ::testing::Test { protected: const int64_t kPeriodMicros = 50; PeriodicFunctionWithFakeClockEnvTest() : fake_clock_env_(Env::Default()), counter_(0), pf_( [this]() { mutex_lock l(counter_mu_); ++counter_; }, kPeriodMicros, GetPeriodicFunctionOptions()) {} PeriodicFunction::Options GetPeriodicFunctionOptions() { PeriodicFunction::Options options; options.thread_name_prefix = "ignore"; options.env = &fake_clock_env_; return options; } void SetUp() override { ASSERT_TRUE(AwaitCount(1)); } void TearDown() override { StopPeriodicFunction(&pf_, &fake_clock_env_, kPeriodMicros); } bool AwaitCount(int expected_counter) { fake_clock_env_.BlockUntilThreadsAsleep(1); { mutex_lock lock(counter_mu_); return counter_ == expected_counter; } } FakeClockEnv fake_clock_env_; mutex counter_mu_; int counter_; PeriodicFunction pf_; }; TEST_F(PeriodicFunctionWithFakeClockEnvTest, FasterThanRealTime) { fake_clock_env_.AdvanceByMicroseconds(kPeriodMicros / 2); for (int i = 2; i < 7; ++i) { fake_clock_env_.AdvanceByMicroseconds( kPeriodMicros); EXPECT_TRUE(AwaitCount(i)); } } TEST_F(PeriodicFunctionWithFakeClockEnvTest, SlowerThanRealTime) { Env::Default()->SleepForMicroseconds( 125 * 1000); EXPECT_TRUE(AwaitCount(1)); } TEST(PeriodicFunctionDeathTest, BadInterval) { EXPECT_DEBUG_DEATH(PeriodicFunction periodic_function([]() {}, -1), ".* should be >= 0"); EXPECT_DEBUG_DEATH(PeriodicFunction periodic_function( []() {}, -1, PeriodicFunction::Options()), ".* should be >= 0"); } } } }
53
#ifndef TENSORFLOW_CORE_PROFILER_CONVERT_HLO_PROTO_TO_GRAPH_VIEW_H_ #define TENSORFLOW_CORE_PROFILER_CONVERT_HLO_PROTO_TO_GRAPH_VIEW_H_ #include <string> #include <string_view> #include <vector> #include "xla/service/hlo.pb.h" #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/tool_options.h" namespace tensorflow { namespace profiler { struct GraphViewerParams { std::string type; std::string node_name; int graph_width; xla::HloRenderOptions render_options; xla::RenderedGraphFormat format; bool verbose; bool show_metadata; }; absl::StatusOr<GraphViewerParams> ParseGraphViewerParams( const ToolOptions& options); xla::RenderedGraphFormat GetRenderFormat(const std::string& format_string); absl::StatusOr<std::string> ConvertHloProtoToGraph( const xla::HloProto& hlo_proto, const std::string& node_name, int graph_width, const xla::HloRenderOptions& render_options, const xla::RenderedGraphFormat& format); absl::StatusOr<std::string> RenderGraphView( const xla::HloComputation& computation, absl::string_view label, const xla::DebugOptions& debug_options, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options = {}); absl::StatusOr<std::string> RenderGraphNeighborhoodAround( const xla::HloInstruction& node, int radius, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options = {}, const absl::flat_hash_set<const xla::HloInstruction*>& boundary = {}); absl::StatusOr<std::string> ConvertHloProtoToStringView( const xla::HloProto& hlo_proto, bool verbose, bool metadata); absl::StatusOr<std::string> WrapDotInFormat(std::string dot, xla::RenderedGraphFormat format); std::string WrapDotInHtml(std::string dot); void RegisterGraphvizURLRenderer( std::function<absl::StatusOr<std::string>(absl::string_view dot)> renderer); } } #endif #include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <functional> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_set.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_replace.h" #include "xla/hlo/ir/hlo_computation.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo.pb.h" #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/statusor.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/profiler/utils/hlo_module_utils.h" #include "tensorflow/core/profiler/utils/hlo_proto_to_module.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::StatusOr; using ::tensorflow::errors::InvalidArgument; using ::xla::HloComputation; using ::xla::HloInstruction; using ::xla::HloModule; using ::xla::HloPrintOptions; using ::xla::HloProto; using ::xla::HloRenderOptions; using ::xla::RenderedGraphFormat; void CleanUpHloModuleForGraphviz(HloModule* hlo_module) { for (HloComputation* computation : hlo_module->computations()) { for (HloInstruction* inst : computation->instructions()) { if (inst->opcode() == xla::HloOpcode::kInfeed) { inst->set_infeed_config(""); } else if (inst->opcode() == xla::HloOpcode::kOutfeed) { inst->set_outfeed_config(""); } } } } absl::StatusOr<std::string> Plot(std::unique_ptr<HloModule> module, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { if (node_name.empty()) { return InvalidArgument("node_name should not be empty"); } const HloInstruction* instr = FindInstruction(*module, node_name); const HloComputation* comp = FindComputation(*module, node_name); if (!instr && !comp) { return InvalidArgument( absl::StrCat("Couldn't find HloInstruction or HloComputation named ", node_name, ".")); } absl::StatusOr<std::string> graph_handle; CleanUpHloModuleForGraphviz(module.get()); if (comp) { graph_handle = RenderGraphView(*comp, "", comp->parent()->config().debug_options(), format, render_options); } else { graph_handle = RenderGraphNeighborhoodAround(*instr, graph_width, format, render_options); } if (graph_handle.ok()) { VLOG(1) << graph_handle.value(); } else { LOG(ERROR) << "Unable to render graph: " << graph_handle.status(); } return graph_handle; } static constexpr char kGraphTypeName[] = "graph"; static constexpr char kShortTxtTypeName[] = "short_txt"; static constexpr char kLongTxtTypeName[] = "long_txt"; static constexpr char kDefaultFormatString[] = "url"; static constexpr int kDefaultWidth = 3; static constexpr int kDefaultShowMetadata = 0; static constexpr int kDefaultMergeFusion = 0; } absl::StatusOr<GraphViewerParams> ParseGraphViewerParams( const ToolOptions& options) { GraphViewerParams params; std::optional<std::string> type = GetParam<std::string>(options, "type"); if (!type.has_value()) { return errors::InvalidArgument("Graph viewer must provide a type option."); } if (type == kGraphTypeName) { params.type = type.value(); if (std::optional<std::string> node_name = GetParam<std::string>(options, "node_name")) { params.node_name = node_name.value(); } params.graph_width = GetParamWithDefault<int>(options, "graph_width", kDefaultWidth); params.render_options.show_backend_config = GetParamWithDefault<int>( options, "show_metadata", kDefaultShowMetadata); params.render_options.show_fusion_subcomputations = !GetParamWithDefault<int>(options, "merge_fusion", kDefaultMergeFusion); params.format = GetRenderFormat(GetParamWithDefault<std::string>( options, "format", kDefaultFormatString)); return params; } if (type == kShortTxtTypeName || type == kLongTxtTypeName) { params.type = type.value(); params.verbose = (type == kLongTxtTypeName); params.show_metadata = GetParamWithDefault(options, "show_metadata", kDefaultShowMetadata); return params; } return errors::InvalidArgument("Unknown graph viewer type option: ", type.value()); } xla::RenderedGraphFormat GetRenderFormat(const std::string& format_string) { if (format_string == "html") { return xla::RenderedGraphFormat::kHtml; } else if (format_string == "dot") { return xla::RenderedGraphFormat::kDot; } else if (format_string == "url") { return xla::RenderedGraphFormat::kUrl; } else { LOG(ERROR) << "Invalid graph format argument: " << format_string << ", fallback to default url"; return xla::RenderedGraphFormat::kUrl; } } absl::StatusOr<std::string> ConvertHloProtoToGraph( const HloProto& hlo_proto, const std::string& node_name, int graph_width, const HloRenderOptions& render_options, const RenderedGraphFormat& format) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); return Plot(std::move(hlo_module), node_name, graph_width, render_options, format); } absl::StatusOr<std::string> ConvertHloProtoToStringView( const HloProto& hlo_proto, bool verbose, bool metadata) { TF_ASSIGN_OR_RETURN(std::unique_ptr<HloModule> hlo_module, ConvertHloProtoToModule(hlo_proto)); HloPrintOptions options; if (!verbose) { options = HloPrintOptions::ShortParsable(); } options.set_print_large_constants(verbose); options.set_print_metadata(metadata); return hlo_module->ToString(options); } std::function<absl::StatusOr<std::string>(absl::string_view)>* url_renderer = nullptr; absl::Status CheckPrecondition(xla::RenderedGraphFormat format) { if (format == xla::RenderedGraphFormat::kUrl && url_renderer == nullptr) { return absl::FailedPreconditionError( "Can't render as URL; no URL renderer was registered."); } return absl::OkStatus(); } absl::StatusOr<std::string> RenderGraphView( const xla::HloComputation& computation, absl::string_view label, const xla::DebugOptions& debug_options, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderGraph(computation, label, debug_options, RenderedGraphFormat::kDot, hlo_render_options); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> RenderGraphNeighborhoodAround( const xla::HloInstruction& node, int radius, xla::RenderedGraphFormat format, xla::HloRenderOptions hlo_render_options, const absl::flat_hash_set<const xla::HloInstruction*>& boundary) { auto precheck_status = CheckPrecondition(format); if (!precheck_status.ok()) { return precheck_status; } auto rendered_dot = xla::RenderNeighborhoodAround( node, radius, RenderedGraphFormat::kDot, hlo_render_options, boundary); if (!rendered_dot.ok()) { return rendered_dot.status(); } return WrapDotInFormat(rendered_dot.value(), format); } absl::StatusOr<std::string> WrapDotInFormat(std::string dot, xla::RenderedGraphFormat format) { switch (format) { case xla::RenderedGraphFormat::kUrl: if (url_renderer == nullptr) { return absl::InternalError("url_renderer is null"); } return (*url_renderer)(dot); case xla::RenderedGraphFormat::kHtml: return WrapDotInHtml(dot); case xla::RenderedGraphFormat::kDot: return std::string(dot); } } std::string WrapDotInHtml(std::string dot) { return absl::StrReplaceAll(R"html( <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <style type="text/css"> body { height: 100vh; margin: 0; } #graph-container {height:95vh;width:100%;padding:10px;display:block;} #graph-container svg { height: 100% !important; width: 100% !important;} .node, .cluster {cursor:pointer;} .cluster:hover, .node:hover {outline: solid 3px black;} </style> </head> <body> <script src="https: integrity="sha384-LigJPbR3TOfU/Xbb+PjiN1dGJYPweLk7kiGnaMgmxnUmKWaCFKbb5tH6iLlyVhPZ" crossorigin="anonymous"></script> <script src="https: <div id="graph-container"></div> <script> const cssregex = new RegExp('stylesheet=<([^]*)\n>\n', 'gm'); const hpccWasm = window["@hpcc-js/wasm"]; const data = `$DOT`; const results = cssregex.exec(data); let dot_data = data; let css_data = ''; if (results !== null) { css_data = results[1].replace(/\s*data:.*\s*,/,''); css_data = unescape(css_data); dot_data = data.replace(cssregex, ''); } var render_start = performance.now() function add_controls(svg) { var htmlblob = new Blob([document.documentElement.innerHTML], {type: 'text/html'}); var savehtml = document.createElement('a'); savehtml.setAttribute('href', URL.createObjectURL(htmlblob)); savehtml.setAttribute('download', 'graph.html'); savehtml.innerHTML = " [Save HTML+SVG] "; document.body.append(savehtml); var svgblob = new Blob([svg.outerHTML], {type: 'image/svg'}); var savesvg = document.createElement('a'); savesvg.setAttribute('href', URL.createObjectURL(svgblob)); savesvg.setAttribute('download', 'graph.svg'); savesvg.innerHTML = " [Save SVG] "; document.body.append(savesvg); var dotblob = new Blob([data], {type: 'text/dot'}); var savedot = document.createElement('a'); savedot.setAttribute('href', URL.createObjectURL(dotblob)); savedot.setAttribute('download', 'graph.dot'); savedot.innerHTML = " [Save DOT] "; document.body.append(savedot); var render_end = performance.now(); var render_note = document.createElement('div') render_note.innerHTML = 'Rendering took ' + (render_end - render_start).toFixed(2) + "ms." document.body.append(render_note); } const render_callback = svg => { const container = document.getElementById('graph-container') container.innerHTML = `${svg}<style>${css_data}</style>`; const panZoom = svgPanZoom(container.children[0], { zoomEnabled: true, controlIconsEnabled: true, maxZoom: 200, minZoom: 0, }); add_controls(svg); }; hpccWasm.graphviz.layout(dot_data, "svg", "dot").then(render_callback); </script> </body> </html> )html", { {"$DOT", dot}, }); } void RegisterGraphvizURLRenderer( std::function<absl::StatusOr<std::string>(absl::string_view)> renderer) { if (url_renderer != nullptr) { LOG(WARNING) << "Multiple calls to RegisterGraphToURLRenderer. Last call " "wins, but because order of initialization in C++ is " "nondeterministic, this may not be what you want."; } delete url_renderer; url_renderer = new std::function<absl::StatusOr<std::string>(absl::string_view)>( std::move(renderer)); } } }
#include "tensorflow/core/profiler/convert/hlo_proto_to_graph_view.h" #include <string> #include <variant> #include "xla/service/hlo_graph_dumper.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/profiler/convert/tool_options.h" #include "tensorflow/core/protobuf/error_codes.pb.h" namespace tensorflow { namespace profiler { namespace { using ::tensorflow::testing::StatusIs; using ::testing::HasSubstr; TEST(GraphViewerParamsTest, GraphType) { ToolOptions options1; options1["type"] = "graph"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "graph"); EXPECT_EQ(params1.node_name, ""); EXPECT_EQ(params1.graph_width, 3); EXPECT_EQ(params1.render_options.show_backend_config, false); EXPECT_EQ(params1.render_options.show_fusion_subcomputations, true); EXPECT_EQ(params1.format, xla::RenderedGraphFormat::kUrl); ToolOptions options2; options2["type"] = "graph"; options2["node_name"] = "fusion.111"; options2["graph_width"] = 10; options2["show_metadata"] = 1; options2["merge_fusion"] = 1; options2["format"] = "html"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "graph"); EXPECT_EQ(params2.node_name, "fusion.111"); EXPECT_EQ(params2.graph_width, 10); EXPECT_EQ(params2.render_options.show_backend_config, true); EXPECT_EQ(params2.render_options.show_fusion_subcomputations, false); EXPECT_EQ(params2.format, xla::RenderedGraphFormat::kHtml); } TEST(GraphViewerParamsTest, ShortTxtType) { ToolOptions options1; options1["type"] = "short_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "short_txt"); EXPECT_EQ(params1.verbose, false); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "short_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "short_txt"); EXPECT_EQ(params2.verbose, false); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, LongTxtType) { ToolOptions options1; options1["type"] = "long_txt"; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params1, ParseGraphViewerParams(options1)); EXPECT_EQ(params1.type, "long_txt"); EXPECT_EQ(params1.verbose, true); EXPECT_EQ(params1.show_metadata, false); ToolOptions options2; options2["type"] = "long_txt"; options2["show_metadata"] = 1; TF_ASSERT_OK_AND_ASSIGN(GraphViewerParams params2, ParseGraphViewerParams(options2)); EXPECT_EQ(params2.type, "long_txt"); EXPECT_EQ(params2.verbose, true); EXPECT_EQ(params2.show_metadata, true); } TEST(GraphViewerParamsTest, OtherTypes) { ToolOptions options1; EXPECT_THAT(ParseGraphViewerParams(options1), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Graph viewer must provide a type option"))); ToolOptions options2; options2["type"] = "abcd"; EXPECT_THAT(ParseGraphViewerParams(options2), StatusIs(error::INVALID_ARGUMENT, HasSubstr("Unknown graph viewer type option: abcd"))); } } } }
54
#ifndef TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TOPK_ACCURACY_EVAL_STAGE_H_ #define TENSORFLOW_LITE_TOOLS_EVALUATION_STAGES_TOPK_ACCURACY_EVAL_STAGE_H_ #include <string> #include <vector> #include "tensorflow/lite/tools/evaluation/evaluation_stage.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" namespace tflite { namespace evaluation { class TopkAccuracyEvalStage : public EvaluationStage { public: explicit TopkAccuracyEvalStage(const EvaluationStageConfig& config) : EvaluationStage(config) {} TfLiteStatus Init() override; TfLiteStatus Run() override; EvaluationStageMetrics LatestMetrics() override; ~TopkAccuracyEvalStage() override {} void SetTaskInfo(const std::vector<std::string>& all_labels, TfLiteType model_output_type, TfLiteIntArray* model_output_shape) { ground_truth_labels_ = all_labels; model_output_type_ = model_output_type; model_output_shape_ = model_output_shape; } void SetEvalInputs(void* model_raw_output, std::string* ground_truth_label) { model_output_ = model_raw_output; ground_truth_label_ = ground_truth_label; } private: void UpdateCounts(const std::vector<int>& topk_indices); std::vector<std::string> ground_truth_labels_; TfLiteType model_output_type_ = kTfLiteNoType; TfLiteIntArray* model_output_shape_ = nullptr; int num_total_labels_; void* model_output_ = nullptr; std::string* ground_truth_label_ = nullptr; int num_runs_; std::vector<int> accuracy_counts_; }; } } #endif #include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <algorithm> #include <numeric> #include "tensorflow/core/platform/logging.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { std::vector<int> GetTopKIndices(const std::vector<float>& values, int k) { std::vector<int> indices(values.size()); std::iota(indices.begin(), indices.end(), 0); std::stable_sort(indices.begin(), indices.end(), [&values](int a, int b) { return values[a] > values[b]; }); indices.resize(k); return indices; } } TfLiteStatus TopkAccuracyEvalStage::Init() { num_runs_ = 0; auto& params = config_.specification().topk_accuracy_eval_params(); if (!params.has_k()) { LOG(ERROR) << "Value of k not provided for TopkAccuracyEvalStage"; return kTfLiteError; } accuracy_counts_ = std::vector<int>(params.k(), 0); if (ground_truth_labels_.empty()) { LOG(ERROR) << "Ground-truth labels are empty"; return kTfLiteError; } num_total_labels_ = ground_truth_labels_.size(); if (params.k() > num_total_labels_) { LOG(ERROR) << "k is too large"; return kTfLiteError; } if (!model_output_shape_) { LOG(ERROR) << "Model output details not correctly set"; return kTfLiteError; } if (!(model_output_shape_->size == 2) || !(model_output_shape_->data[0] == 1) || !(model_output_shape_->data[1] == num_total_labels_)) { LOG(ERROR) << "Invalid model_output_shape_"; return kTfLiteError; } if (model_output_type_ != kTfLiteFloat32 && model_output_type_ != kTfLiteUInt8 && model_output_type_ != kTfLiteInt8) { LOG(ERROR) << "model_output_type_ not supported"; return kTfLiteError; } return kTfLiteOk; } TfLiteStatus TopkAccuracyEvalStage::Run() { if (!model_output_) { LOG(ERROR) << "model_output_ not set correctly"; return kTfLiteError; } if (!ground_truth_label_) { LOG(ERROR) << "ground_truth_label_ not provided"; return kTfLiteError; } auto& params = config_.specification().topk_accuracy_eval_params(); std::vector<float> probabilities; probabilities.reserve(num_total_labels_); if (model_output_type_ == kTfLiteFloat32) { auto probs = static_cast<float*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteUInt8) { auto probs = static_cast<uint8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } else if (model_output_type_ == kTfLiteInt8) { auto probs = static_cast<int8_t*>(model_output_); for (size_t i = 0; i < num_total_labels_; i++) { probabilities.push_back(probs[i]); } } std::vector<int> top_k = GetTopKIndices(probabilities, params.k()); UpdateCounts(top_k); return kTfLiteOk; } EvaluationStageMetrics TopkAccuracyEvalStage::LatestMetrics() { EvaluationStageMetrics metrics; if (num_runs_ == 0) return metrics; metrics.set_num_runs(num_runs_); auto* topk_metrics = metrics.mutable_process_metrics()->mutable_topk_accuracy_metrics(); for (const auto& count : accuracy_counts_) { topk_metrics->add_topk_accuracies(static_cast<float>(count) / num_runs_); } return metrics; } void TopkAccuracyEvalStage::UpdateCounts(const std::vector<int>& topk_indices) { for (size_t i = 0; i < topk_indices.size(); ++i) { if (*ground_truth_label_ == ground_truth_labels_[topk_indices[i]]) { for (size_t j = i; j < topk_indices.size(); j++) { accuracy_counts_[j] += 1; } break; } } num_runs_++; } } }
#include "tensorflow/lite/tools/evaluation/stages/topk_accuracy_eval_stage.h" #include <stdint.h> #include <string> #include <gtest/gtest.h> #include "tensorflow/lite/tools/evaluation/proto/evaluation_config.pb.h" #include "tensorflow/lite/tools/evaluation/proto/evaluation_stages.pb.h" namespace tflite { namespace evaluation { namespace { constexpr char kTopkAccuracyEvalStageName[] = "topk_accuracy_eval_stage"; constexpr int kNumCategories = 1001; EvaluationStageConfig GetTopkAccuracyEvalStageConfig() { EvaluationStageConfig config; config.set_name(kTopkAccuracyEvalStageName); auto* params = config.mutable_specification()->mutable_topk_accuracy_eval_params(); params->set_k(5); return config; } template <typename T> T* ResetOutputArray(T array[]) { for (int i = 0; i < kNumCategories; i++) { array[i] = 0; } return array; } std::vector<std::string> CreateGroundTruthLabels() { std::vector<std::string> ground_truth_labels; ground_truth_labels.reserve(kNumCategories); for (int i = 0; i < kNumCategories; i++) { ground_truth_labels.push_back(std::to_string(i)); } return ground_truth_labels; } TEST(TopkAccuracyEvalStage, NoInitializers) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); EXPECT_EQ(stage.Init(), kTfLiteError); } TEST(TopkAccuracyEvalStage, NoK) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification() ->mutable_topk_accuracy_eval_params() ->clear_k(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoGroundTruthLabels) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = {}; TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, KTooLarge) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); config.mutable_specification()->mutable_topk_accuracy_eval_params()->set_k( 10000); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, WeirdModelOutputShape) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, UnsupportedModelOutputType) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories + 1; TfLiteType model_output_type = kTfLiteComplex64; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteError); TfLiteIntArrayFree(model_output_shape); } TEST(TopkAccuracyEvalStage, NoInputs) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, InvalidGroundTruth) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[0] = 0.8; stage.SetEvalInputs(tensor, nullptr); EXPECT_EQ(stage.Run(), kTfLiteError); } TEST(TopkAccuracyEvalStage, FloatTest_CorrectLabelsAtLastIndices) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; TfLiteType model_output_type = kTfLiteFloat32; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); float array[kNumCategories]; float* tensor = ResetOutputArray(array); tensor[4] = 0.9; tensor[3] = 0.8; tensor[2] = 0.7; tensor[1] = 0.6; tensor[0] = 0.5; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); for (int i = 0; i < 4; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(4)); EXPECT_FLOAT_EQ(0.5, accuracy_metrics.topk_accuracies(3)); for (int i = 0; i < 3; ++i) { EXPECT_FLOAT_EQ(0.0, accuracy_metrics.topk_accuracies(i)); } } class CorrectTopkAccuracyEvalTest : public ::testing::Test { protected: template <typename T> void VerifyCorrectBehaviorForType(T ground_truth_0_value, T ground_truth_1_value, TfLiteType model_output_type) { EvaluationStageConfig config = GetTopkAccuracyEvalStageConfig(); TopkAccuracyEvalStage stage = TopkAccuracyEvalStage(config); std::vector<std::string> ground_truth_labels = CreateGroundTruthLabels(); TfLiteIntArray* model_output_shape = TfLiteIntArrayCreate(2); model_output_shape->data[0] = 1; model_output_shape->data[1] = kNumCategories; stage.SetTaskInfo(ground_truth_labels, model_output_type, model_output_shape); EXPECT_EQ(stage.Init(), kTfLiteOk); TfLiteIntArrayFree(model_output_shape); EvaluationStageMetrics metrics = stage.LatestMetrics(); EXPECT_EQ(0, metrics.num_runs()); auto accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); EXPECT_EQ(0, accuracy_metrics.topk_accuracies_size()); T array[kNumCategories]; T* tensor = ResetOutputArray(array); tensor[0] = ground_truth_0_value; std::string ground_truth = "0"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(1, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } tensor[1] = ground_truth_1_value; ground_truth = "1"; stage.SetEvalInputs(tensor, &ground_truth); EXPECT_EQ(stage.Run(), kTfLiteOk); metrics = stage.LatestMetrics(); EXPECT_EQ(2, metrics.num_runs()); accuracy_metrics = metrics.process_metrics().topk_accuracy_metrics(); for (int i = 0; i < accuracy_metrics.topk_accuracies_size(); ++i) { EXPECT_FLOAT_EQ(1.0, accuracy_metrics.topk_accuracies(i)); } } }; TEST_F(CorrectTopkAccuracyEvalTest, FloatTest) { VerifyCorrectBehaviorForType(static_cast<float>(0.8), static_cast<float>(0.9), kTfLiteFloat32); } TEST_F(CorrectTopkAccuracyEvalTest, Int8Test) { VerifyCorrectBehaviorForType(static_cast<int8_t>(1), static_cast<int8_t>(2), kTfLiteInt8); } TEST_F(CorrectTopkAccuracyEvalTest, UInt8Test) { VerifyCorrectBehaviorForType(static_cast<uint8_t>(1), static_cast<uint8_t>(2), kTfLiteUInt8); } } } }
55
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_ACCELERATION_COMPATIBILITY_CANONICALIZE_VALUE_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_ACCELERATION_COMPATIBILITY_CANONICALIZE_VALUE_H_ #include <string> #include "absl/strings/string_view.h" namespace tflite::acceleration { std::string CanonicalizeValue(absl::string_view value); std::string CanonicalizeValueWithKey(absl::string_view key, absl::string_view value); } #endif #include "tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.h" #include <iterator> #include <string> #include "absl/algorithm/container.h" #include "absl/strings/ascii.h" #include "absl/strings/string_view.h" #include "re2/re2.h" #include "tensorflow/lite/experimental/acceleration/compatibility/variables.h" namespace tflite::acceleration { namespace { inline char ascii_normalise(const unsigned char c) { if (c == ' ' || c == '-') { return '_'; } return absl::ascii_tolower(c); } } std::string CanonicalizeValue(absl::string_view value) { std::string output; absl::c_transform(value, std::back_inserter(output), tflite::acceleration::ascii_normalise); return output; } std::string CanonicalizeValueWithKey(absl::string_view key, absl::string_view value) { std::string output = CanonicalizeValue(value); std::string gpu_output; return key == kGPUModel && RE2::FullMatch( output, R"((angle_\(samsung_xclipse_[0-9]*\)_on_vulkan).*$)", &gpu_output) ? gpu_output : output; } }
#include "tensorflow/lite/experimental/acceleration/compatibility/canonicalize_value.h" #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/acceleration/compatibility/variables.h" namespace tflite::acceleration { namespace { TEST(CanonicalizeValue, CharactersAreLowercased) { EXPECT_EQ(CanonicalizeValue("hElLo"), "hello"); } TEST(CanonicalizeValue, HyphensAreReplaced) { EXPECT_EQ(CanonicalizeValue("-"), "_"); } TEST(CanonicalizeValue, SpacesAreReplaced) { EXPECT_EQ(CanonicalizeValue(" "), "_"); } TEST(CanonicalizeValue, OtherSpecialCharactersAreUnaffected) { for (unsigned char c = 0; c < 65; ++c) { if (c == ' ' || c == '-') continue; std::string s = {1, static_cast<char>(c)}; EXPECT_EQ(CanonicalizeValue(s), s); } } TEST(CanonicalizeValue, SamsungXclipseGpuNormalized) { EXPECT_EQ(CanonicalizeValueWithKey( kGPUModel, "ANGLE (Samsung Xclipse 920) on Vulkan 1.1.179"), "angle_(samsung_xclipse_920)_on_vulkan"); } } }
56
#ifndef TENSORFLOW_C_EAGER_C_API_EXPERIMENTAL_READER_H_ #define TENSORFLOW_C_EAGER_C_API_EXPERIMENTAL_READER_H_ #include "tensorflow/c/eager/c_api.h" #ifdef __cplusplus extern "C" { #endif typedef struct TFE_MonitoringCounterReader TFE_MonitoringCounterReader; TF_CAPI_EXPORT extern TFE_MonitoringCounterReader* TFE_MonitoringNewCounterReader(const char* name); TF_CAPI_EXPORT extern int64_t TFE_MonitoringReadCounter0( TFE_MonitoringCounterReader*); TF_CAPI_EXPORT extern int64_t TFE_MonitoringReadCounter1( TFE_MonitoringCounterReader*, const char* label_value); #ifdef __cplusplus } #endif #endif #include "tensorflow/c/eager/c_api_experimental_reader.h" #include "tensorflow/c/eager/tfe_monitoring_reader_internal.h" template <typename... LabelType> int64_t TFE_MonitoringCounterReader::Read(const LabelType&... labels) { return counter->Read(labels...); } TFE_MonitoringCounterReader* TFE_MonitoringNewCounterReader(const char* name) { auto* result = new TFE_MonitoringCounterReader(name); return result; } int64_t TFE_MonitoringReadCounter0(TFE_MonitoringCounterReader* cell_reader) { int64_t result = cell_reader->Read(); return result; } int64_t TFE_MonitoringReadCounter1(TFE_MonitoringCounterReader* cell_reader, const char* label) { int64_t result = cell_reader->Read(label); return result; }
#include "tensorflow/c/eager/c_api_experimental_reader.h" #include <cstdint> #include "tensorflow/c/eager/c_api_experimental.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { TFE_MonitoringCounter0* CreateCounter0(const char* counter_name); TFE_MonitoringCounter1* CreateCounter1(const char* counter_name, const char* label); void IncrementCounter0(TFE_MonitoringCounter0* counter, int64_t delta = 1); void IncrementCounter1(TFE_MonitoringCounter1* counter, const char* label, int64_t delta = 1); TEST(CAPI, MonitoringCellReader0) { auto counter_name = "test/counter0"; auto* counter = CreateCounter0(counter_name); auto* reader = TFE_MonitoringNewCounterReader(counter_name); IncrementCounter0(counter); int64_t actual = TFE_MonitoringReadCounter0(reader); CHECK_EQ(actual, 1); } TEST(CAPI, MonitoringCellReader1) { auto counter_name = "test/counter1"; auto label_name = "test/label"; auto* counter = CreateCounter1(counter_name, label_name); auto* reader = TFE_MonitoringNewCounterReader(counter_name); IncrementCounter1(counter, label_name); int64_t actual = TFE_MonitoringReadCounter1(reader, label_name); CHECK_EQ(actual, 1); } TFE_MonitoringCounter0* CreateCounter0(const char* counter_name) { TF_Status* status = TF_NewStatus(); auto* counter = TFE_MonitoringNewCounter0(counter_name, status, "description"); TF_DeleteStatus(status); return counter; } void IncrementCounter0(TFE_MonitoringCounter0* counter, int64_t delta) { auto* cell = TFE_MonitoringGetCellCounter0(counter); TFE_MonitoringCounterCellIncrementBy(cell, delta); } TFE_MonitoringCounter1* CreateCounter1(const char* counter_name, const char* label) { TF_Status* status = TF_NewStatus(); auto* counter = TFE_MonitoringNewCounter1(counter_name, status, "description", label); TF_DeleteStatus(status); return counter; } void IncrementCounter1(TFE_MonitoringCounter1* counter, const char* label, int64_t delta) { auto* cell = TFE_MonitoringGetCellCounter1(counter, label); TFE_MonitoringCounterCellIncrementBy(cell, delta); } } }
57
#ifndef TENSORFLOW_CC_FRAMEWORK_CC_OP_GEN_H_ #define TENSORFLOW_CC_FRAMEWORK_CC_OP_GEN_H_ #include <string> #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/platform/types.h" namespace tensorflow { namespace cc_op { void WriteCCOps(const OpList& ops, const ApiDefMap& api_def_map, const string& dot_h_fname, const string& dot_cc_fname); } } #endif #include "tensorflow/cc/framework/cc_op_gen.h" #include <memory> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/strings/escaping.h" #include "tensorflow/cc/framework/cc_op_gen_util.h" #include "tensorflow/core/framework/api_def.pb.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/op_def_util.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/lib/hash/hash.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/env.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace cc_op { namespace { const int kRightMargin = 79; string GetConstructorDecl(const OpInfo& op_info, StringPiece op_name_prefix, bool include_attr) { const string prefix = strings::StrCat(op_name_prefix, op_info.op_name, "("); string c_decl; for (int i = 0; i < op_info.arg_types.size(); ++i) { if (i > 0) strings::StrAppend(&c_decl, ", "); strings::StrAppend(&c_decl, op_info.arg_types[i], " ", op_info.arg_names[i]); } if (include_attr && op_info.has_optional_attrs) { strings::StrAppend(&c_decl, ", const ", op_info.op_name, "::Attrs& attrs"); } strings::StrAppend(&c_decl, ")"); return WordWrap(prefix, c_decl, kRightMargin); } void WriteClassDecl(const OpInfo& op_info, WritableFile* h) { string class_decl = op_info.comment; strings::StrAppend(&class_decl, "class ", op_info.op_name, " {\n"); strings::StrAppend(&class_decl, " public:\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, op_info.GetOpAttrStruct()); } strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", false), ";\n"); if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, " ", GetConstructorDecl(op_info, "", true), ";\n"); } if (op_info.output_types.empty()) { strings::StrAppend(&class_decl, " operator ::tensorflow::Operation() const { " "return operation; }\n"); } else if (op_info.output_types.size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(&class_decl, " ::tensorflow::Output operator[](size_t index) " "const { return ", op_info.output_names[0], "[index]; }\n\n"); } else { strings::StrAppend(&class_decl, " operator ::tensorflow::Output() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " operator ::tensorflow::Input() const { return ", op_info.output_names[0], "; }\n"); strings::StrAppend(&class_decl, " ::tensorflow::Node* node() const { return ", op_info.output_names[0], ".node(); }\n"); } } if (op_info.has_optional_attrs) { strings::StrAppend(&class_decl, "\n"); for (int i = 0; i < op_info.graph_op_def.attr_size(); ++i) { const auto& attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if ((op_info.inferred_input_attrs.find(attr.name()) != op_info.inferred_input_attrs.end()) || !api_def_attr.has_default_value()) { continue; } const auto entry = AttrTypeName(attr.type()); const auto attr_type_name = entry.first; const bool use_const = entry.second; const string camel_case_name = ToCamelCase(api_def_attr.rename_to()); const string suffix = (camel_case_name == op_info.op_name || camel_case_name == "Attrs") ? "_" : ""; const string attr_func_def = strings::StrCat( camel_case_name, suffix, "(", use_const ? "const " : "", attr_type_name, use_const ? "&" : ""); strings::StrAppend(&class_decl, " static Attrs ", attr_func_def, " x) {\n"); strings::StrAppend(&class_decl, " return Attrs().", camel_case_name, suffix, "(x);\n"); strings::StrAppend(&class_decl, " }\n"); } } strings::StrAppend(&class_decl, "\n Operation operation;\n"); for (int i = 0; i < op_info.output_types.size(); ++i) { strings::StrAppend(&class_decl, " ", op_info.output_types[i], " ", op_info.output_names[i], ";\n"); } strings::StrAppend(&class_decl, "};\n"); if (!op_info.aliases.empty()) { for (const auto& alias : op_info.aliases) { strings::StrAppend(&class_decl, "typedef ", op_info.op_name, " ", alias, ";\n"); } } strings::StrAppend(&class_decl, "\n"); TF_CHECK_OK(h->Append(class_decl)); } void GetOutput(const OpInfo& op_info, string* out) { const string scope_str = op_info.arg_names[0]; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(out, " this->operation = Operation(ret);\n"); if (op_info.graph_op_def.output_arg_size() == 0) { strings::StrAppend(out, " return;\n"); return; } if (op_info.graph_op_def.output_arg_size() == 1) { if (op_info.is_list_output[0]) { strings::StrAppend(out, " for (int32 i = 0; i < ret->num_outputs(); ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[0], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[0], " = Output(ret, 0);\n"); } return; } strings::StrAppend(out, " ::tensorflow::NameRangeMap _outputs_range;\n"); strings::StrAppend(out, " ::tensorflow::Status _status_ = " "::tensorflow::NameRangesForNode(*ret, ret->op_def(), " "nullptr, &_outputs_range);\n"); strings::StrAppend(out, " if (!_status_.ok()) {\n", " ", scope_str, ".UpdateStatus(_status_);\n", " return;\n"); strings::StrAppend(out, " }\n\n"); for (int i = 0; i < op_info.graph_op_def.output_arg_size(); ++i) { const string arg_range = strings::StrCat( "_outputs_range[\"", op_info.graph_op_def.output_arg(i).name(), "\"]"); if (op_info.is_list_output[i]) { strings::StrAppend(out, " for (int32 i = ", arg_range, ".first; i < ", arg_range, ".second; ++i)\n"); strings::StrAppend(out, " this->", op_info.output_names[i], ".push_back(Output(ret, i));\n"); } else { strings::StrAppend(out, " this->", op_info.output_names[i], " = Output(ret, ", arg_range, ".first);\n"); } } } string GetConstructorBody(const OpInfo& op_info) { const string scope_str = op_info.arg_names[0]; string body; string return_on_error = strings::StrCat("if (!", scope_str, ".ok()) return;"); strings::StrAppend(&body, " ", return_on_error, "\n"); for (int i = 0; i < op_info.graph_op_def.input_arg_size(); ++i) { const auto& arg(op_info.graph_op_def.input_arg(i)); const auto& api_def_arg(op_info.api_def.in_arg(i)); strings::StrAppend( &body, " auto _", api_def_arg.rename_to(), " = ::tensorflow::ops::", ArgIsList(arg) ? "AsNodeOutList" : "AsNodeOut", "(", scope_str, ", ", AvoidCPPKeywords(api_def_arg.rename_to()), ");\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); } strings::StrAppend(&body, " ::tensorflow::Node* ret;\n"); strings::StrAppend(&body, " const auto unique_name = ", scope_str, ".GetUniqueNameForOp(\"", op_info.op_name, "\");\n"); strings::StrAppend( &body, " auto builder = ::tensorflow::NodeBuilder(unique_name, \"", op_info.graph_op_def.name(), "\")\n"); const string spaces = " "; for (int i = 0; i < op_info.api_def.in_arg_size(); ++i) { const auto& arg(op_info.api_def.in_arg(i)); strings::StrAppend(&body, spaces, ".Input(_", arg.rename_to(), ")\n"); } for (int i = 0; i < op_info.api_def.attr_size(); ++i) { const auto& graph_attr(op_info.graph_op_def.attr(i)); const auto& api_def_attr(op_info.api_def.attr(i)); if (op_info.inferred_input_attrs.find(api_def_attr.name()) != op_info.inferred_input_attrs.end()) { continue; } const string attr_name = api_def_attr.has_default_value() ? strings::StrCat("attrs.", api_def_attr.rename_to(), "_") : AvoidCPPKeywords(api_def_attr.rename_to()); strings::StrAppend(&body, spaces, ".Attr(\"", graph_attr.name(), "\", ", attr_name, ")\n"); } strings::StrAppend(&body, " ;\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateBuilder(&builder);\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(builder.Finalize(", scope_str, ".graph(), &ret));\n"); strings::StrAppend(&body, " ", return_on_error, "\n"); strings::StrAppend(&body, " ", scope_str, ".UpdateStatus(", scope_str, ".DoShapeInference(ret));\n"); GetOutput(op_info, &body); return body; } void WriteClassDef(const OpInfo& op_info, WritableFile* cc) { string class_def; strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), true), " {\n"); strings::StrAppend(&class_def, GetConstructorBody(op_info)); strings::StrAppend(&class_def, "}\n\n"); if (op_info.has_optional_attrs) { strings::StrAppend( &class_def, GetConstructorDecl(op_info, strings::StrCat(op_info.op_name, "::"), false)); strings::StrAppend(&class_def, "\n : ", op_info.op_name, "("); int i = 0; for (; i < op_info.arg_names.size(); ++i) { if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.arg_names[i]); } if (i > 0) strings::StrAppend(&class_def, ", "); strings::StrAppend(&class_def, op_info.op_name, "::Attrs()"); strings::StrAppend(&class_def, ") {}\n\n"); } TF_CHECK_OK(cc->Append(class_def)); } void WriteCCOp(const OpDef& graph_op_def, const ApiDef& api_def, const std::vector<string>& aliases, WritableFile* h, WritableFile* cc) { OpInfo op_info(graph_op_def, api_def, aliases); WriteClassDecl(op_info, h); WriteClassDef(op_info, cc); } void StartFiles(bool internal, const string& dot_h_fname, WritableFile* h, WritableFile* cc, string* op_header_guard) { const string header = R"header( #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/framework/scope.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/lib/gtl/array_slice.h" )header"; const string namespace_begin = internal ? R"namespace( namespace tensorflow { namespace ops { namespace internal { )namespace" : R"namespace( namespace tensorflow { namespace ops { )namespace"; const string op_header = GetPath(dot_h_fname); *op_header_guard = ToGuard(op_header); const string cc_header = strings::StrCat( R"include( #include "tensorflow/cc/ops/const_op.h" )include", "#include \"", op_header, "\"\n", namespace_begin); const string filename = GetFilename(dot_h_fname); const string doxygen = strings::StrCat(" ToTitle(filename), "\n", " TF_CHECK_OK(h->Append( strings::StrCat(" "#ifndef ", *op_header_guard, "\n" "#define ", *op_header_guard, "\n\n"))); TF_CHECK_OK(h->Append(header)); TF_CHECK_OK(h->Append(namespace_begin)); TF_CHECK_OK(h->Append(doxygen)); TF_CHECK_OK(cc->Append(cc_header)); } void FinishFiles(bool internal, WritableFile* h, WritableFile* cc, const string& op_header_guard) { const string footer = internal ? R"footer(} } } )footer" : R"footer( } } )footer"; TF_CHECK_OK(h->Append(footer)); TF_CHECK_OK( h->Append(strings::StrCat("\n#endif ", " TF_CHECK_OK(cc->Append(footer)); TF_CHECK_OK(cc->Close()); TF_CHECK_OK(h->Close()); } string MakeInternal(const string& fname) { auto dot_pos = fname.rfind('.'); if (dot_pos == string::npos) { return strings::StrCat(fname, "_internal"); } else { return strings::StrCat(fname.substr(0, dot_pos), "_internal", fname.substr(dot_pos)); } } } void WriteCCOps(const OpList& ops, const ApiDefMap& api_def_map, const string& dot_h_fname, const string& dot_cc_fname) { Env* env = Env::Default(); std::unique_ptr<WritableFile> h = nullptr; std::unique_ptr<WritableFile> cc = nullptr; TF_CHECK_OK(env->NewWritableFile(dot_h_fname, &h)); TF_CHECK_OK(env->NewWritableFile(dot_cc_fname, &cc)); string op_header_guard; StartFiles(false, dot_h_fname, h.get(), cc.get(), &op_header_guard); std::unique_ptr<WritableFile> internal_h = nullptr; std::unique_ptr<WritableFile> internal_cc = nullptr; const string internal_dot_h_fname = MakeInternal(dot_h_fname); TF_CHECK_OK(env->NewWritableFile(internal_dot_h_fname, &internal_h)); TF_CHECK_OK(env->NewWritableFile(MakeInternal(dot_cc_fname), &internal_cc)); string internal_op_header_guard; StartFiles(true , internal_dot_h_fname, internal_h.get(), internal_cc.get(), &internal_op_header_guard); for (const auto& graph_op_def : ops.op()) { if (graph_op_def.has_deprecation() && graph_op_def.deprecation().version() <= TF_GRAPH_DEF_VERSION) { continue; } if (graph_op_def.name() == "Const") continue; const auto* api_def = api_def_map.GetApiDef(graph_op_def.name()); std::vector<string> aliases; if (api_def->visibility() == ApiDef::SKIP) continue; for (int endpoint_i = 1; endpoint_i < api_def->endpoint_size(); ++endpoint_i) { aliases.push_back(api_def->endpoint(endpoint_i).name()); } if (api_def->visibility() == ApiDef::HIDDEN) { WriteCCOp(graph_op_def, *api_def, aliases, internal_h.get(), internal_cc.get()); continue; } WriteCCOp(graph_op_def, *api_def, aliases, h.get(), cc.get()); } FinishFiles(false, h.get(), cc.get(), op_header_guard); FinishFiles(true , internal_h.get(), internal_cc.get(), internal_op_header_guard); } } }
#include "tensorflow/cc/framework/cc_op_gen.h" #include "tensorflow/core/framework/op_def.pb.h" #include "tensorflow/core/framework/op_gen_lib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/io/path.h" #include "tensorflow/core/lib/strings/str_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace { constexpr char kBaseOpDef[] = R"( op { name: "Foo" input_arg { name: "images" description: "Images to process." } input_arg { name: "dim" description: "Description for dim." type: DT_FLOAT } output_arg { name: "output" description: "Description for output." type: DT_FLOAT } attr { name: "T" type: "type" description: "Type for images" allowed_values { list { type: DT_UINT8 type: DT_INT8 } } default_value { i: 1 } } summary: "Summary for op Foo." description: "Description for op Foo." } )"; void ExpectHasSubstr(StringPiece s, StringPiece expected) { EXPECT_TRUE(absl::StrContains(s, expected)) << "'" << s << "' does not contain '" << expected << "'"; } void ExpectDoesNotHaveSubstr(StringPiece s, StringPiece expected) { EXPECT_FALSE(absl::StrContains(s, expected)) << "'" << s << "' contains '" << expected << "'"; } void ExpectSubstrOrder(const string& s, const string& before, const string& after) { int before_pos = s.find(before); int after_pos = s.find(after); ASSERT_NE(std::string::npos, before_pos); ASSERT_NE(std::string::npos, after_pos); EXPECT_LT(before_pos, after_pos) << before << " is not before " << after << " in " << s; } void GenerateCcOpFiles(Env* env, const OpList& ops, const ApiDefMap& api_def_map, string* h_file_text, string* internal_h_file_text) { const string& tmpdir = testing::TmpDir(); const auto h_file_path = io::JoinPath(tmpdir, "test.h"); const auto cc_file_path = io::JoinPath(tmpdir, "test.cc"); const auto internal_h_file_path = io::JoinPath(tmpdir, "test_internal.h"); const auto internal_cc_file_path = io::JoinPath(tmpdir, "test_internal.cc"); cc_op::WriteCCOps(ops, api_def_map, h_file_path, cc_file_path); TF_ASSERT_OK(ReadFileToString(env, h_file_path, h_file_text)); TF_ASSERT_OK( ReadFileToString(env, internal_h_file_path, internal_h_file_text)); } TEST(CcOpGenTest, TestVisibilityChangedToHidden) { const string api_def = R"( op { graph_op_name: "Foo" visibility: HIDDEN } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string h_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(internal_h_file_text, "class Foo"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(internal_h_file_text, "class Foo"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo"); } TEST(CcOpGenTest, TestArgNameChanges) { const string api_def = R"( op { graph_op_name: "Foo" arg_order: "dim" arg_order: "images" } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input images", "Input dim"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectSubstrOrder(h_file_text, "Input dim", "Input images"); } TEST(CcOpGenTest, TestEndpoints) { const string api_def = R"( op { graph_op_name: "Foo" endpoint { name: "Foo1" } endpoint { name: "Foo2" } } )"; Env* env = Env::Default(); OpList op_defs; protobuf::TextFormat::ParseFromString(kBaseOpDef, &op_defs); ApiDefMap api_def_map(op_defs); string cc_file_text, h_file_text; string internal_cc_file_text, internal_h_file_text; GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo {"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo1"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo2"); TF_ASSERT_OK(api_def_map.LoadApiDef(api_def)); GenerateCcOpFiles(env, op_defs, api_def_map, &h_file_text, &internal_h_file_text); ExpectHasSubstr(h_file_text, "class Foo1"); ExpectHasSubstr(h_file_text, "typedef Foo1 Foo2"); ExpectDoesNotHaveSubstr(h_file_text, "class Foo {"); } } }
58
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_ML_ADJACENT_ALGO_PER_IMAGE_STANDARDIZATION_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_ML_ADJACENT_ALGO_PER_IMAGE_STANDARDIZATION_H_ #include "tensorflow/lite/experimental/ml_adjacent/lib.h" namespace ml_adj { namespace per_image_standardization { const algo::Algo* Impl_PerImageStandardization(); } } #endif #include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cmath> #include "tensorflow/lite/experimental/ml_adjacent/lib.h" #include "tensorflow/lite/kernels/internal/compatibility.h" namespace ml_adj { namespace per_image_standardization { namespace { using ::ml_adj::algo::Algo; using ::ml_adj::algo::InputPack; using ::ml_adj::algo::OutputPack; using ::ml_adj::data::DataRef; using ::ml_adj::data::MutableDataRef; inline void PerImageStandardization(dim_t batches, dim_t height, dim_t width, dim_t num_channels, const float* input_data, float* output_data) { const dim_t num_pixels_per_image = height * width * num_channels; const float inv_num_pixels_per_image = 1.0f / num_pixels_per_image; for (ind_t b = 0; b < batches; ++b) { const dim_t offset = b * num_pixels_per_image; const float* input_ptr = input_data + offset; float* output_ptr = output_data + offset; float mean = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { mean += input_ptr[i]; } mean *= inv_num_pixels_per_image; float variance = 0.0f; for (ind_t i = 0; i < num_pixels_per_image; ++i) { const float diff = input_ptr[i] - mean; variance += diff * diff * inv_num_pixels_per_image; output_ptr[i] = diff; } const float inv_adjusted_stddev = fmin(num_pixels_per_image, 1.0f / sqrt(variance)); for (ind_t i = 0; i < num_pixels_per_image; ++i) { output_ptr[i] *= inv_adjusted_stddev; } } } void ComputePerImageStandardization(const InputPack& inputs, const OutputPack& outputs) { TFLITE_DCHECK(inputs.size() == 1); TFLITE_DCHECK(outputs.size() == 1); const DataRef* img = inputs[0]; const float* img_data = reinterpret_cast<const float*>(img->Data()); const dim_t img_num_batches = img->Dims()[0]; const dim_t img_height = img->Dims()[1]; const dim_t img_width = img->Dims()[2]; const dim_t img_num_channels = img->Dims()[3]; MutableDataRef* output = outputs[0]; output->Resize({img_num_batches, img_height, img_width, img_num_channels}); float* output_data = reinterpret_cast<float*>(output->Data()); PerImageStandardization(img_num_batches, img_height, img_width, img_num_channels, img_data, output_data); } } const Algo* Impl_PerImageStandardization() { static const Algo per_image_standardization = { &ComputePerImageStandardization, nullptr}; return &per_image_standardization; } } }
#include "tensorflow/lite/experimental/ml_adjacent/algo/per_image_standardization.h" #include <cstring> #include <vector> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/ml_adjacent/data/owning_vector_ref.h" #include "tensorflow/lite/experimental/ml_adjacent/lib.h" using ::ml_adj::algo::Algo; using ::ml_adj::data::OwningVectorRef; namespace ml_adj { namespace per_image_standardization { namespace { struct PerImageStandardizationTestParams { const std::vector<dim_t> img_dims; const std::vector<float> img_data; const std::vector<float> expected_data; }; class PerImageStandardizationTest : public testing::TestWithParam<PerImageStandardizationTestParams> {}; TEST_P(PerImageStandardizationTest, FloatPixelType) { const PerImageStandardizationTestParams& params = GetParam(); OwningVectorRef img(etype_t::f32); img.Resize(dims_t(params.img_dims)); ASSERT_EQ(img.Bytes(), params.img_data.size() * sizeof(float)); std::memcpy(img.Data(), params.img_data.data(), img.Bytes()); OwningVectorRef output(etype_t::f32); const Algo* per_image_standardization = Impl_PerImageStandardization(); per_image_standardization->process({&img}, {&output}); ASSERT_EQ(output.Bytes(), params.expected_data.size() * sizeof(float)); ASSERT_EQ(output.Dims(), img.Dims()); constexpr float kAbsError = 0.01f; float* out_data = reinterpret_cast<float*>(output.Data()); for (int i = 0; i < output.NumElements(); ++i) { EXPECT_NEAR(out_data[i], params.expected_data[i], kAbsError) << "out_data[" << i << "] = " << out_data[i] << ", expected_data[" << i << "] = " << params.expected_data[i]; } } INSTANTIATE_TEST_SUITE_P( PerImageStandardizationTests, PerImageStandardizationTest, testing::ValuesIn({ PerImageStandardizationTestParams{ {1, 2, 2, 1}, {1, 2, 3, 4}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407}}, PerImageStandardizationTestParams{ {2, 2, 2, 1}, {1, 2, 3, 4, 1, 2, 4, 8}, {-1.3416407, -0.4472136, 0.4472136, 1.3416407, -1.0257553, -0.65275335, 0.09325048, 1.5852581}}, PerImageStandardizationTestParams{ {2, 2, 2, 2}, {1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 2, 2, 3, 2, 4, 2}, {-0.8451542, -0.16903085, -0.8451542, 0.50709254, -0.8451542, 1.1832159, -0.8451542, 1.8593392, -1.5075567, -0.30151135, -0.30151135, -0.30151135, 0.904534, -0.30151135, 2.1105793, -0.30151135}}, })); } } }
59
#ifndef TENSORFLOW_COMPILER_MLIR_TENSORFLOW_TRANSFORMS_HOST_RUNTIME_TPU_METADATA_UTILS_H_ #define TENSORFLOW_COMPILER_MLIR_TENSORFLOW_TRANSFORMS_HOST_RUNTIME_TPU_METADATA_UTILS_H_ #include <optional> #include "mlir/IR/Diagnostics.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" namespace mlir { namespace TFTPU { LogicalResult SetMetadataProtoFromClusterFuncOp( tf_device::ClusterFuncOp op, int num_replicas, int num_cores_per_replica, std::optional<xla::DeviceAssignmentProto>&& xla_device_assignment, tensorflow::tpu::TPUCompileMetadataProto* metadata); } } #endif #include "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/tpu_metadata_utils.h" #include <optional> #include <string> #include <utility> #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/FormatVariadic.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/IR/Attributes.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinAttributes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/compiler/mlir/tensorflow/utils/attribute_utils.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_tensor.h" #include "tensorflow/compiler/mlir/tensorflow/utils/convert_type.h" #include "tensorflow/compiler/mlir/tensorflow/utils/xla_sharding_util.h" #include "xla/xla.pb.h" #include "xla/xla_data.pb.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_shape.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" namespace mlir { namespace TFTPU { namespace { constexpr char kStepMarkerLocationAttr[] = "step_marker_location"; constexpr char kUseXlaSpmdAttr[] = "use_spmd_for_xla_partitioning"; constexpr char kBadStringArrayElementMsg[] = "bad '{0}' attribute at index {1}, not a string"; constexpr char kBadArrayElementMsg[] = "bad '{0}' attribute at index {1} with value '{2}': failed to parse to {3}"; constexpr char kBadArrayAttrLengthMsg[] = "bad '{0}' attribute, expected array attribute of size {1}, got size {2}"; std::string CreateMissingAttributeMsg(llvm::StringRef attribute) { return llvm::formatv("requires attribute '{0}'", attribute).str(); } LogicalResult SetMetadataProtoStepMarkerLocation( tf_device::ClusterFuncOp op, tensorflow::tpu::TPUCompileMetadataProto* metadata) { auto step_marker_location = op->getAttrOfType<StringAttr>(kStepMarkerLocationAttr); if (!step_marker_location) return op.emitOpError(CreateMissingAttributeMsg(kStepMarkerLocationAttr)); xla::DebugOptions::StepMarkerLocation location = xla::DebugOptions::STEP_MARK_AT_ENTRY; if (!step_marker_location.getValue().empty() && !xla::DebugOptions::StepMarkerLocation_Parse( std::string(step_marker_location.getValue()), &location)) return op.emitOpError(llvm::formatv("bad '{0}' attribute with value '{1}'", kStepMarkerLocationAttr, step_marker_location.getValue())); metadata->set_step_marker_location(location); return success(); } LogicalResult SetOpSharding(Operation* op, Attribute attr, llvm::StringRef name, int index, xla::OpSharding* sharding_ptr) { auto sharding_attr = mlir::dyn_cast<StringAttr>(attr); if (!sharding_attr) return op->emitOpError( llvm::formatv(kBadStringArrayElementMsg, name, index)); if (tensorflow::DecodeShardingAttribute(sharding_attr, *sharding_ptr) .failed()) { return op->emitOpError(llvm::formatv(kBadArrayElementMsg, name, index, sharding_attr.getValue(), "xla::OpSharding")); } return success(); } LogicalResult SetMetadataProtoArgs( tf_device::ClusterFuncOp op, tensorflow::tpu::TPUCompileMetadataProto* metadata) { auto input_shardings = op->getAttrOfType<ArrayAttr>(tensorflow::kInputShardingAttr); if (!input_shardings) return op.emitOpError( CreateMissingAttributeMsg(tensorflow::kInputShardingAttr)); if (input_shardings.size() != op.getNumOperands()) return op.emitOpError( llvm::formatv(kBadArrayAttrLengthMsg, tensorflow::kInputShardingAttr, op.getNumOperands(), input_shardings.size())); mlir::StringAttr replication_attr_name = mlir::StringAttr::get( op.getContext(), "mhlo.is_same_data_across_replicas"); auto dynamic_arg_idx = op->getAttrOfType<ArrayAttr>(TF::kDynamicArgIndexAttr); llvm::SmallSet<int, 4> dynamic_arg_idx_set; if (dynamic_arg_idx) { for (auto idx : dynamic_arg_idx.getValue()) { dynamic_arg_idx_set.insert(mlir::dyn_cast<IntegerAttr>(idx).getInt()); } } for (auto operand_type_and_idx : llvm::enumerate(op.getOperandTypes())) { Type operand_type = operand_type_and_idx.value(); int index = operand_type_and_idx.index(); tensorflow::tpu::TPUCompileMetadataProto::Arg* arg = metadata->add_args(); tensorflow::DataType dtype; tensorflow::Status status = tensorflow::ConvertToDataType(operand_type, &dtype); if (!status.ok()) return op.emitOpError( llvm::formatv("failed to determine operand type at index {0}: {1}", index, status.message())); arg->set_dtype(dtype); if (dtype == tensorflow::DT_RESOURCE) arg->set_kind(tensorflow::tpu::TPUCompileMetadataProto::Arg::VARIABLE); else arg->set_kind(tensorflow::tpu::TPUCompileMetadataProto::Arg::PARAMETER); *arg->mutable_shape() = tensorflow::TensorShapeProto(); if (auto ranked_tensor_type = mlir::dyn_cast<RankedTensorType>(operand_type)) { tensorflow::TensorShapeProto shape_proto; ConvertToTensorShapeProto(ranked_tensor_type.getShape(), &shape_proto); *arg->mutable_shape() = std::move(shape_proto); } else { arg->mutable_shape()->set_unknown_rank(true); } if (failed(SetOpSharding(op, input_shardings.getValue()[index], tensorflow::kInputShardingAttr, index, arg->mutable_sharding()))) return failure(); auto attr = op.getFuncOp().getArgAttrOfType<mlir::BoolAttr>( index, replication_attr_name); arg->set_is_same_data_across_replicas(attr != nullptr && attr.getValue()); arg->mutable_is_bounded_dynamic_dim()->Add( dynamic_arg_idx_set.contains(index)); } return success(); } LogicalResult SetMetadataProtoRetvals( tf_device::ClusterFuncOp op, tensorflow::tpu::TPUCompileMetadataProto* metadata) { auto output_shardings = op->getAttrOfType<ArrayAttr>(tensorflow::kOutputShardingAttr); if (!output_shardings) return op.emitOpError( CreateMissingAttributeMsg(tensorflow::kOutputShardingAttr)); if (output_shardings.size() != op.getNumResults()) return op.emitOpError( llvm::formatv(kBadArrayAttrLengthMsg, tensorflow::kOutputShardingAttr, op.getNumResults(), output_shardings.size())); for (auto output_sharding_and_idx : llvm::enumerate(output_shardings)) if (failed(SetOpSharding(op, output_sharding_and_idx.value(), tensorflow::kOutputShardingAttr, output_sharding_and_idx.index(), metadata->add_retvals()->mutable_sharding()))) return failure(); return success(); } } LogicalResult SetMetadataProtoFromClusterFuncOp( tf_device::ClusterFuncOp op, int num_replicas, int num_cores_per_replica, std::optional<xla::DeviceAssignmentProto>&& xla_device_assignment, tensorflow::tpu::TPUCompileMetadataProto* metadata) { if (auto options_attr = op->getAttrOfType<StringAttr>("tpu_compile_options_proto")) { if (!metadata->mutable_compile_options()->ParseFromArray( options_attr.data(), options_attr.size())) { return failure(); } } metadata->set_num_replicas(num_replicas); metadata->set_num_cores_per_replica(num_cores_per_replica); if (failed(SetMetadataProtoStepMarkerLocation(op, metadata))) return failure(); if (xla_device_assignment.has_value()) *metadata->mutable_device_assignment() = std::move(xla_device_assignment.value()); auto use_spmd_attr = op->getAttrOfType<BoolAttr>(kUseXlaSpmdAttr); if (!use_spmd_attr) return op.emitOpError(CreateMissingAttributeMsg(kUseXlaSpmdAttr)); metadata->set_use_spmd_for_xla_partitioning(use_spmd_attr.getValue()); if (failed(SetMetadataProtoArgs(op, metadata))) return failure(); return SetMetadataProtoRetvals(op, metadata); } } }
#include "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/tpu_metadata_utils.h" #include <ostream> #include <string> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/Parser/Parser.h" #include "mlir/Pass/PassManager.h" #include "mlir/Support/LogicalResult.h" #include "tensorflow/compiler/mlir/register_common_dialects.h" #include "tensorflow/compiler/mlir/tensorflow/ir/tf_device.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/tpu/compile_metadata.pb.h" #include "tsl/platform/errors.h" #include "tsl/platform/protobuf.h" #include "tsl/platform/statusor.h" namespace mlir { namespace TFTPU { namespace { using mlir::DialectRegistry; using mlir::MLIRContext; using mlir::ModuleOp; using mlir::OwningOpRef; class ProtoStringMatcher { public: explicit ProtoStringMatcher(const tsl::protobuf::Message& expected) : expected_(expected.SerializeAsString()) {} template <typename Message> bool MatchAndExplain(const Message& p, testing::MatchResultListener*) const { return p.SerializeAsString() == expected_; } void DescribeTo(::std::ostream* os) const { *os << expected_; } void DescribeNegationTo(::std::ostream* os) const { *os << "not equal to expected message: " << expected_; } private: const std::string expected_; }; inline ::testing::PolymorphicMatcher<ProtoStringMatcher> EqualsProto( const tsl::protobuf::Message& x) { return ::testing::MakePolymorphicMatcher(ProtoStringMatcher(x)); } std::string TestDataPath() { return tensorflow::GetDataDependencyFilepath( "tensorflow/compiler/mlir/tensorflow/transforms/host_runtime/testdata/"); } class TpuMetadataUtilsTest : public ::testing::Test { public: TpuMetadataUtilsTest() { mlir::RegisterCommonToolingDialects(registry_); context_.appendDialectRegistry(registry_); context_.loadAllAvailableDialects(); } absl::StatusOr<std::vector<mlir::tf_device::ClusterFuncOp>> GetClusterFuncOps( absl::string_view mlir_module_filename) { TF_RETURN_IF_ERROR(CreateMlirModule(mlir_module_filename)); std::vector<mlir::tf_device::ClusterFuncOp> cluster_func_ops; mlir_module_->walk([&](mlir::tf_device::ClusterFuncOp op) { cluster_func_ops.push_back(op); }); return cluster_func_ops; } private: absl::Status CreateMlirModule(absl::string_view mlir_module_filename) { std::string mlir_module_path = absl::StrCat(TestDataPath(), mlir_module_filename); mlir_module_ = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context_); if (!mlir_module_) { return absl::Status( absl::StatusCode::kNotFound, absl::StrCat("Could not find MLIR module at ", mlir_module_path)); } return absl::OkStatus(); } DialectRegistry registry_; MLIRContext context_; OwningOpRef<mlir::ModuleOp> mlir_module_; }; TEST_F(TpuMetadataUtilsTest, SingleDevice) { TF_ASSERT_OK_AND_ASSIGN(auto cluster_func_ops, GetClusterFuncOps("basic_cluster.mlir")); mlir::tf_device::ClusterFuncOp cluster_func_op = cluster_func_ops.front(); tensorflow::tpu::TPUCompileMetadataProto compile_metadata; ASSERT_TRUE(mlir::succeeded(SetMetadataProtoFromClusterFuncOp( cluster_func_op, 1, 1, {}, &compile_metadata))); tensorflow::tpu::TPUCompileMetadataProto expected_compile_metadata; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( num_replicas: 1 num_cores_per_replica: 1 )pb", &expected_compile_metadata)); EXPECT_THAT(compile_metadata, EqualsProto(expected_compile_metadata)); } TEST_F(TpuMetadataUtilsTest, spmd) { TF_ASSERT_OK_AND_ASSIGN(auto cluster_func_ops, GetClusterFuncOps("spmd.mlir")); mlir::tf_device::ClusterFuncOp cluster_func_op = cluster_func_ops.front(); tensorflow::tpu::TPUCompileMetadataProto compile_metadata; ASSERT_TRUE(mlir::succeeded(SetMetadataProtoFromClusterFuncOp( cluster_func_op, 1, 2, {}, &compile_metadata))); tensorflow::tpu::TPUCompileMetadataProto expected_compile_metadata; ASSERT_TRUE(tsl::protobuf::TextFormat::ParseFromString( R"pb( args { dtype: DT_FLOAT shape { unknown_rank: true } kind: PARAMETER sharding { type: OTHER tile_assignment_dimensions: 2 tile_assignment_dimensions: 1 tile_assignment_devices: 0 tile_assignment_devices: 1 } is_bounded_dynamic_dim: false } retvals { sharding {} } num_replicas: 1 num_cores_per_replica: 2 use_spmd_for_xla_partitioning: true compile_options {} )pb", &expected_compile_metadata)); EXPECT_THAT(compile_metadata, EqualsProto(expected_compile_metadata)); } } } }
60
#ifndef TENSORFLOW_COMPILER_JIT_XLA_CLUSTER_UTIL_H_ #define TENSORFLOW_COMPILER_JIT_XLA_CLUSTER_UTIL_H_ #include <string> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/status/statusor.h" #include "absl/types/optional.h" #include "tensorflow/compiler/jit/xla_activity.pb.h" #include "xla/service/graphcycles/graphcycles.h" #include "tensorflow/core/common_runtime/optimization_registry.h" #include "tensorflow/core/graph/algorithm.h" namespace tensorflow { extern const char* const kXlaClusterAttr; extern const char* const kXlaCompileTimeConstantInputsAttr; using OrderedNodeSet = std::set<Node*, NodeComparatorID>; bool HasForwardedRefInput(const Node& node); absl::StatusOr<bool> CreateCycleDetectionGraph(const Graph* graph, GraphCycles* cycles); std::optional<absl::string_view> GetXlaClusterForNode(const Node& node); void RemoveFromXlaCluster(NodeDef* node_def); void RemoveFromXlaCluster(Node* node); bool HasResourceInputOrOutput(const Node& node); OptimizerOptions::GlobalJitLevel GetGlobalJitLevelForGraph( const GraphOptimizationPassOptions& options); bool IsSingleGpuGraph(const Graph& g); bool MayCallFunction(const Node& n, const FunctionLibraryDefinition* flib_def); bool IsShapeConsumerOp(const Node& node); XlaAutoClusteringSummary GetXlaAutoClusteringSummary(const Graph& graph); absl::StatusOr<absl::flat_hash_set<Node*>> GetNodesRelatedToRefVariables( const Graph& graph, FunctionLibraryRuntime* lib_runtime); absl::StatusOr<std::string> SerializeGraphDeterministic(const Graph& graph); absl::StatusOr<uint64> FingerprintGraph(const Graph& graph); } #endif #include "tensorflow/compiler/jit/xla_cluster_util.h" #include <string> #include <unordered_map> #include "absl/algorithm/container.h" #include "absl/container/inlined_vector.h" #include "absl/strings/match.h" #include "absl/strings/numbers.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "tensorflow/compiler/jit/flags.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/function.h" #include "tensorflow/core/framework/bounds_check.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/graph/control_flow.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/lib/strings/proto_serialization.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/fingerprint.h" #include "tensorflow/core/public/session_options.h" #include "tensorflow/core/util/device_name_utils.h" #include "tensorflow/core/util/xla_config_registry.h" namespace tensorflow { const char* const kXlaClusterAttr = "_XlaCluster"; const char* const kXlaCompileTimeConstantInputsAttr = "_XlaCompileTimeConstantInputs"; namespace { string DescribeCycle(const GraphCycles* cycles, const Graph& graph, int src, int dst) { int32_t max_path_size = graph.num_node_ids() + 1; std::vector<int32> path(max_path_size); int32_t path_size = cycles->FindPath(dst, src, max_path_size, path.data()); if (path_size == 0) { return ""; } auto node_name = [&graph](int node_id) { if (!FastBoundsCheck(node_id, graph.num_node_ids())) { return string("(null)"); } auto* node = graph.FindNodeId(node_id); if (node == nullptr) { return string("(null)"); } return node->name(); }; string description; absl::StrAppend(&description, "Edge from ", node_name(src), " to ", node_name(dst), " would create a cycle.\n"); path.resize(path_size); for (int32_t node_id : path) { string ascii_art; if (node_id == dst) { ascii_art = "+-> "; } else if (node_id != src) { ascii_art = "| "; } else { ascii_art = "+-- "; } absl::StrAppend(&description, ascii_art, node_name(node_id), "\n"); } return description; } bool AlwaysForwardsRefInput(const Node& node) { return node.IsIdentity(); } } bool HasForwardedRefInput(const Node& node) { if (AlwaysForwardsRefInput(node)) { for (const Edge* incoming_edge : node.in_edges()) { if (incoming_edge->IsControlEdge()) { continue; } Node* incoming_node = incoming_edge->src(); if (IsRefType(incoming_node->output_type(incoming_edge->src_output()))) { VLOG(2) << "Node " << node.def().ShortDebugString() << " has ref input " << incoming_node->name() << " " << incoming_node->type_string(); return true; } } } return false; } absl::StatusOr<bool> CreateCycleDetectionGraph(const Graph* graph, GraphCycles* cycles) { for (int i = 0; i < graph->num_node_ids(); ++i) { CHECK_EQ(i, cycles->NewNode()); } std::vector<ControlFlowInfo> control_flow_info; TF_RETURN_IF_ERROR(BuildControlFlowInfo(graph, &control_flow_info)); std::unordered_map<string, int> frame_nodes; auto GetOrAddFrameNodeId = [&frame_nodes, cycles](const string& frame_name) { int& frame_id = frame_nodes.emplace(frame_name, -1).first->second; if (frame_id < 0) { frame_id = cycles->NewNode(); } return frame_id; }; for (Edge const* edge : graph->edges()) { if (edge->dst()->IsEnter() || edge->src()->IsExit()) { const char* src_type = "pre-enter"; const char* dst_type = "post-exit"; int src = edge->src()->id(); int dst = edge->dst()->id(); if (edge->dst()->IsEnter()) { const string& frame_name = control_flow_info[edge->dst()->id()].frame_name; dst = GetOrAddFrameNodeId(frame_name); dst_type = "frame"; } if (edge->src()->IsExit()) { const string& frame_name = control_flow_info[edge->src()->id()].frame_name; src = GetOrAddFrameNodeId(frame_name); src_type = "frame"; } if (!cycles->InsertEdge(src, dst)) { VLOG(1) << "Cycle detected when adding " << src_type << "->" << dst_type << " edge: " << DescribeCycle(cycles, *graph, src, dst); return false; } continue; } if (edge->src()->IsNextIteration()) { continue; } if (!cycles->InsertEdge(edge->src()->id(), edge->dst()->id())) { return errors::Internal( "Found cycle in graph without control flow operator during XLA " "compilation: ", DescribeCycle(cycles, *graph, edge->src()->id(), edge->dst()->id())); } } return true; } std::optional<absl::string_view> GetXlaClusterForNode(const Node& node) { const AttrValue* attr_value = node.attrs().Find(kXlaClusterAttr); if (attr_value == nullptr) { return std::nullopt; } Status s = AttrValueHasType(*attr_value, "string"); if (!s.ok()) { return std::nullopt; } return attr_value->s(); } bool HasResourceInputOrOutput(const Node& node) { return std::find(node.input_types().begin(), node.input_types().end(), DT_RESOURCE) != node.input_types().end() || std::find(node.output_types().begin(), node.output_types().end(), DT_RESOURCE) != node.output_types().end(); } void RemoveFromXlaCluster(NodeDef* node_def) { node_def->mutable_attr()->erase(kXlaClusterAttr); } void RemoveFromXlaCluster(Node* node) { node->ClearAttr(kXlaClusterAttr); } namespace { typedef xla_config_registry::XlaGlobalJitLevel XlaGlobalJitLevel; XlaGlobalJitLevel GetXlaGlobalJitLevel( const OptimizerOptions::GlobalJitLevel& jit_level_in_session_opts) { XlaGlobalJitLevel result; if (jit_level_in_session_opts == OptimizerOptions::DEFAULT) { result.single_gpu = result.general = OptimizerOptions::OFF; } else { result.single_gpu = result.general = jit_level_in_session_opts; } MarkForCompilationPassFlags* flags = GetMarkForCompilationPassFlags(); if (flags->xla_auto_jit_flag.optimization_level_single_gpu != OptimizerOptions::DEFAULT) { result.single_gpu = static_cast<OptimizerOptions::GlobalJitLevel>( flags->xla_auto_jit_flag.optimization_level_single_gpu); } if (flags->xla_auto_jit_flag.optimization_level_general != OptimizerOptions::DEFAULT) { result.general = static_cast<OptimizerOptions::GlobalJitLevel>( flags->xla_auto_jit_flag.optimization_level_general); } return result; } int GetGpuNumber(const string& device_name) { DeviceNameUtils::ParsedName parsed_name; if (!DeviceNameUtils::ParseFullName(device_name, &parsed_name)) { return -1; } return parsed_name.type == DEVICE_GPU ? parsed_name.id : -1; } } bool IsSingleGpuGraph(const Graph& g) { int gpus_seen = 0; absl::flat_hash_set<string> devices_seen; for (Node* n : g.op_nodes()) { if (devices_seen.contains(n->assigned_device_name())) { continue; } int gpu_number = GetGpuNumber(n->assigned_device_name()); if (gpu_number != -1) { if (++gpus_seen > 1) { return false; } } devices_seen.insert(n->assigned_device_name()); } return gpus_seen == 1; } OptimizerOptions::GlobalJitLevel GetGlobalJitLevelForGraph( const GraphOptimizationPassOptions& options) { OptimizerOptions::GlobalJitLevel jit_level_in_session_opts = options.session_options->config.graph_options() .optimizer_options() .global_jit_level(); XlaGlobalJitLevel xla_global_jit_level = GetXlaGlobalJitLevel(jit_level_in_session_opts); if (xla_global_jit_level.single_gpu == xla_global_jit_level.general) { VLOG(4) << "GetGlobalJitLevelForGraph returning " << xla_global_jit_level.single_gpu; return xla_global_jit_level.single_gpu; } OptimizerOptions::GlobalJitLevel result = IsSingleGpuGraph(**options.graph) ? xla_global_jit_level.single_gpu : xla_global_jit_level.general; VLOG(4) << "GetGlobalJitLevelForGraph returning " << result; return result; } bool MayCallFunction(const Node& n, const FunctionLibraryDefinition* flib_def) { if (flib_def->Contains(n.type_string())) { return true; } return absl::c_any_of(n.def().attr(), [](const std::pair<string, AttrValue>& name_attr_pair) { return name_attr_pair.second.has_func(); }); } bool IsShapeConsumerOp(const Node& node) { return node.type_string() == "Shape" || node.type_string() == "Rank" || node.type_string() == "Size"; } namespace { struct ClusterInfo { int size; absl::flat_hash_map<absl::string_view, int> op_histogram; }; void HistogramMapToRepeatedOpAndCount( protobuf::RepeatedPtrField<XlaAutoClusteringSummary::OpAndCount>* result, const absl::flat_hash_map<absl::string_view, int>& histogram) { for (const auto& pair : histogram) { XlaAutoClusteringSummary::OpAndCount* new_entry = result->Add(); new_entry->set_op(std::string(pair.first)); new_entry->set_count(pair.second); } absl::c_sort(*result, [](const XlaAutoClusteringSummary::OpAndCount& a, const XlaAutoClusteringSummary::OpAndCount& b) { return a.op() < b.op(); }); } void ClusterInfoToProtobuf(XlaAutoClusteringSummary::Cluster* result, absl::string_view name, const ClusterInfo& info) { result->set_name(std::string(name)); result->set_size(info.size); HistogramMapToRepeatedOpAndCount(result->mutable_op_histogram(), info.op_histogram); } } XlaAutoClusteringSummary GetXlaAutoClusteringSummary(const Graph& graph) { absl::flat_hash_map<absl::string_view, ClusterInfo> cluster_name_to_info; XlaAutoClusteringSummary result; absl::flat_hash_map<absl::string_view, int> unclustered_op_histogram; for (Node* n : graph.nodes()) { std::optional<absl::string_view> cluster_name = GetXlaClusterForNode(*n); if (cluster_name) { result.set_clustered_node_count(result.clustered_node_count() + 1); ClusterInfo* info = &cluster_name_to_info[*cluster_name]; info->size++; info->op_histogram[n->type_string()]++; } else { result.set_unclustered_node_count(result.unclustered_node_count() + 1); unclustered_op_histogram[n->type_string()]++; } } for (const auto& pair : cluster_name_to_info) { XlaAutoClusteringSummary::Cluster* new_cluster = result.add_clusters(); ClusterInfoToProtobuf(new_cluster, pair.first, pair.second); } absl::c_sort(*result.mutable_clusters(), [&](const XlaAutoClusteringSummary::Cluster& a, const XlaAutoClusteringSummary::Cluster& b) { return a.name() < b.name(); }); HistogramMapToRepeatedOpAndCount(result.mutable_unclustered_op_histogram(), unclustered_op_histogram); return result; } namespace { using CallTargetListTy = absl::InlinedVector<NameAttrList, 2>; CallTargetListTy GetCallTargetListFromNode( const Node& n, FunctionLibraryRuntime* lib_runtime) { const FunctionLibraryDefinition& flib_def = *lib_runtime->GetFunctionLibraryDefinition(); if (flib_def.Find(n.type_string())) { NameAttrList callee; callee.set_name(n.type_string()); *callee.mutable_attr() = n.def().attr(); return {callee}; } CallTargetListTy result; for (const auto& name_attr_pair : n.attrs()) { const AttrValue& attr_value = name_attr_pair.second; if (attr_value.value_case() == AttrValue::kFunc) { result.push_back(attr_value.func()); } else if (attr_value.value_case() == AttrValue::kList) { result.insert(result.end(), attr_value.list().func().begin(), attr_value.list().func().end()); } } return result; } enum class Direction { kForward, kBackward }; Status GetNodesRelatedToRefVariablesInDirection( const Graph& graph, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth, absl::flat_hash_set<Node*>* result); absl::StatusOr<bool> DoesAnyCalleeHaveRefNodes( const CallTargetListTy& call_target_list, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth) { const int kMaxDepth = 10; if (depth == kMaxDepth && !call_target_list.empty()) { return true; } absl::flat_hash_set<Node*> callee_ref_nodes; for (const NameAttrList& call_target : call_target_list) { const OpRegistrationData* op_reg; if (OpRegistry::Global()->LookUp(call_target.name(), &op_reg).ok()) { const OpDef& op = op_reg->op_def; if (absl::c_any_of(op.output_arg(), [](const OpDef::ArgDef arg) { return arg.is_ref(); })) { return true; } continue; } callee_ref_nodes.clear(); FunctionLibraryRuntime::Handle handle; if (!lib_runtime ->Instantiate(call_target.name(), AttrSlice(&call_target.attr()), &handle) .ok()) { VLOG(2) << "Could not find " << call_target.name() << " in the function library."; return true; } auto release_handle_on_return = gtl::MakeCleanup( [&] { TF_CHECK_OK(lib_runtime->ReleaseHandle(handle)); }); const FunctionBody* fbody = lib_runtime->GetFunctionBody(handle); TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( *fbody->graph, lib_runtime, direction, depth + 1, &callee_ref_nodes)); if (!callee_ref_nodes.empty()) { return true; } } return false; } Status GetNodesRelatedToRefVariablesInDirection( const Graph& graph, FunctionLibraryRuntime* lib_runtime, Direction direction, int depth, absl::flat_hash_set<Node*>* result) { std::vector<Node*> nodes_in_order; if (direction == Direction::kForward) { GetReversePostOrder(graph, &nodes_in_order, NodeComparatorName()); } else { GetPostOrder(graph, &nodes_in_order, NodeComparatorName()); } size_t old_result_size; int iterations = 0; const int kMaxIterations = 10 * 1000; std::vector<bool> callee_has_ref_nodes_cache; callee_has_ref_nodes_cache.resize(graph.num_node_ids()); auto does_callee_have_ref_nodes = [&](Node* n) -> absl::StatusOr<bool> { if (iterations == 1) { TF_ASSIGN_OR_RETURN( bool callee_has_ref_nodes, DoesAnyCalleeHaveRefNodes(GetCallTargetListFromNode(*n, lib_runtime), lib_runtime, direction, depth)); callee_has_ref_nodes_cache[n->id()] = callee_has_ref_nodes; return callee_has_ref_nodes; } else { return {callee_has_ref_nodes_cache[n->id()]}; } }; do { TF_RET_CHECK(iterations++ < kMaxIterations) << "infinite loop?"; old_result_size = result->size(); for (Node* n : nodes_in_order) { if (n->IsSource() || n->IsSink()) { continue; } bool inserted_n = false; const EdgeSet& edges = direction == Direction::kForward ? n->in_edges() : n->out_edges(); for (const Edge* e : edges) { if (result->contains(direction == Direction::kForward ? e->src() : e->dst())) { result->insert(n); inserted_n = true; break; } } if (inserted_n) { continue; } if (direction == Direction::kForward && absl::c_any_of(n->output_types(), IsRefType)) { result->insert(n); continue; } TF_ASSIGN_OR_RETURN(bool callee_has_ref_nodes, does_callee_have_ref_nodes(n)); if (callee_has_ref_nodes) { result->insert(n); continue; } } } while (result->size() != old_result_size); VLOG(2) << "# iterations = " << iterations; return absl::OkStatus(); } void SortControlInputs(GraphDef* gdef) { int64_t num_nodes = gdef->node_size(); for (int64_t i = 0; i < num_nodes; ++i) { NodeDef* node = gdef->mutable_node(i); std::stable_sort(node->mutable_input()->begin(), node->mutable_input()->end(), [](const string& a, const string& b) { bool a_is_control = absl::StartsWith(a, "^"); bool b_is_control = absl::StartsWith(b, "^"); return (!a_is_control && b_is_control) || (a_is_control && b_is_control && a < b); }); } } } absl::StatusOr<absl::flat_hash_set<Node*>> GetNodesRelatedToRefVariables( const Graph& graph, FunctionLibraryRuntime* lib_runtime) { absl::flat_hash_set<Node*> result; TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( graph, lib_runtime, Direction::kForward, 0, &result)); TF_RETURN_IF_ERROR(GetNodesRelatedToRefVariablesInDirection( graph, lib_runtime, Direction::kBackward, 0, &result)); VLOG(1) << "GetNodesRelatedToRefVariables() found " << result.size() << " nodes"; return result; } absl::StatusOr<std::string> SerializeGraphDeterministic(const Graph& graph) { GraphDef def; graph.ToGraphDef(&def); SortControlInputs(&def); std::string s; if (!SerializeToStringDeterministic(def, &s)) { return errors::Internal("Failed to serialize graphdef."); } return s; } absl::StatusOr<uint64> FingerprintGraph(const Graph& graph) { TF_ASSIGN_OR_RETURN(std::string serialized, SerializeGraphDeterministic(graph)); return Hash64(serialized.data(), serialized.size()); } REGISTER_XLA_CONFIG_GETTER(GetXlaGlobalJitLevel); }
#include "tensorflow/compiler/jit/xla_cluster_util.h" #include "absl/algorithm/container.h" #include "absl/strings/str_join.h" #include "tensorflow/cc/framework/ops.h" #include "tensorflow/cc/ops/control_flow_ops_internal.h" #include "tensorflow/cc/ops/function_ops.h" #include "tensorflow/cc/ops/functional_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "xla/status_macros.h" #include "tensorflow/core/common_runtime/graph_constructor.h" #include "tensorflow/core/common_runtime/process_function_library_runtime.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/graph_to_functiondef.h" #include "tensorflow/core/graph/algorithm.h" #include "tensorflow/core/graph/graph_def_builder.h" #include "tensorflow/core/graph/testlib.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/public/version.h" namespace tensorflow { namespace { TEST(CreateCycleDetectionGraph, ConnectivityThroughEnterExitRegion) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter = ops::internal::Enter(root.WithOpName("enter"), a, "only_frame"); Output exit = ops::internal::Exit(root.WithOpName("exit"), enter); Output b = ops::Add(root.WithOpName("b"), a, exit); FixupSourceAndSinkEdges(root.graph()); GraphCycles cycles; TF_ASSERT_OK(CreateCycleDetectionGraph(root.graph(), &cycles).status()); EXPECT_FALSE(cycles.CanContractEdge(a.node()->id(), b.node()->id())); } TEST(CreateCycleDetectionGraph, ConnectivityThroughMultipleEnterExitRegions) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter_0 = ops::internal::Enter(root.WithOpName("enter_0"), a, "frame_0"); Output exit_0 = ops::internal::Exit(root.WithOpName("exit_0"), enter_0); Output enter_1 = ops::internal::Enter(root.WithOpName("enter_1"), a, "frame_1"); Output exit_1 = ops::internal::Exit(root.WithOpName("exit_1"), enter_1); Output b = ops::Add(root.WithOpName("b"), a, exit_1); FixupSourceAndSinkEdges(root.graph()); GraphCycles cycles; TF_ASSERT_OK(CreateCycleDetectionGraph(root.graph(), &cycles).status()); EXPECT_FALSE(cycles.CanContractEdge(a.node()->id(), b.node()->id())); } TEST(CreateCycleDetectionGraph, ReachingEnterExit) { Scope root = Scope::NewRootScope().ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output enter_0 = ops::internal::Enter(root.WithOpName("enter_0"), a, "frame_0"); Output exit_0 = ops::internal::Exit(root.WithOpName("exit_0"), enter_0); Output add = ops::Add(root.WithOpName("add"), exit_0, exit_0); Output enter_1 = ops::internal::Enter(root.WithOpName("enter_1"), add, "frame_0"); Output exit_1 = ops::internal::Exit(root.WithOpName("exit_1"), enter_1); FixupSourceAndSinkEdges(root.graph()); GraphCycles cycles; TF_ASSERT_OK_AND_ASSIGN(bool ok, CreateCycleDetectionGraph(root.graph(), &cycles)); EXPECT_FALSE(ok); } const char* kCPU0 = "/job:localhost/replica:0/task:0/device:CPU:0"; const char* kGPU0 = "/job:localhost/replica:0/task:0/device:GPU:0"; const char* kGPU1 = "/job:localhost/replica:0/task:0/device:GPU:1"; TEST(IsSingleGpuGraph, ReturnsTrue) { Scope root = Scope::NewRootScope().WithAssignedDevice(kGPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b"), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_TRUE(IsSingleGpuGraph(*root.graph())); } TEST(IsSingleGpuGraph, ReturnsFalseForCpuGraph) { Scope root = Scope::NewRootScope().WithAssignedDevice(kCPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b"), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_FALSE(IsSingleGpuGraph(*root.graph())); } TEST(IsSingleGpuGraph, ReturnsFalseForMultiGpuGraph) { Scope root = Scope::NewRootScope().WithAssignedDevice(kGPU0).ExitOnError(); Output a = ops::Const(root.WithOpName("a"), Input::Initializer(0.0)); Output b = ops::Add(root.WithOpName("b").WithAssignedDevice(kGPU1), a, a); Output c = ops::Add(root.WithOpName("c"), b, b); FixupSourceAndSinkEdges(root.graph()); EXPECT_FALSE(IsSingleGpuGraph(*root.graph())); } absl::StatusOr<std::vector<string>> GetNodesRelatedToRefVarsSorted( const Scope& scope, FunctionLibraryDefinition* flib_def = nullptr) { FunctionDefLibrary flib; FunctionLibraryDefinition flib_def_local(OpRegistry::Global(), flib); if (flib_def == nullptr) { flib_def = &flib_def_local; } std::unique_ptr<Graph> graph(new Graph(OpRegistry::Global())); TF_RETURN_IF_ERROR(scope.ToGraph(graph.get())); std::unique_ptr<ProcessFunctionLibraryRuntime> pflr( new ProcessFunctionLibraryRuntime( nullptr, Env::Default(), nullptr, TF_GRAPH_DEF_VERSION, flib_def, OptimizerOptions{})); FunctionLibraryRuntime* lib_runtime = pflr->GetFLR(ProcessFunctionLibraryRuntime::kDefaultFLRDevice); TF_ASSIGN_OR_RETURN(absl::flat_hash_set<Node*> nodes_related_to_ref_vars, GetNodesRelatedToRefVariables(*graph, lib_runtime)); std::vector<string> names; absl::c_transform(nodes_related_to_ref_vars, std::back_inserter(names), [](Node* n) { return n->name(); }); absl::c_sort(names); return names; } void CreateSubgraphTouchingRefVar(const Scope& s) { Output variable = ops::Variable(s.WithOpName("variable"), PartialTensorShape{}, DT_FLOAT); Output read = ops::Identity(s.WithOpName("read_ref_var"), variable); Output neg = ops::Negate(s.WithOpName("negate_ref"), read); Output add = ops::Add(s.WithOpName("add_ref"), neg, neg); Output constant = ops::Const(s.WithOpName("constant_ref"), Input::Initializer(0.0)); s.graph()->AddControlEdge(constant.node(), variable.node()); } void CreateSubgraphNotTouchingRefVar(const Scope& s) { Output constant = ops::Const(s.WithOpName("constant_normal"), Input::Initializer(0.0)); Output neg = ops::Negate(s.WithOpName("negate_normal"), constant); Output add = ops::Add(s.WithOpName("add_normal"), neg, neg); } void CreateSubgraphCallingFunctionWithRefVar(const Scope& s) { NameAttrList ref_float_function; ref_float_function.set_name("RefFloatFn"); ops::PartitionedCall call(s.WithOpName("RefFloat"), {absl::Span<Input>{}}, {DT_FLOAT}, ref_float_function); Output constant = ops::Const(s.WithOpName("constant_ref_pco"), Input::Initializer(0.0)); s.graph()->AddControlEdge(call.operation.node(), constant.node()); } void CreateSubgraphCallingFunctionWithoutRefVar(const Scope& s) { NameAttrList regular_float_function; regular_float_function.set_name("RegularFloatFn"); ops::PartitionedCall call(s.WithOpName("RegularFloat"), {absl::Span<Input>{}}, {DT_FLOAT}, regular_float_function); Output constant = ops::Const(s.WithOpName("constant_normal_pco"), Input::Initializer(0.0)); s.graph()->AddControlEdge(call.operation.node(), constant.node()); } void AddRefFunctionFunctionDef(FunctionDefLibrary* fdef_lib) { FunctionDef make_ref_float = FunctionDefHelper::Define( "RefFloatFn", {}, {"r:float"}, {}, {{{"var"}, "VariableV2", {}, {{"dtype", DT_FLOAT}, {"shape", TensorShape({})}}}, {{"r"}, "Identity", {"var"}, {{"T", DT_FLOAT}}}}); *fdef_lib->add_function() = make_ref_float; } void AddRegularFunctionFunctionDef(FunctionDefLibrary* fdef_lib) { Tensor seven(DT_FLOAT, {}); seven.scalar<float>()() = 7; FunctionDef make_regular_float = FunctionDefHelper::Define( "RegularFloatFn", {}, {"r:float"}, {}, {{{"r"}, "Const", {}, {{"dtype", DT_FLOAT}, {"value", seven}}}}); *fdef_lib->add_function() = make_regular_float; } TEST(NodesRelatedToRefVariables, Basic) { Scope root = Scope::NewRootScope().ExitOnError(); FunctionDefLibrary fdef_lib; CreateSubgraphTouchingRefVar(root); CreateSubgraphNotTouchingRefVar(root); AddRefFunctionFunctionDef(&fdef_lib); CreateSubgraphCallingFunctionWithRefVar(root); AddRegularFunctionFunctionDef(&fdef_lib); CreateSubgraphCallingFunctionWithoutRefVar(root); FunctionLibraryDefinition flib_def(OpRegistry::Global(), fdef_lib); TF_ASSERT_OK_AND_ASSIGN(std::vector<string> names, GetNodesRelatedToRefVarsSorted(root, &flib_def)); std::vector<string> expected({ "RefFloat", "add_ref", "constant_ref", "constant_ref_pco", "negate_ref", "read_ref_var", "variable", }); EXPECT_EQ(names, expected); } Status MakeLoop(Scope s, Output init_value, absl::string_view loop_name) { s = s.NewSubScope(std::string(loop_name)); ops::internal::Enter enter(s.WithOpName("init_value"), init_value, loop_name); ops::Merge merge(s.WithOpName("merge"), {init_value, init_value}); Output next_iteration = ops::NextIteration(s.WithOpName("next_itr"), merge.output); return s.graph()->UpdateEdge(next_iteration.node(), 0, merge.output.node(), 1); } TEST(NodesRelatedToRefVariables, Cycles) { Scope root = Scope::NewRootScope().ExitOnError(); Output variable = ops::Variable(root.WithOpName("variable"), PartialTensorShape{}, DT_FLOAT); TF_ASSERT_OK( MakeLoop(root, ops::Identity(root.WithOpName("read_ref_var"), variable), "ref_loop")); TF_ASSERT_OK(MakeLoop( root, ops::Const(root.WithOpName("constant"), Input::Initializer(0.0)), "normal_loop")); TF_ASSERT_OK_AND_ASSIGN(std::vector<string> names, GetNodesRelatedToRefVarsSorted(root)); std::vector<string> expected({"read_ref_var", "ref_loop/init_value", "ref_loop/merge", "ref_loop/next_itr", "variable"}); EXPECT_EQ(names, expected); } } }
61
#ifndef QUICHE_QUIC_CORE_CONGESTION_CONTROL_CUBIC_BYTES_H_ #define QUICHE_QUIC_CORE_CONGESTION_CONTROL_CUBIC_BYTES_H_ #include <cstdint> #include "quiche/quic/core/quic_bandwidth.h" #include "quiche/quic/core/quic_clock.h" #include "quiche/quic/core/quic_connection_stats.h" #include "quiche/quic/core/quic_time.h" #include "quiche/quic/platform/api/quic_export.h" namespace quic { namespace test { class CubicBytesTest; } class QUICHE_EXPORT CubicBytes { public: explicit CubicBytes(const QuicClock* clock); CubicBytes(const CubicBytes&) = delete; CubicBytes& operator=(const CubicBytes&) = delete; void SetNumConnections(int num_connections); void ResetCubicState(); QuicByteCount CongestionWindowAfterPacketLoss(QuicPacketCount current); QuicByteCount CongestionWindowAfterAck(QuicByteCount acked_bytes, QuicByteCount current, QuicTime::Delta delay_min, QuicTime event_time); void OnApplicationLimited(); private: friend class test::CubicBytesTest; static const QuicTime::Delta MaxCubicTimeInterval() { return QuicTime::Delta::FromMilliseconds(30); } float Alpha() const; float Beta() const; float BetaLastMax() const; QuicByteCount last_max_congestion_window() const { return last_max_congestion_window_; } const QuicClock* clock_; int num_connections_; QuicTime epoch_; QuicByteCount last_max_congestion_window_; QuicByteCount acked_bytes_count_; QuicByteCount estimated_tcp_congestion_window_; QuicByteCount origin_point_congestion_window_; uint32_t time_to_origin_point_; QuicByteCount last_target_congestion_window_; }; } #endif #include "quiche/quic/core/congestion_control/cubic_bytes.h" #include <algorithm> #include <cmath> #include <cstdint> #include "quiche/quic/core/quic_constants.h" #include "quiche/quic/core/quic_packets.h" #include "quiche/quic/platform/api/quic_flag_utils.h" #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_logging.h" namespace quic { namespace { const int kCubeScale = 40; const int kCubeCongestionWindowScale = 410; const uint64_t kCubeFactor = (UINT64_C(1) << kCubeScale) / kCubeCongestionWindowScale / kDefaultTCPMSS; const float kDefaultCubicBackoffFactor = 0.7f; const float kBetaLastMax = 0.85f; } CubicBytes::CubicBytes(const QuicClock* clock) : clock_(clock), num_connections_(kDefaultNumConnections), epoch_(QuicTime::Zero()) { ResetCubicState(); } void CubicBytes::SetNumConnections(int num_connections) { num_connections_ = num_connections; } float CubicBytes::Alpha() const { const float beta = Beta(); return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta); } float CubicBytes::Beta() const { return (num_connections_ - 1 + kDefaultCubicBackoffFactor) / num_connections_; } float CubicBytes::BetaLastMax() const { return (num_connections_ - 1 + kBetaLastMax) / num_connections_; } void CubicBytes::ResetCubicState() { epoch_ = QuicTime::Zero(); last_max_congestion_window_ = 0; acked_bytes_count_ = 0; estimated_tcp_congestion_window_ = 0; origin_point_congestion_window_ = 0; time_to_origin_point_ = 0; last_target_congestion_window_ = 0; } void CubicBytes::OnApplicationLimited() { epoch_ = QuicTime::Zero(); } QuicByteCount CubicBytes::CongestionWindowAfterPacketLoss( QuicByteCount current_congestion_window) { if (current_congestion_window + kDefaultTCPMSS < last_max_congestion_window_) { last_max_congestion_window_ = static_cast<int>(BetaLastMax() * current_congestion_window); } else { last_max_congestion_window_ = current_congestion_window; } epoch_ = QuicTime::Zero(); return static_cast<int>(current_congestion_window * Beta()); } QuicByteCount CubicBytes::CongestionWindowAfterAck( QuicByteCount acked_bytes, QuicByteCount current_congestion_window, QuicTime::Delta delay_min, QuicTime event_time) { acked_bytes_count_ += acked_bytes; if (!epoch_.IsInitialized()) { QUIC_DVLOG(1) << "Start of epoch"; epoch_ = event_time; acked_bytes_count_ = acked_bytes; estimated_tcp_congestion_window_ = current_congestion_window; if (last_max_congestion_window_ <= current_congestion_window) { time_to_origin_point_ = 0; origin_point_congestion_window_ = current_congestion_window; } else { time_to_origin_point_ = static_cast<uint32_t>( cbrt(kCubeFactor * (last_max_congestion_window_ - current_congestion_window))); origin_point_congestion_window_ = last_max_congestion_window_; } } int64_t elapsed_time = ((event_time + delay_min - epoch_).ToMicroseconds() << 10) / kNumMicrosPerSecond; uint64_t offset = std::abs(time_to_origin_point_ - elapsed_time); QuicByteCount delta_congestion_window = (kCubeCongestionWindowScale * offset * offset * offset * kDefaultTCPMSS) >> kCubeScale; const bool add_delta = elapsed_time > time_to_origin_point_; QUICHE_DCHECK(add_delta || (origin_point_congestion_window_ > delta_congestion_window)); QuicByteCount target_congestion_window = add_delta ? origin_point_congestion_window_ + delta_congestion_window : origin_point_congestion_window_ - delta_congestion_window; target_congestion_window = std::min(target_congestion_window, current_congestion_window + acked_bytes_count_ / 2); QUICHE_DCHECK_LT(0u, estimated_tcp_congestion_window_); estimated_tcp_congestion_window_ += acked_bytes_count_ * (Alpha() * kDefaultTCPMSS) / estimated_tcp_congestion_window_; acked_bytes_count_ = 0; last_target_congestion_window_ = target_congestion_window; if (target_congestion_window < estimated_tcp_congestion_window_) { target_congestion_window = estimated_tcp_congestion_window_; } QUIC_DVLOG(1) << "Final target congestion_window: " << target_congestion_window; return target_congestion_window; } }
#include "quiche/quic/core/congestion_control/cubic_bytes.h" #include <cmath> #include <cstdint> #include "quiche/quic/platform/api/quic_flags.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/test_tools/mock_clock.h" namespace quic { namespace test { namespace { const float kBeta = 0.7f; const float kBetaLastMax = 0.85f; const uint32_t kNumConnections = 2; const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections; const float kNConnectionBetaLastMax = (kNumConnections - 1 + kBetaLastMax) / kNumConnections; const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections * (1 - kNConnectionBeta) / (1 + kNConnectionBeta); } class CubicBytesTest : public QuicTest { protected: CubicBytesTest() : one_ms_(QuicTime::Delta::FromMilliseconds(1)), hundred_ms_(QuicTime::Delta::FromMilliseconds(100)), cubic_(&clock_) {} QuicByteCount RenoCwndInBytes(QuicByteCount current_cwnd) { QuicByteCount reno_estimated_cwnd = current_cwnd + kDefaultTCPMSS * (kNConnectionAlpha * kDefaultTCPMSS) / current_cwnd; return reno_estimated_cwnd; } QuicByteCount ConservativeCwndInBytes(QuicByteCount current_cwnd) { QuicByteCount conservative_cwnd = current_cwnd + kDefaultTCPMSS / 2; return conservative_cwnd; } QuicByteCount CubicConvexCwndInBytes(QuicByteCount initial_cwnd, QuicTime::Delta rtt, QuicTime::Delta elapsed_time) { const int64_t offset = ((elapsed_time + rtt).ToMicroseconds() << 10) / 1000000; const QuicByteCount delta_congestion_window = ((410 * offset * offset * offset) * kDefaultTCPMSS >> 40); const QuicByteCount cubic_cwnd = initial_cwnd + delta_congestion_window; return cubic_cwnd; } QuicByteCount LastMaxCongestionWindow() { return cubic_.last_max_congestion_window(); } QuicTime::Delta MaxCubicTimeInterval() { return cubic_.MaxCubicTimeInterval(); } const QuicTime::Delta one_ms_; const QuicTime::Delta hundred_ms_; MockClock clock_; CubicBytes cubic_; }; TEST_F(CubicBytesTest, AboveOriginWithTighterBounds) { const QuicTime::Delta rtt_min = hundred_ms_; int64_t rtt_min_ms = rtt_min.ToMilliseconds(); float rtt_min_s = rtt_min_ms / 1000.0; QuicByteCount current_cwnd = 10 * kDefaultTCPMSS; const QuicByteCount initial_cwnd = current_cwnd; clock_.AdvanceTime(one_ms_); const QuicTime initial_time = clock_.ApproximateNow(); const QuicByteCount expected_first_cwnd = RenoCwndInBytes(current_cwnd); current_cwnd = cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, initial_time); ASSERT_EQ(expected_first_cwnd, current_cwnd); const int max_reno_rtts = std::sqrt(kNConnectionAlpha / (.4 * rtt_min_s * rtt_min_s * rtt_min_s)) - 2; for (int i = 0; i < max_reno_rtts; ++i) { const uint64_t num_acks_this_epoch = current_cwnd / kDefaultTCPMSS / kNConnectionAlpha; const QuicByteCount initial_cwnd_this_epoch = current_cwnd; for (QuicPacketCount n = 0; n < num_acks_this_epoch; ++n) { const QuicByteCount expected_next_cwnd = RenoCwndInBytes(current_cwnd); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); ASSERT_EQ(expected_next_cwnd, current_cwnd); } const QuicByteCount cwnd_change_this_epoch = current_cwnd - initial_cwnd_this_epoch; ASSERT_NEAR(kDefaultTCPMSS, cwnd_change_this_epoch, kDefaultTCPMSS / 2); clock_.AdvanceTime(hundred_ms_); } for (int i = 0; i < 54; ++i) { const uint64_t max_acks_this_epoch = current_cwnd / kDefaultTCPMSS; const QuicTime::Delta interval = QuicTime::Delta::FromMicroseconds( hundred_ms_.ToMicroseconds() / max_acks_this_epoch); for (QuicPacketCount n = 0; n < max_acks_this_epoch; ++n) { clock_.AdvanceTime(interval); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); ASSERT_EQ(expected_cwnd, current_cwnd); } } const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); ASSERT_EQ(expected_cwnd, current_cwnd); } TEST_F(CubicBytesTest, DISABLED_AboveOrigin) { const QuicTime::Delta rtt_min = hundred_ms_; QuicByteCount current_cwnd = 10 * kDefaultTCPMSS; QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); clock_.AdvanceTime(one_ms_); ASSERT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow())); current_cwnd = expected_cwnd; const QuicPacketCount initial_cwnd = expected_cwnd; for (int i = 0; i < 48; ++i) { for (QuicPacketCount n = 1; n < current_cwnd / kDefaultTCPMSS / kNConnectionAlpha; ++n) { ASSERT_NEAR( current_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()), kDefaultTCPMSS); } clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); expected_cwnd += kDefaultTCPMSS; ASSERT_NEAR(expected_cwnd, current_cwnd, kDefaultTCPMSS); } for (int i = 0; i < 52; ++i) { for (QuicPacketCount n = 1; n < current_cwnd / kDefaultTCPMSS; ++n) { ASSERT_NEAR( current_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()), kDefaultTCPMSS); } clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); } float elapsed_time_s = 10.0f + 0.1f; expected_cwnd = initial_cwnd / kDefaultTCPMSS + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410) / 1024; EXPECT_EQ(expected_cwnd, current_cwnd / kDefaultTCPMSS); } TEST_F(CubicBytesTest, AboveOriginFineGrainedCubing) { QuicByteCount current_cwnd = 1000 * kDefaultTCPMSS; const QuicByteCount initial_cwnd = current_cwnd; const QuicTime::Delta rtt_min = hundred_ms_; clock_.AdvanceTime(one_ms_); QuicTime initial_time = clock_.ApproximateNow(); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(600)); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); for (int i = 0; i < 100; ++i) { clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(10)); const QuicByteCount expected_cwnd = CubicConvexCwndInBytes( initial_cwnd, rtt_min, (clock_.ApproximateNow() - initial_time)); const QuicByteCount next_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); ASSERT_EQ(expected_cwnd, next_cwnd); ASSERT_GT(next_cwnd, current_cwnd); const QuicByteCount cwnd_delta = next_cwnd - current_cwnd; ASSERT_GT(kDefaultTCPMSS * .1, cwnd_delta); current_cwnd = next_cwnd; } } TEST_F(CubicBytesTest, PerAckUpdates) { QuicPacketCount initial_cwnd_packets = 150; QuicByteCount current_cwnd = initial_cwnd_packets * kDefaultTCPMSS; const QuicTime::Delta rtt_min = 350 * one_ms_; clock_.AdvanceTime(one_ms_); QuicByteCount reno_cwnd = RenoCwndInBytes(current_cwnd); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); const QuicByteCount initial_cwnd = current_cwnd; const QuicPacketCount max_acks = initial_cwnd_packets / kNConnectionAlpha; const QuicTime::Delta interval = QuicTime::Delta::FromMicroseconds( MaxCubicTimeInterval().ToMicroseconds() / (max_acks + 1)); clock_.AdvanceTime(interval); reno_cwnd = RenoCwndInBytes(reno_cwnd); ASSERT_EQ(current_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow())); for (QuicPacketCount i = 1; i < max_acks; ++i) { clock_.AdvanceTime(interval); const QuicByteCount next_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); reno_cwnd = RenoCwndInBytes(reno_cwnd); ASSERT_LT(current_cwnd, next_cwnd); ASSERT_EQ(reno_cwnd, next_cwnd); current_cwnd = next_cwnd; } const QuicByteCount minimum_expected_increase = kDefaultTCPMSS * .9; EXPECT_LT(minimum_expected_increase + initial_cwnd, current_cwnd); } TEST_F(CubicBytesTest, LossEvents) { const QuicTime::Delta rtt_min = hundred_ms_; QuicByteCount current_cwnd = 422 * kDefaultTCPMSS; QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); clock_.AdvanceTime(one_ms_); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow())); QuicByteCount pre_loss_cwnd = current_cwnd; ASSERT_EQ(0u, LastMaxCongestionWindow()); expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); ASSERT_EQ(pre_loss_cwnd, LastMaxCongestionWindow()); current_cwnd = expected_cwnd; pre_loss_cwnd = current_cwnd; expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); ASSERT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); current_cwnd = expected_cwnd; EXPECT_GT(pre_loss_cwnd, LastMaxCongestionWindow()); QuicByteCount expected_last_max = static_cast<QuicByteCount>(pre_loss_cwnd * kNConnectionBetaLastMax); EXPECT_EQ(expected_last_max, LastMaxCongestionWindow()); EXPECT_LT(expected_cwnd, LastMaxCongestionWindow()); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); EXPECT_GT(LastMaxCongestionWindow(), current_cwnd); current_cwnd = LastMaxCongestionWindow() - 1; pre_loss_cwnd = current_cwnd; expected_cwnd = static_cast<QuicByteCount>(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); expected_last_max = pre_loss_cwnd; ASSERT_EQ(expected_last_max, LastMaxCongestionWindow()); } TEST_F(CubicBytesTest, BelowOrigin) { const QuicTime::Delta rtt_min = hundred_ms_; QuicByteCount current_cwnd = 422 * kDefaultTCPMSS; QuicPacketCount expected_cwnd = RenoCwndInBytes(current_cwnd); clock_.AdvanceTime(one_ms_); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterAck(kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow())); expected_cwnd = static_cast<QuicPacketCount>(current_cwnd * kNConnectionBeta); EXPECT_EQ(expected_cwnd, cubic_.CongestionWindowAfterPacketLoss(current_cwnd)); current_cwnd = expected_cwnd; current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); for (int i = 0; i < 40; ++i) { clock_.AdvanceTime(hundred_ms_); current_cwnd = cubic_.CongestionWindowAfterAck( kDefaultTCPMSS, current_cwnd, rtt_min, clock_.ApproximateNow()); } expected_cwnd = 553632; EXPECT_EQ(expected_cwnd, current_cwnd); } } }
62
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_SELECT_V2_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_SELECT_V2_H_ #include <string> #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" namespace tflite { namespace gpu { GPUOperation CreateSelectV2(const OperationDef& definition, const SelectV2Attributes& attr = {}); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/select_v2.h" #include <string> #include <utility> namespace tflite { namespace gpu { std::string GetSelectV2Code(const OperationDef& op_def, const SelectV2Attributes& attr, GPUOperation* op) { op->AddSrcTensor("cond_tensor", op_def.src_tensors[0]); op->AddSrcTensor("true_tensor", op_def.src_tensors[1]); op->AddSrcTensor("else_tensor", op_def.src_tensors[2]); op->AddDstTensor("dst_tensor", op_def.dst_tensors[0]); std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.cond_tensor.SetBatchRef(B);\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; c += attr.broadcast_true ? "" : " args.true_tensor.SetBatchRef(B);\n"; c += attr.broadcast_false ? "" : " args.else_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " int Z = GLOBAL_ID_2;\n"; c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || " "Z >= args.dst_tensor.Slices()) { \n"; c += " return; \n"; c += " } \n"; c += " FLT4 true_val, else_val;\n"; if (!attr.broadcast_true) { c += " true_val = args.true_tensor.Read(X, Y, Z);\n"; } else { c += " true_val = INIT_FLT4(args.true_tensor.Read(0, 0, 0, 0).x);\n"; } if (!attr.broadcast_false) { c += " else_val = args.else_tensor.Read(X, Y, Z);\n"; } else { c += " else_val = INIT_FLT4(args.else_tensor.Read(0, 0, 0, 0).x);\n"; } c += " bool should_gather_rows = \n"; if (attr.broadcast_true && attr.broadcast_false) { c += " true;\n"; } else { c += " args.dst_tensor.Slices() != args.cond_tensor.Slices();\n"; } c += " FLT4 res;\n"; if (attr.scalar_cond) { c += " bool cond = args.cond_tensor.Read<bool>(0, 0, 0).x;\n"; c += " res = cond ? true_val : else_val;\n"; } else { c += " if (should_gather_rows) {\n"; c += " bool cond = args.cond_tensor.Read<bool>(X, 0, 0).x;\n"; c += " res = cond ? true_val : else_val;\n"; c += " } else {\n"; c += " bool4 cond = args.cond_tensor.Read<bool>(0, Y, Z);\n"; c += " res = true_val;\n"; c += " res.x = cond.x ? true_val.x : else_val.x;\n"; c += " res.y = cond.y ? true_val.y : else_val.y;\n"; c += " res.z = cond.z ? true_val.z : else_val.z;\n"; c += " res.w = cond.w ? true_val.w : else_val.w;\n"; c += " }\n;"; } c += " args.dst_tensor.Write(res, X, Y, Z);\n"; c += "}\n"; return c; } GPUOperation CreateSelectV2(const OperationDef& definition, const SelectV2Attributes& attr) { GPUOperation op(definition); op.code_ = GetSelectV2Code(definition, attr, &op); op.tensor_to_grid_ = TensorToGrid::kWBToX_HDToY_SToZ; op.args_.AddInt("broadcast_true", attr.broadcast_true); op.args_.AddInt("broadcast_else", attr.broadcast_false); return op; } } }
#include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/tasks/select_v2_test_util.h" namespace tflite { namespace gpu { namespace cl { namespace { TEST_F(OpenCLOperationTest, SelectV2) { auto status = SelectV2Test(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2Batch) { auto status = SelectV2BatchTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2Channels) { auto status = SelectV2ChannelsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2ChannelsBatch) { auto status = SelectV2ChannelsBatchTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2BroadcastTrue) { auto status = SelectV2BroadcastTrueTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2BroadcastFalse) { auto status = SelectV2BroadcastFalseTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2BroadcastBoth) { auto status = SelectV2BroadcastBothTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, SelectV2ChannelsBroadcastFalse) { auto status = SelectV2ChannelsBroadcastFalseTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } } }
63
#ifndef TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_CBRT_H_ #define TENSORFLOW_LITE_EXPERIMENTAL_SHLO_OPS_CBRT_H_ #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct CbrtOp { struct Attributes {}; }; CbrtOp Create(CbrtOp::Attributes); absl::Status Prepare(CbrtOp& op, const Tensor& input, Tensor& output); absl::Status Evaluate(CbrtOp& op, const Tensor& input, Tensor& output); } #endif #include "tensorflow/lite/experimental/shlo/ops/cbrt.h" #include <cmath> #include "absl/status/status.h" #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/dispatch.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise.h" #include "tensorflow/lite/experimental/shlo/ops/util.h" #include "tensorflow/lite/experimental/shlo/tensor.h" namespace shlo_ref { struct Cbrt { template <class T> T operator()(T v) const { return std::cbrt(v); } }; template <> F16 Cbrt::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cbrt::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } CbrtOp Create(CbrtOp::Attributes) { return {}; } absl::Status Prepare(CbrtOp& op, const Tensor& input, Tensor& output) { SHLO_REF_RETURN_ON_ERROR(Propagate(input.shape(), output.shape())); SHLO_REF_RETURN_ON_ERROR(CheckSupportedTypes( CheckCtx("cbrt"), input, IsFloatTensor, IsQuantizedPerTensorTensor)); SHLO_REF_RETURN_ON_ERROR( CheckSameBaselineType(CheckCtx("cbrt"), input, output)); return absl::OkStatus(); } absl::Status Evaluate(CbrtOp& op, const Tensor& input, Tensor& output) { Cbrt cbrt; if (input.IsPerTensorQuantized()) { DISPATCH_QUANTIZED( detail::DequantizeOpQuantizePerTensor, input.quantized_per_tensor_element_type().StorageType(), input.quantized_per_tensor_element_type().ExpressedType(), cbrt, input, output) } else if (IsFloatTensor(input)) { DISPATCH_FLOAT(detail::EvaluateNoQuantization, input.tensor_element_type(), cbrt, input, output); } return absl::FailedPreconditionError("Unsupported tensor type."); } };
#include "tensorflow/lite/experimental/shlo/ops/cbrt.h" #include <cmath> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/experimental/shlo/bf16.h" #include "tensorflow/lite/experimental/shlo/f16.h" #include "tensorflow/lite/experimental/shlo/ops/test_util.h" #include "tensorflow/lite/experimental/shlo/ops/unary_elementwise_test_util.h" #include "tensorflow/lite/experimental/shlo/quantize.h" #include "tensorflow/lite/experimental/shlo/quantized_tensor_element_type.h" #include "tensorflow/lite/experimental/shlo/shape.h" #include "tensorflow/lite/experimental/shlo/status_matcher.h" #include "tensorflow/lite/experimental/shlo/tensor.h" using testing::ElementsAreArray; using testing::NanSensitiveFloatEq; using testing::Pointwise; namespace shlo_ref { template <> struct ParamName<CbrtOp> { static std::string Get() { return "Cbrt"; } }; namespace { struct Cbrt { template <class T> T operator()(T v) const { return std::cbrt(v); } } cbrt_ref; template <> F16 Cbrt::operator()<F16>(F16 val) const { return F16(operator()(static_cast<float>(val))); } template <> BF16 Cbrt::operator()<BF16>(BF16 val) const { return BF16(operator()(static_cast<float>(val))); } INSTANTIATE_TYPED_TEST_SUITE_P(Cbrt, UnaryElementwiseOpShapePropagationTest, CbrtOp, TestParamNames); INSTANTIATE_TYPED_TEST_SUITE_P( Cbrt, UnaryElementwiseSameBaselineElementTypeConstraintTest, UnaryElementwiseConstraint1Types<CbrtOp>, TestParamNames); using UnsupportedTypes = WithOpTypes< CbrtOp, ConcatTypes<BoolTestType, IntTestTypes, PerAxisQuantizedTestTypes>>; INSTANTIATE_TYPED_TEST_SUITE_P(Cbrt, UnaryElementwiseUnsupportedTypeTest, UnsupportedTypes, TestParamNames); template <class T> struct CbrtTest : ::testing::Test {}; TYPED_TEST_SUITE(CbrtTest, FloatTestTypes, TestParamNames); TYPED_TEST(CbrtTest, FloatTensorsWork) { using StorageT = typename TypeParam::StorageT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); Tensor input_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = input_data.data()}; Tensor output_tensor{ .type = TensorType{.shape = shape, .element_type = TypeParam::kStorage}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform(input_data, expected_data.begin(), cbrt_ref); auto op = Create(CbrtOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, Pointwise(NanSensitiveFloatEq(), expected_data)); } template <class T> struct QuantizedCbrtTest : ::testing::Test {}; TYPED_TEST_SUITE(QuantizedCbrtTest, QuantizedTestTypes, TestParamNames); TYPED_TEST(QuantizedCbrtTest, PerTensorWorks) { using StorageT = typename TypeParam::StorageT; using ExpressedT = typename TypeParam::ExpressedT; const Shape shape({2, 3, 4}); Vector<StorageT> input_data = RandomBuffer<TypeParam::kStorage>(shape); Vector<StorageT> output_data(shape.NumElements()); const ExpressedT scale = static_cast<ExpressedT>(1.5); const StorageT zero_point = static_cast<StorageT>(5); const QuantizedElementTypePerTensor tensor_type = QuantizedElementTypePerTensor(TypeParam::kStorage, zero_point, TypeParam::kExpressed, scale); Tensor input_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = input_data.data()}; Tensor output_tensor{ .type = QuantizedPerTensorTensorType{.shape = shape, .element_type = tensor_type}, .data = output_data.data()}; Vector<StorageT> expected_data(shape.NumElements()); absl::c_transform( input_data, expected_data.begin(), [zero_point, scale](auto v) { const ExpressedT dequantized_input = Dequantize(v, zero_point, scale); const ExpressedT dequantized_res = cbrt_ref(dequantized_input); return Quantize<TypeParam::kStorage, TypeParam::kExpressed>( dequantized_res, zero_point, static_cast<ExpressedT>(1.) / scale); }); auto op = Create(CbrtOp::Attributes{}); ASSERT_OK(Prepare(op, input_tensor, output_tensor)); ASSERT_OK(Evaluate(op, input_tensor, output_tensor)); EXPECT_THAT(output_data, ElementsAreArray(expected_data)); } } }
64
#ifndef TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_REMOTE_DEVICE_H_ #define TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_REMOTE_DEVICE_H_ #include <functional> #include <string> #include <vector> #include "tensorflow/core/lib/core/status.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/platform/stringpiece.h" namespace tsl { class Env; } namespace tensorflow { using Env = tsl::Env; class DeviceAttributes; class Device; class WorkerCacheInterface; typedef std::function<Status(StringPiece name, Device** device)> LookupLocalDevice; void AsRemoteDevices( Env* env, const protobuf::RepeatedPtrField<DeviceAttributes>& device_attributes, LookupLocalDevice lookup_local_device, std::vector<std::unique_ptr<Device>>* remote_devices); typedef std::function<void(const Status&, std::vector<Device*>*)> NewRemoteDevicesDone; void NewRemoteDevices(Env* env, WorkerCacheInterface* worker_cache, const string& worker_name, NewRemoteDevicesDone done); std::unique_ptr<Device> NewRemoteDevice(Env* env, DeviceAttributes device_attribute); } #endif #include "tensorflow/core/distributed_runtime/remote_device.h" #include <stdlib.h> #include <vector> #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/common_runtime/renamed_device.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/lib/core/errors.h" #include "tensorflow/core/lib/gtl/cleanup.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/macros.h" #include "tensorflow/core/protobuf/worker.pb.h" #include "tensorflow/core/util/device_name_utils.h" namespace tensorflow { class RemoteDevice : public Device { public: RemoteDevice(Env* env, const DeviceAttributes& da) : Device(env, da), local_dev_name_(DeviceNameUtils::LocalName(da.name())) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes attr) override { return nullptr; } ResourceMgr* resource_manager() override { LOG(FATAL) << "Accessing the resource manager of a remote device is not " << "supported."; std::abort(); } bool IsLocal() const override { return false; } bool IsRemoteCallAllowed() const override { return true; } private: const string local_dev_name_; RemoteDevice(const RemoteDevice&) = delete; void operator=(const RemoteDevice&) = delete; }; void AsRemoteDevices( Env* env, const protobuf::RepeatedPtrField<DeviceAttributes>& device_attributes, LookupLocalDevice lookup_local_device, std::vector<std::unique_ptr<Device>>* remote_devices) { for (const auto& da : device_attributes) { Device* local_device; if (lookup_local_device != nullptr && lookup_local_device(da.name(), &local_device).ok()) { remote_devices->emplace_back(RenamedDevice::NewRenamedDevice( local_device->name(), local_device, false, false)); } else { auto d = new RemoteDevice(env, da); remote_devices->emplace_back(d); } } } void NewRemoteDevices(Env* env, WorkerCacheInterface* worker_cache, const string& worker_name, NewRemoteDevicesDone done) { WorkerInterface* wi = worker_cache->GetOrCreateWorker(worker_name); if (wi == nullptr) { std::vector<Device*> empty; done(errors::NotFound("Device ", worker_name, " is not found."), &empty); return; } struct Call { GetStatusRequest req; GetStatusResponse resp; }; Call* call = new Call; auto cb = [env, worker_cache, worker_name, done, wi, call](const Status& status) { Status s = status; std::vector<Device*> remote_devices; auto cleanup = gtl::MakeCleanup( [&worker_cache, &worker_name, &wi, &done, &remote_devices, &s, call] { worker_cache->ReleaseWorker(worker_name, wi); done(s, &remote_devices); delete call; }); if (!s.ok()) { return; } DeviceNameUtils::ParsedName worker_name_parsed; if (!DeviceNameUtils::ParseFullName(worker_name, &worker_name_parsed) || !worker_name_parsed.has_job || !worker_name_parsed.has_replica || !worker_name_parsed.has_task) { s = errors::InvalidArgument("Could not parse worker name: ", worker_name); LOG(WARNING) << s; return; } remote_devices.reserve(call->resp.device_attributes_size()); for (const DeviceAttributes& da : call->resp.device_attributes()) { DeviceNameUtils::ParsedName device_name_parsed; CHECK(DeviceNameUtils::ParseFullName(da.name(), &device_name_parsed)) << "Device attribute name '" << da.name() << "' could not be " << "parsed. Device Attribute: " << da.DebugString(); if (device_name_parsed.job == worker_name_parsed.job && device_name_parsed.replica == worker_name_parsed.replica && device_name_parsed.task == worker_name_parsed.task) { auto d = new RemoteDevice(env, da); remote_devices.push_back(d); } else { DeviceAttributes da_rewritten = da; da_rewritten.set_name(DeviceNameUtils::FullName( worker_name_parsed.job, worker_name_parsed.replica, worker_name_parsed.task, device_name_parsed.type, device_name_parsed.id)); auto d = new RemoteDevice(env, da_rewritten); if (getenv("TPU_NO_POPULATE_DEVICE_LIST_FROM_CLUSTER_SPEC") != nullptr) { if (worker_name_parsed.job == "worker" || device_name_parsed.type.find("TPU") == std::string::npos) { remote_devices.push_back(d); } } else { remote_devices.push_back(d); } } } }; wi->GetStatusAsync(nullptr, &call->req, &call->resp, false, cb); } std::unique_ptr<Device> NewRemoteDevice(Env* env, DeviceAttributes device_attribute) { return std::make_unique<RemoteDevice>(env, device_attribute); } }
#include "tensorflow/core/distributed_runtime/remote_device.h" #include "tensorflow/core/common_runtime/device.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_channel.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_testlib.h" #include "tensorflow/core/distributed_runtime/rpc/grpc_worker_cache.h" #include "tensorflow/core/distributed_runtime/worker_interface.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { const char* const kSession = "remote_session"; class RemoteDeviceTest : public ::testing::Test { protected: string remote_name_; std::unique_ptr<WorkerCacheInterface> worker_cache_; WorkerInterface* wi_; std::vector<Device*> devices_; std::unique_ptr<test::TestCluster> cluster_; std::unique_ptr<GrpcWorkerEnv> grpc_worker_env_; RemoteDeviceTest() { SessionOptions options; (*options.config.mutable_device_count())["CPU"] = 2; TF_CHECK_OK(test::TestCluster::MakeTestCluster(options, 1, &cluster_)); const string& hostport = cluster_->targets()[0]; GrpcChannelSpec spec; TF_CHECK_OK(spec.AddHostPortsJob("localhost", {hostport})); ChannelCreationFunction channel_func = ConvertToChannelCreationFunction(NewHostPortGrpcChannel); std::shared_ptr<GrpcChannelCache> channel_cache( NewGrpcChannelCache(spec, channel_func)); grpc_worker_env_.reset(CreateGrpcWorkerEnv()); worker_cache_.reset( NewGrpcWorkerCache(channel_cache, grpc_worker_env_.get())); remote_name_ = "/job:localhost/replica:0/task:0"; wi_ = worker_cache_->GetOrCreateWorker(remote_name_); } ~RemoteDeviceTest() override { worker_cache_->ReleaseWorker(remote_name_, wi_); } void SetUp() override { Notification n; NewRemoteDevices(Env::Default(), worker_cache_.get(), remote_name_, [&n, this](const Status& s, std::vector<Device*>* found) { TF_CHECK_OK(s); devices_ = *found; n.Notify(); }); n.WaitForNotification(); EXPECT_EQ(devices_.size(), 2); std::sort(devices_.begin(), devices_.end(), [](Device* a, Device* b) { return a->name().compare(b->name()) < 0; }); } void TearDown() override { for (auto d : devices_) delete d; } }; TEST_F(RemoteDeviceTest, GetStatus) { EXPECT_EQ(devices_[0]->name(), strings::StrCat(remote_name_, "/device:CPU:0")); EXPECT_EQ(devices_[0]->attributes().device_type(), DeviceType(DEVICE_CPU).type()); EXPECT_EQ(devices_[0]->attributes().memory_limit(), 256 << 20); EXPECT_EQ(devices_[1]->name(), strings::StrCat(remote_name_, "/device:CPU:1")); EXPECT_EQ(devices_[1]->attributes().memory_limit(), 256 << 20); } }
65
#ifndef TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSPOSE_OP_H_ #define TENSORSTORE_INDEX_SPACE_INTERNAL_TRANSPOSE_OP_H_ #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_index_buffer.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/internal/meta.h" #include "tensorstore/rank.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_index_space { Result<IndexTransform<>> ApplyTransposeTo( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DimensionIndex> target_dimensions, bool domain_only); Result<IndexTransform<>> ApplyTransposeToDynamic( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DynamicDimSpec> target_dim_specs, bool domain_only); Result<IndexTransform<>> ApplyTranspose( IndexTransform<> transform, span<const DynamicDimSpec> source_dim_specs, bool domain_only); template <typename Container> struct TransposeToOp { static constexpr bool selected_dimensions_are_new = false; static constexpr DimensionIndex static_selection_rank = internal::ConstSpanType<Container>::extent; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( (input_rank == dynamic_rank || input_rank >= static_selection_rank) && "Number of dimensions must not exceed input rank."); return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(num_input_dims, static_selection_rank) && "Number of selected dimensions must match number of target " "dimensions."); return num_input_dims == dynamic_rank ? static_selection_rank : num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyTransposeTo(std::move(transform), dimensions, target_dimensions, domain_only); } Container target_dimensions; }; Result<IndexTransform<>> ApplyTranspose(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only); struct TransposeOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { TENSORSTORE_CONSTEXPR_ASSERT( RankConstraint::EqualOrUnspecified(input_rank, num_input_dims) && "Number of selected dimensions must equal input rank."); return input_rank == dynamic_rank ? num_input_dims : input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyTranspose(std::move(transform), dimensions, domain_only); } }; Result<IndexTransform<>> ApplyMoveDimsTo(IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex target, bool domain_only); struct MoveToOp { static constexpr bool selected_dimensions_are_new = false; constexpr static DimensionIndex GetNewStaticInputRank( DimensionIndex input_rank, DimensionIndex num_input_dims) { return input_rank; } constexpr static DimensionIndex GetStaticSelectionRank( DimensionIndex num_input_dims) { return num_input_dims; } Result<IndexTransform<>> Apply(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) const { return ApplyMoveDimsTo(std::move(transform), dimensions, target, domain_only); } DimensionIndex target; }; } } #endif #include "tensorstore/index_space/internal/transpose_op.h" #include <cassert> #include <numeric> #include "absl/status/status.h" #include "tensorstore/index_space/dimension_identifier.h" #include "tensorstore/index_space/dimension_permutation.h" #include "tensorstore/index_space/index_transform.h" #include "tensorstore/index_space/internal/transpose.h" #include "tensorstore/util/str_cat.h" namespace tensorstore { namespace internal_index_space { namespace { absl::Status MakePermutationFromMoveDimsTarget( DimensionIndexBuffer* dimensions, DimensionIndex target, span<DimensionIndex> permutation) { if (dimensions->empty()) { std::iota(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(0)); return absl::OkStatus(); } const DimensionIndex input_rank = permutation.size(); const DimensionIndex num_dims = dimensions->size(); TENSORSTORE_ASSIGN_OR_RETURN( target, NormalizeDimensionIndex(target, input_rank - num_dims + 1)); std::fill(permutation.begin(), permutation.end(), static_cast<DimensionIndex>(-1)); DimensionSet moved_dims = false; for (DimensionIndex i = 0; i < num_dims; ++i) { DimensionIndex& input_dim = (*dimensions)[i]; moved_dims[input_dim] = true; permutation[target + i] = input_dim; input_dim = target + i; } for (DimensionIndex i = 0, orig_input_dim = 0; i < input_rank; ++i) { if (permutation[i] != -1) continue; while (moved_dims[orig_input_dim]) ++orig_input_dim; permutation[i] = orig_input_dim++; } return absl::OkStatus(); } } Result<IndexTransform<>> ApplyMoveDimsTo(IndexTransform<> transform, DimensionIndexBuffer* dimensions, DimensionIndex target, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); DimensionIndex permutation[kMaxRank]; TENSORSTORE_RETURN_IF_ERROR(MakePermutationFromMoveDimsTarget( dimensions, target, span<DimensionIndex>(&permutation[0], input_rank))); return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTranspose(IndexTransform<> transform, DimensionIndexBuffer* dimensions, bool domain_only) { if (static_cast<DimensionIndex>(dimensions->size()) != transform.input_rank()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of dimensions (", dimensions->size(), ") must equal input_rank (", transform.input_rank(), ").")); } TransformRep::Ptr<> rep = TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), *dimensions, domain_only); std::iota(dimensions->begin(), dimensions->end(), static_cast<DimensionIndex>(0)); return TransformAccess::Make<IndexTransform<>>(std::move(rep)); } Result<IndexTransform<>> ApplyTransposeTo( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DimensionIndex> target_dimensions, bool domain_only) { const DimensionIndex input_rank = transform.input_rank(); if (static_cast<DimensionIndex>(dimensions->size()) != target_dimensions.size()) { return absl::InvalidArgumentError(tensorstore::StrCat( "Number of selected dimensions (", dimensions->size(), ") must equal number of target dimensions (", target_dimensions.size(), ")")); } DimensionSet seen_existing_dim = false; DimensionIndex permutation[kMaxRank]; std::fill_n(permutation, input_rank, -1); for (DimensionIndex i = 0; i < target_dimensions.size(); ++i) { DimensionIndex& orig_dim = (*dimensions)[i]; TENSORSTORE_ASSIGN_OR_RETURN( const DimensionIndex target_dim, NormalizeDimensionIndex(target_dimensions[i], input_rank)); if (permutation[target_dim] != -1) { return absl::InvalidArgumentError(tensorstore::StrCat( "Target dimension ", target_dim, " occurs more than once")); } seen_existing_dim[orig_dim] = true; permutation[target_dim] = orig_dim; orig_dim = target_dim; } for (DimensionIndex orig_dim = 0, target_dim = 0; orig_dim < input_rank; ++orig_dim) { if (seen_existing_dim[orig_dim]) continue; while (permutation[target_dim] != -1) ++target_dim; permutation[target_dim] = orig_dim; } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), span<const DimensionIndex>(&permutation[0], input_rank), domain_only)); } Result<IndexTransform<>> ApplyTransposeToDynamic( IndexTransform<> transform, DimensionIndexBuffer* dimensions, span<const DynamicDimSpec> target_dim_specs, bool domain_only) { if (target_dim_specs.size() == 1) { if (auto* target = std::get_if<DimensionIndex>(&target_dim_specs.front())) { return ApplyMoveDimsTo(std::move(transform), dimensions, *target, domain_only); } } DimensionIndexBuffer target_dimensions; const DimensionIndex input_rank = transform.input_rank(); for (const auto& s : target_dim_specs) { if (auto* index = std::get_if<DimensionIndex>(&s)) { target_dimensions.push_back(*index); } else if (auto* r = std::get_if<DimRangeSpec>(&s)) { TENSORSTORE_RETURN_IF_ERROR( NormalizeDimRangeSpec(*r, input_rank, &target_dimensions)); } else { return absl::InvalidArgumentError( "Target dimensions cannot be specified by label"); } } return ApplyTransposeTo(std::move(transform), dimensions, target_dimensions, domain_only); } Result<IndexTransform<>> ApplyTranspose( IndexTransform<> transform, span<const DynamicDimSpec> source_dim_specs, bool domain_only) { DimensionIndexBuffer source_dimensions; source_dimensions.reserve(transform.input_rank()); TENSORSTORE_RETURN_IF_ERROR(NormalizeDynamicDimSpecs( source_dim_specs, transform.input_labels(), &source_dimensions)); if (!IsValidPermutation(source_dimensions)) { return absl::InvalidArgumentError( tensorstore::StrCat("Source dimension list ", span(source_dimensions), " is not a valid dimension permutation for rank ", transform.input_rank())); } return TransformAccess::Make<IndexTransform<>>(TransposeInputDimensions( TransformAccess::rep_ptr<container>(std::move(transform)), source_dimensions, domain_only)); } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/index_space/dim_expression.h" #include "tensorstore/index_space/index_transform_builder.h" #include "tensorstore/index_space/internal/dim_expression_testutil.h" #include "tensorstore/util/status.h" namespace { using ::tensorstore::Dims; using ::tensorstore::Index; using ::tensorstore::IndexInterval; using ::tensorstore::IndexTransformBuilder; using ::tensorstore::MakeArray; using ::tensorstore::internal_index_space::EquivalentIndices; using ::tensorstore::internal_index_space::TestDimExpression; TEST(TransposeTest, Example) { const auto original_transform = IndexTransformBuilder<3, 3>() .input_origin({1, 2, 3}) .input_shape({3, 4, 2}) .implicit_lower_bounds({1, 0, 0}) .implicit_upper_bounds({0, 1, 0}) .input_labels({"x", "y", "z"}) .output_identity_transform() .Finalize() .value(); const auto expected_new_transform = IndexTransformBuilder<3, 3>() .input_origin({3, 1, 2}) .input_shape({2, 3, 4}) .implicit_lower_bounds({0, 1, 0}) .implicit_upper_bounds({0, 0, 1}) .input_labels({"z", "x", "y"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .Finalize() .value(); const EquivalentIndices equivalent_indices = {{{2, 3, 4}, {4, 2, 3}}}; TestDimExpression(original_transform, Dims(2, 0, 1).Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); TestDimExpression(original_transform, Dims("z", "x", "y").Transpose(), {0, 1, 2}, expected_new_transform, expected_new_transform, equivalent_indices); } TEST(TransposeTest, Simple) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } TEST(TransposeTest, Constant) { TestDimExpression(IndexTransformBuilder<2, 2>() .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1, 0).Transpose(), {0, 1}, IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 0) .Finalize() .value(), IndexTransformBuilder<2, 2>() .input_origin({2, 1}) .input_shape({6, 5}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), {}); } TEST(TransposeTest, ErrorHandling) { TestDimExpressionError( IndexTransformBuilder<>(2, 2) .input_origin({1, 2}) .input_shape({5, 6}) .output_constant(0, 1) .output_constant(1, 2) .Finalize() .value(), Dims(1).Transpose(), absl::StatusCode::kInvalidArgument, "Number of dimensions \\(1\\) must equal input_rank \\(2\\)\\."); } TEST(TransposeTest, Labeled) { TestDimExpression( IndexTransformBuilder<4, 2>() .input_origin({1, 2, 3, 4}) .input_shape({5, 6, 4, 8}) .input_labels({"a", "b", "c", "d"}) .output_single_input_dimension(0, 1, 2, 1) .output_index_array( 1, 2, 3, MakeArray<Index>({{{{1}, {2}, {3}, {4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), Dims(2, 0, 1, 3).Transpose(), {0, 1, 2, 3}, IndexTransformBuilder<4, 4>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1) .output_single_input_dimension(1, 2) .output_single_input_dimension(2, 0) .output_single_input_dimension(3, 3) .Finalize() .value(), IndexTransformBuilder<4, 2>() .input_origin({3, 1, 2, 4}) .input_shape({4, 5, 6, 8}) .input_labels({"c", "a", "b", "d"}) .output_single_input_dimension(0, 1, 2, 2) .output_index_array( 1, 2, 3, MakeArray<Index>( {{{{1}}}, {{{2}}}, {{{3}}}, {{{4}}}}), IndexInterval::Closed(-3, 10)) .Finalize() .value(), {{{2, 4, 3, 5}, {3, 2, 4, 5}}}); } }
66
#ifndef TENSORFLOW_TSL_LIB_RANDOM_DISTRIBUTION_SAMPLER_H_ #define TENSORFLOW_TSL_LIB_RANDOM_DISTRIBUTION_SAMPLER_H_ #include <memory> #include <utility> #include "absl/types/span.h" #include "tsl/lib/random/simple_philox.h" #include "tsl/platform/logging.h" #include "tsl/platform/macros.h" #include "tsl/platform/types.h" namespace tsl { namespace random { class DistributionSampler { public: explicit DistributionSampler(const absl::Span<const float> weights); ~DistributionSampler() {} int Sample(SimplePhilox* rand) const { float r = rand->RandFloat(); int idx = rand->Uniform(num_); if (r < prob(idx)) return idx; DCHECK_NE(-1, alt(idx)); return alt(idx); } int num() const { return num_; } private: float prob(int idx) const { DCHECK_LT(idx, num_); return data_[idx].first; } int alt(int idx) const { DCHECK_LT(idx, num_); return data_[idx].second; } void set_prob(int idx, float f) { DCHECK_LT(idx, num_); data_[idx].first = f; } void set_alt(int idx, int val) { DCHECK_LT(idx, num_); data_[idx].second = val; } int num_; std::unique_ptr<std::pair<float, int>[]> data_; DistributionSampler(const DistributionSampler&) = delete; void operator=(const DistributionSampler&) = delete; }; } } #endif #include "tsl/lib/random/distribution_sampler.h" #include <memory> #include <vector> #include "absl/types/span.h" namespace tsl { namespace random { DistributionSampler::DistributionSampler( const absl::Span<const float> weights) { DCHECK(!weights.empty()); int n = weights.size(); num_ = n; data_.reset(new std::pair<float, int>[n]); std::unique_ptr<double[]> pr(new double[n]); double sum = 0.0; for (int i = 0; i < n; i++) { sum += weights[i]; set_alt(i, -1); } std::vector<int> high; high.reserve(n); std::vector<int> low; low.reserve(n); for (int i = 0; i < n; i++) { double p = (weights[i] * n) / sum; pr[i] = p; if (p < 1.0) { low.push_back(i); } else { high.push_back(i); } } while (!high.empty() && !low.empty()) { int l = low.back(); low.pop_back(); int h = high.back(); high.pop_back(); set_alt(l, h); DCHECK_GE(pr[h], 1.0); double remaining = pr[h] - (1.0 - pr[l]); pr[h] = remaining; if (remaining < 1.0) { low.push_back(h); } else { high.push_back(h); } } for (int i = 0; i < n; i++) { set_prob(i, pr[i]); } for (size_t i = 0; i < high.size(); i++) { int idx = high[i]; set_prob(idx, 1.0); set_alt(idx, idx); } for (size_t i = 0; i < low.size(); i++) { int idx = low[i]; set_prob(idx, 1.0); set_alt(idx, idx); } } } }
#include "tsl/lib/random/distribution_sampler.h" #include <string.h> #include <memory> #include <vector> #include "tsl/lib/random/simple_philox.h" #include "tsl/platform/macros.h" #include "tsl/platform/test.h" #include "tsl/platform/test_benchmark.h" #include "tsl/platform/types.h" namespace tsl { namespace random { class DistributionSamplerTest : public ::testing::Test { protected: float TestWeights(const std::vector<float>& weights, int trials_per_bin) { int iters = weights.size() * trials_per_bin; std::unique_ptr<float[]> counts(new float[weights.size()]); memset(counts.get(), 0, sizeof(float) * weights.size()); DistributionSampler sampler(weights); PhiloxRandom philox(testing::RandomSeed(), 17); SimplePhilox random(&philox); for (int i = 0; i < iters; i++) { int r = sampler.Sample(&random); EXPECT_LT(r, weights.size()); EXPECT_GE(r, 0); counts[r] += 1.0; } float chi2 = 0.0; for (size_t i = 0; i < weights.size(); i++) { counts[i] /= iters; float err = (counts[i] - weights[i]); chi2 += (err * err) / weights[i]; } return chi2; } void TestDistribution(float* arr, int n) { std::vector<float> w; w.reserve(n); for (int i = 0; i < n; i++) { w.push_back(arr[i]); } float var = TestWeights(w, 1000); if (var < 0.001) return; var = TestWeights(w, 100000); if (var < 0.001) return; EXPECT_TRUE(false) << "Chi2 is " << var << " in " << n * 100000 << "iterations"; } }; TEST_F(DistributionSamplerTest, KnownDistribution) { float kEven2[] = {0.5, 0.5}; float kEven3[] = {0.33333333, 0.33333333, 0.33333333}; float kEven4[] = {0.25, 0.25, 0.25, 0.25}; float kDist1[] = {0.8, 0.15, 0.05}; TestDistribution(kEven2, TF_ARRAYSIZE(kEven2)); TestDistribution(kEven3, TF_ARRAYSIZE(kEven3)); TestDistribution(kEven4, TF_ARRAYSIZE(kEven4)); TestDistribution(kDist1, TF_ARRAYSIZE(kDist1)); } static void BM_DistributionSampler(::testing::benchmark::State& state) { const int n = state.range(0); PhiloxRandom philox(173, 371); SimplePhilox rand(&philox); std::vector<float> weights(n, 0); for (int i = 0; i < n; i++) { weights[i] = rand.Uniform(100); } DistributionSampler picker(weights); int r = 0; for (auto s : state) { r |= picker.Sample(&rand); } CHECK_NE(r, kint32max); } BENCHMARK(BM_DistributionSampler)->Arg(10)->Arg(100)->Arg(1000); } }
67
#ifndef AROLLA_NAMING_POLICY_H_ #define AROLLA_NAMING_POLICY_H_ #include <string> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "arolla/naming/table.h" namespace arolla::naming { class PolicyImpl; class Policy { public: explicit Policy(const PolicyImpl& policy_impl) : policy_impl_(&policy_impl) {} const std::string& Name() const; std::string Format(const ColumnPath& path) const; std::string Format(const TablePath& path) const; private: const PolicyImpl* policy_impl_; }; Policy DefaultPolicy(); constexpr absl::string_view kDefaultPolicyName = "default"; Policy DoubleUnderscorePolicy(); constexpr absl::string_view kDoubleUnderscorePolicyName = "double_underscore"; Policy SingleUnderscorePolicy(); constexpr absl::string_view kSingleUnderscorePolicyName = "single_underscore"; Policy LeafOnlyPolicy(); constexpr absl::string_view kLeafOnlyPolicyName = "leaf_only"; Policy ProtopathIdPolicy(); constexpr absl::string_view kProtopathIdPolicyName = "protopath_id"; Policy GoogleSQLPolicy(); constexpr absl::string_view kGoogleSQLPolicyName = "googlesql"; absl::StatusOr<Policy> GetPolicy(absl::string_view policy_name); } #endif #include "arolla/naming/policy.h" #include <string> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/ascii.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_join.h" #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" #include "arolla/naming/protopath_id.h" #include "arolla/naming/table.h" #include "arolla/util/indestructible.h" namespace arolla::naming { class PolicyImpl { public: explicit PolicyImpl(absl::string_view policy_name) : policy_name_(policy_name) {} virtual ~PolicyImpl() = default; virtual std::string Format(const ColumnPath& path) const = 0; virtual std::string Format(const TablePath& path) const = 0; const std::string& Name() const { return policy_name_; } private: std::string policy_name_; }; const std::string& Policy::Name() const { return policy_impl_->Name(); } std::string Policy::Format(const ColumnPath& path) const { return policy_impl_->Format(path); } std::string Policy::Format(const TablePath& path) const { return policy_impl_->Format(path); } namespace { class DefaultPolicyImpl : public PolicyImpl { public: DefaultPolicyImpl() : PolicyImpl(kDefaultPolicyName) {} std::string Format(const TablePath& table_path) const override { return std::string(table_path.FullName()); } std::string Format(const ColumnPath& column_path) const override { return std::string(column_path.FullName()); } }; class DoubleUnderscorePolicyImpl : public PolicyImpl { public: DoubleUnderscorePolicyImpl() : PolicyImpl(kDoubleUnderscorePolicyName) {} std::string Format(const TablePath& table_path) const override { return Format(table_path.PathSegments()); } std::string Format(const ColumnPath& column_path) const override { return Format(column_path.PathSegments()); } private: static std::string MangleExtensionFieldName(absl::string_view field_name) { if (absl::ConsumePrefix(&field_name, kExtensionFieldPrefix)) { return absl::StrReplaceAll(absl::AsciiStrToLower(field_name), {{".", "_"}}); } else { return std::string(field_name); } } std::string Format(const std::vector<PathSegment>& segments) const { return absl::StrJoin( segments, "__", [](std::string* ret, const PathSegment& segment) { std::string field_name = absl::StrReplaceAll(segment.FieldName(), {{"/", "__"}}); absl::StrAppend(ret, MangleExtensionFieldName(field_name)); }); } }; class SingleUnderscorePolicyImpl : public PolicyImpl { public: SingleUnderscorePolicyImpl() : PolicyImpl(kSingleUnderscorePolicyName) {} std::string Format(const TablePath& table_path) const override { return Reformat(table_path.FullName()); } std::string Format(const ColumnPath& column_path) const override { return Reformat(column_path.FullName()); } private: std::string Reformat(absl::string_view name) const { if (name.empty()) return ""; return absl::StrReplaceAll(name.substr(1), {{"/", "_"}}); } }; class LeafOnlyPolicyImpl : public PolicyImpl { public: LeafOnlyPolicyImpl() : PolicyImpl(kLeafOnlyPolicyName) {} std::string Format(const TablePath& table_path) const override { return Reformat(table_path.FullName()); } std::string Format(const ColumnPath& column_path) const override { return Reformat(column_path.FullName()); } private: std::string Reformat(absl::string_view name) const { return std::string(absl::EndsWith(name, "@size") ? name : name.substr(name.find_last_of('/') + 1)); } }; class ProtopathIdPolicyImpl : public PolicyImpl { public: ProtopathIdPolicyImpl() : PolicyImpl(kProtopathIdPolicyName) {} std::string Format(const TablePath& table_path) const override { return TablePathToProtopathId(table_path); } std::string Format(const ColumnPath& column_path) const override { return ColumnPathToProtopathId(column_path); } }; class GoogleSQLPolicyImpl : public PolicyImpl { public: GoogleSQLPolicyImpl() : PolicyImpl(kGoogleSQLPolicyName) {} std::string Format(const TablePath& table_path) const override { return Format(table_path.PathSegments()); } std::string Format(const ColumnPath& column_path) const override { return Format(column_path.PathSegments()); } private: std::string Format(const std::vector<PathSegment>& segments) const { return absl::StrJoin( segments, ".", [](std::string* ret, const PathSegment& segment) { absl::string_view field_name = segment.FieldName(); if (absl::ConsumePrefix(&field_name, kExtensionFieldPrefix)) { absl::StrAppend(ret, "(", field_name, ")"); } else { absl::StrAppend(ret, field_name); } }); } }; } Policy DefaultPolicy() { static const Indestructible<DefaultPolicyImpl> impl; return Policy{*impl}; } Policy DoubleUnderscorePolicy() { static const Indestructible<DoubleUnderscorePolicyImpl> impl; return Policy{*impl}; } Policy SingleUnderscorePolicy() { static const Indestructible<SingleUnderscorePolicyImpl> impl; return Policy{*impl}; } Policy LeafOnlyPolicy() { static const Indestructible<LeafOnlyPolicyImpl> impl; return Policy{*impl}; } Policy ProtopathIdPolicy() { static const Indestructible<ProtopathIdPolicyImpl> impl; return Policy{*impl}; } Policy GoogleSQLPolicy() { static const Indestructible<GoogleSQLPolicyImpl> impl; return Policy{*impl}; } absl::StatusOr<Policy> GetPolicy(absl::string_view policy_name) { if (policy_name == kDefaultPolicyName) { return DefaultPolicy(); } if (policy_name == kDoubleUnderscorePolicyName) { return DoubleUnderscorePolicy(); } if (policy_name == kSingleUnderscorePolicyName) { return SingleUnderscorePolicy(); } if (policy_name == kLeafOnlyPolicyName) { return LeafOnlyPolicy(); } if (policy_name == kProtopathIdPolicyName) { return ProtopathIdPolicy(); } if (policy_name == kGoogleSQLPolicyName) { return GoogleSQLPolicy(); } return absl::InvalidArgumentError( absl::StrFormat("undefined naming policy: %s", policy_name)); } }
#include "arolla/naming/policy.h" #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "arolla/naming/table.h" #include "arolla/util/testing/status_matchers_backport.h" using ::arolla::testing::StatusIs; namespace arolla::naming { namespace { TEST(Policy, name) { EXPECT_EQ(DefaultPolicy().Name(), "default"); EXPECT_EQ(DoubleUnderscorePolicy().Name(), "double_underscore"); } TEST(Policy, format) { TablePath root; EXPECT_EQ(DefaultPolicy().Format(root), ""); EXPECT_EQ(DoubleUnderscorePolicy().Format(root), ""); EXPECT_EQ(SingleUnderscorePolicy().Format(root), ""); EXPECT_EQ(LeafOnlyPolicy().Format(root), ""); EXPECT_EQ(ProtopathIdPolicy().Format(root), ""); EXPECT_EQ(GoogleSQLPolicy().Format(root), ""); TablePath query("query"); EXPECT_EQ(DefaultPolicy().Format(query), "/query"); EXPECT_EQ(DoubleUnderscorePolicy().Format(query), "query"); EXPECT_EQ(SingleUnderscorePolicy().Format(query), "query"); EXPECT_EQ(LeafOnlyPolicy().Format(query), "query"); EXPECT_EQ(ProtopathIdPolicy().Format(query), "/query"); EXPECT_EQ(GoogleSQLPolicy().Format(query), "query"); TablePath doc = query.Child("docs", true); EXPECT_EQ(DefaultPolicy().Format(doc), "/query/docs"); EXPECT_EQ(DoubleUnderscorePolicy().Format(doc), "query__docs"); EXPECT_EQ(SingleUnderscorePolicy().Format(doc), "query_docs"); EXPECT_EQ(LeafOnlyPolicy().Format(doc), "docs"); EXPECT_EQ(ProtopathIdPolicy().Format(doc), "/query/docs[:]"); EXPECT_EQ(GoogleSQLPolicy().Format(doc), "query.docs"); ColumnPath quality = doc.Column("quality"); EXPECT_EQ(DefaultPolicy().Format(quality), "/query/docs/quality"); EXPECT_EQ(DoubleUnderscorePolicy().Format(quality), "query__docs__quality"); EXPECT_EQ(SingleUnderscorePolicy().Format(quality), "query_docs_quality"); EXPECT_EQ(LeafOnlyPolicy().Format(quality), "quality"); EXPECT_EQ(ProtopathIdPolicy().Format(quality), "/query/docs[:]/quality"); EXPECT_EQ(GoogleSQLPolicy().Format(quality), "query.docs.quality"); ColumnPath terms_size = doc.Size("terms"); EXPECT_EQ(DefaultPolicy().Format(terms_size), "/query/docs/terms/@size"); EXPECT_EQ(DoubleUnderscorePolicy().Format(terms_size), "query__docs__terms__@size"); EXPECT_EQ(SingleUnderscorePolicy().Format(terms_size), "query_docs_terms_@size"); EXPECT_EQ(LeafOnlyPolicy().Format(terms_size), "/query/docs/terms/@size"); EXPECT_EQ(ProtopathIdPolicy().Format(terms_size), "/query/docs[:]/terms/@size"); EXPECT_EQ(GoogleSQLPolicy().Format(terms_size), "query.docs.terms.@size"); TablePath ext = doc.Child(ProtoExtensionAccess("foo_pkg.Bar.baz_ext")); EXPECT_EQ(DefaultPolicy().Format(ext), "/query/docs/Ext::foo_pkg.Bar.baz_ext"); EXPECT_EQ(DoubleUnderscorePolicy().Format(ext), "query__docs__foo_pkg_bar_baz_ext"); EXPECT_EQ(SingleUnderscorePolicy().Format(ext), "query_docs_Ext::foo_pkg.Bar.baz_ext"); EXPECT_EQ(LeafOnlyPolicy().Format(ext), "Ext::foo_pkg.Bar.baz_ext"); EXPECT_EQ(ProtopathIdPolicy().Format(ext), "/query/docs[:]/Ext::foo_pkg.Bar.baz_ext"); EXPECT_EQ(GoogleSQLPolicy().Format(ext), "query.docs.(foo_pkg.Bar.baz_ext)"); } TEST(Policy, get_policy) { EXPECT_EQ(GetPolicy("default").value().Name(), "default"); EXPECT_EQ(GetPolicy("double_underscore").value().Name(), "double_underscore"); EXPECT_EQ(GetPolicy("single_underscore").value().Name(), "single_underscore"); EXPECT_EQ(GetPolicy("leaf_only").value().Name(), "leaf_only"); EXPECT_THAT(GetPolicy("unknown-policy-XYZ"), StatusIs(absl::StatusCode::kInvalidArgument, "undefined naming policy: unknown-policy-XYZ")); } } }
68
#ifndef QUICHE_QUIC_TOOLS_QUIC_DEFAULT_CLIENT_H_ #define QUICHE_QUIC_TOOLS_QUIC_DEFAULT_CLIENT_H_ #include <cstdint> #include <memory> #include <string> #include "quiche/quic/core/io/quic_event_loop.h" #include "quiche/quic/core/quic_config.h" #include "quiche/quic/tools/quic_client_default_network_helper.h" #include "quiche/quic/tools/quic_spdy_client_base.h" namespace quic { class QuicServerId; namespace test { class QuicDefaultClientPeer; } class QuicDefaultClient : public QuicSpdyClientBase { public: QuicDefaultClient(QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier); QuicDefaultClient(QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache); QuicDefaultClient(QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache); QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier); QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier); QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache); QuicDefaultClient(const QuicDefaultClient&) = delete; QuicDefaultClient& operator=(const QuicDefaultClient&) = delete; ~QuicDefaultClient() override; std::unique_ptr<QuicSession> CreateQuicClientSession( const ParsedQuicVersionVector& supported_versions, QuicConnection* connection) override; int GetLatestFD() const { return default_network_helper()->GetLatestFD(); } QuicClientDefaultNetworkHelper* default_network_helper(); const QuicClientDefaultNetworkHelper* default_network_helper() const; }; } #endif #include "quiche/quic/tools/quic_default_client.h" #include <memory> #include <utility> #include "quiche/quic/core/quic_connection.h" #include "quiche/quic/core/quic_default_connection_helper.h" #include "quiche/quic/core/quic_server_id.h" #include "quiche/quic/platform/api/quic_socket_address.h" #include "quiche/quic/tools/quic_simple_client_session.h" namespace quic { QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier) : QuicDefaultClient( server_address, server_id, supported_versions, QuicConfig(), event_loop, std::make_unique<QuicClientDefaultNetworkHelper>(event_loop, this), std::move(proof_verifier), nullptr) {} QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache) : QuicDefaultClient( server_address, server_id, supported_versions, QuicConfig(), event_loop, std::make_unique<QuicClientDefaultNetworkHelper>(event_loop, this), std::move(proof_verifier), std::move(session_cache)) {} QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache) : QuicDefaultClient( server_address, server_id, supported_versions, config, event_loop, std::make_unique<QuicClientDefaultNetworkHelper>(event_loop, this), std::move(proof_verifier), std::move(session_cache)) {} QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier) : QuicDefaultClient(server_address, server_id, supported_versions, QuicConfig(), event_loop, std::move(network_helper), std::move(proof_verifier), nullptr) {} QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier) : QuicDefaultClient(server_address, server_id, supported_versions, config, event_loop, std::move(network_helper), std::move(proof_verifier), nullptr) {} QuicDefaultClient::QuicDefaultClient( QuicSocketAddress server_address, const QuicServerId& server_id, const ParsedQuicVersionVector& supported_versions, const QuicConfig& config, QuicEventLoop* event_loop, std::unique_ptr<QuicClientDefaultNetworkHelper> network_helper, std::unique_ptr<ProofVerifier> proof_verifier, std::unique_ptr<SessionCache> session_cache) : QuicSpdyClientBase(server_id, supported_versions, config, new QuicDefaultConnectionHelper(), event_loop->CreateAlarmFactory().release(), std::move(network_helper), std::move(proof_verifier), std::move(session_cache)) { set_server_address(server_address); } QuicDefaultClient::~QuicDefaultClient() = default; std::unique_ptr<QuicSession> QuicDefaultClient::CreateQuicClientSession( const ParsedQuicVersionVector& supported_versions, QuicConnection* connection) { return std::make_unique<QuicSimpleClientSession>( *config(), supported_versions, connection, this, network_helper(), server_id(), crypto_config(), drop_response_body(), enable_web_transport()); } QuicClientDefaultNetworkHelper* QuicDefaultClient::default_network_helper() { return static_cast<QuicClientDefaultNetworkHelper*>(network_helper()); } const QuicClientDefaultNetworkHelper* QuicDefaultClient::default_network_helper() const { return static_cast<const QuicClientDefaultNetworkHelper*>(network_helper()); } }
#if defined(__linux__) #include "quiche/quic/tools/quic_default_client.h" #include <dirent.h> #include <sys/types.h> #include <memory> #include <string> #include <utility> #include "absl/strings/match.h" #include "absl/strings/string_view.h" #include "quiche/quic/core/io/quic_default_event_loop.h" #include "quiche/quic/core/io/quic_event_loop.h" #include "quiche/quic/core/quic_default_clock.h" #include "quiche/quic/platform/api/quic_test.h" #include "quiche/quic/platform/api/quic_test_loopback.h" #include "quiche/quic/test_tools/crypto_test_utils.h" #include "quiche/common/quiche_text_utils.h" namespace quic { namespace test { namespace { const char* kPathToFds = "/proc/self/fd"; std::string ReadLink(const std::string& path) { std::string result(PATH_MAX, '\0'); ssize_t result_size = readlink(path.c_str(), &result[0], result.size()); if (result_size < 0 && errno == ENOENT) { return ""; } QUICHE_CHECK(result_size > 0 && static_cast<size_t>(result_size) < result.size()) << "result_size:" << result_size << ", errno:" << errno << ", path:" << path; result.resize(result_size); return result; } size_t NumOpenSocketFDs() { size_t socket_count = 0; dirent* file; std::unique_ptr<DIR, int (*)(DIR*)> fd_directory(opendir(kPathToFds), closedir); while ((file = readdir(fd_directory.get())) != nullptr) { absl::string_view name(file->d_name); if (name == "." || name == "..") { continue; } std::string fd_path = ReadLink(absl::StrCat(kPathToFds, "/", name)); if (absl::StartsWith(fd_path, "socket:")) { socket_count++; } } return socket_count; } class QuicDefaultClientTest : public QuicTest { public: QuicDefaultClientTest() : event_loop_(GetDefaultEventLoop()->Create(QuicDefaultClock::Get())) { CreateAndInitializeQuicClient(); } std::unique_ptr<QuicDefaultClient> CreateAndInitializeQuicClient() { QuicSocketAddress server_address(QuicSocketAddress(TestLoopback(), 0)); QuicServerId server_id("hostname", server_address.port(), false); ParsedQuicVersionVector versions = AllSupportedVersions(); auto client = std::make_unique<QuicDefaultClient>( server_address, server_id, versions, event_loop_.get(), crypto_test_utils::ProofVerifierForTesting()); EXPECT_TRUE(client->Initialize()); return client; } private: std::unique_ptr<QuicEventLoop> event_loop_; }; TEST_F(QuicDefaultClientTest, DoNotLeakSocketFDs) { size_t number_of_open_fds = NumOpenSocketFDs(); const int kNumClients = 50; for (int i = 0; i < kNumClients; ++i) { EXPECT_EQ(number_of_open_fds, NumOpenSocketFDs()); std::unique_ptr<QuicDefaultClient> client(CreateAndInitializeQuicClient()); EXPECT_EQ(number_of_open_fds + 1, NumOpenSocketFDs()); } EXPECT_EQ(number_of_open_fds, NumOpenSocketFDs()); } TEST_F(QuicDefaultClientTest, CreateAndCleanUpUDPSockets) { size_t number_of_open_fds = NumOpenSocketFDs(); std::unique_ptr<QuicDefaultClient> client(CreateAndInitializeQuicClient()); EXPECT_EQ(number_of_open_fds + 1, NumOpenSocketFDs()); EXPECT_TRUE(client->default_network_helper()->CreateUDPSocketAndBind( client->server_address(), client->bind_to_address(), client->local_port())); EXPECT_EQ(number_of_open_fds + 2, NumOpenSocketFDs()); EXPECT_TRUE(client->default_network_helper()->CreateUDPSocketAndBind( client->server_address(), client->bind_to_address(), client->local_port())); EXPECT_EQ(number_of_open_fds + 3, NumOpenSocketFDs()); client->default_network_helper()->CleanUpUDPSocket(client->GetLatestFD()); EXPECT_EQ(number_of_open_fds + 2, NumOpenSocketFDs()); client->default_network_helper()->CleanUpUDPSocket(client->GetLatestFD()); EXPECT_EQ(number_of_open_fds + 1, NumOpenSocketFDs()); } } } } #endif
69
#ifndef XLA_SERVICE_HOST_MEMORY_TRANSFER_ASYNCIFIER_H_ #define XLA_SERVICE_HOST_MEMORY_TRANSFER_ASYNCIFIER_H_ #include <cstdint> #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/service/hlo_pass_interface.h" namespace xla { class HostMemoryTransferAsyncifier : public HloModulePass { public: explicit HostMemoryTransferAsyncifier(int64_t host_memory_space_color) : kHostMemorySpaceColor(host_memory_space_color) {} ~HostMemoryTransferAsyncifier() override = default; absl::string_view name() const override { return "host-memory-transfer-asyncifier"; } using HloPassInterface::Run; absl::StatusOr<bool> Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) override; private: const int64_t kHostMemorySpaceColor; }; } #endif #include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include "absl/container/flat_hash_set.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/dfs_hlo_visitor_with_default.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/shape_util.h" #include "xla/util.h" #include "tsl/platform/errors.h" #include "tsl/platform/statusor.h" namespace xla { namespace { class HostMemoryTransferAsyncifierVisitor : public DfsHloVisitorWithDefault { public: explicit HostMemoryTransferAsyncifierVisitor(int64_t host_memory_space_color) : kHostMemorySpaceColor(host_memory_space_color) {} bool Changed() const { return changed_; } absl::Status DefaultAction(HloInstruction* hlo_instruction) override { return absl::OkStatus(); } absl::Status HandleDynamicSlice(HloInstruction* dynamic_slice) override { HloInstruction* dynamic_slice_operand = dynamic_slice->mutable_operand(0); if (!dynamic_slice->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), " does not have a layout."); } if (!dynamic_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_slice->name(), "'s operand, ", dynamic_slice_operand->name(), ", does not have a layout."); } VLOG(3) << absl::StreamFormat( "\"%s\" from S(%d) to S(%d)", dynamic_slice->name(), dynamic_slice_operand->shape().layout().memory_space(), dynamic_slice->shape().layout().memory_space()); if (dynamic_slice_operand->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_slice->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } VLOG(1) << "DynamicSlice \"" << dynamic_slice->name() << "\" is slicing from host memory. Converting to async."; const Shape context_shape = ShapeUtil::MakeScalarShape(U32); const Shape transfer_bytes_shape = ShapeUtil::MakeScalarShape(S32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, dynamic_slice->parent()->CreateAsyncInstructions( dynamic_slice, {context_shape, transfer_bytes_shape})); (void)async_done; MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleDynamicUpdateSlice( HloInstruction* dynamic_update_slice) override { HloInstruction* dynamic_update_slice_operand = dynamic_update_slice->mutable_operand(0); HloInstruction* dynamic_update_slice_update = dynamic_update_slice->mutable_operand(1); if (!dynamic_update_slice->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), " does not have a layout."); } if (!dynamic_update_slice_operand->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s operand, ", dynamic_update_slice_operand->name(), ", does not have a layout."); } if (!dynamic_update_slice_update->shape().has_layout()) { return InternalStrCat(dynamic_update_slice->name(), "'s update, ", dynamic_update_slice_update->name(), ", does not have a layout."); } if (dynamic_update_slice_update->shape().layout().memory_space() != xla::Layout::kDefaultMemorySpace) { return absl::OkStatus(); } if (dynamic_update_slice->shape().layout().memory_space() != kHostMemorySpaceColor) { return absl::OkStatus(); } if (dynamic_update_slice_operand->shape().layout().memory_space() != dynamic_update_slice->shape().layout().memory_space()) { return InternalStrCat( "Unexpected that ", dynamic_update_slice_operand->name(), "'s memory space is not the same as the dynamic-update-slice."); } VLOG(1) << "DynamicUpdateSlice \"" << dynamic_update_slice->name() << "\" is slicing into host memory space. Converting to async."; const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN(HloInstruction * async_done, dynamic_update_slice->parent()->CreateAsyncInstructions( dynamic_update_slice, {context_shape})); (void)async_done; MarkAsChanged(); return absl::OkStatus(); } absl::Status HandleCopy(HloInstruction* copy) override { HloInstruction* operand = copy->mutable_operand(0); if (!operand->shape().has_layout()) { return InternalStrCat(operand->name(), " does not have a layout."); } if (!copy->shape().has_layout()) { return InternalStrCat(copy->name(), " does not have a layout."); } const auto copy_src_memory_space = operand->shape().layout().memory_space(); const auto copy_dst_memory_space = copy->shape().layout().memory_space(); if (!((copy_src_memory_space == kHostMemorySpaceColor && copy_dst_memory_space == xla::Layout::kDefaultMemorySpace) || (copy_src_memory_space == xla::Layout::kDefaultMemorySpace && copy_dst_memory_space == kHostMemorySpaceColor))) { VLOG(2) << "Skipping copy because it is not a copy between device memory and " "host memory: " << copy->ToString(); return absl::OkStatus(); } VLOG(1) << "Copy \"" << copy->name() << "\" is between device and host memory space. Converting to async."; const Shape context_shape = ShapeUtil::MakeScalarShape(U32); TF_ASSIGN_OR_RETURN( HloInstruction * async_done, copy->parent()->CreateAsyncInstructions(copy, {context_shape})); (void)async_done; MarkAsChanged(); return absl::OkStatus(); } private: const int64_t kHostMemorySpaceColor; bool changed_ = false; void MarkAsChanged() { changed_ = true; } }; } absl::StatusOr<bool> HostMemoryTransferAsyncifier::Run( HloModule* module, const absl::flat_hash_set<absl::string_view>& execution_threads) { HostMemoryTransferAsyncifierVisitor visitor(kHostMemorySpaceColor); for (HloComputation* computation : module->MakeNonfusionComputations()) { TF_RETURN_IF_ERROR(computation->Accept(&visitor)); } return visitor.Changed(); } }
#include "xla/service/host_memory_transfer_asyncifier.h" #include <cstdint> #include <string> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/string_view.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/hlo/ir/hlo_opcode.h" #include "xla/service/pattern_matcher.h" #include "xla/service/pattern_matcher_gmock.h" #include "xla/tests/hlo_test_base.h" #include "xla/util.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/statusor.h" namespace xla { namespace { namespace m = ::xla::match; class HostMemoryTransferAsyncifierTest : public HloTestBase { protected: absl::StatusOr<bool> RunAsyncifier(absl::string_view hlo_string) { TF_ASSIGN_OR_RETURN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSIGN_OR_RETURN(bool changed, RunAsyncifier(module.get())); return changed; } absl::StatusOr<bool> RunAsyncifier(HloModule* module) { TF_EXPECT_OK(verifier().Run(module).status()); if (module->has_schedule()) { return absl::InternalError("Expected a non-scheduled module"); } HostMemoryTransferAsyncifier asyncifier(kHostMemorySpaceColor); return asyncifier.Run(module); } private: static constexpr int64_t kHostMemorySpaceColor{5}; }; TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { operand = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) host_update = f32[1,1,1]{2,1,0:T(2,128)S(5)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)} dynamic-update-slice(operand, host_update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicUpdateSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_operand = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) update = f32[1,1,1]{2,1,0:T(2,128)} parameter(1) constant_0 = s32[] constant(0) ROOT dynamic-update-slice = f32[32,1,1]{2,1,0:T(2,128)S(5)} dynamic-update-slice(host_operand, update, constant_0, constant_0, constant_0) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_update_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_update_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_update_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_update_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicUpdateSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)S(5)} dynamic-slice(device, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, DynamicSliceFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) constant_0 = s32[] constant(0) ROOT dynamic-slice = f32[1,1,1]{2,1,0:T(2,128)} dynamic-slice(host_memory, constant_0, constant_0, constant_0), dynamic_slice_sizes={1,1,1} } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* dynamic_slice_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch(m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand(0, m::Op(&dynamic_slice_start) .WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(dynamic_slice_start->called_computations().size(), 1); HloComputation* async_dynamic_slice_computation = dynamic_slice_start->called_computations().at(0); EXPECT_THAT(async_dynamic_slice_computation->root_instruction(), GmockMatch(m::DynamicSlice())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromHostToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, CopyFromDeviceToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_FALSE(changed); EXPECT_THAT(module->entry_computation()->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromDeviceToHost) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { device = f32[32,1,1]{2,1,0:T(2,128)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)S(5)} copy(device) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } TEST_F(HostMemoryTransferAsyncifierTest, DISABLED_CopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kAsyncDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kAsyncStart)))); ASSERT_EQ(copy_start->called_computations().size(), 1); HloComputation* async_copy_computation = copy_start->called_computations().at(0); EXPECT_THAT(async_copy_computation->root_instruction(), GmockMatch(m::Copy())); } TEST_F(HostMemoryTransferAsyncifierTest, OldCopyFromHostToDevice) { const std::string& hlo_string = R"( HloModule MyModule ENTRY main { host_memory = f32[32,1,1]{2,1,0:T(2,128)S(5)} parameter(0) ROOT copy = f32[32,1,1]{2,1,0:T(2,128)} copy(host_memory) } )"; TF_ASSERT_OK_AND_ASSIGN(auto module, ParseAndReturnVerifiedModule(hlo_string)); TF_ASSERT_OK_AND_ASSIGN(bool changed, RunAsyncifier(module.get())); EXPECT_TRUE(changed); HloInstruction* copy_start; EXPECT_THAT( module->entry_computation()->root_instruction(), GmockMatch( m::Op() .WithOpcode(HloOpcode::kCopyDone) .WithOperand( 0, m::Op(&copy_start).WithOpcode(HloOpcode::kCopyStart)))); } } }
70
#ifndef TENSORFLOW_CORE_KERNELS_DATA_REWRITE_DATASET_OP_H_ #define TENSORFLOW_CORE_KERNELS_DATA_REWRITE_DATASET_OP_H_ #include "tensorflow/core/framework/dataset.h" namespace tensorflow { namespace data { class RewriteDatasetOp : public UnaryDatasetOpKernel { public: static constexpr const char* const kDatasetType = "Rewrite"; static constexpr const char* const kInputDataset = "input_dataset"; static constexpr const char* const kRewriteName = "rewrite_name"; static constexpr const char* const kOutputTypes = "output_types"; static constexpr const char* const kOutputShapes = "output_shapes"; explicit RewriteDatasetOp(OpKernelConstruction* ctx); protected: void MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) override; }; } } #endif #include "tensorflow/core/kernels/data/rewrite_dataset_op.h" #if !defined(IS_MOBILE_PLATFORM) #include <map> #include <string> #include "tensorflow/core/data/rewrite_utils.h" #include "tensorflow/core/protobuf/rewriter_config.pb.h" namespace tensorflow { namespace data { constexpr const char* const RewriteDatasetOp::kDatasetType; constexpr const char* const RewriteDatasetOp::kInputDataset; constexpr const char* const RewriteDatasetOp::kRewriteName; constexpr const char* const RewriteDatasetOp::kOutputTypes; constexpr const char* const RewriteDatasetOp::kOutputShapes; RewriteDatasetOp::RewriteDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void RewriteDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { tstring rewrite_name; OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, kRewriteName, &rewrite_name)); auto config_factory = [rewrite_name]() { RewriterConfig rewriter_config; rewriter_config.add_optimizers(std::string(rewrite_name)); rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE); rewriter_config.set_fail_on_optimizer_errors(true); return rewriter_config; }; core::RefCountPtr<DatasetBase> rewritten; OP_REQUIRES_OK(ctx, RewriteDataset(ctx, input, std::move(config_factory), false, &rewritten)); *output = rewritten.release(); } namespace { REGISTER_KERNEL_BUILDER(Name("RewriteDataset").Device(DEVICE_CPU), RewriteDatasetOp); } } } #else namespace tensorflow { namespace data { RewriteDatasetOp::RewriteDatasetOp(OpKernelConstruction* ctx) : UnaryDatasetOpKernel(ctx) {} void RewriteDatasetOp::MakeDataset(OpKernelContext* ctx, DatasetBase* input, DatasetBase** output) { input->Ref(); *output = input; } namespace { REGISTER_KERNEL_BUILDER(Name("RewriteDataset").Device(DEVICE_CPU), RewriteDatasetOp); } } } #endif
#include "tensorflow/core/kernels/data/rewrite_dataset_op.h" #include <utility> #include "tensorflow/core/data/dataset_test_base.h" namespace tensorflow { namespace data { namespace { constexpr char kNodeName[] = "rewrite_dataset"; constexpr char kReplicateOnSplit[] = "replicate_on_split"; class RewriteDatasetParams : public DatasetParams { public: template <typename T> RewriteDatasetParams(T input_dataset_params, string rewrite_name, DataTypeVector output_dtypes, std::vector<PartialTensorShape> output_shapes, string node_name) : DatasetParams(std::move(output_dtypes), std::move(output_shapes), std::move(node_name)), rewrite_name_(rewrite_name) { input_dataset_params_.push_back(std::make_unique<T>(input_dataset_params)); iterator_prefix_ = name_utils::IteratorPrefix(input_dataset_params.dataset_type(), input_dataset_params.iterator_prefix()); } std::vector<Tensor> GetInputTensors() const override { return {CreateTensor<tstring>(TensorShape({}), {rewrite_name_})}; } Status GetInputNames(std::vector<string>* input_names) const override { *input_names = {RewriteDatasetOp::kInputDataset, RewriteDatasetOp::kRewriteName}; return absl::OkStatus(); } Status GetAttributes(AttributeVector* attr_vector) const override { attr_vector->emplace_back("output_types", output_dtypes_); attr_vector->emplace_back("output_shapes", output_shapes_); return absl::OkStatus(); } string dataset_type() const override { return RewriteDatasetOp::kDatasetType; } private: string rewrite_name_; }; class RewriteDatasetOpTest : public DatasetOpsTestBase {}; TEST_F(RewriteDatasetOpTest, ReplicateOnSplit) { auto range_dataset_params = RangeDatasetParams(0, 5, 1); auto rewrite_dataset_params = RewriteDatasetParams(std::move(range_dataset_params), kReplicateOnSplit, {DT_INT64}, {PartialTensorShape({})}, kNodeName); std::vector<Tensor> expected_outputs = CreateTensors<int64_t>(TensorShape({}), {{0}, {1}, {2}, {3}, {4}}); TF_ASSERT_OK(Initialize(rewrite_dataset_params)); TF_EXPECT_OK(CheckIteratorGetNext(expected_outputs, true)); } } } }
71
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_SETS_FUNCTIONS_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_SETS_FUNCTIONS_H_ #include "absl/status/status.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel::extensions { absl::Status RegisterSetsFunctions(FunctionRegistry& registry, const RuntimeOptions& options); } #endif #include "extensions/sets_functions.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "base/function_adapter.h" #include "common/value.h" #include "common/value_manager.h" #include "internal/status_macros.h" #include "runtime/function_registry.h" #include "runtime/runtime_options.h" namespace cel::extensions { namespace { absl::StatusOr<Value> SetsContains(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { bool any_missing = false; CEL_RETURN_IF_ERROR(sublist.ForEach( value_factory, [&list, &value_factory, &any_missing](ValueView sublist_element) -> absl::StatusOr<bool> { CEL_ASSIGN_OR_RETURN(auto contains, list.Contains(value_factory, sublist_element)); any_missing = !contains->Is<BoolValue>() || !contains->As<BoolValue>().NativeValue(); return !any_missing; })); return value_factory.CreateBoolValue(!any_missing); } absl::StatusOr<Value> SetsIntersects(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { bool exists = false; CEL_RETURN_IF_ERROR(list.ForEach( value_factory, [&value_factory, &sublist, &exists](ValueView list_element) -> absl::StatusOr<bool> { CEL_ASSIGN_OR_RETURN(auto contains, sublist.Contains(value_factory, list_element)); exists = contains->Is<BoolValue>() && contains->As<BoolValue>().NativeValue(); return !exists; })); return value_factory.CreateBoolValue(exists); } absl::StatusOr<Value> SetsEquivalent(ValueManager& value_factory, const ListValue& list, const ListValue& sublist) { CEL_ASSIGN_OR_RETURN(auto contains_sublist, SetsContains(value_factory, list, sublist)); if (contains_sublist->Is<BoolValue>() && !contains_sublist->As<BoolValue>().NativeValue()) { return contains_sublist; } return SetsContains(value_factory, sublist, list); } absl::Status RegisterSetsContainsFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.contains", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsContains)); } absl::Status RegisterSetsIntersectsFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.intersects", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsIntersects)); } absl::Status RegisterSetsEquivalentFunction(FunctionRegistry& registry) { return registry.Register( BinaryFunctionAdapter< absl::StatusOr<Value>, const ListValue&, const ListValue&>::CreateDescriptor("sets.equivalent", false), BinaryFunctionAdapter<absl::StatusOr<Value>, const ListValue&, const ListValue&>::WrapFunction(SetsEquivalent)); } } absl::Status RegisterSetsFunctions(FunctionRegistry& registry, const RuntimeOptions& options) { CEL_RETURN_IF_ERROR(RegisterSetsContainsFunction(registry)); CEL_RETURN_IF_ERROR(RegisterSetsIntersectsFunction(registry)); CEL_RETURN_IF_ERROR(RegisterSetsEquivalentFunction(registry)); return absl::OkStatus(); } }
#include "extensions/sets_functions.h" #include <memory> #include <string> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "eval/public/activation.h" #include "eval/public/builtin_func_registrar.h" #include "eval/public/cel_expr_builder_factory.h" #include "eval/public/cel_expression.h" #include "eval/public/cel_function_adapter.h" #include "eval/public/cel_options.h" #include "internal/testing.h" #include "parser/parser.h" #include "runtime/runtime_options.h" #include "google/protobuf/arena.h" namespace cel::extensions { namespace { using ::google::api::expr::v1alpha1::Expr; using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::v1alpha1::SourceInfo; using ::google::api::expr::parser::ParseWithMacros; using ::google::api::expr::runtime::Activation; using ::google::api::expr::runtime::CelExpressionBuilder; using ::google::api::expr::runtime::CelValue; using ::google::api::expr::runtime::CreateCelExpressionBuilder; using ::google::api::expr::runtime::FunctionAdapter; using ::google::api::expr::runtime::InterpreterOptions; using ::google::protobuf::Arena; using cel::internal::IsOk; struct TestInfo { std::string expr; }; class CelSetsFunctionsTest : public testing::TestWithParam<TestInfo> {}; TEST_P(CelSetsFunctionsTest, EndToEnd) { const TestInfo& test_info = GetParam(); std::vector<Macro> all_macros = Macro::AllMacros(); auto result = ParseWithMacros(test_info.expr, all_macros, "<input>"); EXPECT_THAT(result, IsOk()); ParsedExpr parsed_expr = *result; Expr expr = parsed_expr.expr(); SourceInfo source_info = parsed_expr.source_info(); InterpreterOptions options; options.enable_heterogeneous_equality = true; options.enable_empty_wrapper_null_unboxing = true; options.enable_qualified_identifier_rewrites = true; std::unique_ptr<CelExpressionBuilder> builder = CreateCelExpressionBuilder(options); ASSERT_OK(RegisterSetsFunctions(builder->GetRegistry()->InternalGetRegistry(), cel::RuntimeOptions{})); ASSERT_OK(google::api::expr::runtime::RegisterBuiltinFunctions( builder->GetRegistry(), options)); ASSERT_OK_AND_ASSIGN(auto cel_expr, builder->CreateExpression(&expr, &source_info)); Arena arena; Activation activation; ASSERT_OK_AND_ASSIGN(CelValue out, cel_expr->Evaluate(activation, &arena)); ASSERT_TRUE(out.IsBool()) << test_info.expr << " -> " << out.DebugString(); EXPECT_TRUE(out.BoolOrDie()) << test_info.expr << " -> " << out.DebugString(); } INSTANTIATE_TEST_SUITE_P( CelSetsFunctionsTest, CelSetsFunctionsTest, testing::ValuesIn<TestInfo>({ {"sets.contains([], [])"}, {"sets.contains([1], [])"}, {"sets.contains([1], [1])"}, {"sets.contains([1], [1, 1])"}, {"sets.contains([1, 1], [1])"}, {"sets.contains([2, 1], [1])"}, {"sets.contains([1], [1.0, 1u])"}, {"sets.contains([1, 2], [2u, 2.0])"}, {"sets.contains([1, 2u], [2, 2.0])"}, {"!sets.contains([1], [2])"}, {"!sets.contains([1], [1, 2])"}, {"!sets.contains([1], [\"1\", 1])"}, {"!sets.contains([1], [1.1, 2])"}, {"sets.intersects([1], [1])"}, {"sets.intersects([1], [1, 1])"}, {"sets.intersects([1, 1], [1])"}, {"sets.intersects([2, 1], [1])"}, {"sets.intersects([1], [1, 2])"}, {"sets.intersects([1], [1.0, 2])"}, {"sets.intersects([1, 2], [2u, 2, 2.0])"}, {"sets.intersects([1, 2], [1u, 2, 2.3])"}, {"!sets.intersects([], [])"}, {"!sets.intersects([1], [])"}, {"!sets.intersects([1], [2])"}, {"!sets.intersects([1], [\"1\", 2])"}, {"!sets.intersects([1], [1.1, 2u])"}, {"sets.equivalent([], [])"}, {"sets.equivalent([1], [1])"}, {"sets.equivalent([1], [1, 1])"}, {"sets.equivalent([1, 1, 2], [2, 2, 1])"}, {"sets.equivalent([1, 1], [1])"}, {"sets.equivalent([1], [1u, 1.0])"}, {"sets.equivalent([1], [1u, 1.0])"}, {"sets.equivalent([1, 2, 3], [3u, 2.0, 1])"}, {"!sets.equivalent([2, 1], [1])"}, {"!sets.equivalent([1], [1, 2])"}, {"!sets.equivalent([1, 2], [2u, 2, 2.0])"}, {"!sets.equivalent([1, 2], [1u, 2, 2.3])"}, {"sets.equivalent([false, true], [true, false])"}, {"!sets.equivalent([true], [false])"}, {"sets.equivalent(['foo', 'bar'], ['bar', 'foo'])"}, {"!sets.equivalent(['foo'], ['bar'])"}, {"sets.equivalent([b'foo', b'bar'], [b'bar', b'foo'])"}, {"!sets.equivalent([b'foo'], [b'bar'])"}, {"sets.equivalent([null], [null])"}, {"!sets.equivalent([null], [])"}, {"sets.equivalent([type(1), type(1u)], [type(1u), type(1)])"}, {"!sets.equivalent([type(1)], [type(1u)])"}, {"sets.equivalent([duration('0s'), duration('1s')], [duration('1s'), " "duration('0s')])"}, {"!sets.equivalent([duration('0s')], [duration('1s')])"}, {"sets.equivalent([timestamp('1970-01-01T00:00:00Z'), " "timestamp('1970-01-01T00:00:01Z')], " "[timestamp('1970-01-01T00:00:01Z'), " "timestamp('1970-01-01T00:00:00Z')])"}, {"!sets.equivalent([timestamp('1970-01-01T00:00:00Z')], " "[timestamp('1970-01-01T00:00:01Z')])"}, {"sets.equivalent([[false, true]], [[false, true]])"}, {"!sets.equivalent([[false, true]], [[true, false]])"}, {"sets.equivalent([{'foo': true, 'bar': false}], [{'bar': false, " "'foo': true}])"}, })); } }
72
#ifndef TENSORSTORE_KVSTORE_FILE_UTIL_H_ #define TENSORSTORE_KVSTORE_FILE_UTIL_H_ #include <string_view> #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix); std::string_view LongestDirectoryPrefix(const KeyRange& range); } } #endif #include "tensorstore/kvstore/file/util.h" #include <stddef.h> #include <string_view> #include "absl/strings/match.h" #include "tensorstore/kvstore/key_range.h" namespace tensorstore { namespace internal_file_util { bool IsKeyValid(std::string_view key, std::string_view lock_suffix) { if (key.find('\0') != std::string_view::npos) return false; if (key.empty()) return false; if (key.back() == '/') return false; while (true) { size_t next_delimiter = key.find('/'); std::string_view component = next_delimiter == std::string_view::npos ? key : key.substr(0, next_delimiter); if (component == ".") return false; if (component == "..") return false; if (!lock_suffix.empty() && component.size() >= lock_suffix.size() && absl::EndsWith(component, lock_suffix)) { return false; } if (next_delimiter == std::string_view::npos) return true; key.remove_prefix(next_delimiter + 1); } } std::string_view LongestDirectoryPrefix(const KeyRange& range) { std::string_view prefix = tensorstore::LongestPrefix(range); const size_t i = prefix.rfind('/'); if (i == std::string_view::npos) return {}; return prefix.substr(0, i); } } }
#include "tensorstore/kvstore/file/util.h" #include <gtest/gtest.h> #include "tensorstore/kvstore/key_range.h" namespace { using ::tensorstore::KeyRange; using ::tensorstore::internal_file_util::IsKeyValid; using ::tensorstore::internal_file_util::LongestDirectoryPrefix; TEST(IsKeyValid, Basic) { EXPECT_TRUE(IsKeyValid("tmp/root", "")); EXPECT_TRUE(IsKeyValid("a", "")); EXPECT_TRUE(IsKeyValid("a/b", "")); EXPECT_FALSE(IsKeyValid("", "")); EXPECT_FALSE(IsKeyValid("/", "")); EXPECT_TRUE(IsKeyValid("/tmp/root", "")); EXPECT_FALSE(IsKeyValid("/tmp/root/", "")); EXPECT_TRUE(IsKeyValid("tmp EXPECT_FALSE(IsKeyValid("tmp/./root", "")); EXPECT_FALSE(IsKeyValid("tmp/../root", "")); EXPECT_FALSE(IsKeyValid("tmp/root/", "")); EXPECT_FALSE(IsKeyValid("tmp/.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid("tmp/foo.lock/a", ".lock")); EXPECT_FALSE(IsKeyValid(std::string_view("tmp/\0bar", 8), "")); } TEST(LongestDirectoryPrefix, Basic) { EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"a", "b"})); EXPECT_EQ("", LongestDirectoryPrefix(KeyRange{"/a", "/b"})); EXPECT_EQ("/a", LongestDirectoryPrefix(KeyRange{"/a/a", "/a/b"})); } }
73
#ifndef TENSORSTORE_UTIL_UNIT_H_ #define TENSORSTORE_UTIL_UNIT_H_ #include <iosfwd> #include <string> #include <string_view> #include <utility> namespace tensorstore { struct Unit { Unit() = default; Unit(std::string_view unit); Unit(const char* unit) : Unit(std::string_view(unit)) {} Unit(const std::string& unit) : Unit(std::string_view(unit)) {} Unit(double multiplier, std::string base_unit) : multiplier(multiplier), base_unit(std::move(base_unit)) {} double multiplier = 1; std::string base_unit; friend std::ostream& operator<<(std::ostream& os, const Unit& unit); std::string to_string() const; template <typename Sink> friend void AbslStringify(Sink& sink, const Unit& self) { sink.Append(self.to_string()); } friend bool operator==(const Unit& a, const Unit& b); friend bool operator!=(const Unit& a, const Unit& b) { return !(a == b); } friend Unit operator*(Unit u, double x) { u.multiplier *= x; return u; } friend Unit operator*(double x, Unit u) { u.multiplier *= x; return u; } friend Unit& operator*=(Unit& u, double x) { u.multiplier *= x; return u; } friend Unit operator/(Unit u, double x) { u.multiplier /= x; return u; } friend Unit& operator/=(Unit& u, double x) { u.multiplier /= x; return u; } static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(x.multiplier, x.base_unit); }; }; } #endif #include "tensorstore/util/unit.h" #include <ostream> #include <string> #include "absl/strings/ascii.h" #include "absl/strings/str_cat.h" #include "re2/re2.h" namespace tensorstore { std::ostream& operator<<(std::ostream& os, const Unit& unit) { if (unit.base_unit.empty()) { return os << unit.multiplier; } else { if (unit.multiplier != 1) { os << unit.multiplier << ' '; } return os << unit.base_unit; } } bool operator==(const Unit& a, const Unit& b) { return a.multiplier == b.multiplier && a.base_unit == b.base_unit; } Unit::Unit(std::string_view unit) { static LazyRE2 kNumberPattern = { "([-+]?(?:\\.[0-9]+|[0-9]+(?:\\.[0-9]*)?)(?:[eE][-+]?\\d+)?)\\s*"}; while (!unit.empty() && absl::ascii_isspace(unit.front())) { unit.remove_prefix(1); } while (!unit.empty() && absl::ascii_isspace(unit.back())) { unit.remove_suffix(1); } RE2::Consume(&unit, *kNumberPattern, &multiplier); base_unit = unit; } std::string Unit::to_string() const { if (base_unit.empty()) { return absl::StrCat(multiplier); } if (multiplier != 1) { return absl::StrCat(multiplier, " ", base_unit); } return base_unit; } }
#include "tensorstore/util/unit.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/strings/str_cat.h" #include "tensorstore/internal/json_binding/gtest.h" #include "tensorstore/internal/json_binding/unit.h" #include "tensorstore/internal/json_gtest.h" #include "tensorstore/serialization/serialization.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/str_cat.h" namespace { using ::tensorstore::TestJsonBinderRoundTrip; using ::tensorstore::TestJsonBinderRoundTripJsonOnlyInexact; using ::tensorstore::Unit; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(UnitTest, DefaultConstruct) { Unit u; EXPECT_EQ(1, u.multiplier); EXPECT_EQ("", u.base_unit); } TEST(UnitTest, Compare) { Unit a(5, "nm"); Unit b(5.5, "nm"); Unit c(5, "um"); Unit d; EXPECT_EQ(a, a); EXPECT_EQ(b, b); EXPECT_EQ(c, c); EXPECT_EQ(d, d); EXPECT_NE(a, b); EXPECT_NE(a, c); EXPECT_NE(a, d); EXPECT_NE(b, c); EXPECT_NE(b, d); EXPECT_NE(c, d); } TEST(UnitTest, Ostream) { EXPECT_EQ("5.5 nm", tensorstore::StrCat(Unit(5.5, "nm"))); EXPECT_EQ("nm", tensorstore::StrCat(Unit(1, "nm"))); EXPECT_EQ("5", tensorstore::StrCat(Unit(5, ""))); EXPECT_EQ("1", tensorstore::StrCat(Unit(1, ""))); } TEST(UnitTest, ConvertToString) { EXPECT_EQ("5.5 nm", Unit(5.5, "nm").to_string()); EXPECT_EQ("nm", Unit(1, "nm").to_string()); EXPECT_EQ("5", Unit(5, "").to_string()); EXPECT_EQ("1", Unit(1, "").to_string()); EXPECT_EQ("1", absl::StrCat(Unit(1, ""))); } TEST(UnitTest, MultiplierBaseUnit) { Unit u = {5, "nm"}; EXPECT_EQ(5, u.multiplier); EXPECT_EQ("nm", u.base_unit); } TEST(UnitTest, Unit) { EXPECT_EQ(Unit(4, "nm"), Unit("4nm")); EXPECT_EQ(Unit(4, "nm"), Unit("4.nm")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("4e-3nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(".4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm")); EXPECT_EQ(Unit(.4, "nm"), Unit(" .4 nm ")); EXPECT_EQ(Unit(4e-3, "nm"), Unit("+4e-3nm")); EXPECT_EQ(Unit(-4e-3, "nm"), Unit("-4e-3nm")); EXPECT_EQ(Unit(4.5, "nm"), Unit("4.5nm")); EXPECT_EQ(Unit(1, "nm"), Unit("nm")); EXPECT_EQ(Unit(4, ""), Unit("4")); EXPECT_EQ(Unit(1, ""), Unit("")); EXPECT_EQ(Unit(3, "nm @ 50"), Unit("3 nm @ 50")); } TEST(UnitTest, JsonRoundTrip) { TestJsonBinderRoundTrip<Unit>({ {Unit(4, "nm"), {4, "nm"}}, {Unit(4.5, "nm"), {4.5, "nm"}}, {Unit(4.5, ""), {4.5, ""}}, }); } TEST(UnitTest, JsonRoundTripInexact) { TestJsonBinderRoundTripJsonOnlyInexact<Unit>({ {"4nm", {4, "nm"}}, {4, {4, ""}}, {"nm", {1, "nm"}}, }); } TEST(SerializationTest, Basic) { TestSerializationRoundTrip(Unit("4nm")); TestSerializationRoundTrip(Unit("4")); TestSerializationRoundTrip(Unit("nm")); TestSerializationRoundTrip(Unit("")); } }
74
#ifndef TENSORFLOW_TSL_PLATFORM_RETRYING_UTILS_H_ #define TENSORFLOW_TSL_PLATFORM_RETRYING_UTILS_H_ #include <functional> #include "absl/time/time.h" #include "tsl/platform/status.h" namespace tsl { struct RetryConfig { RetryConfig(int64_t init_delay_time_us = 100 * 1000, int64_t max_delay_time_us = 32 * 1000 * 1000, int max_retries = 10) { this->init_delay_time_us = init_delay_time_us; this->max_delay_time_us = max_delay_time_us; this->max_retries = max_retries; } int max_retries; int64_t init_delay_time_us; int64_t max_delay_time_us; }; class RetryingUtils { public: static absl::Status CallWithRetries(const std::function<absl::Status()>& f, const RetryConfig& config); static absl::Status CallWithRetries( const std::function<absl::Status()>& f, const std::function<void(int64_t)>& sleep_usec, const RetryConfig& config); static absl::Status DeleteWithRetries( const std::function<absl::Status()>& delete_func, const RetryConfig& config); }; absl::Duration ComputeRetryBackoff( int current_retry_attempt, absl::Duration min_delay = absl::Milliseconds(1), absl::Duration max_delay = absl::Seconds(10)); } #endif #include "tsl/platform/retrying_utils.h" #include <algorithm> #include <cmath> #include <cstdint> #include <limits> #include "absl/time/time.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/file_system.h" #include "tsl/platform/logging.h" #include "tsl/platform/random.h" namespace tsl { namespace { bool IsRetriable(absl::StatusCode code) { switch (code) { case absl::StatusCode::kUnavailable: case absl::StatusCode::kDeadlineExceeded: case absl::StatusCode::kUnknown: return true; default: return false; } } double GenerateUniformRandomNumber() { return random::New64() * (1.0 / std::numeric_limits<uint64_t>::max()); } double GenerateUniformRandomNumberBetween(double a, double b) { if (a == b) return a; DCHECK_LT(a, b); return a + GenerateUniformRandomNumber() * (b - a); } } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const RetryConfig& config) { return CallWithRetries( f, [](int64_t micros) { return Env::Default()->SleepForMicroseconds(micros); }, config); } absl::Status RetryingUtils::CallWithRetries( const std::function<absl::Status()>& f, const std::function<void(int64_t)>& sleep_usec, const RetryConfig& config) { int retries = 0; while (true) { auto status = f(); if (!IsRetriable(status.code())) { return status; } if (retries >= config.max_retries) { return absl::Status( absl::StatusCode::kAborted, strings::StrCat( "All ", config.max_retries, " retry attempts failed. The last failure: ", status.message())); } int64_t delay_micros = 0; if (config.init_delay_time_us > 0) { const int64_t random_micros = random::New64() % 1000000; delay_micros = std::min(config.init_delay_time_us << retries, config.max_delay_time_us) + random_micros; } VLOG(1) << "The operation failed and will be automatically retried in " << (delay_micros / 1000000.0) << " seconds (attempt " << (retries + 1) << " out of " << config.max_retries << "), caused by: " << status.ToString(); sleep_usec(delay_micros); retries++; } } absl::Status RetryingUtils::DeleteWithRetries( const std::function<absl::Status()>& delete_func, const RetryConfig& config) { bool is_retried = false; return RetryingUtils::CallWithRetries( [delete_func, &is_retried]() { const absl::Status status = delete_func(); if (is_retried && status.code() == error::NOT_FOUND) { return absl::OkStatus(); } is_retried = true; return status; }, config); } absl::Duration ComputeRetryBackoff(int current_retry_attempt, absl::Duration min_delay, absl::Duration max_delay) { DCHECK_GE(current_retry_attempt, 0); constexpr double kBackoffBase = 1.3; constexpr double kBackoffRandMult = 0.4; const absl::Duration first_term = min_delay * kBackoffRandMult; absl::Duration uncapped_second_term = min_delay * std::pow(kBackoffBase, current_retry_attempt); absl::Duration second_term = std::min(uncapped_second_term, max_delay - first_term); second_term *= GenerateUniformRandomNumberBetween(1.0 - kBackoffRandMult, 1.0); return std::max(first_term + second_term, min_delay); } }
#include "tsl/platform/retrying_utils.h" #include <cmath> #include <fstream> #include "absl/time/time.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/platform/env.h" #include "tsl/platform/errors.h" #include "tsl/platform/str_util.h" #include "tsl/platform/test.h" namespace tsl { namespace { TEST(RetryingUtilsTest, CallWithRetries_RetryDelays) { std::vector<double> requested_delays; std::function<void(int64_t)> sleep = [&requested_delays](int64_t delay) { requested_delays.emplace_back(delay / 1000000.0); }; std::function<absl::Status()> f = []() { return errors::Unavailable("Failed."); }; const auto& status = RetryingUtils::CallWithRetries( f, sleep, RetryConfig(500000 )); EXPECT_TRUE(errors::IsAborted(status)); EXPECT_TRUE(absl::StrContains( status.message(), "All 10 retry attempts failed. The last failure: Failed.")) << status; EXPECT_EQ(10, requested_delays.size()); EXPECT_NEAR(0.5, requested_delays[0], 1.0); EXPECT_NEAR(1.0, requested_delays[1], 1.0); EXPECT_NEAR(2.0, requested_delays[2], 1.0); EXPECT_NEAR(4.0, requested_delays[3], 1.0); EXPECT_NEAR(8.0, requested_delays[4], 1.0); EXPECT_NEAR(16.0, requested_delays[5], 1.0); EXPECT_NEAR(32.0, requested_delays[6], 1.0); EXPECT_NEAR(32.0, requested_delays[7], 1.0); EXPECT_NEAR(32.0, requested_delays[8], 1.0); EXPECT_NEAR(32.0, requested_delays[9], 1.0); } TEST(RetryingUtilsTest, CallWithRetries_NotFoundIsNotRetried) { std::vector<absl::Status> results( {errors::Unavailable("Failed."), errors::NotFound("Not found.")}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; EXPECT_TRUE(errors::IsNotFound(RetryingUtils::CallWithRetries( f, RetryConfig(0 )))); } TEST(RetryingUtilsTest, CallWithRetries_ImmediateSuccess) { std::vector<absl::Status> results({absl::OkStatus()}); std::function<void(int64_t)> sleep = [](int64_t delay) { ADD_FAILURE() << "Unexpected call to sleep."; }; std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, sleep, RetryConfig(1L ))); } TEST(RetryingUtilsTest, CallWithRetries_EventualSuccess) { std::vector<absl::Status> results({errors::Unavailable("Failed."), errors::Unavailable("Failed again."), absl::OkStatus()}); std::function<absl::Status()> f = [&results]() { auto result = results[0]; results.erase(results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::CallWithRetries( f, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_ImmediateSuccess) { std::vector<absl::Status> delete_results({absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_EventualSuccess) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), absl::OkStatus()}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_PermissionDeniedNotRetried) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::PermissionDenied("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_TRUE(errors::IsPermissionDenied(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )))); } TEST(RetryingUtilsTest, DeleteWithRetries_SuccessThroughFileNotFound) { std::vector<absl::Status> delete_results( {errors::Unavailable(""), errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; TF_EXPECT_OK(RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 ))); } TEST(RetryingUtilsTest, DeleteWithRetries_FirstNotFoundReturnedAsIs) { std::vector<absl::Status> delete_results({errors::NotFound("")}); const auto delete_func = [&delete_results]() { auto result = delete_results[0]; delete_results.erase(delete_results.begin()); return result; }; EXPECT_EQ(error::NOT_FOUND, RetryingUtils::DeleteWithRetries( delete_func, RetryConfig(0 )) .code()); } TEST(RetryingUtilsTest, ComputeRetryBackoff) { for (int i = 0; i < 30; ++i) { EXPECT_LE(0.4 * absl::Milliseconds(1) + 0.6 * absl::Milliseconds(1) * std::pow(1.3, i), ComputeRetryBackoff(i)); EXPECT_LE( ComputeRetryBackoff(i), 0.4 * absl::Milliseconds(1) + absl::Milliseconds(1) * std::pow(1.3, i)); } } TEST(RetryingUtilsTest, ComputeRetryBackoff_MinMaxDelays) { for (int i = 0; i < 30; ++i) { EXPECT_EQ(ComputeRetryBackoff(i, absl::Seconds(10)), absl::Seconds(10)); EXPECT_EQ(ComputeRetryBackoff(i, absl::Microseconds(1), absl::Microseconds(1)), absl::Microseconds(1)); } } } }
75
#ifndef XLA_SERVICE_HLO_PHI_GRAPH_H_ #define XLA_SERVICE_HLO_PHI_GRAPH_H_ #include <iterator> #include <memory> #include <string> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "xla/hlo/ir/hlo_instruction.h" #include "xla/hlo/ir/hlo_module.h" #include "xla/service/hlo_value.h" namespace xla { class PhiGraph { public: void RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs); HloValue::Id GetOptimizedId(const HloValue& value); bool InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs); HloValue::Id FindOptimizedValue(const HloValue::Id id); void Optimize(); std::string ToString(); private: struct Node { bool is_phi; std::vector<Node*> users; std::vector<Node*> operands; HloValue::Id value_id; bool mark_as_dead = false; }; Node* CreateOrReuseNode(const HloValue& value); void ReplaceNodeWith(Node* node, Node* replace); absl::flat_hash_map<Node*, std::vector<HloValue::Id>> node_to_value_id_; absl::flat_hash_map<HloValue::Id, Node*> value_id_to_node_; std::vector<std::unique_ptr<Node>> node_storage_; }; } #endif #include "xla/service/hlo_phi_graph.h" #include <queue> namespace xla { HloValue::Id PhiGraph::GetOptimizedId(const HloValue& value) { Node* node = value_id_to_node_[value.id()]; CHECK(!node->mark_as_dead); return node->value_id; } bool PhiGraph::InputsEqualTo(const HloValue& value, absl::Span<const HloValue* const> inputs) { auto iter = value_id_to_node_.find(value.id()); CHECK(iter != value_id_to_node_.end()); absl::flat_hash_set<HloValue::Id> existing_set; for (Node* operand : iter->second->operands) { existing_set.insert(operand->value_id); } absl::flat_hash_set<HloValue::Id> new_set; for (const HloValue* input : inputs) { new_set.insert(input->id()); } return existing_set == new_set; } HloValue::Id PhiGraph::FindOptimizedValue(const HloValue::Id id) { auto iter = value_id_to_node_.find(id); CHECK(iter != value_id_to_node_.end()); CHECK(!iter->second->mark_as_dead); return iter->second->value_id; } PhiGraph::Node* PhiGraph::CreateOrReuseNode(const HloValue& value) { auto iter = value_id_to_node_.find(value.id()); if (iter == value_id_to_node_.end()) { node_storage_.emplace_back(std::make_unique<Node>()); Node* node = node_storage_.back().get(); node->value_id = value.id(); value_id_to_node_[value.id()] = node; node_to_value_id_[node].push_back(value.id()); return node; } else { CHECK_NE(iter->second, nullptr); CHECK_EQ(iter->second->value_id, value.id()); return iter->second; } } void PhiGraph::ReplaceNodeWith(PhiGraph::Node* node, PhiGraph::Node* replace) { CHECK(node->is_phi); if (node->mark_as_dead) { return; } if (replace->mark_as_dead) { auto iter = value_id_to_node_.find(replace->value_id); CHECK(iter != value_id_to_node_.end()); return ReplaceNodeWith(node, iter->second); } CHECK(!replace->mark_as_dead); for (Node* user : node->users) { absl::c_replace(user->operands, node, replace); } for (Node* operand : node->operands) { absl::c_replace(operand->users, node, replace); } for (HloValue::Id value_id : node_to_value_id_[node]) { CHECK(value_id_to_node_.contains(value_id)); value_id_to_node_[value_id] = replace; } absl::c_copy(node_to_value_id_[node], std::back_inserter(node_to_value_id_[replace])); node_to_value_id_[node].clear(); node->mark_as_dead = true; } void PhiGraph::RegisterPhi(const HloValue& value, absl::Span<const HloValue* const> inputs) { Node* node = CreateOrReuseNode(value); CHECK(value.is_phi()); node->is_phi = true; node->operands.clear(); for (auto input : inputs) { CHECK(input != nullptr); Node* input_node = CreateOrReuseNode(*input); node->operands.push_back(input_node); } } std::string PhiGraph::ToString() { std::string out = "PhiGraph: \n"; for (auto& node : node_storage_) { absl::StrAppend(&out, node->value_id); if (node->is_phi) { absl::StrAppend(&out, ", phi"); } if (node->mark_as_dead) { absl::StrAppend(&out, ", dead", ":\n"); } for (Node* input : node->operands) { absl::StrAppend(&out, " ", input->value_id, "\n"); } } return out; } void PhiGraph::Optimize() { VLOG(2) << "Optimizing phi graph:"; XLA_VLOG_LINES(2, ToString()); for (auto& node : node_storage_) { for (Node* input : node->operands) { input->users.push_back(node.get()); } } bool changed = true; while (changed) { changed = false; absl::flat_hash_set<Node*> checked_for_closure; for (auto& node : node_storage_) { if (!node->is_phi) { continue; } if (node->mark_as_dead) { continue; } Node* node_ptr = node.get(); VLOG(2) << "Optimizing: " << node_ptr->value_id; CHECK_GE(node_ptr->operands.size(), 1); auto it = absl::c_find(node_ptr->operands, node_ptr); while (it != node_ptr->operands.end()) { node_ptr->operands.erase(it); it = absl::c_find(node_ptr->operands, node_ptr); } it = absl::c_find(node_ptr->users, node_ptr); while (it != node_ptr->users.end()) { node_ptr->users.erase(it); it = absl::c_find(node_ptr->users, node_ptr); } CHECK_GE(node_ptr->operands.size(), 1); bool all_inputs_are_same = absl::c_all_of( node_ptr->operands, [&](Node* elem) { return elem == node_ptr->operands[0]; }); if (all_inputs_are_same) { VLOG(1) << "All inputs to node " << node_ptr->value_id << " are the same, replacing it with " << node_ptr->operands[0]->value_id; ReplaceNodeWith(node_ptr, node_ptr->operands[0]); changed = true; continue; } if (checked_for_closure.contains(node_ptr)) { continue; } absl::flat_hash_set<Node*> workset; std::queue<Node*> worklist; Node* non_phi = nullptr; worklist.push(node_ptr); while (!worklist.empty()) { Node* todo = worklist.front(); worklist.pop(); if (workset.contains(todo)) { continue; } checked_for_closure.insert(todo); workset.insert(todo); for (Node* operand : todo->operands) { worklist.push(operand); } if (!todo->is_phi) { if (non_phi != nullptr && non_phi != todo) { non_phi = nullptr; break; } else { non_phi = todo; } } } if (non_phi != nullptr) { for (Node* node : workset) { if (!node->is_phi) { CHECK_EQ(node, non_phi); continue; } VLOG(1) << "Replace node " << node->value_id << " in the closure with node " << non_phi->value_id; ReplaceNodeWith(node, non_phi); changed = true; } } } } } }
#include "xla/service/hlo_phi_graph.h" #include "xla/literal_util.h" #include "tsl/platform/test.h" namespace xla { namespace { class PhiGraphTest : public ::testing::Test { protected: HloValue NewHloValue(bool is_phi) { static int64_t id = 0; return HloValue(id++, dummy_inst_.get(), {}, is_phi); } void SetUp() override { dummy_inst_ = HloInstruction::CreateConstant(LiteralUtil::CreateR0(0.0f)); } std::unique_ptr<HloInstruction> dummy_inst_; }; TEST_F(PhiGraphTest, SelfReferencingPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, PhiWithSameInputs) { PhiGraph phi_graph; HloValue A = NewHloValue(false); HloValue B = NewHloValue(true); phi_graph.RegisterPhi(B, {&A, &A}); phi_graph.Optimize(); EXPECT_EQ(A.id(), phi_graph.FindOptimizedValue(B.id())); } TEST_F(PhiGraphTest, CircularPhi) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&D, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); } TEST_F(PhiGraphTest, NestedPhiReduction) { PhiGraph phi_graph; HloValue A = NewHloValue(true); HloValue B = NewHloValue(true); HloValue C = NewHloValue(true); HloValue D = NewHloValue(false); HloValue E = NewHloValue(true); phi_graph.RegisterPhi(A, {&B, &C}); phi_graph.RegisterPhi(B, {&E, &C}); phi_graph.RegisterPhi(C, {&A, &B}); phi_graph.RegisterPhi(E, {&D, &D}); phi_graph.Optimize(); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(A.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(B.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(C.id())); EXPECT_EQ(D.id(), phi_graph.FindOptimizedValue(E.id())); } } }
76
#ifndef TENSORFLOW_CORE_PROFILER_CONVERT_XPLANE_TO_MEMORY_PROFILE_H_ #define TENSORFLOW_CORE_PROFILER_CONVERT_XPLANE_TO_MEMORY_PROFILE_H_ #include <string> #include "tensorflow/core/platform/status.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tsl/profiler/protobuf/xplane.pb.h" namespace tensorflow { namespace profiler { MemoryProfile ConvertXPlaneToMemoryProfile(const XPlane& host_plane, int64_t max_num_snapshots = 1000); Status ConvertXSpaceToMemoryProfileJson(const XSpace& xspace, std::string* json_output); } } #endif #include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include <algorithm> #include <string> #include <tuple> #include <type_traits> #include <utility> #include <vector> #include "absl/algorithm/container.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "tensorflow/core/framework/types.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/lib/gtl/map_util.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/protobuf.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_utils.h" #include "tensorflow/core/profiler/utils/xplane_visitor.h" #include "tsl/profiler/utils/tf_xplane_visitor.h" namespace tensorflow { namespace profiler { namespace { constexpr int64_t kInvalidStepId = -1; using IndexMetaPair = std::pair<int64_t , const MemoryActivityMetadata*>; bool IsMemoryAllocation(int64_t event_type) { return event_type == HostEventType::kMemoryAllocation; } bool IsMemoryDeallocation(int64_t event_type) { return event_type == HostEventType::kMemoryDeallocation; } void UpdateProfileSummary(const MemoryAggregationStats& stats, int64_t time_offset_ps, MemoryProfileSummary* summary) { summary->set_peak_bytes_usage_lifetime(stats.peak_bytes_in_use()); MemoryAggregationStats* peak_stats = summary->mutable_peak_stats(); if (stats.stack_reserved_bytes() + stats.heap_allocated_bytes() >= peak_stats->peak_bytes_in_use()) { *peak_stats = stats; peak_stats->set_peak_bytes_in_use(stats.stack_reserved_bytes() + stats.heap_allocated_bytes()); summary->set_peak_stats_time_ps(time_offset_ps); summary->set_memory_capacity(stats.stack_reserved_bytes() + stats.heap_allocated_bytes() + stats.free_memory_bytes()); } } MemoryProfile GenerateMemoryProfile(const XPlane* host_trace) { XPlaneVisitor plane = tsl::profiler::CreateTfXPlaneVisitor(host_trace); MemoryProfile memory_profile; plane.ForEachLine([&](const XLineVisitor& line) { line.ForEachEvent([&](const XEventVisitor& event) { int64_t event_type = event.Type().value_or(HostEventType::kUnknownHostEventType); if (!(IsMemoryAllocation(event_type) || IsMemoryDeallocation(event_type))) { return; } MemoryAggregationStats stats; MemoryActivityMetadata metadata; if (IsMemoryAllocation(event_type)) { metadata.set_memory_activity(ALLOCATION); } else if (IsMemoryDeallocation(event_type)) { metadata.set_memory_activity(DEALLOCATION); } metadata.set_step_id(kInvalidStepId); std::string memory_id; event.ForEachStat([&](const XStatVisitor& stat) { if (!stat.Type().has_value()) return; switch (stat.Type().value()) { case StatType::kIndexOnHost: case StatType::kDeviceOrdinal: memory_id = absl::StrCat(stat.IntValue()); break; case StatType::kAllocatorName: memory_id = std::string(stat.StrOrRefValue()); break; case StatType::kBytesReserved: stats.set_stack_reserved_bytes(stat.IntValue()); break; case StatType::kBytesAllocated: stats.set_heap_allocated_bytes(stat.IntValue()); break; case StatType::kBytesAvailable: stats.set_free_memory_bytes(stat.IntValue()); break; case StatType::kFragmentation: stats.set_fragmentation(stat.DoubleValue()); break; case StatType::kPeakBytesInUse: stats.set_peak_bytes_in_use(stat.IntValue()); break; case StatType::kRequestedBytes: metadata.set_requested_bytes(stat.IntValue()); break; case StatType::kAllocationBytes: metadata.set_allocation_bytes(stat.IntValue()); break; case StatType::kAddress: metadata.set_address(stat.IntValue()); break; case StatType::kTfOp: metadata.set_tf_op_name(std::string(stat.StrOrRefValue())); break; case StatType::kGroupId: metadata.set_step_id(stat.IntValue()); break; case StatType::kRegionType: metadata.set_region_type(std::string(stat.StrOrRefValue())); break; case StatType::kDataType: metadata.set_data_type(tensorflow::DataTypeString( static_cast<tensorflow::DataType>(stat.IntValue()))); break; case StatType::kTensorShapes: metadata.set_tensor_shape(std::string(stat.StrOrRefValue())); break; } }); MemoryProfileSummary* summary = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .mutable_profile_summary(); UpdateProfileSummary(stats, event.OffsetPs(), summary); MemoryProfileSnapshot* snapshot = (*memory_profile.mutable_memory_profile_per_allocator())[memory_id] .add_memory_profile_snapshots(); snapshot->set_time_offset_ps(event.OffsetPs()); *snapshot->mutable_aggregation_stats() = std::move(stats); *snapshot->mutable_activity_metadata() = std::move(metadata); }); }); return memory_profile; } void UpdateStepId(PerAllocatorMemoryProfile* memory_profile) { int64_t last_valid_step_id = -1; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { DCHECK(snapshot.has_activity_metadata()); if (snapshot.mutable_activity_metadata()->step_id() == kInvalidStepId) { snapshot.mutable_activity_metadata()->set_step_id(last_valid_step_id + 1); } else { last_valid_step_id = snapshot.mutable_activity_metadata()->step_id(); } } } void UpdateDeallocation(PerAllocatorMemoryProfile* memory_profile) { absl::flat_hash_map<uint64 , const MemoryActivityMetadata*> addr_metadata_map; for (auto& snapshot : *memory_profile->mutable_memory_profile_snapshots()) { uint64 address = snapshot.activity_metadata().address(); if (snapshot.activity_metadata().memory_activity() == DEALLOCATION) { if (addr_metadata_map.contains(address)) { const MemoryActivityMetadata* alloc_meta = addr_metadata_map[address]; snapshot.mutable_activity_metadata()->set_tf_op_name( alloc_meta->tf_op_name()); snapshot.mutable_activity_metadata()->set_region_type( alloc_meta->region_type()); snapshot.mutable_activity_metadata()->set_data_type( alloc_meta->data_type()); snapshot.mutable_activity_metadata()->set_tensor_shape( alloc_meta->tensor_shape()); addr_metadata_map.erase(address); } else { VLOG(2) << "Can't find matching memory allocation for this deallocation: " << snapshot.DebugString(); } } else if (!addr_metadata_map.contains(address)) { addr_metadata_map[address] = &snapshot.activity_metadata(); } else { VLOG(2) << "There are two allocations recorded for the same address: " << address << ". The later allocation event is: " << snapshot.DebugString(); } } VLOG(2) << "Number of allocations that cannot find matching dealloctions: " << addr_metadata_map.size(); } int64_t GetPeakMemoryStep(int64_t peak_bytes_profile, const PerAllocatorMemoryProfile* memory_profile) { int64_t peak_bytes_profile_step_id = 0; for (const auto& snapshot : memory_profile->memory_profile_snapshots()) { if (peak_bytes_profile == snapshot.aggregation_stats().heap_allocated_bytes() + snapshot.aggregation_stats().stack_reserved_bytes()) { DCHECK(snapshot.has_activity_metadata()); peak_bytes_profile_step_id = snapshot.activity_metadata().step_id(); } } return peak_bytes_profile_step_id; } struct MetadataComparator { bool operator()(const IndexMetaPair& a, const IndexMetaPair& b) const { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; DCHECK_NE(a_meta, nullptr); DCHECK_NE(b_meta, nullptr); auto lhs = std::make_tuple(-a_meta->allocation_bytes(), -a_meta->requested_bytes(), a_meta->tf_op_name(), a_meta->region_type(), a_meta->data_type(), a_meta->tensor_shape()); auto rhs = std::make_tuple(-b_meta->allocation_bytes(), -b_meta->requested_bytes(), b_meta->tf_op_name(), b_meta->region_type(), b_meta->data_type(), b_meta->tensor_shape()); return lhs < rhs; } }; void InsertSpecialAllocations(int64_t unmapped_allocation_bytes, int64_t step_id, PerAllocatorMemoryProfile* memory_profile, std::vector<IndexMetaPair>* active_allocs) { int index = 0; if (unmapped_allocation_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(unmapped_allocation_bytes); special_allocation->set_allocation_bytes(unmapped_allocation_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("unused preallocated device memory"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("persist/dynamic"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } int64_t stack_bytes = memory_profile->profile_summary().peak_stats().stack_reserved_bytes(); if (stack_bytes > 0) { MemoryActivityMetadata* special_allocation = memory_profile->add_special_allocations(); special_allocation->set_memory_activity(ALLOCATION); special_allocation->set_requested_bytes(stack_bytes); special_allocation->set_allocation_bytes(stack_bytes); special_allocation->set_address(0); special_allocation->set_tf_op_name("stack"); special_allocation->set_step_id(step_id); special_allocation->set_region_type("stack"); special_allocation->set_data_type( tensorflow::DataTypeString(static_cast<tensorflow::DataType>(0))); special_allocation->set_tensor_shape("unknown"); active_allocs->push_back({--index, special_allocation}); } } bool operator==(const IndexMetaPair& a, const IndexMetaPair& b) { const MemoryActivityMetadata* a_meta = a.second; const MemoryActivityMetadata* b_meta = b.second; return a_meta->allocation_bytes() == b_meta->allocation_bytes() && a_meta->requested_bytes() == b_meta->requested_bytes() && a_meta->tf_op_name() == b_meta->tf_op_name() && a_meta->region_type() == b_meta->region_type() && a_meta->data_type() == b_meta->data_type() && a_meta->tensor_shape() == b_meta->tensor_shape(); } void ProcessActiveAllocations(int64_t peak_bytes_profile_step_id, PerAllocatorMemoryProfile* memory_profile) { int64_t unmapped_allocation_bytes = memory_profile->profile_summary().peak_stats().heap_allocated_bytes(); int64_t unmapped_deallocation_bytes = 0; absl::flat_hash_map<int64_t , IndexMetaPair> active_alloc_map; for (int i = 0; i < memory_profile->memory_profile_snapshots_size(); i++) { const auto& snapshot = memory_profile->memory_profile_snapshots().at(i); DCHECK(snapshot.has_activity_metadata()); const MemoryActivityMetadata& metadata = snapshot.activity_metadata(); if (snapshot.time_offset_ps() > memory_profile->profile_summary().peak_stats_time_ps()) break; if (metadata.step_id() != peak_bytes_profile_step_id) continue; if (metadata.memory_activity() == ALLOCATION) { active_alloc_map[metadata.address()] = {i, &metadata}; unmapped_allocation_bytes -= metadata.allocation_bytes(); } else { DCHECK_EQ(metadata.memory_activity(), DEALLOCATION); if (active_alloc_map.contains(metadata.address())) { active_alloc_map.erase(metadata.address()); } else { unmapped_deallocation_bytes += metadata.allocation_bytes(); } unmapped_allocation_bytes += metadata.allocation_bytes(); } } unmapped_allocation_bytes -= unmapped_deallocation_bytes; VLOG(2) << "unmapped_allocation_bytes=" << unmapped_allocation_bytes << ", unmapped_deallocation_bytes=" << unmapped_deallocation_bytes; std::vector<IndexMetaPair> active_allocs; for (const auto& address_and_index_meta : active_alloc_map) { active_allocs.push_back(address_and_index_meta.second); } InsertSpecialAllocations(unmapped_allocation_bytes, peak_bytes_profile_step_id, memory_profile, &active_allocs); std::sort(active_allocs.begin(), active_allocs.end(), MetadataComparator()); for (int i = 0, end = active_allocs.size(); i < end; i++) { ActiveAllocation* allocation = memory_profile->add_active_allocations(); allocation->set_snapshot_index(active_allocs[i].first); if (active_allocs[i].first < 0) { allocation->set_special_index(-active_allocs[i].first - 1); } else { allocation->set_special_index(-1); } allocation->set_num_occurrences(1); const int last_alloc = active_allocs.size() - 1; while (i < last_alloc && active_allocs[i] == active_allocs[i + 1]) { allocation->set_num_occurrences(allocation->num_occurrences() + 1); i++; } } VLOG(2) << "Distinctive active allocation count=" << memory_profile->active_allocations_size(); } void SaveActiveAllocationSnapshots( protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots, protobuf::RepeatedPtrField<ActiveAllocation>* active_allocations) { std::vector<MemoryProfileSnapshot*> samples; for (const auto& allocation : *active_allocations) { auto orig_index = allocation.snapshot_index(); if (orig_index < 0) continue; samples.push_back(&(*snapshots)[orig_index]); } int new_index = 0; for (auto& allocation : *active_allocations) { int64_t origin_index = allocation.snapshot_index(); if (origin_index < 0) continue; allocation.set_snapshot_index(new_index); new_index++; } protobuf::RepeatedPtrField<MemoryProfileSnapshot> new_snapshots; new_snapshots.Reserve(samples.size()); for (const auto& sample : samples) { *new_snapshots.Add() = std::move(*sample); } *snapshots = std::move(new_snapshots); } void SampleMemoryProfileTimeline(int64_t max_num_snapshots, PerAllocatorMemoryProfile* memory_profile) { const protobuf::RepeatedPtrField<MemoryProfileSnapshot>& original_snapshots = memory_profile->memory_profile_snapshots(); protobuf::RepeatedPtrField<MemoryProfileSnapshot>* timeline_snapshots = memory_profile->mutable_sampled_timeline_snapshots(); int64_t snapshot_count = original_snapshots.size(); if (snapshot_count > max_num_snapshots) { auto max_box_filter = [&](int filter_width, int count, int start) { for (int i = 0; i < count; i++) { const MemoryProfileSnapshot* max_snapshot = &original_snapshots[start + filter_width * i]; int64_t max_bytes = max_snapshot->aggregation_stats().heap_allocated_bytes() + max_snapshot->aggregation_stats().stack_reserved_bytes(); for (int index = start + filter_width * i + 1; index < start + filter_width * (i + 1); index++) { int64_t bytes = original_snapshots[index] .aggregation_stats() .heap_allocated_bytes() + original_snapshots[index] .aggregation_stats() .stack_reserved_bytes(); if (bytes > max_bytes) { max_snapshot = &original_snapshots[index]; max_bytes = bytes; } } *timeline_snapshots->Add() = *max_snapshot; } }; int width = snapshot_count / max_num_snapshots; int count1 = max_num_snapshots * (width + 1) - snapshot_count; int count2 = max_num_snapshots - count1; max_box_filter(width, count1, 0); max_box_filter(width + 1, count2, width * count1); } else { *timeline_snapshots = original_snapshots; } } void ProcessMemoryProfileProto(int64_t max_num_snapshots, MemoryProfile* memory_profile) { memory_profile->set_num_hosts(1); for (const auto& id_and_allocator_profile : memory_profile->memory_profile_per_allocator()) { if (!id_and_allocator_profile.second.memory_profile_snapshots().empty()) { memory_profile->add_memory_ids(id_and_allocator_profile.first); } } absl::c_sort(*memory_profile->mutable_memory_ids()); for (auto& id_and_allocator_profile : *memory_profile->mutable_memory_profile_per_allocator()) { PerAllocatorMemoryProfile* allocator_memory_profile = &id_and_allocator_profile.second; protobuf::RepeatedPtrField<MemoryProfileSnapshot>* snapshots = allocator_memory_profile->mutable_memory_profile_snapshots(); absl::c_sort(*snapshots, [](const MemoryProfileSnapshot& a, const MemoryProfileSnapshot& b) { return a.time_offset_ps() < b.time_offset_ps(); }); UpdateStepId(allocator_memory_profile); UpdateDeallocation(allocator_memory_profile); SampleMemoryProfileTimeline(max_num_snapshots, allocator_memory_profile); int64_t peak_step_id = GetPeakMemoryStep(allocator_memory_profile->profile_summary() .peak_stats() .peak_bytes_in_use(), allocator_memory_profile); ProcessActiveAllocations(peak_step_id, allocator_memory_profile); SaveActiveAllocationSnapshots( snapshots, allocator_memory_profile->mutable_active_allocations()); } } template <typename Proto> Status ConvertProtoToJson(const Proto& proto_output, std::string* json_output) { protobuf::util::JsonPrintOptions json_options; json_options.always_print_primitive_fields = true; auto status = protobuf::util::MessageToJsonString(proto_output, json_output, json_options); if (!status.ok()) { auto error_msg = status.message(); return errors::Internal( "Could not convert proto to JSON string: ", absl::string_view(error_msg.data(), error_msg.length())); } return absl::OkStatus(); } } MemoryProfile ConvertXPlaneToMemoryProfile(const XPlane& host_plane, int64_t max_num_snapshots) { MemoryProfile memory_profile = GenerateMemoryProfile(&host_plane); ProcessMemoryProfileProto(max_num_snapshots, &memory_profile); memory_profile.set_version(1); return memory_profile; } Status ConvertXSpaceToMemoryProfileJson(const XSpace& xspace, std::string* json_output) { if (const XPlane* host_plane = FindPlaneWithName(xspace, kHostThreadsPlaneName)) { MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); TF_RETURN_IF_ERROR(ConvertProtoToJson(memory_profile, json_output)); } return absl::OkStatus(); } } }
#include "tensorflow/core/profiler/convert/xplane_to_memory_profile.h" #include "absl/strings/string_view.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/platform/types.h" #include "tensorflow/core/profiler/protobuf/memory_profile.pb.h" #include "tensorflow/core/profiler/protobuf/xplane.pb.h" #include "tensorflow/core/profiler/utils/xplane_builder.h" #include "tensorflow/core/profiler/utils/xplane_schema.h" #include "tensorflow/core/profiler/utils/xplane_test_utils.h" #include "tsl/profiler/utils/group_events.h" namespace tensorflow { namespace profiler { namespace { TEST(ConvertXPlaneToMemoryProfile, OneAllocatorMultiActivitiesTest) { XSpace space; XPlane* host_plane = GetOrCreateHostXPlane(&space); XPlaneBuilder host_plane_builder(host_plane); host_plane_builder.ReserveLines(1); auto tf_executor_thread = host_plane_builder.GetOrCreateLine(0); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 40000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{3000}}, {StatType::kBytesAvailable, int64_t{5000}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{1}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "foo/bar"}, {StatType::kRegionType, "output"}, {StatType::kTensorShapes, "[3, 3, 512, 512]"}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryDeallocation", 50000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{2744}}, {StatType::kBytesAvailable, int64_t{5256}}, {StatType::kPeakBytesInUse, int64_t{8500}}, {StatType::kRequestedBytes, int64_t{200}}, {StatType::kAllocationBytes, int64_t{256}}, {StatType::kAddress, int64_t{222333}}, {StatType::kStepId, int64_t{0}}, {StatType::kDataType, int64_t{0}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kRegionType, ""}, {StatType::kTensorShapes, ""}}); CreateXEvent(&host_plane_builder, &tf_executor_thread, "MemoryAllocation", 70000, 1000, {{StatType::kBytesReserved, int64_t{2000}}, {StatType::kBytesAllocated, int64_t{5000}}, {StatType::kBytesAvailable, int64_t{3000}}, {StatType::kPeakBytesInUse, int64_t{9500}}, {StatType::kRequestedBytes, int64_t{300}}, {StatType::kAllocationBytes, int64_t{300}}, {StatType::kAddress, int64_t{345678}}, {StatType::kStepId, int64_t{-93746}}, {StatType::kDataType, int64_t{9}}, {StatType::kAllocatorName, "GPU_0_bfc"}, {StatType::kTfOp, "mul_grad/Sum"}, {StatType::kRegionType, "temp"}, {StatType::kTensorShapes, "[1, 2]"}}); tsl::profiler::GroupTfEvents(&space); MemoryProfile memory_profile = ConvertXPlaneToMemoryProfile(*host_plane); EXPECT_EQ(memory_profile.memory_profile_per_allocator().size(), 1); EXPECT_EQ(memory_profile.num_hosts(), 1); EXPECT_EQ(memory_profile.memory_ids_size(), 1); EXPECT_EQ(memory_profile.memory_profile_per_allocator().begin()->first, "GPU_0_bfc"); EXPECT_EQ(memory_profile.version(), 1); const auto& allocator_memory_profile = memory_profile.memory_profile_per_allocator().begin()->second; EXPECT_EQ( allocator_memory_profile.profile_summary().peak_bytes_usage_lifetime(), 9500); EXPECT_EQ(allocator_memory_profile.profile_summary() .peak_stats() .peak_bytes_in_use(), 7000); EXPECT_EQ(allocator_memory_profile.profile_summary().peak_stats_time_ps(), 70000); EXPECT_EQ(allocator_memory_profile.sampled_timeline_snapshots_size(), 3); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots_size(), 1); EXPECT_EQ(allocator_memory_profile.memory_profile_snapshots() .at(0) .activity_metadata() .tf_op_name(), "mul_grad/Sum"); EXPECT_EQ(allocator_memory_profile.active_allocations_size(), 3); EXPECT_EQ( allocator_memory_profile.active_allocations().at(2).snapshot_index(), 0); EXPECT_EQ(allocator_memory_profile.special_allocations_size(), 2); EXPECT_EQ(allocator_memory_profile.special_allocations().at(1).tf_op_name(), "stack"); EXPECT_EQ( allocator_memory_profile.special_allocations().at(1).allocation_bytes(), 2000); } } } }
77
#ifndef ABSL_BASE_INTERNAL_THROW_DELEGATE_H_ #define ABSL_BASE_INTERNAL_THROW_DELEGATE_H_ #include <string> #include "absl/base/config.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { [[noreturn]] void ThrowStdLogicError(const std::string& what_arg); [[noreturn]] void ThrowStdLogicError(const char* what_arg); [[noreturn]] void ThrowStdInvalidArgument(const std::string& what_arg); [[noreturn]] void ThrowStdInvalidArgument(const char* what_arg); [[noreturn]] void ThrowStdDomainError(const std::string& what_arg); [[noreturn]] void ThrowStdDomainError(const char* what_arg); [[noreturn]] void ThrowStdLengthError(const std::string& what_arg); [[noreturn]] void ThrowStdLengthError(const char* what_arg); [[noreturn]] void ThrowStdOutOfRange(const std::string& what_arg); [[noreturn]] void ThrowStdOutOfRange(const char* what_arg); [[noreturn]] void ThrowStdRuntimeError(const std::string& what_arg); [[noreturn]] void ThrowStdRuntimeError(const char* what_arg); [[noreturn]] void ThrowStdRangeError(const std::string& what_arg); [[noreturn]] void ThrowStdRangeError(const char* what_arg); [[noreturn]] void ThrowStdOverflowError(const std::string& what_arg); [[noreturn]] void ThrowStdOverflowError(const char* what_arg); [[noreturn]] void ThrowStdUnderflowError(const std::string& what_arg); [[noreturn]] void ThrowStdUnderflowError(const char* what_arg); [[noreturn]] void ThrowStdBadFunctionCall(); [[noreturn]] void ThrowStdBadAlloc(); } ABSL_NAMESPACE_END } #endif #include "absl/base/internal/throw_delegate.h" #include <cstdlib> #include <functional> #include <new> #include <stdexcept> #include "absl/base/config.h" #include "absl/base/internal/raw_logging.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { void ThrowStdLogicError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::logic_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdLogicError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::logic_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdInvalidArgument(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::invalid_argument(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdInvalidArgument(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::invalid_argument(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdDomainError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::domain_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdDomainError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::domain_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdLengthError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::length_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdLengthError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::length_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdOutOfRange(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::out_of_range(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdOutOfRange(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::out_of_range(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdRuntimeError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::runtime_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdRuntimeError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::runtime_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdRangeError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::range_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdRangeError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::range_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdOverflowError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::overflow_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdOverflowError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::overflow_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdUnderflowError(const std::string& what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::underflow_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg.c_str()); std::abort(); #endif } void ThrowStdUnderflowError(const char* what_arg) { #ifdef ABSL_HAVE_EXCEPTIONS throw std::underflow_error(what_arg); #else ABSL_RAW_LOG(FATAL, "%s", what_arg); std::abort(); #endif } void ThrowStdBadFunctionCall() { #ifdef ABSL_HAVE_EXCEPTIONS throw std::bad_function_call(); #else std::abort(); #endif } void ThrowStdBadAlloc() { #ifdef ABSL_HAVE_EXCEPTIONS throw std::bad_alloc(); #else std::abort(); #endif } } ABSL_NAMESPACE_END }
#include "absl/base/internal/throw_delegate.h" #include <functional> #include <new> #include <stdexcept> #include "absl/base/config.h" #include "gtest/gtest.h" namespace { using absl::base_internal::ThrowStdLogicError; using absl::base_internal::ThrowStdInvalidArgument; using absl::base_internal::ThrowStdDomainError; using absl::base_internal::ThrowStdLengthError; using absl::base_internal::ThrowStdOutOfRange; using absl::base_internal::ThrowStdRuntimeError; using absl::base_internal::ThrowStdRangeError; using absl::base_internal::ThrowStdOverflowError; using absl::base_internal::ThrowStdUnderflowError; using absl::base_internal::ThrowStdBadFunctionCall; using absl::base_internal::ThrowStdBadAlloc; constexpr const char* what_arg = "The quick brown fox jumps over the lazy dog"; template <typename E> void ExpectThrowChar(void (*f)(const char*)) { #ifdef ABSL_HAVE_EXCEPTIONS try { f(what_arg); FAIL() << "Didn't throw"; } catch (const E& e) { EXPECT_STREQ(e.what(), what_arg); } #else EXPECT_DEATH_IF_SUPPORTED(f(what_arg), what_arg); #endif } template <typename E> void ExpectThrowString(void (*f)(const std::string&)) { #ifdef ABSL_HAVE_EXCEPTIONS try { f(what_arg); FAIL() << "Didn't throw"; } catch (const E& e) { EXPECT_STREQ(e.what(), what_arg); } #else EXPECT_DEATH_IF_SUPPORTED(f(what_arg), what_arg); #endif } template <typename E> void ExpectThrowNoWhat(void (*f)()) { #ifdef ABSL_HAVE_EXCEPTIONS try { f(); FAIL() << "Didn't throw"; } catch (const E& e) { } #else EXPECT_DEATH_IF_SUPPORTED(f(), ""); #endif } TEST(ThrowDelegate, ThrowStdLogicErrorChar) { ExpectThrowChar<std::logic_error>(ThrowStdLogicError); } TEST(ThrowDelegate, ThrowStdInvalidArgumentChar) { ExpectThrowChar<std::invalid_argument>(ThrowStdInvalidArgument); } TEST(ThrowDelegate, ThrowStdDomainErrorChar) { ExpectThrowChar<std::domain_error>(ThrowStdDomainError); } TEST(ThrowDelegate, ThrowStdLengthErrorChar) { ExpectThrowChar<std::length_error>(ThrowStdLengthError); } TEST(ThrowDelegate, ThrowStdOutOfRangeChar) { ExpectThrowChar<std::out_of_range>(ThrowStdOutOfRange); } TEST(ThrowDelegate, ThrowStdRuntimeErrorChar) { ExpectThrowChar<std::runtime_error>(ThrowStdRuntimeError); } TEST(ThrowDelegate, ThrowStdRangeErrorChar) { ExpectThrowChar<std::range_error>(ThrowStdRangeError); } TEST(ThrowDelegate, ThrowStdOverflowErrorChar) { ExpectThrowChar<std::overflow_error>(ThrowStdOverflowError); } TEST(ThrowDelegate, ThrowStdUnderflowErrorChar) { ExpectThrowChar<std::underflow_error>(ThrowStdUnderflowError); } TEST(ThrowDelegate, ThrowStdLogicErrorString) { ExpectThrowString<std::logic_error>(ThrowStdLogicError); } TEST(ThrowDelegate, ThrowStdInvalidArgumentString) { ExpectThrowString<std::invalid_argument>(ThrowStdInvalidArgument); } TEST(ThrowDelegate, ThrowStdDomainErrorString) { ExpectThrowString<std::domain_error>(ThrowStdDomainError); } TEST(ThrowDelegate, ThrowStdLengthErrorString) { ExpectThrowString<std::length_error>(ThrowStdLengthError); } TEST(ThrowDelegate, ThrowStdOutOfRangeString) { ExpectThrowString<std::out_of_range>(ThrowStdOutOfRange); } TEST(ThrowDelegate, ThrowStdRuntimeErrorString) { ExpectThrowString<std::runtime_error>(ThrowStdRuntimeError); } TEST(ThrowDelegate, ThrowStdRangeErrorString) { ExpectThrowString<std::range_error>(ThrowStdRangeError); } TEST(ThrowDelegate, ThrowStdOverflowErrorString) { ExpectThrowString<std::overflow_error>(ThrowStdOverflowError); } TEST(ThrowDelegate, ThrowStdUnderflowErrorString) { ExpectThrowString<std::underflow_error>(ThrowStdUnderflowError); } TEST(ThrowDelegate, ThrowStdBadFunctionCallNoWhat) { #ifdef ABSL_HAVE_EXCEPTIONS try { ThrowStdBadFunctionCall(); FAIL() << "Didn't throw"; } catch (const std::bad_function_call&) { } #ifdef _LIBCPP_VERSION catch (const std::exception&) { } #endif #else EXPECT_DEATH_IF_SUPPORTED(ThrowStdBadFunctionCall(), ""); #endif } TEST(ThrowDelegate, ThrowStdBadAllocNoWhat) { ExpectThrowNoWhat<std::bad_alloc>(ThrowStdBadAlloc); } }
78
#ifndef STORAGE_LEVELDB_HELPERS_MEMENV_MEMENV_H_ #define STORAGE_LEVELDB_HELPERS_MEMENV_MEMENV_H_ #include "leveldb/export.h" namespace leveldb { class Env; LEVELDB_EXPORT Env* NewMemEnv(Env* base_env); } #endif #include "helpers/memenv/memenv.h" #include <cstring> #include <limits> #include <map> #include <string> #include <vector> #include "leveldb/env.h" #include "leveldb/status.h" #include "port/port.h" #include "port/thread_annotations.h" #include "util/mutexlock.h" namespace leveldb { namespace { class FileState { public: FileState() : refs_(0), size_(0) {} FileState(const FileState&) = delete; FileState& operator=(const FileState&) = delete; void Ref() { MutexLock lock(&refs_mutex_); ++refs_; } void Unref() { bool do_delete = false; { MutexLock lock(&refs_mutex_); --refs_; assert(refs_ >= 0); if (refs_ <= 0) { do_delete = true; } } if (do_delete) { delete this; } } uint64_t Size() const { MutexLock lock(&blocks_mutex_); return size_; } void Truncate() { MutexLock lock(&blocks_mutex_); for (char*& block : blocks_) { delete[] block; } blocks_.clear(); size_ = 0; } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const { MutexLock lock(&blocks_mutex_); if (offset > size_) { return Status::IOError("Offset greater than file size."); } const uint64_t available = size_ - offset; if (n > available) { n = static_cast<size_t>(available); } if (n == 0) { *result = Slice(); return Status::OK(); } assert(offset / kBlockSize <= std::numeric_limits<size_t>::max()); size_t block = static_cast<size_t>(offset / kBlockSize); size_t block_offset = offset % kBlockSize; size_t bytes_to_copy = n; char* dst = scratch; while (bytes_to_copy > 0) { size_t avail = kBlockSize - block_offset; if (avail > bytes_to_copy) { avail = bytes_to_copy; } std::memcpy(dst, blocks_[block] + block_offset, avail); bytes_to_copy -= avail; dst += avail; block++; block_offset = 0; } *result = Slice(scratch, n); return Status::OK(); } Status Append(const Slice& data) { const char* src = data.data(); size_t src_len = data.size(); MutexLock lock(&blocks_mutex_); while (src_len > 0) { size_t avail; size_t offset = size_ % kBlockSize; if (offset != 0) { avail = kBlockSize - offset; } else { blocks_.push_back(new char[kBlockSize]); avail = kBlockSize; } if (avail > src_len) { avail = src_len; } std::memcpy(blocks_.back() + offset, src, avail); src_len -= avail; src += avail; size_ += avail; } return Status::OK(); } private: enum { kBlockSize = 8 * 1024 }; ~FileState() { Truncate(); } port::Mutex refs_mutex_; int refs_ GUARDED_BY(refs_mutex_); mutable port::Mutex blocks_mutex_; std::vector<char*> blocks_ GUARDED_BY(blocks_mutex_); uint64_t size_ GUARDED_BY(blocks_mutex_); }; class SequentialFileImpl : public SequentialFile { public: explicit SequentialFileImpl(FileState* file) : file_(file), pos_(0) { file_->Ref(); } ~SequentialFileImpl() override { file_->Unref(); } Status Read(size_t n, Slice* result, char* scratch) override { Status s = file_->Read(pos_, n, result, scratch); if (s.ok()) { pos_ += result->size(); } return s; } Status Skip(uint64_t n) override { if (pos_ > file_->Size()) { return Status::IOError("pos_ > file_->Size()"); } const uint64_t available = file_->Size() - pos_; if (n > available) { n = available; } pos_ += n; return Status::OK(); } private: FileState* file_; uint64_t pos_; }; class RandomAccessFileImpl : public RandomAccessFile { public: explicit RandomAccessFileImpl(FileState* file) : file_(file) { file_->Ref(); } ~RandomAccessFileImpl() override { file_->Unref(); } Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const override { return file_->Read(offset, n, result, scratch); } private: FileState* file_; }; class WritableFileImpl : public WritableFile { public: WritableFileImpl(FileState* file) : file_(file) { file_->Ref(); } ~WritableFileImpl() override { file_->Unref(); } Status Append(const Slice& data) override { return file_->Append(data); } Status Close() override { return Status::OK(); } Status Flush() override { return Status::OK(); } Status Sync() override { return Status::OK(); } private: FileState* file_; }; class NoOpLogger : public Logger { public: void Logv(const char* format, std::va_list ap) override {} }; class InMemoryEnv : public EnvWrapper { public: explicit InMemoryEnv(Env* base_env) : EnvWrapper(base_env) {} ~InMemoryEnv() override { for (const auto& kvp : file_map_) { kvp.second->Unref(); } } Status NewSequentialFile(const std::string& fname, SequentialFile** result) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { *result = nullptr; return Status::IOError(fname, "File not found"); } *result = new SequentialFileImpl(file_map_[fname]); return Status::OK(); } Status NewRandomAccessFile(const std::string& fname, RandomAccessFile** result) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { *result = nullptr; return Status::IOError(fname, "File not found"); } *result = new RandomAccessFileImpl(file_map_[fname]); return Status::OK(); } Status NewWritableFile(const std::string& fname, WritableFile** result) override { MutexLock lock(&mutex_); FileSystem::iterator it = file_map_.find(fname); FileState* file; if (it == file_map_.end()) { file = new FileState(); file->Ref(); file_map_[fname] = file; } else { file = it->second; file->Truncate(); } *result = new WritableFileImpl(file); return Status::OK(); } Status NewAppendableFile(const std::string& fname, WritableFile** result) override { MutexLock lock(&mutex_); FileState** sptr = &file_map_[fname]; FileState* file = *sptr; if (file == nullptr) { file = new FileState(); file->Ref(); } *result = new WritableFileImpl(file); return Status::OK(); } bool FileExists(const std::string& fname) override { MutexLock lock(&mutex_); return file_map_.find(fname) != file_map_.end(); } Status GetChildren(const std::string& dir, std::vector<std::string>* result) override { MutexLock lock(&mutex_); result->clear(); for (const auto& kvp : file_map_) { const std::string& filename = kvp.first; if (filename.size() >= dir.size() + 1 && filename[dir.size()] == '/' && Slice(filename).starts_with(Slice(dir))) { result->push_back(filename.substr(dir.size() + 1)); } } return Status::OK(); } void RemoveFileInternal(const std::string& fname) EXCLUSIVE_LOCKS_REQUIRED(mutex_) { if (file_map_.find(fname) == file_map_.end()) { return; } file_map_[fname]->Unref(); file_map_.erase(fname); } Status RemoveFile(const std::string& fname) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { return Status::IOError(fname, "File not found"); } RemoveFileInternal(fname); return Status::OK(); } Status CreateDir(const std::string& dirname) override { return Status::OK(); } Status RemoveDir(const std::string& dirname) override { return Status::OK(); } Status GetFileSize(const std::string& fname, uint64_t* file_size) override { MutexLock lock(&mutex_); if (file_map_.find(fname) == file_map_.end()) { return Status::IOError(fname, "File not found"); } *file_size = file_map_[fname]->Size(); return Status::OK(); } Status RenameFile(const std::string& src, const std::string& target) override { MutexLock lock(&mutex_); if (file_map_.find(src) == file_map_.end()) { return Status::IOError(src, "File not found"); } RemoveFileInternal(target); file_map_[target] = file_map_[src]; file_map_.erase(src); return Status::OK(); } Status LockFile(const std::string& fname, FileLock** lock) override { *lock = new FileLock; return Status::OK(); } Status UnlockFile(FileLock* lock) override { delete lock; return Status::OK(); } Status GetTestDirectory(std::string* path) override { *path = "/test"; return Status::OK(); } Status NewLogger(const std::string& fname, Logger** result) override { *result = new NoOpLogger; return Status::OK(); } private: typedef std::map<std::string, FileState*> FileSystem; port::Mutex mutex_; FileSystem file_map_ GUARDED_BY(mutex_); }; } Env* NewMemEnv(Env* base_env) { return new InMemoryEnv(base_env); } }
#include "helpers/memenv/memenv.h" #include <string> #include <vector> #include "gtest/gtest.h" #include "db/db_impl.h" #include "leveldb/db.h" #include "leveldb/env.h" #include "util/testutil.h" namespace leveldb { class MemEnvTest : public testing::Test { public: MemEnvTest() : env_(NewMemEnv(Env::Default())) {} ~MemEnvTest() { delete env_; } Env* env_; }; TEST_F(MemEnvTest, Basics) { uint64_t file_size; WritableFile* writable_file; std::vector<std::string> children; ASSERT_LEVELDB_OK(env_->CreateDir("/dir")); ASSERT_TRUE(!env_->FileExists("/dir/non_existent")); ASSERT_TRUE(!env_->GetFileSize("/dir/non_existent", &file_size).ok()); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(0, children.size()); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(0, file_size); delete writable_file; ASSERT_TRUE(env_->FileExists("/dir/f")); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(0, file_size); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(1, children.size()); ASSERT_EQ("f", children[0]); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("abc")); delete writable_file; ASSERT_LEVELDB_OK(env_->NewAppendableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(3, file_size); ASSERT_LEVELDB_OK(writable_file->Append("hello")); delete writable_file; ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/f", &file_size)); ASSERT_EQ(8, file_size); ASSERT_TRUE(!env_->RenameFile("/dir/non_existent", "/dir/g").ok()); ASSERT_LEVELDB_OK(env_->RenameFile("/dir/f", "/dir/g")); ASSERT_TRUE(!env_->FileExists("/dir/f")); ASSERT_TRUE(env_->FileExists("/dir/g")); ASSERT_LEVELDB_OK(env_->GetFileSize("/dir/g", &file_size)); ASSERT_EQ(8, file_size); SequentialFile* seq_file; RandomAccessFile* rand_file; ASSERT_TRUE(!env_->NewSequentialFile("/dir/non_existent", &seq_file).ok()); ASSERT_TRUE(!seq_file); ASSERT_TRUE(!env_->NewRandomAccessFile("/dir/non_existent", &rand_file).ok()); ASSERT_TRUE(!rand_file); ASSERT_TRUE(!env_->RemoveFile("/dir/non_existent").ok()); ASSERT_LEVELDB_OK(env_->RemoveFile("/dir/g")); ASSERT_TRUE(!env_->FileExists("/dir/g")); ASSERT_LEVELDB_OK(env_->GetChildren("/dir", &children)); ASSERT_EQ(0, children.size()); ASSERT_LEVELDB_OK(env_->RemoveDir("/dir")); } TEST_F(MemEnvTest, ReadWrite) { WritableFile* writable_file; SequentialFile* seq_file; RandomAccessFile* rand_file; Slice result; char scratch[100]; ASSERT_LEVELDB_OK(env_->CreateDir("/dir")); ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("hello ")); ASSERT_LEVELDB_OK(writable_file->Append("world")); delete writable_file; ASSERT_LEVELDB_OK(env_->NewSequentialFile("/dir/f", &seq_file)); ASSERT_LEVELDB_OK(seq_file->Read(5, &result, scratch)); ASSERT_EQ(0, result.compare("hello")); ASSERT_LEVELDB_OK(seq_file->Skip(1)); ASSERT_LEVELDB_OK(seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.compare("world")); ASSERT_LEVELDB_OK( seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.size()); ASSERT_LEVELDB_OK(seq_file->Skip(100)); ASSERT_LEVELDB_OK(seq_file->Read(1000, &result, scratch)); ASSERT_EQ(0, result.size()); delete seq_file; ASSERT_LEVELDB_OK(env_->NewRandomAccessFile("/dir/f", &rand_file)); ASSERT_LEVELDB_OK(rand_file->Read(6, 5, &result, scratch)); ASSERT_EQ(0, result.compare("world")); ASSERT_LEVELDB_OK(rand_file->Read(0, 5, &result, scratch)); ASSERT_EQ(0, result.compare("hello")); ASSERT_LEVELDB_OK(rand_file->Read(10, 100, &result, scratch)); ASSERT_EQ(0, result.compare("d")); ASSERT_TRUE(!rand_file->Read(1000, 5, &result, scratch).ok()); delete rand_file; } TEST_F(MemEnvTest, Locks) { FileLock* lock; ASSERT_LEVELDB_OK(env_->LockFile("some file", &lock)); ASSERT_LEVELDB_OK(env_->UnlockFile(lock)); } TEST_F(MemEnvTest, Misc) { std::string test_dir; ASSERT_LEVELDB_OK(env_->GetTestDirectory(&test_dir)); ASSERT_TRUE(!test_dir.empty()); WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile("/a/b", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Sync()); ASSERT_LEVELDB_OK(writable_file->Flush()); ASSERT_LEVELDB_OK(writable_file->Close()); delete writable_file; } TEST_F(MemEnvTest, LargeWrite) { const size_t kWriteSize = 300 * 1024; char* scratch = new char[kWriteSize * 2]; std::string write_data; for (size_t i = 0; i < kWriteSize; ++i) { write_data.append(1, static_cast<char>(i)); } WritableFile* writable_file; ASSERT_LEVELDB_OK(env_->NewWritableFile("/dir/f", &writable_file)); ASSERT_LEVELDB_OK(writable_file->Append("foo")); ASSERT_LEVELDB_OK(writable_file->Append(write_data)); delete writable_file; SequentialFile* seq_file; Slice result; ASSERT_LEVELDB_OK(env_->NewSequentialFile("/dir/f", &seq_file)); ASSERT_LEVELDB_OK(seq_file->Read(3, &result, scratch)); ASSERT_EQ(0, result.compare("foo")); size_t read = 0; std::string read_data; while (read < kWriteSize) { ASSERT_LEVELDB_OK(seq_file->Read(kWriteSize - read, &result, scratch)); read_data.append(result.data(), result.size()); read += result.size(); } ASSERT_TRUE(write_data == read_data); delete seq_file; delete[] scratch; } TEST_F(MemEnvTest, OverwriteOpenFile) { const char kWrite1Data[] = "Write #1 data"; const size_t kFileDataLen = sizeof(kWrite1Data) - 1; const std::string kTestFileName = testing::TempDir() + "leveldb-TestFile.dat"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, kWrite1Data, kTestFileName)); RandomAccessFile* rand_file; ASSERT_LEVELDB_OK(env_->NewRandomAccessFile(kTestFileName, &rand_file)); const char kWrite2Data[] = "Write #2 data"; ASSERT_LEVELDB_OK(WriteStringToFile(env_, kWrite2Data, kTestFileName)); Slice result; char scratch[kFileDataLen]; ASSERT_LEVELDB_OK(rand_file->Read(0, kFileDataLen, &result, scratch)); ASSERT_EQ(0, result.compare(kWrite2Data)); delete rand_file; } TEST_F(MemEnvTest, DBTest) { Options options; options.create_if_missing = true; options.env = env_; DB* db; const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")}; const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")}; ASSERT_LEVELDB_OK(DB::Open(options, "/dir/db", &db)); for (size_t i = 0; i < 3; ++i) { ASSERT_LEVELDB_OK(db->Put(WriteOptions(), keys[i], vals[i])); } for (size_t i = 0; i < 3; ++i) { std::string res; ASSERT_LEVELDB_OK(db->Get(ReadOptions(), keys[i], &res)); ASSERT_TRUE(res == vals[i]); } Iterator* iterator = db->NewIterator(ReadOptions()); iterator->SeekToFirst(); for (size_t i = 0; i < 3; ++i) { ASSERT_TRUE(iterator->Valid()); ASSERT_TRUE(keys[i] == iterator->key()); ASSERT_TRUE(vals[i] == iterator->value()); iterator->Next(); } ASSERT_TRUE(!iterator->Valid()); delete iterator; DBImpl* dbi = reinterpret_cast<DBImpl*>(db); ASSERT_LEVELDB_OK(dbi->TEST_CompactMemTable()); for (size_t i = 0; i < 3; ++i) { std::string res; ASSERT_LEVELDB_OK(db->Get(ReadOptions(), keys[i], &res)); ASSERT_TRUE(res == vals[i]); } delete db; } }
79
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_BIND_PROTO_TO_ACTIVATION_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_BIND_PROTO_TO_ACTIVATION_H_ #include "absl/status/status.h" #include "common/casting.h" #include "common/value.h" #include "common/value_manager.h" #include "extensions/protobuf/internal/message.h" #include "extensions/protobuf/value.h" #include "internal/status_macros.h" #include "runtime/activation.h" #include "google/protobuf/descriptor.h" namespace cel::extensions { enum class BindProtoUnsetFieldBehavior { kBindDefaultValue, kSkip }; namespace protobuf_internal { absl::Status BindProtoToActivation( const google::protobuf::Descriptor& descriptor, const StructValue& struct_value, ValueManager& value_manager, Activation& activation, BindProtoUnsetFieldBehavior unset_field_behavior = BindProtoUnsetFieldBehavior::kSkip); } template <typename T> absl::Status BindProtoToActivation( const T& context, ValueManager& value_manager, Activation& activation, BindProtoUnsetFieldBehavior unset_field_behavior = BindProtoUnsetFieldBehavior::kSkip) { static_assert(protobuf_internal::IsProtoMessage<T>); CEL_ASSIGN_OR_RETURN(Value parent, ProtoMessageToValue(value_manager, context)); if (!InstanceOf<StructValue>(parent)) { return absl::InvalidArgumentError( absl::StrCat("context is a well-known type: ", context.GetTypeName())); } const StructValue& struct_value = Cast<StructValue>(parent); const google::protobuf::Descriptor* descriptor = context.GetDescriptor(); if (descriptor == nullptr) { return absl::InvalidArgumentError( absl::StrCat("context missing descriptor: ", context.GetTypeName())); } return protobuf_internal::BindProtoToActivation(*descriptor, struct_value, value_manager, activation, unset_field_behavior); } } #endif #include "extensions/protobuf/bind_proto_to_activation.h" #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "common/value.h" #include "internal/status_macros.h" #include "runtime/activation.h" #include "google/protobuf/descriptor.h" namespace cel::extensions::protobuf_internal { namespace { using ::google::protobuf::Descriptor; absl::StatusOr<bool> ShouldBindField( const google::protobuf::FieldDescriptor* field_desc, const StructValue& struct_value, BindProtoUnsetFieldBehavior unset_field_behavior, ValueManager& value_manager) { if (unset_field_behavior == BindProtoUnsetFieldBehavior::kBindDefaultValue || field_desc->is_repeated()) { return true; } return struct_value.HasFieldByNumber(field_desc->number()); } absl::StatusOr<Value> GetFieldValue(const google::protobuf::FieldDescriptor* field_desc, const StructValue& struct_value, ValueManager& value_manager) { if (field_desc->cpp_type() == google::protobuf::FieldDescriptor::CPPTYPE_MESSAGE && field_desc->message_type()->well_known_type() == Descriptor::WELLKNOWNTYPE_ANY) { CEL_ASSIGN_OR_RETURN(bool present, struct_value.HasFieldByNumber(field_desc->number())); if (!present) { return NullValue(); } } return struct_value.GetFieldByNumber(value_manager, field_desc->number()); } } absl::Status BindProtoToActivation( const Descriptor& descriptor, const StructValue& struct_value, ValueManager& value_manager, Activation& activation, BindProtoUnsetFieldBehavior unset_field_behavior) { for (int i = 0; i < descriptor.field_count(); i++) { const google::protobuf::FieldDescriptor* field_desc = descriptor.field(i); CEL_ASSIGN_OR_RETURN(bool should_bind, ShouldBindField(field_desc, struct_value, unset_field_behavior, value_manager)); if (!should_bind) { continue; } CEL_ASSIGN_OR_RETURN( Value field, GetFieldValue(field_desc, struct_value, value_manager)); activation.InsertOrAssignValue(field_desc->name(), std::move(field)); } return absl::OkStatus(); } }
#include "extensions/protobuf/bind_proto_to_activation.h" #include "google/protobuf/wrappers.pb.h" #include "absl/status/status.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/memory.h" #include "common/value.h" #include "common/value_testing.h" #include "extensions/protobuf/type_reflector.h" #include "internal/testing.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "proto/test/v1/proto2/test_all_types.pb.h" #include "google/protobuf/arena.h" namespace cel::extensions { namespace { using ::cel::test::IntValueIs; using ::google::api::expr::test::v1::proto2::TestAllTypes; using testing::Eq; using testing::HasSubstr; using testing::Optional; using cel::internal::IsOkAndHolds; using cel::internal::StatusIs; class BindProtoToActivationTest : public common_internal::ThreadCompatibleValueTest<> { public: BindProtoToActivationTest() = default; }; TEST_P(BindProtoToActivationTest, BindProtoToActivation) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_int64"), IsOkAndHolds(Optional(IntValueIs(123)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationWktUnsupported) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); google::protobuf::Int64Value int64_value; int64_value.set_value(123); Activation activation; EXPECT_THAT( BindProtoToActivation(int64_value, value_factory.get(), activation), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("google.protobuf.Int64Value"))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationSkip) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK(BindProtoToActivation(test_all_types, value_factory.get(), activation, BindProtoUnsetFieldBehavior::kSkip)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_int32"), IsOkAndHolds(Eq(absl::nullopt))); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_sint32"), IsOkAndHolds(Eq(absl::nullopt))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationDefault) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation, BindProtoUnsetFieldBehavior::kBindDefaultValue)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_int32"), IsOkAndHolds(Optional(IntValueIs(-32)))); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_sint32"), IsOkAndHolds(Optional(IntValueIs(0)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationDefaultAny) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation, BindProtoUnsetFieldBehavior::kBindDefaultValue)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "single_any"), IsOkAndHolds(Optional(test::IsNullValue()))); } MATCHER_P(IsListValueOfSize, size, "") { const Value& v = arg; auto value = As<ListValue>(v); if (!value) { return false; } auto s = value->Size(); return s.ok() && *s == size; } TEST_P(BindProtoToActivationTest, BindProtoToActivationRepeated) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.add_repeated_int64(123); test_all_types.add_repeated_int64(456); test_all_types.add_repeated_int64(789); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "repeated_int64"), IsOkAndHolds(Optional(IsListValueOfSize(3)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationRepeatedEmpty) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "repeated_int32"), IsOkAndHolds(Optional(IsListValueOfSize(0)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationRepeatedComplex) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; auto* nested = test_all_types.add_repeated_nested_message(); nested->set_bb(123); nested = test_all_types.add_repeated_nested_message(); nested->set_bb(456); nested = test_all_types.add_repeated_nested_message(); nested->set_bb(789); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT( activation.FindVariable(value_factory.get(), "repeated_nested_message"), IsOkAndHolds(Optional(IsListValueOfSize(3)))); } MATCHER_P(IsMapValueOfSize, size, "") { const Value& v = arg; auto value = As<MapValue>(v); if (!value) { return false; } auto s = value->Size(); return s.ok() && *s == size; } TEST_P(BindProtoToActivationTest, BindProtoToActivationMap) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; (*test_all_types.mutable_map_int64_int64())[1] = 2; (*test_all_types.mutable_map_int64_int64())[2] = 4; Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "map_int64_int64"), IsOkAndHolds(Optional(IsMapValueOfSize(2)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationMapEmpty) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; test_all_types.set_single_int64(123); Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "map_int32_int32"), IsOkAndHolds(Optional(IsMapValueOfSize(0)))); } TEST_P(BindProtoToActivationTest, BindProtoToActivationMapComplex) { ProtoTypeReflector provider; ManagedValueFactory value_factory(provider, memory_manager()); TestAllTypes test_all_types; TestAllTypes::NestedMessage value; value.set_bb(42); (*test_all_types.mutable_map_int64_message())[1] = value; (*test_all_types.mutable_map_int64_message())[2] = value; Activation activation; ASSERT_OK( BindProtoToActivation(test_all_types, value_factory.get(), activation)); EXPECT_THAT(activation.FindVariable(value_factory.get(), "map_int64_message"), IsOkAndHolds(Optional(IsMapValueOfSize(2)))); } INSTANTIATE_TEST_SUITE_P(Runner, BindProtoToActivationTest, ::testing::Values(MemoryManagement::kReferenceCounting, MemoryManagement::kPooling)); } }
80
#ifndef TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_METADATA_CLIENT_H_ #define TENSORFLOW_TSL_PLATFORM_CLOUD_COMPUTE_ENGINE_METADATA_CLIENT_H_ #include "tsl/platform/cloud/http_request.h" #include "tsl/platform/retrying_utils.h" #include "tsl/platform/status.h" namespace tsl { class ComputeEngineMetadataClient { public: explicit ComputeEngineMetadataClient( std::shared_ptr<HttpRequest::Factory> http_request_factory, const RetryConfig& config = RetryConfig( 10000, 1000000 )); virtual ~ComputeEngineMetadataClient() {} virtual Status GetMetadata(const string& path, std::vector<char>* response_buffer); private: std::shared_ptr<HttpRequest::Factory> http_request_factory_; const RetryConfig retry_config_; ComputeEngineMetadataClient(const ComputeEngineMetadataClient&) = delete; void operator=(const ComputeEngineMetadataClient&) = delete; }; } #endif #include "tsl/platform/cloud/compute_engine_metadata_client.h" #include <cstdlib> #include <utility> #include "absl/strings/str_cat.h" #include "tsl/platform/cloud/curl_http_request.h" namespace tsl { namespace { constexpr char kGceMetadataHost[] = "GCE_METADATA_HOST"; constexpr char kGceMetadataBaseUrl[] = "http: } ComputeEngineMetadataClient::ComputeEngineMetadataClient( std::shared_ptr<HttpRequest::Factory> http_request_factory, const RetryConfig& config) : http_request_factory_(std::move(http_request_factory)), retry_config_(config) {} Status ComputeEngineMetadataClient::GetMetadata( const string& path, std::vector<char>* response_buffer) { const auto get_metadata_from_gce = [path, response_buffer, this]() { string metadata_url; const char* metadata_url_override = std::getenv(kGceMetadataHost); if (metadata_url_override) { metadata_url = absl::StrCat("http: "/computeMetadata/v1/"); } else { metadata_url = kGceMetadataBaseUrl; } std::unique_ptr<HttpRequest> request(http_request_factory_->Create()); request->SetUri(metadata_url + path); request->AddHeader("Metadata-Flavor", "Google"); request->SetResultBuffer(response_buffer); TF_RETURN_IF_ERROR(request->Send()); return OkStatus(); }; return RetryingUtils::CallWithRetries(get_metadata_from_gce, retry_config_); } }
#include "tsl/platform/cloud/compute_engine_metadata_client.h" #include "tsl/platform/cloud/http_request_fake.h" #include "tsl/platform/env.h" #include "tsl/platform/test.h" namespace tsl { class ComputeEngineMetadataClientTest : public ::testing::Test { protected: void SetUp() override { ClearEnvVars(); } void TearDown() override { ClearEnvVars(); } void ClearEnvVars() { unsetenv("GCE_METADATA_HOST"); } }; TEST_F(ComputeEngineMetadataClientTest, GetMetadata) { const string example_response = "example response"; std::vector<HttpRequest*> requests({new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } TEST_F(ComputeEngineMetadataClientTest, GetCustomMetadataEndpoint) { const string example_response = "example response"; setenv("GCE_METADATA_HOST", "foo.bar", 1); std::vector<HttpRequest*> requests( {new FakeHttpRequest("Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } TEST_F(ComputeEngineMetadataClientTest, RetryOnFailure) { const string example_response = "example response"; std::vector<HttpRequest*> requests( {new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", "", errors::Unavailable("503"), 503), new FakeHttpRequest( "Uri: http: "/service-accounts/default/token\n" "Header Metadata-Flavor: Google\n", example_response)}); std::shared_ptr<HttpRequest::Factory> http_factory = std::make_shared<FakeHttpRequestFactory>(&requests); ComputeEngineMetadataClient client(http_factory, RetryConfig(0 )); std::vector<char> result; TF_EXPECT_OK( client.GetMetadata("instance/service-accounts/default/token", &result)); std::vector<char> expected(example_response.begin(), example_response.end()); EXPECT_EQ(expected, result); } }
81
#ifndef TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_COLLECTIVE_RMA_DISTRIBUTED_H_ #define TENSORFLOW_CORE_DISTRIBUTED_RUNTIME_COLLECTIVE_RMA_DISTRIBUTED_H_ #include "tensorflow/core/common_runtime/collective_rma_local.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/unbounded_work_queue.h" namespace tensorflow { class WorkerCacheInterface; class CollectiveRemoteAccessDistributed : public CollectiveRemoteAccessLocal { public: CollectiveRemoteAccessDistributed( const DeviceMgr* dev_mgr, DeviceResolverInterface* dev_resolver, std::shared_ptr<UnboundedWorkQueue> work_queue, WorkerCacheInterface* worker_cache, int64_t step_id, string task_name) : CollectiveRemoteAccessLocal(dev_mgr, dev_resolver, step_id), worker_cache_(worker_cache), work_queue_(std::move(work_queue)), task_name_(std::move(task_name)) {} ~CollectiveRemoteAccessDistributed() override {} void RecvFromPeer(const string& peer_device, const string& peer_task, bool peer_is_local, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, int dev_to_dev_stream_index, CancellationManager* cancellation_manager, const StatusCallback& done) override; void CheckPeerHealth(const string& peer_task, int64_t timeout_in_ms, const StatusCallback& done) override; void StartAbort(const Status& s) override; protected: WorkerCacheInterface* worker_cache_; std::shared_ptr<UnboundedWorkQueue> work_queue_; CancellationManager abortion_cancel_mgr_; string task_name_; }; } #endif #include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include <memory> #include "absl/status/status.h" #include "tensorflow/core/common_runtime/base_collective_executor.h" #include "tensorflow/core/common_runtime/copy_tensor.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/call_options.h" #include "tensorflow/core/distributed_runtime/cancellable_call.h" #include "tensorflow/core/distributed_runtime/request_id.h" #include "tensorflow/core/distributed_runtime/worker_cache.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/platform/protobuf_internal.h" #include "tensorflow/core/profiler/lib/scoped_memory_debug_annotation.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class RecvBufCall : public CancellableCall { public: RecvBufCall(int64_t step_id, const string& peer_device, const string& peer_task, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, const DeviceAttributes& server_attributes, CancellationManager* cancel_mgr, WorkerCacheInterface* wc) : CancellableCall(cancel_mgr, peer_task, wc) { req_.set_step_id(step_id); req_.set_buf_rendezvous_key(key); *req_.mutable_client_locality() = client_locality; *req_.mutable_server_locality() = server_attributes.locality(); req_.set_num_bytes(to_tensor->TotalBytes()); req_.set_buf_ptr(reinterpret_cast<int64_t>(DMAHelper::base(to_tensor))); req_.set_src_device(peer_device); req_.set_src_incarnation(server_attributes.incarnation()); req_.set_dst_device(to_device->name()); req_.set_request_id(GetUniqueRequestId()); } ~RecvBufCall() override {} void IssueCall(const StatusCallback& done) override { wi_->RecvBufAsync(&opts_, &req_, &resp_, done); } RecvBufRequest req_; RecvBufResponse resp_; }; void PopulateTensorFromExtra(const RecvBufRespExtra& extra, Tensor* cpu_tensor) { char* head = reinterpret_cast<char*>(DMAHelper::base(cpu_tensor)); for (const auto& tensor_content_chunk : extra.tensor_content()) { memcpy(head, std::string(tensor_content_chunk).data(), tensor_content_chunk.size()); head += tensor_content_chunk.size(); } } Status PopulateTensorFromResponse(const RecvBufResponse& response, Tensor* cpu_tensor) { const bool has_transport_options = response.has_transport_options(); if (!has_transport_options) return absl::OkStatus(); const int64_t total_bytes = cpu_tensor->TotalBytes(); int64_t num_bytes = 0; RecvBufRespExtra extra; response.transport_options().UnpackTo(&extra); for (const auto& chunk : extra.tensor_content()) { num_bytes += chunk.size(); } if (num_bytes != total_bytes) { return errors::Internal("Tensor Size Mismatch: RecvBufResponse returned ", num_bytes, " bytes, expected: ", cpu_tensor->TotalBytes()); } PopulateTensorFromExtra(extra, cpu_tensor); return absl::OkStatus(); } } void CollectiveRemoteAccessDistributed::RecvFromPeer( const string& peer_device, const string& peer_task, bool peer_is_local, const string& key, Device* to_device, DeviceContext* to_device_ctx, const AllocatorAttributes& to_alloc_attr, Tensor* to_tensor, const DeviceLocality& client_locality, int dev_to_dev_stream_index, CancellationManager* cancellation_manager, const StatusCallback& done) { if (peer_is_local) { CollectiveRemoteAccessLocal::RecvFromPeer( peer_device, peer_task, peer_is_local, key, to_device, to_device_ctx, to_alloc_attr, to_tensor, client_locality, dev_to_dev_stream_index, cancellation_manager, done); return; } struct State { DeviceAttributes server_attributes; std::unique_ptr<RecvBufCall> call; std::unique_ptr<Tensor> cpu_tensor; }; State* state = new State; DeviceAttributes server_attributes; Status s = dev_resolver_->GetDeviceAttributes(peer_device, &state->server_attributes); if (!s.ok()) { delete state; done(s); return; } Tensor* dst_tensor = nullptr; Device* cpu_dev = nullptr; if (to_device->tensorflow_accelerator_device_info()) { Status status = dev_mgr_->LookupDevice("CPU:0", &cpu_dev); if (!status.ok()) { delete state; done(s); return; } AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); tsl::profiler::ScopedMemoryDebugAnnotation op_annotation( "CollectiveRemoteAccessDistributed::RecvFromPeer" "::recv_buf_callback", step_id_, "dynamic", to_tensor->dtype(), [to_tensor]() { return to_tensor->shape().DebugString(); }); state->cpu_tensor = std::make_unique<Tensor>(cpu_dev->GetAllocator(cpu_attr), to_tensor->dtype(), to_tensor->shape()); dst_tensor = state->cpu_tensor.get(); } else { dst_tensor = to_tensor; } auto recv_buf_callback = [this, state, to_device, to_alloc_attr, to_device_ctx, to_tensor, cpu_dev, dev_to_dev_stream_index, dst_tensor, done](const Status& s) { if (s.ok()) { Status status = PopulateTensorFromResponse(state->call->resp_, dst_tensor); if (!status.ok()) { done(status); delete state; return; } if (to_device->tensorflow_accelerator_device_info()) { AllocatorAttributes cpu_attr; cpu_attr.set_gpu_compatible(true); CopyTensor::ViaDMA("", nullptr , to_device_ctx, cpu_dev, to_device, cpu_attr, to_alloc_attr, dst_tensor, to_tensor, dev_to_dev_stream_index, [this, state, done](const Status& s) { delete state; work_queue_->Schedule([s, done] { done(s); }); }); return; } } delete state; done(s); }; state->call.reset(new RecvBufCall( step_id_, peer_device, peer_task, key, to_device, to_device_ctx, to_alloc_attr, dst_tensor, client_locality, state->server_attributes, cancellation_manager, worker_cache_)); CancellationToken abortion_token = abortion_cancel_mgr_.get_cancellation_token(); bool already_aborted = !abortion_cancel_mgr_.RegisterCallback( abortion_token, [state] { state->call->Cancel(); }); if (already_aborted) { recv_buf_callback(errors::Cancelled("collective ops already aborted")); } else { state->call->Start([this, abortion_token, done = std::move(recv_buf_callback)](const Status& s) { abortion_cancel_mgr_.DeregisterCallback(abortion_token); done(s); }); } } void CollectiveRemoteAccessDistributed::CheckPeerHealth( const string& peer_task, int64_t timeout_in_ms, const StatusCallback& done) { if (peer_task == task_name_) { done(absl::OkStatus()); return; } WorkerInterface* wi = worker_cache_->GetOrCreateWorker(peer_task); if (wi == nullptr) { done(errors::InvalidArgument(peer_task, " not found. It's probably invalid. The " "valid form is /job:xxx/replica:0/task:N")); return; } auto opts = new CallOptions(); opts->SetTimeout(timeout_in_ms); auto req = new GetStatusRequest(); auto resp = new GetStatusResponse(); wi->GetStatusAsync( opts, req, resp, true, [this, opts, req, resp, wi, peer_task, done](Status s) { std::vector<DeviceAttributes> cached_attrs; if (s.ok()) { s = dev_resolver_->GetAllDeviceAttributes(peer_task, &cached_attrs); } if (s.ok()) { absl::flat_hash_set<uint64> remote_incarnations; for (const DeviceAttributes& da : resp->device_attributes()) { remote_incarnations.insert(da.incarnation()); } for (const DeviceAttributes& attr : cached_attrs) { if (!remote_incarnations.contains(attr.incarnation())) { s = errors::FailedPrecondition( attr.name(), " with incarnation ", attr.incarnation(), " is not available. This usually means ", peer_task, " has restarted"); break; } } } else if (absl::IsNotFound(s)) { s = absl::OkStatus(); } delete opts; delete req; delete resp; worker_cache_->ReleaseWorker(peer_task, wi); done(s); }); } void CollectiveRemoteAccessDistributed::StartAbort(const Status& s) { CollectiveRemoteAccessLocal::StartAbort(s); abortion_cancel_mgr_.StartCancel(); } }
#include "tensorflow/core/distributed_runtime/collective_rma_distributed.h" #include "google/protobuf/any.pb.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/common_runtime/dma_helper.h" #include "tensorflow/core/common_runtime/process_util.h" #include "tensorflow/core/distributed_runtime/device_resolver_distributed.h" #include "tensorflow/core/distributed_runtime/test_utils.h" #include "tensorflow/core/framework/allocator.h" #include "tensorflow/core/framework/cancellation.h" #include "tensorflow/core/framework/device_attributes.pb.h" #include "tensorflow/core/lib/core/notification.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/lib/random/random.h" #include "tensorflow/core/lib/strings/strcat.h" #include "tensorflow/core/platform/errors.h" #include "tensorflow/core/platform/logging.h" #include "tensorflow/core/platform/mem.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/protobuf/transport_options.pb.h" #include "tensorflow/core/protobuf/worker.pb.h" namespace tensorflow { namespace { class FakeAllocator : public Allocator { public: string Name() override { return "fake"; } void* AllocateRaw(size_t alignment, size_t num_bytes) override { return port::AlignedMalloc(num_bytes, alignment); } void DeallocateRaw(void* ptr) override { return port::AlignedFree(ptr); } }; static std::unique_ptr<Device> NewDevice(const string& type, const string& name, Allocator* allocator) { class FakeDevice : public Device { public: explicit FakeDevice(const DeviceAttributes& attr, Allocator* allocator) : Device(nullptr, attr), allocator_(allocator) {} Status Sync() override { return absl::OkStatus(); } Allocator* GetAllocator(AllocatorAttributes) override { return allocator_; } private: Allocator* const allocator_; }; DeviceAttributes attr; attr.set_name(name); attr.set_device_type(type); attr.mutable_locality()->set_numa_node(3); attr.set_incarnation(random::New64()); return std::make_unique<FakeDevice>(attr, allocator); } static int64_t kStepId = 123; class FakeWorker : public TestWorkerInterface { public: FakeWorker(const string& name, DeviceMgr* dev_mgr, DeviceResolverDistributed* dres, bool is_failed, bool set_tensor_in_extra) : name_(name), device_mgr_(dev_mgr), device_resolver_(dres), buf_rendezvous_(kStepId, dev_mgr), is_failed_(is_failed), set_tensor_in_extra_(set_tensor_in_extra) {} BufRendezvous* buf_rendezvous() { return &buf_rendezvous_; } void GetStatusAsync(CallOptions* opts, const GetStatusRequest* request, GetStatusResponse* response, bool fail_fast, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } std::vector<DeviceAttributes> dev_attr; device_mgr_->ListDeviceAttributes(&dev_attr); for (const auto& da : dev_attr) { *response->add_device_attributes() = da; } done(absl::OkStatus()); } void RecvBufAsync(CallOptions* opts, const RecvBufRequest* request, RecvBufResponse* response, StatusCallback done) override { if (is_failed_) { done(errors::Unavailable("peer down")); return; } opts->SetCancelCallback([this]() { SchedClosure([this]() { Env::Default()->SleepForMicroseconds(100); buf_rendezvous_.StartAbort(errors::Internal("Cancelled")); }); }); VLOG(2) << "ConsumeBuf key=" << request->buf_rendezvous_key() << " src_device=" << request->src_device() << " src_incarnation=" << request->src_incarnation(); buf_rendezvous_.ConsumeBuf( request->buf_rendezvous_key(), request->src_device(), request->src_incarnation(), [this, opts, request, response, done](const Status& status, BufRendezvous::Hook* h) { Status s = status; if (s.ok()) { opts->ClearCancelCallback(); int64_t num_bytes = h->prod_value->TotalBytes(); if (set_tensor_in_extra_) { RecvBufRespExtra extra; extra.add_tensor_content(string( reinterpret_cast<const char*>(DMAHelper::base(h->prod_value)), num_bytes)); response->mutable_transport_options()->PackFrom(extra); } else { if (request->num_bytes() != num_bytes) { s = errors::Internal("Tensor Size Mismatch."); } else { memcpy(reinterpret_cast<void*>(request->buf_ptr()), DMAHelper::base(h->prod_value), num_bytes); } } } done(s); if (h) BufRendezvous::DoneWithHook(h); }, nullptr ); } private: string name_; DeviceMgr* device_mgr_; DeviceResolverDistributed* device_resolver_; BufRendezvous buf_rendezvous_; bool is_failed_; const bool set_tensor_in_extra_; }; class FakeCache : public TestWorkerCache { public: bool GetDeviceLocalityNonBlocking(const string& device, DeviceLocality* locality) override { return false; } void GetDeviceLocalityAsync(const string& device, DeviceLocality* locality, StatusCallback done) override { string task_name; string dev_part; if (!DeviceNameUtils::SplitDeviceName(device, &task_name, &dev_part)) { done(errors::Internal("failed to parse device name")); return; } auto it = workers_.find(task_name); if (it == workers_.end()) { done(errors::Internal("failed to find worker ", task_name)); return; } WorkerInterface* wi = it->second; GetStatusRequest req; GetStatusResponse resp; Status status = wi->GetStatus(&req, &resp); if (!status.ok()) { done(status); return; } for (const auto& it : resp.device_attributes()) { if (it.name() == device) { *locality = it.locality(); done(absl::OkStatus()); return; } } done(errors::Internal("device not found: ", device)); } }; enum TEST_PARAM_DEVICE_TYPE { TEST_PARAM_DEVICE_TYPE_CPU = 0, TEST_PARAM_DEVICE_TYPE_GPU, }; enum TEST_PARAM_TENSOR_LOC { TEST_PARAM_TENSOR_LOC_AT_BUF_PTR = 0, TEST_PARAM_TENSOR_LOC_IN_EXTRA, }; class CollRMADistTest : public ::testing::TestWithParam< std::tuple<TEST_PARAM_DEVICE_TYPE, TEST_PARAM_TENSOR_LOC>> { protected: CollRMADistTest() : work_queue_( std::make_shared<UnboundedWorkQueue>(Env::Default(), "test")) {} ~CollRMADistTest() override { for (DeviceMgr* dm : device_mgrs_) { delete dm; } for (auto it : dev_resolvers_) { delete it.second; } for (FakeWorker* w : workers_) { delete w; } } void SetUp() override { const int num_workers = 2; const int num_devices = 1; string device_type = "CPU"; string dev0_worker_name; for (int w = 0; w < num_workers; ++w) { string name = strings::StrCat("/job:worker/replica:0/task:", w); if (w == 0) { dev0_worker_name = name; } DefineWorker(name, device_type, num_devices); } rma_.reset(new CollectiveRemoteAccessDistributed( device_mgrs_[0], dev_resolvers_[dev0_worker_name], work_queue_, &wc_, kStepId, "/job:worker/replica:0/task:0")); const int kNumElts = 8; expected_value_ = Tensor(DT_FLOAT, {kNumElts}); to_tensor_ = Tensor(DT_FLOAT, {kNumElts}); large_response_ = Tensor(DT_FLOAT, {2 * kNumElts}); auto exp_alias = expected_value_.flat<float>(); auto to_alias = to_tensor_.flat<float>(); auto large_response_alias = large_response_.flat<float>(); for (int i = 0; i < kNumElts; ++i) { exp_alias(i) = i; to_alias(i) = -1; } for (int i = 0; i < 2 * kNumElts; ++i) { large_response_alias(i) = -2; } } void ResolveDeviceAttributes() { for (auto& dev_resolver_item : dev_resolvers_) { DeviceResolverDistributed* dev_resolver = dev_resolver_item.second; for (const auto& item : dev_by_task_) { TF_CHECK_OK(dev_resolver->UpdateDeviceAttributes(item.second)); } } } void DefineWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { std::vector<std::unique_ptr<Device>> devices; for (int i = 0; i < num_devices; ++i) { devices.push_back(NewDevice( device_type, strings::StrCat(worker_name, "/device:", device_type, ":", i), &fake_allocator_)); } DeviceMgr* dev_mgr = new StaticDeviceMgr(std::move(devices)); device_mgrs_.push_back(dev_mgr); std::vector<DeviceAttributes>* dv = &dev_by_task_[worker_name]; dv->clear(); for (auto d : dev_mgr->ListDevices()) { dv->push_back(d->attributes()); } DeviceResolverDistributed* dev_res = new DeviceResolverDistributed(dev_mgr); dev_resolvers_[worker_name] = dev_res; FakeWorker* fw = new FakeWorker(worker_name, dev_mgr, dev_res, is_failed, std::get<TEST_PARAM_TENSOR_LOC>(GetParam()) == TEST_PARAM_TENSOR_LOC_IN_EXTRA); workers_.push_back(fw); wc_.AddWorker(worker_name, fw); } void RestartWorker(const string& worker_name, const string& device_type, int num_devices, bool is_failed = false) { auto it = dev_resolvers_.find(worker_name); if (it != dev_resolvers_.end()) { delete it->second; dev_resolvers_.erase(it); } DefineWorker(worker_name, device_type, num_devices, is_failed); } void ValidateResultTensor() { ASSERT_EQ(expected_value_.NumElements(), to_tensor_.NumElements()); for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(expected_value_.flat<float>()(i), to_tensor_.flat<float>()(i)); } } void ValidateResultTensorUnchanged() { for (int i = 0; i < to_tensor_.NumElements(); ++i) { EXPECT_FLOAT_EQ(-1, to_tensor_.flat<float>()(i)); } } void MaybeSetGPUDevice(Device* dst_device) { if (std::get<TEST_PARAM_DEVICE_TYPE>(GetParam()) == TEST_PARAM_DEVICE_TYPE_GPU) { dst_device->set_tensorflow_accelerator_device_info( &accelerator_device_info_); } } FakeCache wc_; CancellationManager cm_; std::vector<DeviceMgr*> device_mgrs_; std::unordered_map<string, DeviceResolverDistributed*> dev_resolvers_; std::unordered_map<string, std::vector<DeviceAttributes>> dev_by_task_; std::shared_ptr<UnboundedWorkQueue> work_queue_; std::vector<FakeWorker*> workers_; std::unique_ptr<CollectiveRemoteAccessDistributed> rma_; mutex mu_; int num_done_ TF_GUARDED_BY(mu_); condition_variable done_; CallOptions opts_; DeviceLocality device_locality_; AllocatorAttributes alloc_attr_; FakeAllocator fake_allocator_; DeviceBase::AcceleratorDeviceInfo accelerator_device_info_; Tensor expected_value_; Tensor large_response_; Tensor to_tensor_; }; TEST_P(CollRMADistTest, ProdFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstOK) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); } TEST_P(CollRMADistTest, ConsFirstAbort) { ResolveDeviceAttributes(); Notification consumer_note; Status consumer_status; const string kBufKey = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); rma_->StartAbort(errors::Internal("Deliberate Failure")); consumer_note.WaitForNotification(); EXPECT_EQ(consumer_status.message(), "Cancelled"); } TEST_P(CollRMADistTest, ResponseTooLarge) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string kBufKey = "fake_buf_key"; wi->buf_rendezvous()->ProvideBuf( kBufKey, nullptr , nullptr , &large_response_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); DeviceContext* to_device_ctx = nullptr; MaybeSetGPUDevice(dst_device); rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, kBufKey, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); consumer_note.WaitForNotification(); EXPECT_THAT(consumer_status.message(), ::testing::HasSubstr("Tensor Size Mismatch")); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensorUnchanged(); } TEST_P(CollRMADistTest, WorkerRestart) { ResolveDeviceAttributes(); Notification consumer_note; Notification producer_note; Status consumer_status; Status producer_status; FakeWorker* wi = workers_[1]; const string buf_key = "fake_buf_key"; Device* dst_device = nullptr; string dev_name = "CPU:0"; TF_EXPECT_OK(device_mgrs_[0]->LookupDevice(dev_name, &dst_device)); MaybeSetGPUDevice(dst_device); DeviceContext* to_device_ctx = nullptr; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &consumer_note](const Status& s) { consumer_status = s; consumer_note.Notify(); }); wi->buf_rendezvous()->ProvideBuf( buf_key, nullptr , nullptr , &expected_value_, AllocatorAttributes(), [&producer_note, &producer_status](const Status& s) { producer_status.Update(s); producer_note.Notify(); }, nullptr ); consumer_note.WaitForNotification(); TF_EXPECT_OK(consumer_status); producer_note.WaitForNotification(); TF_EXPECT_OK(producer_status); ValidateResultTensor(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Notification post_restart_note; rma_->RecvFromPeer( "/job:worker/replica:0/task:1/device:" + dev_name, "/job:worker/replica:0/task:1", false, buf_key, dst_device, to_device_ctx, alloc_attr_, &to_tensor_, device_locality_, 0 , nullptr , [&consumer_status, &post_restart_note](const Status& s) { consumer_status = s; post_restart_note.Notify(); }); post_restart_note.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(consumer_status)); } TEST_P(CollRMADistTest, CheckHealthOKWithCachedAttr) { ResolveDeviceAttributes(); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); TF_EXPECT_OK(check_health_status); } TEST_P(CollRMADistTest, CheckHealthOKWithoutCachedAttr) { Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(check_health_status.ok()); } TEST_P(CollRMADistTest, CheckHealthRestarted) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthFailedPeer) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "CPU", 1, true); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsUnavailable(check_health_status)); } TEST_P(CollRMADistTest, CheckHealthRestartedWithDifferentDevices) { ResolveDeviceAttributes(); RestartWorker("/job:worker/replica:0/task:1", "GPU", 1); Status check_health_status; Notification check_health_done; rma_->CheckPeerHealth( "/job:worker/replica:0/task:1", 0, [&check_health_status, &check_health_done](const Status s) { check_health_status = s; check_health_done.Notify(); }); check_health_done.WaitForNotification(); EXPECT_TRUE(errors::IsFailedPrecondition(check_health_status)); } INSTANTIATE_TEST_SUITE_P( TensorInBufPtrOrExtra, CollRMADistTest, ::testing::Combine(::testing::Values(TEST_PARAM_TENSOR_LOC_AT_BUF_PTR, TEST_PARAM_TENSOR_LOC_IN_EXTRA), ::testing::Values(TEST_PARAM_DEVICE_TYPE_CPU, TEST_PARAM_DEVICE_TYPE_GPU))); } }
82
#ifndef THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_INTERNAL_DURATION_H_ #define THIRD_PARTY_CEL_CPP_EXTENSIONS_PROTOBUF_INTERNAL_DURATION_H_ #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/time/time.h" #include "google/protobuf/message.h" namespace cel::extensions::protobuf_internal { absl::StatusOr<absl::Duration> UnwrapDynamicDurationProto( const google::protobuf::Message& message); absl::Status WrapDynamicDurationProto(absl::Duration value, google::protobuf::Message& message); } #endif #include "extensions/protobuf/internal/duration.h" #include <cstdint> #include "google/protobuf/duration.pb.h" #include "absl/base/optimization.h" #include "absl/log/absl_check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/duration_lite.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/message.h" namespace cel::extensions::protobuf_internal { absl::StatusOr<absl::Duration> UnwrapDynamicDurationProto( const google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Duration"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if (desc == google::protobuf::Duration::descriptor()) { return UnwrapGeneratedDurationProto( google::protobuf::DownCastToGenerated<google::protobuf::Duration>(message)); } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Duration::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Duration::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } return absl::Seconds(reflect->GetInt64(message, seconds_field)) + absl::Nanoseconds(reflect->GetInt32(message, nanos_field)); } absl::Status WrapDynamicDurationProto(absl::Duration value, google::protobuf::Message& message) { ABSL_DCHECK_EQ(message.GetTypeName(), "google.protobuf.Duration"); const auto* desc = message.GetDescriptor(); if (ABSL_PREDICT_FALSE(desc == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing descriptor")); } if (ABSL_PREDICT_TRUE(desc == google::protobuf::Duration::descriptor())) { return WrapGeneratedDurationProto( value, google::protobuf::DownCastToGenerated<google::protobuf::Duration>(message)); } const auto* reflect = message.GetReflection(); if (ABSL_PREDICT_FALSE(reflect == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing reflection")); } const auto* seconds_field = desc->FindFieldByNumber(google::protobuf::Duration::kSecondsFieldNumber); if (ABSL_PREDICT_FALSE(seconds_field == nullptr)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " missing seconds field descriptor")); } if (ABSL_PREDICT_FALSE(seconds_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT64)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected seconds field type: ", seconds_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(seconds_field->is_map() || seconds_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", seconds_field->name(), " field cardinality: REPEATED")); } const auto* nanos_field = desc->FindFieldByNumber(google::protobuf::Duration::kNanosFieldNumber); if (ABSL_PREDICT_FALSE(nanos_field == nullptr)) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " missing nanos field descriptor")); } if (ABSL_PREDICT_FALSE(nanos_field->cpp_type() != google::protobuf::FieldDescriptor::CPPTYPE_INT32)) { return absl::InternalError(absl::StrCat( message.GetTypeName(), " has unexpected nanos field type: ", nanos_field->cpp_type_name())); } if (ABSL_PREDICT_FALSE(nanos_field->is_map() || nanos_field->is_repeated())) { return absl::InternalError( absl::StrCat(message.GetTypeName(), " has unexpected ", nanos_field->name(), " field cardinality: REPEATED")); } reflect->SetInt64(&message, seconds_field, absl::IDivDuration(value, absl::Seconds(1), &value)); reflect->SetInt32(&message, nanos_field, static_cast<int32_t>(absl::IDivDuration( value, absl::Nanoseconds(1), &value))); return absl::OkStatus(); } }
#include "extensions/protobuf/internal/duration.h" #include <memory> #include "google/protobuf/duration.pb.h" #include "google/protobuf/descriptor.pb.h" #include "absl/memory/memory.h" #include "absl/time/time.h" #include "extensions/protobuf/internal/duration_lite.h" #include "internal/testing.h" #include "google/protobuf/descriptor.h" #include "google/protobuf/descriptor_database.h" #include "google/protobuf/dynamic_message.h" namespace cel::extensions::protobuf_internal { namespace { using testing::Eq; using cel::internal::IsOkAndHolds; TEST(Duration, GeneratedFromProto) { EXPECT_THAT(UnwrapGeneratedDurationProto(google::protobuf::Duration()), IsOkAndHolds(Eq(absl::ZeroDuration()))); } TEST(Duration, CustomFromProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Duration::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); EXPECT_THAT(UnwrapDynamicDurationProto(*factory.GetPrototype( pool.FindMessageTypeByName("google.protobuf.Duration"))), IsOkAndHolds(Eq(absl::ZeroDuration()))); } TEST(Duration, GeneratedToProto) { google::protobuf::Duration proto; ASSERT_OK(WrapGeneratedDurationProto(absl::Seconds(1) + absl::Nanoseconds(2), proto)); EXPECT_EQ(proto.seconds(), 1); EXPECT_EQ(proto.nanos(), 2); } TEST(Duration, CustomToProto) { google::protobuf::SimpleDescriptorDatabase database; { google::protobuf::FileDescriptorProto fd; google::protobuf::Duration::descriptor()->file()->CopyTo(&fd); ASSERT_TRUE(database.Add(fd)); } google::protobuf::DescriptorPool pool(&database); pool.AllowUnknownDependencies(); google::protobuf::DynamicMessageFactory factory(&pool); factory.SetDelegateToGeneratedFactory(false); std::unique_ptr<google::protobuf::Message> proto = absl::WrapUnique( factory .GetPrototype(pool.FindMessageTypeByName("google.protobuf.Duration")) ->New()); const auto* descriptor = proto->GetDescriptor(); const auto* reflection = proto->GetReflection(); const auto* seconds_field = descriptor->FindFieldByName("seconds"); ASSERT_NE(seconds_field, nullptr); const auto* nanos_field = descriptor->FindFieldByName("nanos"); ASSERT_NE(nanos_field, nullptr); ASSERT_OK(WrapDynamicDurationProto(absl::Seconds(1) + absl::Nanoseconds(2), *proto)); EXPECT_EQ(reflection->GetInt64(*proto, seconds_field), 1); EXPECT_EQ(reflection->GetInt32(*proto, nanos_field), 2); } } }
83
#ifndef TENSORFLOW_CORE_TFRT_IFRT_IFRT_EXECUTABLE_REGISTRY_H_ #define TENSORFLOW_CORE_TFRT_IFRT_IFRT_EXECUTABLE_REGISTRY_H_ #include <cstdint> #include <memory> #include <optional> #include "absl/base/thread_annotations.h" #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" namespace tensorflow { namespace ifrt_serving { class ServingExecutableRegistry { public: class Handle { public: Handle(); Handle(Handle&& other); Handle& operator=(Handle&& other); Handle(const Handle&) = delete; Handle& operator=(const Handle&) = delete; ~Handle(); std::optional<int64_t> program_id() const { return program_id_; } void Release(); absl::Status Freeze(); private: friend class ServingExecutableRegistry; explicit Handle(int64_t program_id); std::optional<int64_t> program_id_; }; static absl::StatusOr<Handle> Register( int64_t program_id, std::unique_ptr<IfrtServingExecutable> executable); static IfrtServingExecutable* Lookup(int64_t program_id); private: friend class Handle; static absl::Mutex mu_; static absl::flat_hash_map<int64_t, std::unique_ptr<IfrtServingExecutable>>* const executables_ ABSL_GUARDED_BY(&mu_); }; } } #endif #include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include <cstdint> #include <memory> #include <optional> #include <utility> #include "absl/base/attributes.h" #include "absl/base/const_init.h" #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/log/log.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/synchronization/mutex.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" namespace tensorflow { namespace ifrt_serving { ServingExecutableRegistry::Handle::Handle(Handle&& other) { *this = std::move(other); } ServingExecutableRegistry::Handle& ServingExecutableRegistry::Handle::operator=( Handle&& other) { if (this != &other) { program_id_ = std::move(other.program_id_); other.program_id_ = std::nullopt; } return *this; } ServingExecutableRegistry::Handle::~Handle() { Release(); } absl::Status ServingExecutableRegistry::Handle::Freeze() { if (!program_id_.has_value()) { return absl::FailedPreconditionError("Program is not registered"); } absl::MutexLock l(&ServingExecutableRegistry::mu_); const auto it = ServingExecutableRegistry::executables_->find(*program_id_); if (it == ServingExecutableRegistry::executables_->end()) { return absl::NotFoundError( absl::StrCat("Program ", *program_id_, " not found in the registry")); } VLOG(1) << "Freeze the program " << *program_id_ << " from signature '" << it->second->signature_name() << "' of model '" << it->second->model_name() << "'"; it->second->Freeze(); return absl::OkStatus(); } void ServingExecutableRegistry::Handle::Release() { if (!program_id_.has_value()) { return; } absl::MutexLock l(&ServingExecutableRegistry::mu_); const auto it = ServingExecutableRegistry::executables_->find(*program_id_); if (it == ServingExecutableRegistry::executables_->end()) { LOG(ERROR) << "Program " << *program_id_ << " not found in the registry"; return; } VLOG(1) << "Unregistering program " << *program_id_ << " from signature '" << it->second->signature_name() << "' of model '" << it->second->model_name() << "'"; ServingExecutableRegistry::executables_->erase(it); program_id_ = std::nullopt; } ServingExecutableRegistry::Handle::Handle(int64_t program_id) : program_id_(program_id) {} absl::StatusOr<ServingExecutableRegistry::Handle> ServingExecutableRegistry::Register( int64_t program_id, std::unique_ptr<IfrtServingExecutable> executable) { absl::MutexLock l(&mu_); VLOG(1) << "Registering program " << program_id << " from signature '" << executable->signature_name() << "' of model '" << executable->model_name() << "'" << ", address is " << executable.get(); if (!executables_->insert({program_id, std::move(executable)}).second) { return absl::AlreadyExistsError(absl::StrCat( "Program ", program_id, " already exists in the program registry")); } return Handle(program_id); } IfrtServingExecutable* ServingExecutableRegistry::Lookup(int64_t program_id) { absl::ReaderMutexLock l(&mu_); VLOG(1) << "Looking up program " << program_id; const auto it = executables_->find(program_id); return it != executables_->end() ? it->second.get() : nullptr; } ABSL_CONST_INIT absl::Mutex ServingExecutableRegistry::mu_(absl::kConstInit); absl::flat_hash_map<int64_t, std::unique_ptr<IfrtServingExecutable>>* const ServingExecutableRegistry::executables_ = new absl::flat_hash_map<int64_t, std::unique_ptr<IfrtServingExecutable>>(); } }
#include "tensorflow/core/tfrt/ifrt/ifrt_executable_registry.h" #include <cstdint> #include <memory> #include <string> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/DialectRegistry.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/OwningOpRef.h" #include "mlir/InitAllDialects.h" #include "mlir/Parser/Parser.h" #include "tensorflow/compiler/mlir/tensorflow/dialect_registration.h" #include "tensorflow/compiler/tf2xla/xla_helpers.h" #include "xla/python/ifrt/array.h" #include "xla/python/ifrt/client.h" #include "xla/python/ifrt/test_util.h" #include "tensorflow/core/common_runtime/device_mgr.h" #include "tensorflow/core/framework/types.pb.h" #include "tensorflow/core/platform/resource_loader.h" #include "tensorflow/core/platform/status_matchers.h" #include "tensorflow/core/platform/test.h" #include "tensorflow/core/tfrt/ifrt/ifrt_loaded_variable_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_restore_tensor_registry.h" #include "tensorflow/core/tfrt/ifrt/ifrt_serving_executable.h" #include "tensorflow/core/tfrt/ifrt/tf_host_callback.h" #include "tsl/platform/env.h" #include "tsl/platform/statusor.h" #include "tsl/platform/threadpool.h" #include "tfrt/host_context/concurrent_work_queue.h" namespace tensorflow { namespace ifrt_serving { namespace { const tsl::thread::ThreadPool& GetThreadPool() { constexpr int kMaxParallelism = 16; static auto* const thread_pool = new tsl::thread::ThreadPool(tsl::Env::Default(), tsl::ThreadOptions(), "IfrtSharding", kMaxParallelism); return *thread_pool; } absl::StatusOr<std::unique_ptr<IfrtServingExecutable>> CreateIfrtServingExecutable(mlir::MLIRContext& context, int64_t program_id) { constexpr absl::string_view kDataDirectory = "tensorflow/core/tfrt/ifrt/testdata"; std::string mlir_module_path = tensorflow::GetDataDependencyFilepath( absl::StrCat(kDataDirectory, "/executable.mlir")); mlir::OwningOpRef<mlir::ModuleOp> mlir_module = mlir::parseSourceFile<mlir::ModuleOp>(mlir_module_path, &context); if (!mlir_module) { return absl::InvalidArgumentError( absl::StrCat("Failed to parse MLIR file: ", mlir_module_path)); } TF_ASSIGN_OR_RETURN(std::shared_ptr<xla::ifrt::Client> client, xla::ifrt::test_util::GetClient()); IfrtLoadedVariableRegistry ifrt_loaded_variable_registry; IfrtRestoreTensorRegistry ifrt_restore_tensor_registry; std::unique_ptr<tfrt::ConcurrentWorkQueue> work_queue = tfrt::CreateMultiThreadedWorkQueue( 4, 4); TF_ASSIGN_OR_RETURN(std::unique_ptr<tensorflow::StaticDeviceMgr> device_mgr, CreateTfStaticDeviceMgr()); return IfrtServingExecutable::Create( program_id, "test", "main", std::move(mlir_module), client, &GetThreadPool(), &ifrt_loaded_variable_registry, &ifrt_restore_tensor_registry, work_queue.get(), device_mgr.get(), tensorflow::IdentityShapeRepresentationFn(), nullptr, nullptr); } TEST(IfrtExecutableRegistry, Basic) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); IfrtServingExecutable* raw_ptr = executable.get(); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, raw_ptr); } TEST(IfrtExecutableRegistry, DuplicateRegistrationFails) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); EXPECT_THAT( ServingExecutableRegistry::Register(program_id, std::move(executable)), testing::StatusIs(absl::StatusCode::kAlreadyExists)); } TEST(IfrtExecutableRegistry, ReleaseOk) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); handle.Release(); EXPECT_EQ(ServingExecutableRegistry::Lookup(program_id), nullptr); } TEST(IfrtExecutableRegistry, FreezeOk) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); IfrtServingExecutable* raw_ptr = executable.get(); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); ASSERT_OK(handle.Freeze()); IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, raw_ptr); } TEST(IfrtExecutableRegistry, FreezeFailedProgramNotRegistered) { mlir::DialectRegistry registry; mlir::registerAllDialects(registry); mlir::RegisterAllTensorFlowDialects(registry); mlir::MLIRContext context(registry); int64_t program_id = 1234; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<IfrtServingExecutable> executable, CreateIfrtServingExecutable(context, program_id)); TF_ASSERT_OK_AND_ASSIGN(auto handle, ServingExecutableRegistry::Register( program_id, std::move(executable))); handle.Release(); EXPECT_THAT(handle.Freeze(), testing::StatusIs(absl::StatusCode::kFailedPrecondition)); } TEST(IfrtExecutableRegistry, InvalidProgramIdShallReturnNull) { int64_t program_id = 1234; IfrtServingExecutable* executable_ptr = ServingExecutableRegistry::Lookup(program_id); ASSERT_EQ(executable_ptr, nullptr); } } } }
84
#ifndef THIRD_PARTY_CEL_CPP_COMMON_TYPES_OPAQUE_TYPE_H_ #define THIRD_PARTY_CEL_CPP_COMMON_TYPES_OPAQUE_TYPE_H_ #include <ostream> #include <string> #include <type_traits> #include <utility> #include "absl/base/attributes.h" #include "absl/meta/type_traits.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "common/casting.h" #include "common/memory.h" #include "common/native_type.h" #include "common/sized_input_view.h" #include "common/type_kind.h" namespace cel { class Type; class TypeView; class OpaqueType; class OpaqueTypeView; namespace common_internal { struct OpaqueTypeData; } class OpaqueType { public: using view_alternative_type = OpaqueTypeView; static constexpr TypeKind kKind = TypeKind::kOpaque; explicit OpaqueType(OpaqueTypeView other); OpaqueType(MemoryManagerRef memory_manager, absl::string_view name, const SizedInputView<TypeView>& parameters); OpaqueType() = delete; OpaqueType(const OpaqueType&) = default; OpaqueType(OpaqueType&&) = default; OpaqueType& operator=(const OpaqueType&) = default; OpaqueType& operator=(OpaqueType&&) = default; constexpr TypeKind kind() const { return kKind; } absl::string_view name() const ABSL_ATTRIBUTE_LIFETIME_BOUND; std::string DebugString() const; void swap(OpaqueType& other) noexcept { using std::swap; swap(data_, other.data_); } absl::Span<const Type> parameters() const ABSL_ATTRIBUTE_LIFETIME_BOUND; private: friend class OpaqueTypeView; friend struct NativeTypeTraits<OpaqueType>; Shared<const common_internal::OpaqueTypeData> data_; }; inline void swap(OpaqueType& lhs, OpaqueType& rhs) noexcept { lhs.swap(rhs); } bool operator==(const OpaqueType& lhs, const OpaqueType& rhs); inline bool operator!=(const OpaqueType& lhs, const OpaqueType& rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, const OpaqueType& type); inline std::ostream& operator<<(std::ostream& out, const OpaqueType& type) { return out << type.DebugString(); } template <> struct NativeTypeTraits<OpaqueType> final { static NativeTypeId Id(const OpaqueType&) { return NativeTypeId::For<OpaqueType>(); } static bool SkipDestructor(const OpaqueType& type) { return NativeType::SkipDestructor(type.data_); } }; template <typename T> struct NativeTypeTraits<T, std::enable_if_t<std::conjunction_v< std::negation<std::is_same<OpaqueType, T>>, std::is_base_of<OpaqueType, T>>>> final { static NativeTypeId Id(const T& type) { return NativeTypeTraits<OpaqueType>::Id(type); } static bool SkipDestructor(const T& type) { return NativeTypeTraits<OpaqueType>::SkipDestructor(type); } }; template <typename To, typename From> struct CastTraits< To, From, std::enable_if_t<std::conjunction_v< std::bool_constant<sizeof(To) == sizeof(absl::remove_cvref_t<From>)>, std::bool_constant<alignof(To) == alignof(absl::remove_cvref_t<From>)>, std::is_same<OpaqueType, absl::remove_cvref_t<From>>, std::negation<std::is_same<OpaqueType, To>>, std::is_base_of<OpaqueType, To>>>> final { static bool Compatible(const absl::remove_cvref_t<From>& from) { return SubsumptionTraits<To>::IsA(from); } static decltype(auto) Convert(From from) { return SubsumptionTraits<To>::DownCast(std::move(from)); } }; class OpaqueTypeView { public: using alternative_type = OpaqueType; static constexpr TypeKind kKind = OpaqueType::kKind; OpaqueTypeView(const OpaqueType& type ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept; OpaqueTypeView& operator=( const OpaqueType& type ABSL_ATTRIBUTE_LIFETIME_BOUND) { data_ = type.data_; return *this; } OpaqueTypeView& operator=(OpaqueType&&) = delete; OpaqueTypeView() = delete; OpaqueTypeView(const OpaqueTypeView&) = default; OpaqueTypeView(OpaqueTypeView&&) = default; OpaqueTypeView& operator=(const OpaqueTypeView&) = default; OpaqueTypeView& operator=(OpaqueTypeView&&) = default; constexpr TypeKind kind() const { return kKind; } absl::string_view name() const; std::string DebugString() const; void swap(OpaqueTypeView& other) noexcept { using std::swap; swap(data_, other.data_); } absl::Span<const Type> parameters() const; private: friend class OpaqueType; friend struct NativeTypeTraits<OpaqueTypeView>; SharedView<const common_internal::OpaqueTypeData> data_; }; inline void swap(OpaqueTypeView& lhs, OpaqueTypeView& rhs) noexcept { lhs.swap(rhs); } bool operator==(OpaqueTypeView lhs, OpaqueTypeView rhs); inline bool operator!=(OpaqueTypeView lhs, OpaqueTypeView rhs) { return !operator==(lhs, rhs); } template <typename H> H AbslHashValue(H state, OpaqueTypeView type); inline std::ostream& operator<<(std::ostream& out, OpaqueTypeView type) { return out << type.DebugString(); } template <> struct NativeTypeTraits<OpaqueTypeView> final { static NativeTypeId Id(OpaqueTypeView type) { return NativeTypeId::For<OpaqueTypeView>(); } }; template <typename T> struct NativeTypeTraits<T, std::enable_if_t<std::conjunction_v< std::negation<std::is_same<OpaqueTypeView, T>>, std::is_base_of<OpaqueTypeView, T>>>> final { static NativeTypeId Id(const T& type) { return NativeTypeTraits<OpaqueTypeView>::Id(type); } }; template <typename To, typename From> struct CastTraits< To, From, std::enable_if_t<std::conjunction_v< std::bool_constant<sizeof(To) == sizeof(absl::remove_cvref_t<From>)>, std::bool_constant<alignof(To) == alignof(absl::remove_cvref_t<From>)>, std::is_same<OpaqueTypeView, absl::remove_cvref_t<From>>, std::negation<std::is_same<OpaqueTypeView, To>>, std::is_base_of<OpaqueTypeView, To>>>> final { static bool Compatible(const absl::remove_cvref_t<From>& from) { return SubsumptionTraits<To>::IsA(from); } static decltype(auto) Convert(From from) { return SubsumptionTraits<To>::DownCast(std::move(from)); } }; } #endif #include <cstddef> #include <string> #include <utility> #include "absl/container/fixed_array.h" #include "absl/log/absl_check.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_join.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "common/memory.h" #include "common/native_type.h" #include "common/sized_input_view.h" #include "common/type.h" namespace cel { namespace { std::string OpaqueDebugString(absl::string_view name, absl::Span<const Type> parameters) { if (parameters.empty()) { return std::string(name); } return absl::StrCat( name, "<", absl::StrJoin(parameters, ", ", absl::StreamFormatter()), ">"); } absl::FixedArray<Type, 1> SizedInputViewToFixedArray( const SizedInputView<TypeView>& parameters) { absl::FixedArray<Type, 1> fixed_parameters(parameters.size()); size_t index = 0; for (const auto& parameter : parameters) { fixed_parameters[index++] = Type(parameter); } ABSL_DCHECK_EQ(index, parameters.size()); return fixed_parameters; } } OpaqueType::OpaqueType(MemoryManagerRef memory_manager, absl::string_view name, const SizedInputView<TypeView>& parameters) : data_(memory_manager.MakeShared<common_internal::OpaqueTypeData>( std::string(name), SizedInputViewToFixedArray(std::move(parameters)))) {} std::string OpaqueType::DebugString() const { return OpaqueDebugString(name(), parameters()); } std::string OpaqueTypeView::DebugString() const { return OpaqueDebugString(name(), parameters()); } }
#include <sstream> #include <string> #include "absl/hash/hash.h" #include "absl/types/optional.h" #include "common/casting.h" #include "common/memory.h" #include "common/memory_testing.h" #include "common/native_type.h" #include "common/type.h" #include "internal/testing.h" namespace cel { namespace { using testing::An; using testing::Ne; using testing::TestParamInfo; using testing::TestWithParam; class OpaqueTypeTest : public common_internal::ThreadCompatibleMemoryTest<> {}; TEST_P(OpaqueTypeTest, Kind) { EXPECT_EQ(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}).kind(), OpaqueType::kKind); EXPECT_EQ( Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})).kind(), OpaqueType::kKind); } TEST_P(OpaqueTypeTest, Name) { EXPECT_EQ(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}).name(), "test.Opaque"); EXPECT_EQ( Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})).name(), "test.Opaque"); } TEST_P(OpaqueTypeTest, DebugString) { { std::ostringstream out; out << OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(out.str(), "test.Opaque<bytes>"); } { std::ostringstream out; out << Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})); EXPECT_EQ(out.str(), "test.Opaque<bytes>"); } { std::ostringstream out; out << OpaqueType(memory_manager(), "test.Opaque", {}); EXPECT_EQ(out.str(), "test.Opaque"); } } TEST_P(OpaqueTypeTest, Hash) { EXPECT_EQ( absl::HashOf(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), absl::HashOf(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))); } TEST_P(OpaqueTypeTest, Equal) { EXPECT_EQ(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}), OpaqueType(memory_manager(), "test.Opaque", {BytesType()})); EXPECT_EQ(Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), OpaqueType(memory_manager(), "test.Opaque", {BytesType()})); EXPECT_EQ(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}), Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))); EXPECT_EQ(Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))); } TEST_P(OpaqueTypeTest, NativeTypeId) { EXPECT_EQ(NativeTypeId::Of( OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), NativeTypeId::For<OpaqueType>()); EXPECT_EQ(NativeTypeId::Of(Type( OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))), NativeTypeId::For<OpaqueType>()); } TEST_P(OpaqueTypeTest, InstanceOf) { EXPECT_TRUE(InstanceOf<OpaqueType>( OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))); EXPECT_TRUE(InstanceOf<OpaqueType>( Type(OpaqueType(memory_manager(), "test.Opaque", {BytesType()})))); } TEST_P(OpaqueTypeTest, Cast) { EXPECT_THAT(Cast<OpaqueType>( OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), An<OpaqueType>()); EXPECT_THAT(Cast<OpaqueType>(Type( OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))), An<OpaqueType>()); } TEST_P(OpaqueTypeTest, As) { EXPECT_THAT(As<OpaqueType>( OpaqueType(memory_manager(), "test.Opaque", {BytesType()})), Ne(absl::nullopt)); EXPECT_THAT(As<OpaqueType>(Type( OpaqueType(memory_manager(), "test.Opaque", {BytesType()}))), Ne(absl::nullopt)); } INSTANTIATE_TEST_SUITE_P( OpaqueTypeTest, OpaqueTypeTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), OpaqueTypeTest::ToString); class OpaqueTypeViewTest : public common_internal::ThreadCompatibleMemoryTest<> {}; TEST_P(OpaqueTypeViewTest, Kind) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(OpaqueTypeView(type).kind(), OpaqueTypeView::kKind); EXPECT_EQ(TypeView(OpaqueTypeView(type)).kind(), OpaqueTypeView::kKind); } TEST_P(OpaqueTypeViewTest, Name) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(OpaqueTypeView(type).name(), "test.Opaque"); EXPECT_EQ(TypeView(OpaqueTypeView(type)).name(), "test.Opaque"); } TEST_P(OpaqueTypeViewTest, DebugString) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); { std::ostringstream out; out << OpaqueTypeView(type); EXPECT_EQ(out.str(), "test.Opaque<bytes>"); } { std::ostringstream out; out << TypeView(OpaqueTypeView(type)); EXPECT_EQ(out.str(), "test.Opaque<bytes>"); } } TEST_P(OpaqueTypeViewTest, Hash) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(absl::HashOf(OpaqueTypeView(type)), absl::HashOf(OpaqueTypeView(type))); EXPECT_EQ(absl::HashOf(OpaqueTypeView(type)), absl::HashOf(OpaqueType(type))); } TEST_P(OpaqueTypeViewTest, Equal) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(OpaqueTypeView(type), OpaqueTypeView(type)); EXPECT_EQ(TypeView(OpaqueTypeView(type)), OpaqueTypeView(type)); EXPECT_EQ(OpaqueTypeView(type), TypeView(OpaqueTypeView(type))); EXPECT_EQ(TypeView(OpaqueTypeView(type)), TypeView(OpaqueTypeView(type))); EXPECT_EQ(OpaqueTypeView(type), OpaqueType(type)); EXPECT_EQ(TypeView(OpaqueTypeView(type)), OpaqueType(type)); EXPECT_EQ(TypeView(OpaqueTypeView(type)), Type(OpaqueType(type))); EXPECT_EQ(OpaqueType(type), OpaqueTypeView(type)); EXPECT_EQ(OpaqueType(type), OpaqueTypeView(type)); EXPECT_EQ(OpaqueType(type), TypeView(OpaqueTypeView(type))); EXPECT_EQ(Type(OpaqueType(type)), TypeView(OpaqueTypeView(type))); EXPECT_EQ(OpaqueTypeView(type), OpaqueType(type)); } TEST_P(OpaqueTypeViewTest, NativeTypeId) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_EQ(NativeTypeId::Of(OpaqueTypeView(type)), NativeTypeId::For<OpaqueTypeView>()); EXPECT_EQ(NativeTypeId::Of(TypeView(OpaqueTypeView(type))), NativeTypeId::For<OpaqueTypeView>()); } TEST_P(OpaqueTypeViewTest, InstanceOf) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_TRUE(InstanceOf<OpaqueTypeView>(OpaqueTypeView(type))); EXPECT_TRUE(InstanceOf<OpaqueTypeView>(TypeView(OpaqueTypeView(type)))); } TEST_P(OpaqueTypeViewTest, Cast) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_THAT(Cast<OpaqueTypeView>(OpaqueTypeView(type)), An<OpaqueTypeView>()); EXPECT_THAT(Cast<OpaqueTypeView>(TypeView(OpaqueTypeView(type))), An<OpaqueTypeView>()); } TEST_P(OpaqueTypeViewTest, As) { auto type = OpaqueType(memory_manager(), "test.Opaque", {BytesType()}); EXPECT_THAT(As<OpaqueTypeView>(OpaqueTypeView(type)), Ne(absl::nullopt)); EXPECT_THAT(As<OpaqueTypeView>(TypeView(OpaqueTypeView(type))), Ne(absl::nullopt)); } INSTANTIATE_TEST_SUITE_P( OpaqueTypeViewTest, OpaqueTypeViewTest, ::testing::Values(MemoryManagement::kPooling, MemoryManagement::kReferenceCounting), OpaqueTypeViewTest::ToString); } }
85
#ifndef TENSORFLOW_CORE_IR_UTILITY_H_ #define TENSORFLOW_CORE_IR_UTILITY_H_ #include <optional> #include "llvm/ADT/STLExtras.h" #include "mlir/IR/Block.h" #include "mlir/IR/OperationSupport.h" #include "mlir/IR/Value.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" namespace mlir { namespace tfg { Block::BlockArgListType GetLoopRegionDataArgs(Region &region); Block::BlockArgListType GetLoopRegionControlTokens(Region &region); BlockArgument GetLoopRegionControlOf(BlockArgument data); BlockArgument GetLoopRegionDataOf(BlockArgument ctl); Value LookupControlDependency(Value data); std::optional<Value> LookupDataValue(Value ctl); template <typename RangeT> std::pair<RangeT, RangeT> SplitDataAndControlValues(RangeT values, ControlType ctl_type) { unsigned num_ctl = 0; for (Value value : llvm::reverse(values)) { if (value.getType() == ctl_type) ++num_ctl; else break; } unsigned split_idx = llvm::size(values) - num_ctl; return std::make_pair(values.slice(0, split_idx), values.slice(split_idx, num_ctl)); } } } #endif #include "tensorflow/core/ir/utility.h" #include <optional> #include "mlir/IR/Block.h" #include "mlir/IR/Operation.h" #include "mlir/IR/Types.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/interfaces.h" #include "tensorflow/core/ir/types/dialect.h" namespace mlir { namespace tfg { Block::BlockArgListType GetLoopRegionDataArgs(Region &region) { Block::BlockArgListType args = region.getArguments(); return args.drop_back(args.size() / 2); } Block::BlockArgListType GetLoopRegionControlTokens(Region &region) { Block::BlockArgListType args = region.getArguments(); return args.drop_front(args.size() / 2); } BlockArgument GetLoopRegionControlOf(BlockArgument data) { Block &block = *data.getOwner(); return block.getArgument(data.getArgNumber() + block.getNumArguments() / 2); } BlockArgument GetLoopRegionDataOf(BlockArgument ctl) { Block &block = *ctl.getOwner(); return block.getArgument(ctl.getArgNumber() - block.getNumArguments() / 2); } Value LookupControlDependency(Value data) { assert(!mlir::isa<ControlType>(data.getType()) && "expected a data type"); Value control_dep; if (auto result = mlir::dyn_cast<OpResult>(data)) { control_dep = *std::prev(result.getOwner()->result_end()); } else { auto arg = mlir::cast<BlockArgument>(data); control_dep = cast<ControlArgumentInterface>(arg.getOwner()->getParentOp()) .getControlTokenOf(arg); } assert(mlir::isa<ControlType>(control_dep.getType()) && "expected a control type"); return control_dep; } std::optional<Value> LookupDataValue(Value ctl) { assert(mlir::isa<ControlType>(ctl.getType()) && "expected a control type"); Value data; if (auto result = mlir::dyn_cast<OpResult>(ctl)) { if (result.getOwner()->getNumResults() == 1) return {}; data = *result.getOwner()->result_begin(); } else { auto arg = mlir::cast<BlockArgument>(ctl); data = cast<ControlArgumentInterface>(arg.getOwner()->getParentOp()) .getDataValueOf(arg); } assert(!mlir::isa<ControlType>(data.getType()) && "expected a data type"); return data; } } }
#include "tensorflow/core/ir/utility.h" #include <optional> #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/MLIRContext.h" #include "mlir/IR/Operation.h" #include "mlir/Parser/Parser.h" #include "mlir/Support/LLVM.h" #include "tensorflow/core/ir/dialect.h" #include "tensorflow/core/ir/ops.h" #include "tensorflow/core/platform/test.h" namespace mlir { namespace tfg { namespace { TEST(DialectUtilityTest, TestLookupControlDependency) { MLIRContext context; context.getOrLoadDialect<tfg::TFGraphDialect>(); const char *const code = R"mlir( tfg.func @test(%arg: tensor<i32> {tfg.name = "arg"}) -> (tensor<i32>) { %Copy, %ctl = Copy(%arg) : (tensor<i32>) -> (tensor<i32>) return(%Copy) : tensor<i32> } )mlir"; OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto ret_op = cast<ReturnOp>(func.getBody().front().getTerminator()); Value copy = ret_op.getOperand(0); Value ctl = LookupControlDependency(copy); ASSERT_TRUE(ctl); OpResult ctl_result = mlir::dyn_cast<OpResult>(ctl); ASSERT_TRUE(ctl_result); EXPECT_EQ(ctl_result.getResultNumber(), 1); EXPECT_EQ(copy, ctl_result.getOwner()->getResult(0)); EXPECT_EQ(ctl_result.getOwner()->getName().getStringRef(), "tfg.Copy"); Value arg = ctl_result.getOwner()->getOperand(0); Value arg_ctl = LookupControlDependency(arg); ASSERT_TRUE(arg_ctl); BlockArgument ctl_arg = mlir::dyn_cast<BlockArgument>(arg_ctl); ASSERT_TRUE(ctl_arg); EXPECT_EQ(ctl_arg.getArgNumber(), 1); EXPECT_EQ(arg, ctl_arg.getOwner()->getArgument(0)); } TEST(DialectUtilityTest, TestLookupDataValue) { MLIRContext context; context.getOrLoadDialect<tfg::TFGraphDialect>(); const char *const code = R"mlir( tfg.func @test(%arg: tensor<i32> {tfg.name = "arg"}) -> (tensor<i32>) { %Produce, %ctl = Produce [%arg.ctl] : () -> (tensor<i32>) return(%arg) [%ctl] : tensor<i32> } )mlir"; OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto ret_op = cast<ReturnOp>(func.getBody().front().getTerminator()); Value ctl = ret_op.getOperand(1); std::optional<Value> produce = LookupDataValue(ctl); ASSERT_TRUE(produce); OpResult produce_result = mlir::dyn_cast<OpResult>(*produce); ASSERT_TRUE(produce_result); ASSERT_EQ(produce_result.getResultNumber(), 0); ASSERT_EQ(produce_result.getOwner()->getName().getStringRef(), "tfg.Produce"); ASSERT_EQ(produce_result.getOwner()->getResult(1), ctl); Value arg_ctl = produce_result.getOwner()->getOperand(0); std::optional<Value> arg = LookupDataValue(arg_ctl); ASSERT_TRUE(arg); BlockArgument arg_arg = mlir::dyn_cast<BlockArgument>(*arg); ASSERT_TRUE(arg_arg); ASSERT_EQ(arg_arg.getArgNumber(), 0); ASSERT_EQ(arg_arg.getOwner()->getArgument(1), arg_ctl); } TEST(DialectUtilityTest, TestLookupDataValueNoData) { MLIRContext context; context.getOrLoadDialect<tfg::TFGraphDialect>(); const char *const code = R"mlir( tfg.func @test(%arg: tensor<i32> {tfg.name = "arg"}) -> (tensor<i32>) { %ctl = NoOp [%arg.ctl] : () -> () return(%arg) [%ctl] : tensor<i32> } )mlir"; OwningOpRef<mlir::ModuleOp> module = mlir::parseSourceString<mlir::ModuleOp>(code, &context); ASSERT_TRUE(module); GraphFuncOp func = module->lookupSymbol<GraphFuncOp>("test"); ASSERT_TRUE(func); auto ret_op = cast<ReturnOp>(func.getBody().front().getTerminator()); Value ctl = ret_op.getOperand(1); std::optional<Value> no_data = LookupDataValue(ctl); ASSERT_FALSE(no_data); } } } }
86
#ifndef TENSORSTORE_INTERNAL_METRICS_PROMETHEUS_H_ #define TENSORSTORE_INTERNAL_METRICS_PROMETHEUS_H_ #include <map> #include <string> #include "absl/functional/function_ref.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/metrics/collect.h" #include "tensorstore/util/result.h" namespace tensorstore { namespace internal_metrics { struct PushGatewayConfig { std::string host; std::string job; std::string instance; std::map<std::string, std::string> additional_labels; }; Result<internal_http::HttpRequest> BuildPrometheusPushRequest( const PushGatewayConfig& config); void PrometheusExpositionFormat( const CollectedMetric& metric, absl::FunctionRef<void(std::string)> handle_line); } } #endif #include "tensorstore/internal/metrics/prometheus.h" #include <stddef.h> #include <stdint.h> #include <cassert> #include <string> #include <string_view> #include <utility> #include <variant> #include <vector> #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/escaping.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "tensorstore/internal/http/http_request.h" #include "tensorstore/internal/metrics/collect.h" #include "tensorstore/internal/uri_utils.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status.h" namespace tensorstore { namespace internal_metrics { namespace { static inline constexpr internal::AsciiSet kDigit{"0123456789"}; static inline constexpr internal::AsciiSet kMetricFirst{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "_:"}; static inline constexpr internal::AsciiSet kLabelFirst{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "_"}; static inline constexpr internal::AsciiSet kValueUnreserved{ "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789" "-_.~()"}; bool IsLegalPrometheusLabel(std::string_view label) { if (label.empty() || !kLabelFirst.Test(label[0])) return false; for (char c : label) { if (!kLabelFirst.Test(c) && !kDigit.Test(c)) return false; } return true; } absl::Status AppendLabelValue(std::string* url, std::string_view label, std::string_view value) { if (!IsLegalPrometheusLabel(label)) { return absl::InvalidArgumentError(""); } if (value.empty()) { absl::StrAppend(url, "/", label, "@base64/="); } for (char c : value) { if (!kValueUnreserved.Test(c)) { absl::StrAppend(url, "/", label, "@base64/", absl::WebSafeBase64Escape(value)); return absl::OkStatus(); } } absl::StrAppend(url, "/", label, "/", value); return absl::OkStatus(); } std::string AsPrometheusString(std::string_view in, internal::AsciiSet first) { while (!in.empty() && !first.Test(in[0])) { in = in.substr(1); } while (!in.empty() && !first.Test(in[in.size() - 1]) && !kDigit.Test(in[in.size() - 1])) { in = in.substr(0, in.size() - 1); } std::string raw(in); for (char& c : raw) { if (!first.Test(c) && !kDigit.Test(c)) c = '_'; } return raw; } struct PrometheusValueLine { const std::string& metric_name; const char* suffix; const std::string& label_str; std::string operator()(int64_t x) { return absl::StrCat(metric_name, suffix, label_str.empty() ? "" : "{", label_str, label_str.empty() ? "" : "} ", x); } std::string operator()(double x) { return absl::StrCat(metric_name, suffix, label_str.empty() ? "" : "{", label_str, label_str.empty() ? "" : "} ", x); } std::string operator()(const std::string& x) { return {}; } std::string operator()(std::monostate) { return {}; } }; } Result<internal_http::HttpRequest> BuildPrometheusPushRequest( const PushGatewayConfig& config) { if (config.job.empty()) { return absl::InvalidArgumentError("PushGatewayConfig bad job"); } if (!absl::StartsWith(config.host, "http: !absl::StartsWith(config.host, "https: return absl::InvalidArgumentError("PushGatewayConfig bad host"); } std::string url = config.host; if (!absl::EndsWith(url, "/")) { absl::StrAppend(&url, "/metrics"); } else { absl::StrAppend(&url, "metrics"); } TENSORSTORE_RETURN_IF_ERROR(AppendLabelValue(&url, "job", config.job)); if (!config.instance.empty()) { TENSORSTORE_RETURN_IF_ERROR( AppendLabelValue(&url, "instance", config.instance)); } for (const auto& [k, v] : config.additional_labels) { if (absl::EqualsIgnoreCase("job", k) || absl::EqualsIgnoreCase("instance", k)) { return absl::InvalidArgumentError( "PushGatewayConfig additional_labels cannot contain job or instance"); } TENSORSTORE_RETURN_IF_ERROR(AppendLabelValue(&url, k, v)); } return internal_http::HttpRequestBuilder("PUT", std::move(url)) .BuildRequest(); } void PrometheusExpositionFormat( const CollectedMetric& metric, absl::FunctionRef<void(std::string)> handle_line) { std::string metric_name = AsPrometheusString(metric.metric_name, kMetricFirst); if (metric_name.empty()) return; std::vector<std::string> prometheus_fields; prometheus_fields.reserve(metric.field_names.size()); for (size_t i = 0; i < metric.field_names.size(); ++i) { prometheus_fields.push_back( AsPrometheusString(metric.field_names[i], kLabelFirst)); } auto build_label_str = [&](auto& v) -> std::string { assert(metric.field_names.size() == v.fields.size()); if (v.fields.empty()) return {}; std::string label_str; for (size_t i = 0; i < metric.field_names.size(); ++i) { absl::StrAppend(&label_str, i == 0 ? "" : ", ", prometheus_fields[i], "=\"", absl::CEscape(v.fields[i]), "\""); } return label_str; }; if (!metric.values.empty()) { std::string line; for (const auto& v : metric.values) { std::string label_str = build_label_str(v); line = std::visit(PrometheusValueLine{metric_name, " ", label_str}, v.value); if (!line.empty()) { handle_line(std::move(line)); } line = std::visit(PrometheusValueLine{metric_name, "_max ", label_str}, v.max_value); if (!line.empty()) { handle_line(std::move(line)); } } } if (!metric.histograms.empty()) { std::string line; for (const auto& v : metric.histograms) { std::string label_str = build_label_str(v); struct Histogram { std::vector<int64_t> buckets; }; line = PrometheusValueLine{metric_name, "_mean ", label_str}(v.mean); if (!line.empty()) { handle_line(std::move(line)); } line = PrometheusValueLine{metric_name, "_count ", label_str}(v.count); if (!line.empty()) { handle_line(std::move(line)); } line = PrometheusValueLine{metric_name, "_variance ", label_str}(v.sum_of_squared_deviation); if (!line.empty()) { handle_line(std::move(line)); } line = PrometheusValueLine{metric_name, "_sum ", label_str}(v.mean * v.count); if (!line.empty()) { handle_line(std::move(line)); } size_t end = v.buckets.size(); while (end > 0 && v.buckets[end - 1] == 0) --end; for (size_t i = 0; i < end; i++) { std::string bucket_labels = absl::StrCat( label_str, label_str.empty() ? "" : ", ", "le=\"", i, "\""); line = PrometheusValueLine{metric_name, "_bucket ", bucket_labels}(v.buckets[i]); if (!line.empty()) { handle_line(std::move(line)); } } std::string bucket_labels = absl::StrCat(label_str, label_str.empty() ? "" : ", ", "le=\"+Inf\""); line = PrometheusValueLine{metric_name, "_bucket ", bucket_labels}(v.count); if (!line.empty()) { handle_line(std::move(line)); } } } } } }
#include "tensorstore/internal/metrics/prometheus.h" #include <stdint.h> #include <string> #include <utility> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/internal/metrics/collect.h" namespace { using ::tensorstore::internal_metrics::BuildPrometheusPushRequest; using ::tensorstore::internal_metrics::CollectedMetric; using ::tensorstore::internal_metrics::PrometheusExpositionFormat; using ::tensorstore::internal_metrics::PushGatewayConfig; TEST(PrometheusTest, BuildPrometheusPushRequest) { auto request = BuildPrometheusPushRequest( PushGatewayConfig{"http: EXPECT_TRUE(request.has_value()); EXPECT_EQ("http: request->url); } TEST(PrometheusTest, PrometheusExpositionFormat) { auto format_lines = [](const CollectedMetric& metric) { std::vector<std::string> lines; PrometheusExpositionFormat( metric, [&](std::string line) { lines.push_back(std::move(line)); }); return lines; }; CollectedMetric metric; metric.metric_name = "metric_name"; metric.field_names.push_back("field_name"); metric.metadata.description = "description"; metric.tag = "tag"; EXPECT_THAT(format_lines(metric), ::testing::IsEmpty()); metric.histograms.push_back(CollectedMetric::Histogram{}); auto& h = metric.histograms.back(); h.fields.push_back("hh"); h.count = 1; h.mean = 1; h.sum_of_squared_deviation = 1; h.buckets.push_back(0); h.buckets.push_back(1); metric.values.push_back(CollectedMetric::Value{}); auto& v = metric.values.back(); v.fields.push_back("vv"); v.value = int64_t{1}; v.max_value = int64_t{2}; EXPECT_THAT(format_lines(metric), ::testing::ElementsAre( "metric_name {field_name=\"vv\"} 1", "metric_name_max {field_name=\"vv\"} 2", "metric_name_mean {field_name=\"hh\"} 1", "metric_name_count {field_name=\"hh\"} 1", "metric_name_variance {field_name=\"hh\"} 1", "metric_name_sum {field_name=\"hh\"} 1", "metric_name_bucket {field_name=\"hh\", le=\"0\"} 0", "metric_name_bucket {field_name=\"hh\", le=\"1\"} 1", "metric_name_bucket {field_name=\"hh\", le=\"+Inf\"} 1")); } }
87
#ifndef TENSORFLOW_LITE_DELEGATES_FLEX_BUFFER_MAP_H_ #define TENSORFLOW_LITE_DELEGATES_FLEX_BUFFER_MAP_H_ #include <map> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { namespace flex { class BufferMap { public: BufferMap(); ~BufferMap(); bool HasTensor(int tensor_index) const; tensorflow::Tensor GetTensor(int tensor_index) const; const tensorflow::Tensor* GetTensorPtr(int tensor_index) const; void SetFromTensorFlow(int tensor_index, tensorflow::Tensor tensor); void SetFromTfLite(int tensor_index, const TfLiteTensor* tensor, bool allow_reusing = true); private: std::map<int, tensorflow::Tensor> id_to_tensor_; }; } } #endif #include "tensorflow/lite/delegates/flex/buffer_map.h" #include <utility> #include "tensorflow/c/c_api_internal.h" #include "tensorflow/lite/delegates/flex/buffer_map_util.h" #include "tensorflow/lite/delegates/flex/util.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/string_type.h" namespace tflite { namespace flex { BufferMap::BufferMap() {} BufferMap::~BufferMap() {} bool BufferMap::HasTensor(int tensor_index) const { return id_to_tensor_.count(tensor_index) != 0; } tensorflow::Tensor BufferMap::GetTensor(int tensor_index) const { return id_to_tensor_.at(tensor_index); } const tensorflow::Tensor* BufferMap::GetTensorPtr(int tensor_index) const { auto& tensor = id_to_tensor_.at(tensor_index); return &tensor; } void BufferMap::SetFromTfLite(int tensor_index, const TfLiteTensor* tensor, bool allow_reusing) { TFLITE_CHECK( SetTfTensorFromTfLite(tensor, &id_to_tensor_[tensor_index], allow_reusing) .ok()); } void BufferMap::SetFromTensorFlow(int tensor_index, tensorflow::Tensor tensor) { id_to_tensor_[tensor_index] = std::move(tensor); } } }
#include "tensorflow/lite/delegates/flex/buffer_map.h" #include <sys/types.h> #include <functional> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor_shape.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/delegates/flex/buffer_map_util.h" #include "tensorflow/lite/interpreter.h" #include "tensorflow/lite/string_util.h" #include "tensorflow/lite/testing/util.h" #include "tensorflow/lite/util.h" namespace tflite { namespace flex { namespace { using ::testing::ElementsAre; using UniqueTfLiteTensor = std::unique_ptr<TfLiteTensor, std::function<void(TfLiteTensor*)>>; template <typename T> UniqueTfLiteTensor MakeLiteTensor(const std::vector<int>& shape, const std::vector<T>& data) { auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = typeToTfLiteType<T>(); tensor->dims = ConvertVectorToTfLiteIntArray(shape); TfLiteTensorRealloc(data.size() * sizeof(T), tensor.get()); memcpy(tensor->data.raw, data.data(), data.size() * sizeof(T)); return tensor; } template <> UniqueTfLiteTensor MakeLiteTensor<string>(const std::vector<int>& shape, const std::vector<string>& data) { auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = typeToTfLiteType<string>(); tensor->dims = ConvertVectorToTfLiteIntArray(shape); TfLiteTensorRealloc(data.size() * sizeof(string), tensor.get()); DynamicBuffer b; for (const string& s : data) { b.AddString(s.data(), s.size()); } b.WriteToTensor(tensor.get(), ConvertVectorToTfLiteIntArray(shape)); return tensor; } template <typename T> tensorflow::Tensor MakeTensor(const std::vector<int64_t>& shape, const std::vector<T>& data, tensorflow::DataType dtype) { tensorflow::Tensor tensor(dtype, tensorflow::TensorShape(shape)); memcpy(tensor.data(), data.data(), data.size() * sizeof(T)); return tensor; } std::vector<int64_t> GetTensorShape(const tensorflow::Tensor& t) { std::vector<int64_t> shape(t.dims()); for (int i = 0; i < t.dims(); ++i) { shape[i] = t.dim_size(i); } return shape; } template <typename T> std::vector<T> GetTensorData(const tensorflow::Tensor& t) { const T* data = t.flat<T>().data(); return std::vector<T>(data, data + t.NumElements()); } TEST(BufferMapTest, EmptyBuffer) { BufferMap buffer_map; EXPECT_FALSE(buffer_map.HasTensor(0)); } TEST(BufferMapTest, SetFromTfLite) { BufferMap buffer_map; UniqueTfLiteTensor t = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); buffer_map.SetFromTfLite(0, t.get()); ASSERT_TRUE(buffer_map.HasTensor(0)); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_FLOAT); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTfLiteString) { BufferMap buffer_map; UniqueTfLiteTensor t = MakeLiteTensor<string>({1, 2, 1, 3}, {"", "", "", "str1", "", ""}); buffer_map.SetFromTfLite(0, t.get()); ASSERT_TRUE(buffer_map.HasTensor(0)); EXPECT_THAT(GetTensorData<tensorflow::tstring>(buffer_map.GetTensor(0)), ElementsAre("", "", "", "str1", "", "")); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_STRING); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTfLiteTwice) { UniqueTfLiteTensor t1 = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t1.get()); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, SetFromTfLiteStringTwice) { UniqueTfLiteTensor t1 = MakeLiteTensor<float>({1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}); UniqueTfLiteTensor t2 = MakeLiteTensor<string>({1, 2, 4}, {"", "", "", "s3", "", "", "s1", "s2"}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t1.get()); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<tensorflow::tstring>(buffer_map.GetTensor(0)), ElementsAre("", "", "", "s3", "", "", "s1", "s2")); } TEST(BufferMapTest, SetFromTfLiteBuiltinResource) { BufferMap buffer_map; auto tensor = UniqueTfLiteTensor(new TfLiteTensor(), [](TfLiteTensor* t) { TfLiteTensorDataFree(t); TfLiteIntArrayFree(t->dims); delete t; }); tensor->allocation_type = kTfLiteDynamic; tensor->type = kTfLiteResource; tensor->dims = ConvertVectorToTfLiteIntArray({1}); TfLiteTensorRealloc(sizeof(int32_t), tensor.get()); tensor->delegate = nullptr; tensor->data.i32[0] = 1; buffer_map.SetFromTfLite(0, tensor.get()); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_RESOURCE); ASSERT_EQ(out_tensor.NumElements(), 1); tensorflow::ResourceHandle handle = out_tensor.flat<tensorflow::ResourceHandle>()(0); EXPECT_EQ(handle.name(), "tflite_resource_variable:1"); } TEST(BufferMapTest, SetFromTensorFlow) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); tensorflow::Tensor out_tensor = buffer_map.GetTensor(0); ASSERT_EQ(out_tensor.dtype(), tensorflow::DT_FLOAT); ASSERT_EQ(out_tensor.NumElements(), 6); ASSERT_THAT(GetTensorShape(out_tensor), ElementsAre(1, 2, 1, 3)); } TEST(BufferMapTest, SetFromTensorFlowTwice) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); tensorflow::Tensor t2 = MakeTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}, tensorflow::DT_INT32); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); buffer_map.SetFromTensorFlow(0, t2); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, TfLiteOverwritesTensorFlow) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTensorFlow(0, t1); buffer_map.SetFromTfLite(0, t2.get()); EXPECT_THAT(GetTensorData<int>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 3, 0, 0, 1, 2)); } TEST(BufferMapTest, TensorFlowOverwritesTfLite) { tensorflow::Tensor t1 = MakeTensor<float>( {1, 2, 1, 3}, {0, 0, 0, 0.123f, 0, 0}, tensorflow::DT_FLOAT); UniqueTfLiteTensor t2 = MakeLiteTensor<int>({1, 2, 4}, {0, 0, 0, 3, 0, 0, 1, 2}); BufferMap buffer_map; buffer_map.SetFromTfLite(0, t2.get()); buffer_map.SetFromTensorFlow(0, t1); EXPECT_THAT(GetTensorData<float>(buffer_map.GetTensor(0)), ElementsAre(0, 0, 0, 0.123f, 0, 0)); } TEST(BufferMapTest, TensorflowBufferReuse) { TfLiteTensor tensor; tensor.allocation_type = kTfLiteDynamic; tensor.data.raw = nullptr; TfLiteTensorRealloc(10, &tensor); CHECK(tensor.data.raw); EXPECT_EQ(tensor.bytes, 10); TfLiteTensorBuffer* tensor_buffer_reused = new TfLiteTensorBuffer(&tensor); EXPECT_TRUE(tensor_buffer_reused->BufferReusedFromTfLiteTensor()); EXPECT_EQ(tensor_buffer_reused->data(), tensor.data.raw); tensor_buffer_reused->Unref(); TfLiteTensorDataFree(&tensor); } TEST(BufferMapTest, ExplicitlyDisableBufferReuse) { TfLiteTensor tensor; tensor.allocation_type = kTfLiteDynamic; tensor.data.raw = nullptr; TfLiteTensorRealloc(10, &tensor); CHECK(tensor.data.raw); EXPECT_EQ(tensor.bytes, 10); TfLiteTensorBuffer* tensor_buffer = new TfLiteTensorBuffer(&tensor, false); EXPECT_FALSE(tensor_buffer->BufferReusedFromTfLiteTensor()); EXPECT_NE(tensor_buffer->data(), tensor.data.raw); tensor_buffer->Unref(); TfLiteTensorDataFree(&tensor); } } } }
88
#ifndef TENSORSTORE_SERIALIZATION_SERIALIZATION_H_ #define TENSORSTORE_SERIALIZATION_SERIALIZATION_H_ #include <stddef.h> #include <stdint.h> #include <cassert> #include <memory> #include <string> #include <string_view> #include <type_traits> #include <typeinfo> #include <utility> #include "absl/base/attributes.h" #include "absl/functional/function_ref.h" #include "absl/status/status.h" #include "absl/strings/cord.h" #include "riegeli/bytes/reader.h" #include "riegeli/bytes/writer.h" #include "tensorstore/internal/intrusive_ptr.h" #include "tensorstore/internal/memory.h" #include "tensorstore/internal/poly/poly.h" #include "tensorstore/internal/riegeli/delimited.h" #include "tensorstore/internal/type_traits.h" #include "tensorstore/serialization/fwd.h" #include "tensorstore/util/apply_members/apply_members.h" namespace tensorstore { namespace serialization { namespace internal_serialization { void FailNonNull(DecodeSource& source); void FailEof(DecodeSource& source); } class EncodeSink { public: riegeli::Writer& writer() { return writer_; } void Fail(absl::Status status); absl::Status status() const { return writer_.status(); } virtual bool Close() { return writer_.Close(); } template <typename T, typename DirectSerializer = Serializer<std::shared_ptr<T>>> [[nodiscard]] bool Indirect(std::shared_ptr<T> object, DirectSerializer serializer = {}) { return DoIndirect( typeid(std::shared_ptr<T>), [serializer = std::move(serializer)]( EncodeSink& sink, const std::shared_ptr<void>& value) { return serializer.Encode(sink, std::static_pointer_cast<T>(value)); }, internal::StaticConstPointerCast<void>(std::move(object))); } template < typename T, typename Traits, typename DirectSerializer = Serializer<internal::IntrusivePtr<T, Traits>>> [[nodiscard]] bool Indirect(internal::IntrusivePtr<T, Traits> object, DirectSerializer serializer = {}) { return DoIndirect( typeid(internal::IntrusivePtr<T, Traits>), [serializer = std::move(serializer)]( EncodeSink& sink, const std::shared_ptr<void>& value) { return serializer.Encode(sink, internal::IntrusivePtr<T, Traits>( static_cast<T*>(value.get()))); }, internal::StaticConstPointerCast<void>( internal::IntrusiveToShared(std::move(object)))); } using ErasedEncodeWrapperFunction = poly::Poly<0, true, bool(EncodeSink& sink, const std::shared_ptr<void>& erased_value) const>; [[nodiscard]] virtual bool DoIndirect(const std::type_info& type, ErasedEncodeWrapperFunction encode, std::shared_ptr<void> object) = 0; protected: explicit EncodeSink(riegeli::Writer& writer) : writer_(writer) {} ~EncodeSink() = default; private: riegeli::Writer& writer_; }; absl::Status DecodeError(); absl::Status DecodeError(std::string_view message); class DecodeSource { public: riegeli::Reader& reader() { return reader_; } void Fail(absl::Status status); absl::Status status() const { return reader_.status(); } virtual absl::Status Done() { if (reader_.VerifyEndAndClose()) return absl::OkStatus(); return status(); } template <typename T, typename DirectSerializer = Serializer<std::shared_ptr<T>>> [[nodiscard]] bool Indirect(std::shared_ptr<T>& object, DirectSerializer serializer = {}) { std::shared_ptr<void> void_ptr; if (!DoIndirect( typeid(std::shared_ptr<T>), [serializer = std::move(serializer)](DecodeSource& source, std::shared_ptr<void>& value) { std::shared_ptr<T> typed_value; if (!serializer.Decode(source, typed_value)) return false; value = std::move(typed_value); return true; }, void_ptr)) { return false; } object = internal::static_pointer_cast<T>(std::move(void_ptr)); return true; } template < typename T, typename Traits, typename DirectSerializer = Serializer<internal::IntrusivePtr<T, Traits>>> [[nodiscard]] bool Indirect(internal::IntrusivePtr<T, Traits>& object, DirectSerializer serializer = {}) { std::shared_ptr<void> void_ptr; if (!DoIndirect( typeid(internal::IntrusivePtr<T, Traits>), [&serializer](DecodeSource& source, std::shared_ptr<void>& value) { internal::IntrusivePtr<T, Traits> typed_value; if (!serializer.Decode(source, typed_value)) return false; value = internal::StaticConstPointerCast<void>( internal::IntrusiveToShared(std::move(typed_value))); return true; }, void_ptr)) { return false; } object.reset(static_cast<T*>(void_ptr.get())); return true; } using ErasedDecodeWrapperFunction = absl::FunctionRef<bool( DecodeSource& source, std::shared_ptr<void>& value)>; [[nodiscard]] virtual bool DoIndirect(const std::type_info& type, ErasedDecodeWrapperFunction decode, std::shared_ptr<void>& value) = 0; protected: DecodeSource(riegeli::Reader& reader) : reader_(reader) {} ~DecodeSource() = default; private: riegeli::Reader& reader_; }; template <typename T> struct NonSerializable : public T { static constexpr auto ApplyMembers = [](auto&& x, auto f) { return f(internal::BaseCast<T>(x)); }; }; template <typename T> NonSerializable(const T& x) -> NonSerializable<T>; template <typename T> constexpr inline bool IsNonSerializable = false; template <typename T> constexpr inline bool IsNonSerializable<NonSerializable<T>> = true; namespace internal_serialization { absl::Status NonSerializableError(); } template <typename T> struct Serializer<NonSerializable<T>> { [[nodiscard]] static bool Encode(EncodeSink& sink, const NonSerializable<T>& value) { sink.Fail(internal_serialization::NonSerializableError()); return false; } [[nodiscard]] static bool Decode(DecodeSource& source, NonSerializable<T>& value) { source.Fail(internal_serialization::NonSerializableError()); return false; } constexpr static bool non_serializable() { return true; } }; template <typename Serializer, typename SFINAE = void> constexpr inline bool IsNonSerializer = false; template <typename Serializer> constexpr inline bool IsNonSerializer< Serializer, std::void_t<decltype(&Serializer::non_serializable)>> = Serializer::non_serializable(); template <typename T> constexpr inline bool IsNonSerializableLike = IsNonSerializer<Serializer<T>>; template <typename T> struct MemcpySerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const T& value) { return sink.writer().Write( std::string_view(reinterpret_cast<const char*>(&value), sizeof(T))); } [[nodiscard]] static bool Decode(DecodeSource& source, T& value) { return source.reader().Read(sizeof(T), reinterpret_cast<char*>(&value)); } }; template <typename T> struct Serializer<T, std::enable_if_t<SerializeUsingMemcpy<T>>> : public MemcpySerializer<T> {}; template <> struct Serializer<bool> { [[nodiscard]] static bool Encode(EncodeSink& sink, bool value) { return sink.writer().WriteByte(value); } [[nodiscard]] static bool Decode(DecodeSource& source, bool& value) { uint8_t v; if (!source.reader().ReadByte(v)) return false; value = static_cast<bool>(v); return true; } }; template <typename T, typename ElementSerializer = Serializer<T>> [[nodiscard]] bool Encode(EncodeSink& sink, const T& value, const ElementSerializer& serialize = {}) { return serialize.Encode(sink, value); } template <typename T, typename ElementSerializer = Serializer<internal::remove_cvref_t<T>>> [[nodiscard]] bool Decode(DecodeSource& source, T&& value, const ElementSerializer& serialize = {}) { return serialize.Decode(source, value); } template <typename String> struct StringSerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const String& value) { return serialization::WriteDelimited(sink.writer(), value); } [[nodiscard]] static bool Decode(DecodeSource& source, String& value) { return serialization::ReadDelimited(source.reader(), value); } }; template <> struct Serializer<std::string> : public StringSerializer<std::string> {}; template <> struct Serializer<absl::Cord> : public StringSerializer<absl::Cord> {}; template <> struct Serializer<std::string_view> : public StringSerializer<std::string_view> {}; template <typename... T> [[nodiscard]] ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool EncodeTuple( EncodeSink& sink, const T&... value) { return (serialization::Encode(sink, value) && ...); } template <typename... T> [[nodiscard]] ABSL_ATTRIBUTE_ALWAYS_INLINE inline bool DecodeTuple( DecodeSource& source, T&&... value) { return (serialization::Decode(source, value) && ...); } struct IsAnyNonSerializable { template <typename... T> constexpr auto operator()(const T&... arg) const { return std::integral_constant<bool, (IsNonSerializableLike<T> || ...)>{}; } }; template <typename T> struct ApplyMembersSerializer { [[nodiscard]] static bool Encode(EncodeSink& sink, const T& value) { return ApplyMembers<T>::Apply(value, [&sink](const auto&... member) { return (serialization::Encode(sink, member) && ...); }); } [[nodiscard]] static bool Decode(DecodeSource& source, T& value) { return ApplyMembers<T>::Apply(value, [&source](auto&&... member) { return (serialization::Decode(source, member) && ...); }); } constexpr static bool non_serializable() { return decltype(ApplyMembers<T>::Apply(std::declval<const T&>(), IsAnyNonSerializable{}))::value; } }; template <typename T> struct Serializer< T, std::enable_if_t<(SupportsApplyMembers<T> && !IsNonSerializable<T> && !SerializeUsingMemcpy<T>)>> : public ApplyMembersSerializer<T> {}; template <typename T, typename ValueType = typename T::value_type, typename ElementSerializer = Serializer<ValueType>> struct ContainerSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { if (!serialization::WriteSize(sink.writer(), value.size())) return false; for (const auto& element : value) { if (!serialization::Encode(sink, element, element_serializer)) { return false; } } return true; } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { value.clear(); size_t size; if (!serialization::ReadSize(source.reader(), size)) return false; for (size_t i = 0; i < size; ++i) { ValueType element; if (!serialization::Decode(source, element, element_serializer)) { return false; } value.insert(value.end(), std::move(element)); } return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename T, typename ElementSerializer = Serializer<typename T::value_type>> struct OptionalSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { return serialization::Encode(sink, static_cast<bool>(value)) && (!value || element_serializer.Encode(sink, *value)); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { bool has_value; return serialization::Decode(source, has_value) && (!has_value || element_serializer.Decode(source, value.emplace())); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename T, typename SFINAE = void> inline constexpr bool IsSerializable = false; template <typename T> inline constexpr bool IsSerializable< T, std::void_t<decltype(Serializer<T>::Encode(std::declval<EncodeSink&>(), std::declval<const T&>()))>> = std::is_default_constructible_v<T>; struct IsNonNull { template <typename T> constexpr bool operator()(const T& x) const { return static_cast<bool>(x); } }; struct IsValid { template <typename T> constexpr bool operator()(const T& x) const { return x.valid(); } }; template <typename T, typename NonNullSerializer, typename IsNullPredicate = IsNonNull> struct MaybeNullSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { const bool valid = IsNullPredicate{}(value); if (!serialization::Encode(sink, valid)) return false; if (!valid) return true; return non_null_serializer.Encode(sink, value); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { bool valid; if (!serialization::Decode(source, valid)) return false; if (!valid) return true; if (!non_null_serializer.Decode(source, value)) return false; assert(IsNullPredicate{}(value)); return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS NonNullSerializer non_null_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<NonNullSerializer>; } }; template <typename T, typename BaseSerializer = Serializer<T>, typename Predicate = IsNonNull> struct NonNullSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const T& value) const { assert(Predicate{}(value)); return base_serializer.Encode(sink, value); } [[nodiscard]] bool Decode(DecodeSource& source, T& value) const { if (!base_serializer.Decode(source, value)) return false; if (!Predicate{}(value)) { internal_serialization::FailNonNull(source); return false; } return true; } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS BaseSerializer base_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<BaseSerializer>; } }; template <typename Pointer, typename ElementSerializer = Serializer<std::remove_cv_t<typename Pointer::element_type>>> struct NonNullPointerSerializer { using element_type = std::remove_cv_t<typename Pointer::element_type>; [[nodiscard]] bool Encode(EncodeSink& sink, const Pointer& value) const { assert(value); return element_serializer.Encode(sink, *value); } [[nodiscard]] bool Decode(DecodeSource& source, Pointer& value) const { value.reset(new element_type); return element_serializer.Decode(source, *value); } ABSL_ATTRIBUTE_NO_UNIQUE_ADDRESS ElementSerializer element_serializer = {}; constexpr static bool non_serializable() { return IsNonSerializer<ElementSerializer>; } }; template <typename Pointer, typename NonNullSerializer = NonNullPointerSerializer<Pointer>> using PointerSerializer = MaybeNullSerializer<Pointer, NonNullSerializer>; template <typename Pointer, typename NonNullSerializer = NonNullPointerSerializer<Pointer>> struct NonNullIndirectPointerSerializer { [[nodiscard]] bool Encode(EncodeSink& sink, const Pointer& value) const { assert(value); return sink.Indirect(value, non_null_serializer); } [[nodiscard]] bool Decode(DecodeSource& source, Pointer& value) const { return
#include "tensorstore/serialization/serialization.h" #include <cstdint> #include <map> #include <set> #include <string> #include <tuple> #include <variant> #include <vector> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorstore/serialization/std_map.h" #include "tensorstore/serialization/std_optional.h" #include "tensorstore/serialization/std_set.h" #include "tensorstore/serialization/std_tuple.h" #include "tensorstore/serialization/std_variant.h" #include "tensorstore/serialization/std_vector.h" #include "tensorstore/serialization/test_util.h" #include "tensorstore/util/result.h" #include "tensorstore/util/status_testutil.h" namespace { using ::tensorstore::serialization::IsNonSerializableLike; using ::tensorstore::serialization::NonSerializable; using ::tensorstore::serialization::SerializationRoundTrip; using ::tensorstore::serialization::TestSerializationRoundTrip; TEST(SerializationTest, Bool) { TestSerializationRoundTrip(true); TestSerializationRoundTrip(false); } TEST(SerializationTest, Float) { TestSerializationRoundTrip(3.14f); TestSerializationRoundTrip(0.0f); } TEST(SerializationTest, String) { TestSerializationRoundTrip(std::string("abcdefg")); TestSerializationRoundTrip(std::string("")); } TEST(CordTest, SerializationRoundTrip) { TestSerializationRoundTrip(absl::Cord("")); TestSerializationRoundTrip(absl::Cord("abc")); } TEST(SerializationTest, Int32) { TestSerializationRoundTrip(static_cast<int32_t>(0)); TestSerializationRoundTrip(static_cast<int32_t>(3)); TestSerializationRoundTrip(static_cast<int32_t>(2147483647)); TestSerializationRoundTrip(static_cast<int32_t>(-2147483648)); } TEST(SerializationTest, VectorInt) { TestSerializationRoundTrip(std::vector<int>{}); TestSerializationRoundTrip(std::vector<int>{1, 2, 3}); } TEST(SerializationTest, VectorString) { TestSerializationRoundTrip(std::vector<std::string>{}); TestSerializationRoundTrip(std::vector<std::string>{"a", "b", "def"}); } TEST(SerializationTest, VectorVectorString) { TestSerializationRoundTrip( std::vector<std::vector<std::string>>{{"a", "b", "def"}, {"e", "f"}}); } TEST(SerializationTest, Map) { TestSerializationRoundTrip(std::map<int, std::string>{{1, "a"}, {2, "b"}}); } TEST(SerializationTest, Set) { TestSerializationRoundTrip(std::set<int>{1, 2, 3}); } TEST(SerializationTest, Tuple) { TestSerializationRoundTrip( std::tuple(std::string("abc"), 3, std::string("def"))); } TEST(SerializationTest, UniquePtrNull) { std::unique_ptr<int> ptr; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_FALSE(ptr2); } TEST(SerializationTest, UniquePtrNonNull) { auto ptr = std::make_unique<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_THAT(ptr2, ::testing::Pointee(5)); } TEST(SerializationTest, SharedPtrNull) { std::shared_ptr<int> ptr; TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_FALSE(ptr2); } TEST(SerializationTest, SharedPtrNonNull) { auto ptr = std::make_shared<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN(auto ptr2, SerializationRoundTrip(ptr)); EXPECT_THAT(ptr2, ::testing::Pointee(5)); } TEST(SerializationTest, SharedPtrDuplicate) { auto ptr = std::make_shared<int>(5); TENSORSTORE_ASSERT_OK_AND_ASSIGN( auto tuple2, SerializationRoundTrip(std::make_tuple(ptr, ptr))); EXPECT_THAT(std::get<0>(tuple2), ::testing::Pointee(5)); EXPECT_EQ(std::get<0>(tuple2), std::get<1>(tuple2)); } struct Foo { std::string a; std::string b; constexpr static auto ApplyMembers = [](auto& x, auto f) { return f(x.a, x.b); }; bool operator==(const Foo& other) const { return a == other.a && b == other.b; } }; TEST(SerializationTest, ApplyMembers) { TestSerializationRoundTrip(Foo{"xyz", "abcd"}); TestSerializationRoundTrip(Foo{"", "abcd"}); } TEST(SerialiationTest, Optional) { TestSerializationRoundTrip(std::optional<int>()); TestSerializationRoundTrip(std::optional<int>(42)); } TEST(SerialiationTest, Variant) { TestSerializationRoundTrip(std::variant<int, std::string>(42)); TestSerializationRoundTrip(std::variant<int, std::string>("abc")); TestSerializationRoundTrip(std::variant<int, int>(std::in_place_index<1>, 1)); TestSerializationRoundTrip(std::variant<int, int>(std::in_place_index<0>, 0)); } static_assert(!IsNonSerializableLike<Foo>); static_assert(!IsNonSerializableLike<std::pair<Foo, Foo>>); static_assert(IsNonSerializableLike<NonSerializable<Foo>>); static_assert(IsNonSerializableLike<std::pair<Foo, NonSerializable<Foo>>>); }
89
#ifndef THIRD_PARTY_CEL_CPP_RUNTIME_CONSTANT_FOLDING_H_ #define THIRD_PARTY_CEL_CPP_RUNTIME_CONSTANT_FOLDING_H_ #include "absl/status/status.h" #include "common/memory.h" #include "runtime/runtime_builder.h" namespace cel::extensions { absl::Status EnableConstantFolding(RuntimeBuilder& builder, MemoryManagerRef memory_manager); } #endif #include "runtime/constant_folding.h" #include "absl/base/macros.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "common/memory.h" #include "common/native_type.h" #include "eval/compiler/constant_folding.h" #include "internal/casts.h" #include "internal/status_macros.h" #include "runtime/internal/runtime_friend_access.h" #include "runtime/internal/runtime_impl.h" #include "runtime/runtime.h" #include "runtime/runtime_builder.h" namespace cel::extensions { namespace { using ::cel::internal::down_cast; using ::cel::runtime_internal::RuntimeFriendAccess; using ::cel::runtime_internal::RuntimeImpl; absl::StatusOr<RuntimeImpl*> RuntimeImplFromBuilder(RuntimeBuilder& builder) { Runtime& runtime = RuntimeFriendAccess::GetMutableRuntime(builder); if (RuntimeFriendAccess::RuntimeTypeId(runtime) != NativeTypeId::For<RuntimeImpl>()) { return absl::UnimplementedError( "constant folding only supported on the default cel::Runtime " "implementation."); } RuntimeImpl& runtime_impl = down_cast<RuntimeImpl&>(runtime); return &runtime_impl; } } absl::Status EnableConstantFolding(RuntimeBuilder& builder, MemoryManagerRef memory_manager) { CEL_ASSIGN_OR_RETURN(RuntimeImpl * runtime_impl, RuntimeImplFromBuilder(builder)); ABSL_ASSERT(runtime_impl != nullptr); runtime_impl->expr_builder().AddProgramOptimizer( runtime_internal::CreateConstantFoldingOptimizer(memory_manager)); return absl::OkStatus(); } }
#include "runtime/constant_folding.h" #include <string> #include <utility> #include <vector> #include "google/api/expr/v1alpha1/syntax.pb.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "base/function_adapter.h" #include "common/value.h" #include "extensions/protobuf/runtime_adapter.h" #include "internal/testing.h" #include "parser/parser.h" #include "runtime/activation.h" #include "runtime/managed_value_factory.h" #include "runtime/register_function_helper.h" #include "runtime/runtime_builder.h" #include "runtime/runtime_options.h" #include "runtime/standard_runtime_builder_factory.h" namespace cel::extensions { namespace { using ::google::api::expr::v1alpha1::ParsedExpr; using ::google::api::expr::parser::Parse; using testing::HasSubstr; using cel::internal::StatusIs; using ValueMatcher = testing::Matcher<Value>; struct TestCase { std::string name; std::string expression; ValueMatcher result_matcher; absl::Status status; }; MATCHER_P(IsIntValue, expected, "") { const Value& value = arg; return value->Is<IntValue>() && value->As<IntValue>().NativeValue() == expected; } MATCHER_P(IsBoolValue, expected, "") { const Value& value = arg; return value->Is<BoolValue>() && value->As<BoolValue>().NativeValue() == expected; } MATCHER_P(IsErrorValue, expected_substr, "") { const Value& value = arg; return value->Is<ErrorValue>() && absl::StrContains(value->As<ErrorValue>().NativeValue().message(), expected_substr); } class ConstantFoldingExtTest : public testing::TestWithParam<TestCase> {}; TEST_P(ConstantFoldingExtTest, Runner) { RuntimeOptions options; const TestCase& test_case = GetParam(); ASSERT_OK_AND_ASSIGN(cel::RuntimeBuilder builder, CreateStandardRuntimeBuilder(options)); auto status = RegisterHelper<BinaryFunctionAdapter< absl::StatusOr<Value>, const StringValue&, const StringValue&>>:: RegisterGlobalOverload( "prepend", [](ValueManager& f, const StringValue& value, const StringValue& prefix) { return StringValue::Concat(f, prefix, value); }, builder.function_registry()); ASSERT_OK(status); ASSERT_OK( EnableConstantFolding(builder, MemoryManagerRef::ReferenceCounting())); ASSERT_OK_AND_ASSIGN(auto runtime, std::move(builder).Build()); ASSERT_OK_AND_ASSIGN(ParsedExpr parsed_expr, Parse(test_case.expression)); ASSERT_OK_AND_ASSIGN(auto program, ProtobufRuntimeAdapter::CreateProgram( *runtime, parsed_expr)); ManagedValueFactory value_factory(program->GetTypeProvider(), MemoryManagerRef::ReferenceCounting()); Activation activation; auto result = program->Evaluate(activation, value_factory.get()); if (test_case.status.ok()) { ASSERT_OK_AND_ASSIGN(Value value, std::move(result)); EXPECT_THAT(value, test_case.result_matcher); return; } EXPECT_THAT(result.status(), StatusIs(test_case.status.code(), HasSubstr(test_case.status.message()))); } INSTANTIATE_TEST_SUITE_P( Cases, ConstantFoldingExtTest, testing::ValuesIn(std::vector<TestCase>{ {"sum", "1 + 2 + 3", IsIntValue(6)}, {"list_create", "[1, 2, 3, 4].filter(x, x < 4).size()", IsIntValue(3)}, {"string_concat", "('12' + '34' + '56' + '78' + '90').size()", IsIntValue(10)}, {"comprehension", "[1, 2, 3, 4].exists(x, x in [4, 5, 6, 7])", IsBoolValue(true)}, {"nested_comprehension", "[1, 2, 3, 4].exists(x, [1, 2, 3, 4].all(y, y <= x))", IsBoolValue(true)}, {"runtime_error", "[1, 2, 3, 4].exists(x, ['4'].all(y, y <= x))", IsErrorValue("No matching overloads")}, {"custom_function", "prepend('def', 'abc') == 'abcdef'", IsBoolValue(true)}}), [](const testing::TestParamInfo<TestCase>& info) { return info.param.name; }); } }
90
#ifndef TENSORFLOW_LITE_CORE_ASYNC_C_ASYNC_SIGNATURE_RUNNER_H_ #define TENSORFLOW_LITE_CORE_ASYNC_C_ASYNC_SIGNATURE_RUNNER_H_ #include <stdbool.h> #include <stdint.h> #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #ifdef __cplusplus extern "C" { #endif typedef struct TfLiteAsyncSignatureRunner TfLiteAsyncSignatureRunner; TFL_CAPI_EXPORT extern TfLiteAsyncSignatureRunner* TfLiteInterpreterGetAsyncSignatureRunner(const TfLiteInterpreter* interpreter, const char* signature_key); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBufferSlice( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerUnregisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle handle); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types); TFL_CAPI_EXPORT extern bool TfLiteAsyncSignatureRunnerReconcileRestrictions( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict); TFL_CAPI_EXPORT extern bool TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( const TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributes( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* attrs); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributesByIndex( TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* attrs); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerPrepareBackends( TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern TfLiteExecutionTask* TfLiteAsyncSignatureRunnerCreateTask( TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerInvokeAsync( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerWait( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern TfLiteStatus TfLiteAsyncSignatureRunnerFinish( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task); TFL_CAPI_EXPORT extern size_t TfLiteAsyncSignatureRunnerGetInputCount( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const char* TfLiteAsyncSignatureRunnerGetInputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t input_index); TFL_CAPI_EXPORT extern size_t TfLiteAsyncSignatureRunnerGetOutputCount( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const char* TfLiteAsyncSignatureRunnerGetOutputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t output_index); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetInputTensor( TfLiteAsyncSignatureRunner* async_signature_runner, const char* input_name); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetOutputTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, const char* output_name); TFL_CAPI_EXPORT extern void TfLiteAsyncSignatureRunnerDelete( TfLiteAsyncSignatureRunner* signature_runner); TFL_CAPI_EXPORT extern const int* TfLiteAsyncSignatureRunnerInputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const int* TfLiteAsyncSignatureRunnerOutputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner); TFL_CAPI_EXPORT extern const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, int index); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/async/c/async_signature_runner.h" #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/core/async/async_signature_runner.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/c/c_api_types.h" TfLiteAsyncSignatureRunner* TfLiteInterpreterGetAsyncSignatureRunner( const TfLiteInterpreter* interpreter, const char* signature_key) { if (!interpreter) return nullptr; tflite::async::AsyncSignatureRunner* runner = interpreter->impl->GetAsyncSignatureRunner(signature_key); if (!runner) return nullptr; return new TfLiteAsyncSignatureRunner{runner}; } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const TfLiteBackendBuffer* buffer, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBuffer(io_type, buffer, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerRegisterBufferSlice( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle buffer_pool, const TfLiteAttributeMap* attrs, TfLiteBufferHandle* handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->RegisterBufferSlice(buffer_pool, attrs, handle); } TfLiteStatus TfLiteAsyncSignatureRunnerUnregisterBuffer( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteBufferHandle handle) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->UnregisterBuffer(handle); } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& buffer_types = async_signature_runner->impl->SupportedBufferTypes(io_type); *types = buffer_types.data(); *num_types = buffer_types.size(); return kTfLiteOk; } TfLiteStatus TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* const** types, size_t* num_types) { if (async_signature_runner == nullptr || types == nullptr || num_types == nullptr) return kTfLiteError; const auto& synchronization_types = async_signature_runner->impl->SupportedSynchronizations(io_type); *types = synchronization_types.data(); *num_types = synchronization_types.size(); return kTfLiteOk; } bool TfLiteAsyncSignatureRunnerReconcileRestrictions( const TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( io_type, name, user_provided_attributes, merged, conflict); } bool TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( const TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* user_provided_attributes, TfLiteAttributeMap* merged, TfLiteAttributeMap* conflict) { if (!async_signature_runner) return false; return async_signature_runner->impl->ReconcileRestrictions( tensor_index, user_provided_attributes, merged, conflict); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributes( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteIoType io_type, const char* name, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(io_type, name, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerSetAttributesByIndex( TfLiteAsyncSignatureRunner* async_signature_runner, int tensor_index, const TfLiteAttributeMap* attrs) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->SetAttributes(tensor_index, attrs); } TfLiteStatus TfLiteAsyncSignatureRunnerPrepareBackends( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->PrepareBackends(); } TfLiteExecutionTask* TfLiteAsyncSignatureRunnerCreateTask( TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->CreateTask(); } TfLiteStatus TfLiteAsyncSignatureRunnerInvokeAsync( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->InvokeAsync(task); } TfLiteStatus TfLiteAsyncSignatureRunnerWait( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Wait(task); } TfLiteStatus TfLiteAsyncSignatureRunnerFinish( TfLiteAsyncSignatureRunner* async_signature_runner, TfLiteExecutionTask* task) { if (!async_signature_runner) return kTfLiteError; return async_signature_runner->impl->Finish(task); } size_t TfLiteAsyncSignatureRunnerGetInputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->input_size(); } const char* TfLiteAsyncSignatureRunnerGetInputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t input_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetInputCount(async_signature_runner); if (input_index < 0 || input_index >= count) { return nullptr; } const auto& input_names = async_signature_runner->impl->input_names(); if (input_index >= input_names.size()) { return nullptr; } return input_names[input_index]; } size_t TfLiteAsyncSignatureRunnerGetOutputCount( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return 0; return async_signature_runner->impl->output_size(); } const char* TfLiteAsyncSignatureRunnerGetOutputName( const TfLiteAsyncSignatureRunner* async_signature_runner, int32_t output_index) { if (!async_signature_runner) return nullptr; size_t count = TfLiteAsyncSignatureRunnerGetOutputCount(async_signature_runner); if (output_index < 0 || output_index >= count) { return nullptr; } const auto& output_names = async_signature_runner->impl->output_names(); if (output_index >= output_names.size()) { return nullptr; } return async_signature_runner->impl->output_names()[output_index]; } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetInputTensor( TfLiteAsyncSignatureRunner* async_signature_runner, const char* input_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->input_tensor(input_name); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetOutputTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, const char* output_name) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->output_tensor(output_name); } void TfLiteAsyncSignatureRunnerDelete( TfLiteAsyncSignatureRunner* signature_runner) { delete signature_runner; } const int* TfLiteAsyncSignatureRunnerInputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->inputs().data(); } const int* TfLiteAsyncSignatureRunnerOutputTensorIndices( const TfLiteAsyncSignatureRunner* async_signature_runner) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->outputs().data(); } const TfLiteOpaqueTensor* TfLiteAsyncSignatureRunnerGetTensor( const TfLiteAsyncSignatureRunner* async_signature_runner, int index) { if (!async_signature_runner) return nullptr; return async_signature_runner->impl->tensor(index); }
#include "tensorflow/lite/core/async/c/async_signature_runner.h" #include <memory> #include <utility> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/c/c_api_internal.h" #include "tensorflow/lite/c/c_api_opaque.h" #include "tensorflow/lite/core/async/async_kernel_internal.h" #include "tensorflow/lite/core/async/backend_async_kernel_interface.h" #include "tensorflow/lite/core/async/c/internal.h" #include "tensorflow/lite/core/async/c/task.h" #include "tensorflow/lite/core/async/c/types.h" #include "tensorflow/lite/core/async/interop/c/attribute_map.h" #include "tensorflow/lite/core/async/interop/c/types.h" #include "tensorflow/lite/core/async/testing/mock_async_kernel.h" #include "tensorflow/lite/core/async/testing/test_backend.h" #include "tensorflow/lite/core/c/c_api.h" #include "tensorflow/lite/core/c/c_api_types.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/core/interpreter.h" #include "tensorflow/lite/core/kernels/builtin_op_kernels.h" #include "tensorflow/lite/interpreter_test_util.h" using ::testing::_; using ::testing::Return; namespace tflite { namespace async { class AsyncSignatureRunnerTest : public InterpreterTest, public ::testing::WithParamInterface<bool> { protected: void SetUp() override { kernel_ = std::make_unique<::testing::StrictMock<testing::MockAsyncKernel>>(); backend_ = std::make_unique<testing::TestBackend>(kernel_->kernel()); auto interpreter = std::make_unique<Interpreter>(); interpreter->AddTensors(2); interpreter->SetInputs({0}); interpreter->SetOutputs({1}); TfLiteQuantizationParams quant; interpreter->SetTensorParametersReadWrite(0, kTfLiteFloat32, "x", {3}, quant); interpreter->SetTensorParametersReadWrite(1, kTfLiteFloat32, "a", {3}, quant); TfLiteRegistration* reg = ops::builtin::Register_ADD(); void* builtin_data_1 = malloc(sizeof(int)); interpreter->AddNodeWithParameters({0, 0}, {1}, nullptr, 0, builtin_data_1, reg); tflite_interpreter_.impl = std::move(interpreter); } void BuildRunner(bool has_signature) { auto* interpreter = tflite_interpreter_.impl.get(); if (has_signature) { const char kSignatureKey[] = "serving_default"; BuildSignature(interpreter, kSignatureKey, {{"input", 0}}, {{"output", 1}}); interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, kSignatureKey); } else { interpreter->ModifyGraphWithDelegate(backend_->get_delegate()); runner_ = TfLiteInterpreterGetAsyncSignatureRunner(&tflite_interpreter_, nullptr); } ASSERT_NE(nullptr, runner_); } void TearDown() override { TfLiteAsyncSignatureRunnerDelete(runner_); } protected: TfLiteAsyncSignatureRunner* runner_ = nullptr; std::unique_ptr<::testing::StrictMock<testing::MockAsyncKernel>> kernel_; std::unique_ptr<testing::TestBackend> backend_; internal::SignatureDef signature_def_; TfLiteInterpreter tflite_interpreter_{}; }; INSTANTIATE_TEST_SUITE_P(AsyncSignatureRunnerTest, AsyncSignatureRunnerTest, ::testing::Bool()); TEST_P(AsyncSignatureRunnerTest, RegisterBufferTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, RegisterBuffer(_, _, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, RegisterBufferSlice(_, _, _, _)) .WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, UnregisterBuffer(_, _)).WillOnce(Return(kTfLiteOk)); TfLiteBufferHandle handle; auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); auto* buf = TfLiteBackendBufferCreate(); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBuffer( runner_, kTfLiteIoTypeInput, buf, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerRegisterBufferSlice( runner_, handle, attr, &handle)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerUnregisterBuffer(runner_, handle)); TfLiteAttributeMapDelete(attr); TfLiteBackendBufferDelete(buf); } TEST_P(AsyncSignatureRunnerTest, SupportedTypesTest) { BuildRunner(GetParam()); const char* const* buffer_types = nullptr; size_t num_buffer_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedBufferTypes( runner_, kTfLiteIoTypeInput, &buffer_types, &num_buffer_types)); EXPECT_EQ(1, num_buffer_types); EXPECT_STREQ("buffer_type", buffer_types[0]); const char* const* sync_types = nullptr; size_t num_sync_types = 0; EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerGetSupportedSynchronizationTypes( runner_, kTfLiteIoTypeInput, &sync_types, &num_sync_types)); EXPECT_EQ(1, num_sync_types); EXPECT_STREQ("sync_type", sync_types[0]); } TEST_P(AsyncSignatureRunnerTest, ReconcileTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_CALL(*kernel_, ReconcileRestrictions(_, _, _, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*kernel_, SetAttributes(_, _, _, _)).WillOnce(Return(kTfLiteOk)); auto* attr = TfLiteAttributeMapCreate(kTfLiteAttrMapTypeBuffer); if (has_signature) { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictions( runner_, kTfLiteIoTypeInput, "input", attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributes( runner_, kTfLiteIoTypeInput, "input", attr)); } else { EXPECT_TRUE(TfLiteAsyncSignatureRunnerReconcileRestrictionsByIndex( runner_, 0, attr, attr, nullptr)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerSetAttributesByIndex(runner_, 0, attr)); } TfLiteAttributeMapDelete(attr); } TEST_P(AsyncSignatureRunnerTest, ExecutionTest) { BuildRunner(GetParam()); EXPECT_CALL(*kernel_, Prepare(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Eval(_, _, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Wait(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_CALL(*kernel_, Finish(_, _)).WillOnce(Return(kTfLiteOk)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerPrepareBackends(runner_)); auto* task = TfLiteAsyncSignatureRunnerCreateTask(runner_); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerInvokeAsync(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerWait(runner_, task)); EXPECT_EQ(kTfLiteOk, TfLiteAsyncSignatureRunnerFinish(runner_, task)); } TEST_P(AsyncSignatureRunnerTest, InputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); if (has_signature) { EXPECT_STREQ("input", TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_STREQ( "x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "input"))); } else { EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetInputName(runner_, 0)); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetInputTensor(runner_, "input")); } } TEST_P(AsyncSignatureRunnerTest, OutputsTest) { bool has_signature = GetParam(); BuildRunner(has_signature); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); if (has_signature) { EXPECT_STREQ("output", TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_STREQ( "a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "output"))); } else { EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetOutputName(runner_, 0)); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetOutputTensor(runner_, "output")); } } TEST_P(AsyncSignatureRunnerTest, InputByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetInputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerInputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("x", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, OutputsByIndexTest) { BuildRunner(GetParam()); EXPECT_EQ(1, TfLiteAsyncSignatureRunnerGetOutputCount(runner_)); auto* indices = TfLiteAsyncSignatureRunnerOutputTensorIndices(runner_); EXPECT_NE(nullptr, indices); auto indice = indices[0]; EXPECT_STREQ("a", TfLiteOpaqueTensorName( TfLiteAsyncSignatureRunnerGetTensor(runner_, indice))); } TEST_P(AsyncSignatureRunnerTest, IndexOutOfBound) { BuildRunner(GetParam()); EXPECT_EQ(nullptr, TfLiteAsyncSignatureRunnerGetTensor(runner_, 42)); } } }
91
#ifndef ABSL_CRC_INTERNAL_CRC_CORD_STATE_H_ #define ABSL_CRC_INTERNAL_CRC_CORD_STATE_H_ #include <atomic> #include <cstddef> #include <deque> #include "absl/base/config.h" #include "absl/crc/crc32c.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace crc_internal { class CrcCordState { public: CrcCordState(); CrcCordState(const CrcCordState&); CrcCordState(CrcCordState&&); ~CrcCordState(); CrcCordState& operator=(const CrcCordState&); CrcCordState& operator=(CrcCordState&&); struct PrefixCrc { PrefixCrc() = default; PrefixCrc(size_t length_arg, absl::crc32c_t crc_arg) : length(length_arg), crc(crc_arg) {} size_t length = 0; absl::crc32c_t crc = absl::crc32c_t{0}; }; struct Rep { PrefixCrc removed_prefix; std::deque<PrefixCrc> prefix_crc; }; const Rep& rep() const { return refcounted_rep_->rep; } Rep* mutable_rep() { if (refcounted_rep_->count.load(std::memory_order_acquire) != 1) { RefcountedRep* copy = new RefcountedRep; copy->rep = refcounted_rep_->rep; Unref(refcounted_rep_); refcounted_rep_ = copy; } return &refcounted_rep_->rep; } absl::crc32c_t Checksum() const; bool IsNormalized() const { return rep().removed_prefix.length == 0; } void Normalize(); size_t NumChunks() const { return rep().prefix_crc.size(); } PrefixCrc NormalizedPrefixCrcAtNthChunk(size_t n) const; void Poison(); private: struct RefcountedRep { std::atomic<int32_t> count{1}; Rep rep; }; static RefcountedRep* RefSharedEmptyRep(); static void Ref(RefcountedRep* r) { assert(r != nullptr); r->count.fetch_add(1, std::memory_order_relaxed); } static void Unref(RefcountedRep* r) { assert(r != nullptr); if (r->count.fetch_sub(1, std::memory_order_acq_rel) == 1) { delete r; } } RefcountedRep* refcounted_rep_; }; } ABSL_NAMESPACE_END } #endif #include "absl/crc/internal/crc_cord_state.h" #include <cassert> #include "absl/base/config.h" #include "absl/base/no_destructor.h" #include "absl/numeric/bits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace crc_internal { CrcCordState::RefcountedRep* CrcCordState::RefSharedEmptyRep() { static absl::NoDestructor<CrcCordState::RefcountedRep> empty; assert(empty->count.load(std::memory_order_relaxed) >= 1); assert(empty->rep.removed_prefix.length == 0); assert(empty->rep.prefix_crc.empty()); Ref(empty.get()); return empty.get(); } CrcCordState::CrcCordState() : refcounted_rep_(new RefcountedRep) {} CrcCordState::CrcCordState(const CrcCordState& other) : refcounted_rep_(other.refcounted_rep_) { Ref(refcounted_rep_); } CrcCordState::CrcCordState(CrcCordState&& other) : refcounted_rep_(other.refcounted_rep_) { other.refcounted_rep_ = RefSharedEmptyRep(); } CrcCordState& CrcCordState::operator=(const CrcCordState& other) { if (this != &other) { Unref(refcounted_rep_); refcounted_rep_ = other.refcounted_rep_; Ref(refcounted_rep_); } return *this; } CrcCordState& CrcCordState::operator=(CrcCordState&& other) { if (this != &other) { Unref(refcounted_rep_); refcounted_rep_ = other.refcounted_rep_; other.refcounted_rep_ = RefSharedEmptyRep(); } return *this; } CrcCordState::~CrcCordState() { Unref(refcounted_rep_); } crc32c_t CrcCordState::Checksum() const { if (rep().prefix_crc.empty()) { return absl::crc32c_t{0}; } if (IsNormalized()) { return rep().prefix_crc.back().crc; } return absl::RemoveCrc32cPrefix( rep().removed_prefix.crc, rep().prefix_crc.back().crc, rep().prefix_crc.back().length - rep().removed_prefix.length); } CrcCordState::PrefixCrc CrcCordState::NormalizedPrefixCrcAtNthChunk( size_t n) const { assert(n < NumChunks()); if (IsNormalized()) { return rep().prefix_crc[n]; } size_t length = rep().prefix_crc[n].length - rep().removed_prefix.length; return PrefixCrc(length, absl::RemoveCrc32cPrefix(rep().removed_prefix.crc, rep().prefix_crc[n].crc, length)); } void CrcCordState::Normalize() { if (IsNormalized() || rep().prefix_crc.empty()) { return; } Rep* r = mutable_rep(); for (auto& prefix_crc : r->prefix_crc) { size_t remaining = prefix_crc.length - r->removed_prefix.length; prefix_crc.crc = absl::RemoveCrc32cPrefix(r->removed_prefix.crc, prefix_crc.crc, remaining); prefix_crc.length = remaining; } r->removed_prefix = PrefixCrc(); } void CrcCordState::Poison() { Rep* rep = mutable_rep(); if (NumChunks() > 0) { for (auto& prefix_crc : rep->prefix_crc) { uint32_t crc = static_cast<uint32_t>(prefix_crc.crc); crc += 0x2e76e41b; crc = absl::rotr(crc, 17); prefix_crc.crc = crc32c_t{crc}; } } else { rep->prefix_crc.emplace_back(0, crc32c_t{1}); } } } ABSL_NAMESPACE_END }
#include "absl/crc/internal/crc_cord_state.h" #include <algorithm> #include <cstdint> #include <string> #include <utility> #include "gtest/gtest.h" #include "absl/crc/crc32c.h" namespace { TEST(CrcCordState, Default) { absl::crc_internal::CrcCordState state; EXPECT_TRUE(state.IsNormalized()); EXPECT_EQ(state.Checksum(), absl::crc32c_t{0}); state.Normalize(); EXPECT_EQ(state.Checksum(), absl::crc32c_t{0}); } TEST(CrcCordState, Normalize) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(2000, absl::crc32c_t{2000})); rep->removed_prefix = absl::crc_internal::CrcCordState::PrefixCrc(500, absl::crc32c_t{500}); EXPECT_FALSE(state.IsNormalized()); absl::crc32c_t crc = state.Checksum(); state.Normalize(); EXPECT_TRUE(state.IsNormalized()); EXPECT_EQ(state.Checksum(), crc); EXPECT_EQ(rep->removed_prefix.length, 0); } TEST(CrcCordState, Copy) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); absl::crc_internal::CrcCordState copy = state; EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000}); EXPECT_EQ(copy.Checksum(), absl::crc32c_t{1000}); } TEST(CrcCordState, UnsharedSelfCopy) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); const absl::crc_internal::CrcCordState& ref = state; state = ref; EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000}); } TEST(CrcCordState, Move) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); absl::crc_internal::CrcCordState moved = std::move(state); EXPECT_EQ(moved.Checksum(), absl::crc32c_t{1000}); } TEST(CrcCordState, UnsharedSelfMove) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); absl::crc_internal::CrcCordState& ref = state; state = std::move(ref); EXPECT_EQ(state.Checksum(), absl::crc32c_t{1000}); } TEST(CrcCordState, PoisonDefault) { absl::crc_internal::CrcCordState state; state.Poison(); EXPECT_NE(state.Checksum(), absl::crc32c_t{0}); } TEST(CrcCordState, PoisonData) { absl::crc_internal::CrcCordState state; auto* rep = state.mutable_rep(); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(1000, absl::crc32c_t{1000})); rep->prefix_crc.push_back( absl::crc_internal::CrcCordState::PrefixCrc(2000, absl::crc32c_t{2000})); rep->removed_prefix = absl::crc_internal::CrcCordState::PrefixCrc(500, absl::crc32c_t{500}); absl::crc32c_t crc = state.Checksum(); state.Poison(); EXPECT_NE(state.Checksum(), crc); } }
92
#ifndef TENSORSTORE_INTERNAL_RIEGELI_FIND_H_ #define TENSORSTORE_INTERNAL_RIEGELI_FIND_H_ #include <string_view> #include "riegeli/bytes/reader.h" namespace tensorstore { namespace internal { bool StartsWith(riegeli::Reader &reader, std::string_view needle); bool FindFirst(riegeli::Reader &reader, std::string_view needle); bool FindLast(riegeli::Reader &reader, std::string_view needle); } } #endif #include "tensorstore/internal/riegeli/find.h" #include <stddef.h> #include <stdint.h> #include <algorithm> #include <cstring> #include <optional> #include <string_view> #include "riegeli/bytes/reader.h" namespace tensorstore { namespace internal { bool StartsWith(riegeli::Reader &reader, std::string_view needle) { return reader.ok() && reader.Pull(needle.size()) && memcmp(reader.cursor(), needle.data(), needle.size()) == 0; } bool FindFirst(riegeli::Reader &reader, std::string_view needle) { while (true) { if (!reader.Pull(needle.size())) break; auto end = reader.cursor() + reader.available(); auto pos = std::search(reader.cursor(), end, needle.begin(), needle.end()); if (pos != end) { reader.move_cursor(pos - reader.cursor()); return true; } reader.move_cursor(1 + reader.available() - needle.size()); } return false; } bool FindLast(riegeli::Reader &reader, std::string_view needle) { if (reader.SupportsSize()) { auto size = reader.Size(); if (size && reader.Pull(*size)) { auto found_pos = std::string_view(reader.cursor(), *size).rfind(needle); if (found_pos == std::string_view::npos) return false; return reader.Seek(found_pos + reader.pos()); } } std::optional<uint64_t> found; while (reader.ok()) { for (size_t available = reader.available(); available > needle.size(); available = reader.available()) { if (memcmp(reader.cursor(), needle.data(), needle.size()) == 0) { found = reader.pos(); } const char *pos = static_cast<const char *>( memchr(reader.cursor() + 1, needle[0], available - 1)); if (pos == nullptr) { reader.move_cursor(available); break; } reader.move_cursor(pos - reader.cursor()); } if (!reader.Pull(needle.size() - reader.available())) break; } return found.has_value() && reader.Seek(*found); } } }
#include "tensorstore/internal/riegeli/find.h" #include <stddef.h> #include <string_view> #include <gmock/gmock.h> #include <gtest/gtest.h> #include "riegeli/bytes/string_reader.h" namespace { using ::tensorstore::internal::FindFirst; using ::tensorstore::internal::FindLast; using ::tensorstore::internal::StartsWith; static constexpr unsigned char kData[] = { 0x17, 0x16, 0xa1, 0xcb, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0xfe, 0xff, 0x03, 0x04, 0xbb, 0xcc, 0xc7, 0xb6, 0xbe, 0x5d, 0x7c, 0x2d, 0x23, 0x44, 0xa0, 0xbe, 0x13, 0x1b, 0x9a, 0x2d, 0xf2, 0x13, 0x6a, 0xfb, 0xad, 0xdb, 0x73, 0xf9, 0x3d, 0xbc, 0x5d, 0x7c, 0x6f, 0x41, 0xc0, 0xad, 0xf3, 0x31, 0x79, 0x7f, 0x89, 0xb2, 0xe4, 0xa9, 0xf5, 0x9d, 0xc0, 0x30, 0x23, 0x32, 0x99, 0x2c, 0x16, 0x42, 0xf5, 0x48, 0xd1, 0x79, 0xdb, 0x98, 0xb9, 0xc3, 0x6c, 0xa6, 0x50, 0xcd, 0x86, 0xb6, 0xd3, 0xa7, 0x57, 0x3b, 0xe6, 0x1d, 0xa5, 0xe2, 0x79, 0xe9, 0x2d, 0x19, 0xec, 0xa6, 0xf3, 0xa3, 0x50, 0x65, 0x03, 0x04, 0xbb, 0xcc, 0x1a, 0xc9, 0xec, 0xb2, 0xa6, 0x3e, 0xe0, 0x49, 0x6a, 0x30, 0xd7, 0x1f, 0x90, 0x08, 0x1c, 0x2a, 0x6b, 0xbd, 0x06, 0x9c, 0xef, 0xd2, 0x79, 0x20, 0x64, 0xbc, 0xb7, 0x75, 0xbb, 0xcd, 0xcc, 0xa8, 0x49, 0x8b, 0x30, 0x4f, 0x73, 0x7c, 0xb5, 0x6e, 0x08, 0x1b, 0xc2, 0x7f, 0xfb, 0xb1, 0xc4, 0x49, 0x89, 0x74, 0xe7, 0x8e, 0x9d, 0x6f, 0x44, 0x14, 0xbd, 0xdc, 0x6a, 0xd9, 0xcb, 0x53, 0x2b, 0xdc, 0x48, 0x6c, 0xa3, 0x14, 0x4e, 0xc0, 0x3b, 0x6b, 0x47, 0x50, 0xd5, 0x97, 0x84, 0x30, 0xd5, 0x28, 0x03, 0x04, 0xbb, 0xcc, 0xff, 0xff, 0xef, 0xff, 0xff, 0xff, 0xfe, 0xff, }; constexpr const unsigned char kLiteral1[4] = {0x03, 0x04, 0xbb, 0xcc}; constexpr const unsigned char kLiteral2[3] = {0xff, 0xfe, 0xff}; TEST(FindTest, FindFirst) { const std::string_view literal1(reinterpret_cast<const char*>(kLiteral1), sizeof(kLiteral1)); const std::string_view literal2(reinterpret_cast<const char*>(kLiteral2), sizeof(kLiteral2)); riegeli::StringReader string_reader(reinterpret_cast<const char*>(kData), sizeof(kData)); size_t positions[3] = {0, 0, 0}; for (int i = 0; i < 3; ++i) { EXPECT_TRUE(FindFirst(string_reader, literal1)); EXPECT_TRUE(StartsWith(string_reader, literal1)); positions[i] = string_reader.pos(); string_reader.Skip(sizeof(kLiteral1)); } EXPECT_FALSE(FindFirst(string_reader, literal1)); EXPECT_THAT(positions, ::testing::ElementsAre(12, 96, 180)); string_reader.Seek(0); EXPECT_TRUE(FindFirst(string_reader, literal2)); EXPECT_THAT(string_reader.pos(), 9); } TEST(FindTest, FindLast) { const std::string_view literal1(reinterpret_cast<const char*>(kLiteral1), sizeof(kLiteral1)); const std::string_view literal2(reinterpret_cast<const char*>(kLiteral2), sizeof(kLiteral2)); riegeli::StringReader string_reader(reinterpret_cast<const char*>(kData), sizeof(kData)); EXPECT_TRUE(FindLast(string_reader, literal1)); EXPECT_TRUE(StartsWith(string_reader, literal1)); EXPECT_THAT(string_reader.pos(), 180); string_reader.Seek(0); EXPECT_TRUE(FindLast(string_reader, literal2)); EXPECT_THAT(string_reader.pos(), 189); } }
93
#ifndef TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_STREAM_WRITER_H_ #define TENSORFLOW_CORE_DATA_SERVICE_SNAPSHOT_SNAPSHOT_STREAM_WRITER_H_ #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/substitute.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/protobuf/service_config.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/thread_annotations.h" namespace tensorflow { namespace data { constexpr ByteSize kDefaultMaxChunkSize = ByteSize::GB(6); constexpr absl::Duration kDefaultCheckpointInterval = absl::Minutes(30); struct SnapshotWriterParams { std::string snapshot_path; int64_t stream_index = 0; std::string compression; Env* env = nullptr; ByteSize max_chunk_size = kDefaultMaxChunkSize; absl::Duration checkpoint_interval = kDefaultCheckpointInterval; bool test_only_keep_temp_files = false; std::string StreamDirectory() const { return tensorflow::data::StreamDirectory(snapshot_path, stream_index); } std::string CommittedChunksDirectory() const { return tensorflow::data::CommittedChunksDirectory(snapshot_path); } std::string UncommittedChunksDirectory() const { return tensorflow::data::UncommittedChunksDirectory(snapshot_path, stream_index); } std::string CheckpointsDirectory() const { return tensorflow::data::CheckpointsDirectory(snapshot_path, stream_index); } std::string DebugString() const { return absl::Substitute( "SnapshotWriterParams { base_path: $0, stream: $1, compression: $2 }", snapshot_path, stream_index, compression); } }; class SnapshotStreamWriter { public: explicit SnapshotStreamWriter(const SnapshotWriterParams& params, std::unique_ptr<TaskIterator> iterator); virtual ~SnapshotStreamWriter() = default; SnapshotStreamWriter(const SnapshotStreamWriter&) = delete; SnapshotStreamWriter& operator=(const SnapshotStreamWriter&) = delete; absl::StatusOr<bool> Completed() const; absl::StatusOr<bool> Wait(); void Cancel(); private: void WriteSnapshotAndLog(); absl::Status WriteSnapshot(); bool StreamAlreadyCompleted() const; absl::Status InitializeDirectories(); bool ShouldWriteChunks() const; absl::Status WriteChunks(); bool ShouldWriteRecord() const; absl::Status WriteRecord(ParallelTFRecordWriter& writer); absl::Status Commit(const ParallelTFRecordWriter::FileToStatsMap& file_stats); absl::Status FinalizeStream(absl::Status status); absl::Status WriteDoneFile(); absl::Status WriteErrorFile(const absl::Status& status); absl::Status Save(const ParallelTFRecordWriter::FileToStatsMap& file_stats); absl::Status DeleteOutdatedCheckpoints(int64_t checkpoint_index); absl::Status DeleteCheckpoints(); absl::Status Restore(); absl::StatusOr<std::string> LastCheckpointName() const; absl::Status SyncCheckpointWithChunks(std::optional<int64_t> checkpoint_index, int64_t checkpoint_num_elements); absl::StatusOr<int64_t> LastCommittedChunkIndex(); std::string CheckpointPath(int64_t chunk_index, int64_t chunk_num_elements) const; std::string CheckpointPath(const std::string& checkpoint_name) const; const SnapshotWriterParams params_; std::unique_ptr<TaskIterator> iterator_; int64_t chunk_index_ = 0; absl::Time last_commit_time_ = absl::Now(); bool end_of_sequence_ = false; mutable mutex mu_; absl::StatusOr<bool> completed_ TF_GUARDED_BY(mu_) = false; std::unique_ptr<Thread> snapshot_thread_; }; } } #endif #include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <algorithm> #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/match.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_split.h" #include "absl/time/time.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/parallel_tfrecord_writer.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/utils.h" #include "tensorflow/core/data/service/worker.pb.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/utils.h" #include "tensorflow/core/framework/metrics.h" #include "tensorflow/core/framework/tensor.h" #include "tensorflow/core/framework/tensor.pb.h" #include "tensorflow/core/framework/types.pb.h" #include "tsl/platform/env.h" #include "tsl/platform/mutex.h" #include "tsl/platform/path.h" #include "tsl/platform/statusor.h" #include "tsl/profiler/lib/traceme.h" namespace tensorflow { namespace data { namespace { constexpr ByteSize kTFRecordReaderOutputBufferSize = ByteSize::GB(1); constexpr int64_t kUnknownNumElements = -1; constexpr const char kFileShardDelimiter[] = "_CHUNK_SHARDS_"; absl::StatusOr<int64_t> GetUncommittedChunkIndex(const std::string& filename) { std::vector<std::string> tokens = absl::StrSplit(filename, kFileShardDelimiter); if (tokens.size() != 2) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected sharded chunk files.")); } tokens = absl::StrSplit(tokens[0], '_'); int64_t chunk_index = 0; if (tokens.size() != 2 || tokens[0] != "chunk" || !absl::SimpleAtoi(tokens[1], &chunk_index) || chunk_index < 0) { return absl::InternalError( absl::StrCat("Invalid tf.data snapshot chunk file: ", filename, ". Expected chunk_<chunk_index>.")); } return chunk_index; } size_t TotalNumElements( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { size_t num_elements = 0; for (const auto& [file, stats] : file_stats) { num_elements += stats.num_records; } return num_elements; } ByteSize TotalBytes(const ParallelTFRecordWriter::FileToStatsMap& file_stats) { ByteSize bytes; for (const auto& [file, stats] : file_stats) { bytes += stats.estimated_size; } return bytes; } } SnapshotStreamWriter::SnapshotStreamWriter( const SnapshotWriterParams& params, std::unique_ptr<TaskIterator> iterator) : params_(params), iterator_(std::move(iterator)) { DCHECK_NE(iterator_.get(), nullptr); last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); snapshot_thread_ = absl::WrapUnique(params_.env->StartThread( {}, "tf_data_service_snapshot_thread", [this]() { WriteSnapshotAndLog(); })); } void SnapshotStreamWriter::WriteSnapshotAndLog() TF_LOCKS_EXCLUDED(mu_) { if (StreamAlreadyCompleted()) { LOG(INFO) << "Distributed tf.data snapshot stream has already been " << "completed for " << params_.DebugString(); mutex_lock l(mu_); completed_ = true; return; } LOG(INFO) << "Writing distributed tf.data snapshot stream: " << params_.DebugString(); absl::Status status = WriteSnapshot(); if (IsPreemptedError(status)) { LOG(INFO) << "tf.data service snapshot writer is cancelled: " << status; return; } status = FinalizeStream(status); mutex_lock l(mu_); if (!status.ok()) { LOG(ERROR) << "Failed to write distributed tf.data snapshot stream: " << params_.DebugString() << ". Status: " << status; completed_ = std::move(status); return; } LOG(INFO) << "Finished writing distributed tf.data snapshot stream: " << params_.DebugString(); completed_ = true; iterator_ = nullptr; } absl::Status SnapshotStreamWriter::WriteSnapshot() TF_LOCKS_EXCLUDED(mu_) { TF_RETURN_IF_ERROR(InitializeDirectories()); TF_RETURN_IF_ERROR(Restore()); while (ShouldWriteChunks()) { TF_RETURN_IF_ERROR(WriteChunks()); } mutex_lock l(mu_); return completed_.status(); } bool SnapshotStreamWriter::StreamAlreadyCompleted() const { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return params_.env->FileExists(done_file_path).ok(); } absl::Status SnapshotStreamWriter::InitializeDirectories() { TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.UncommittedChunksDirectory())); TF_RETURN_IF_ERROR( params_.env->RecursivelyCreateDir(params_.CheckpointsDirectory())); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteChunks() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return !end_of_sequence_ && completed_.ok(); } absl::Status SnapshotStreamWriter::WriteChunks() { LOG(INFO) << "Writing distributed tf.data snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << chunk_index_ << "."; std::string chunks_prefix = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), absl::StrCat("chunk_", chunk_index_, kFileShardDelimiter)); ParallelTFRecordWriter writer(TranslateFileName(chunks_prefix), params_.compression, params_.env, params_.max_chunk_size); do { TF_RETURN_IF_ERROR(WriteRecord(writer)); } while (ShouldWriteRecord()); TF_ASSIGN_OR_RETURN(const ParallelTFRecordWriter::FileToStatsMap file_stats, writer.Finalize()); TF_RETURN_IF_ERROR(Completed().status()); TF_RETURN_IF_ERROR(Commit(file_stats)); metrics::RecordTFDataServiceSnapshotBytesCommitted( TotalBytes(file_stats).ToUnsignedBytes()); return absl::OkStatus(); } bool SnapshotStreamWriter::ShouldWriteRecord() const { mutex_lock l(mu_); if (!completed_.ok() || end_of_sequence_) { return false; } const absl::Time now = absl::FromUnixMicros(params_.env->NowMicros()); const absl::Duration adjusted_checkpoint_interval = std::min( params_.checkpoint_interval, absl::Minutes(0.5 * chunk_index_ + 5)); return now < last_commit_time_ + adjusted_checkpoint_interval; } absl::Status SnapshotStreamWriter::WriteRecord(ParallelTFRecordWriter& writer) { std::vector<Tensor> element; TF_RETURN_IF_ERROR(iterator_->GetNext(element, end_of_sequence_)); if (end_of_sequence_) { return absl::OkStatus(); } return writer.Write(std::move(element)); } absl::Status SnapshotStreamWriter::Commit( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { TF_RETURN_IF_ERROR(Save(file_stats)); for (const auto& [file, stats] : file_stats) { std::string committed_chunk_path = tsl::io::JoinPath(params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", chunk_index_++, "_", stats.num_records)); TF_RETURN_IF_ERROR(params_.env->RenameFile(file, committed_chunk_path)); } last_commit_time_ = absl::FromUnixMicros(params_.env->NowMicros()); return absl::OkStatus(); } absl::Status SnapshotStreamWriter::FinalizeStream(absl::Status status) { if (status.ok()) { status = WriteDoneFile(); } if (!status.ok()) { WriteErrorFile(status).IgnoreError(); } absl::Status s = DeleteCheckpoints(); if (!s.ok()) { LOG(ERROR) << "Failed to clean up checkpoints at " << params_.CheckpointsDirectory() << ": " << s; } return status; } absl::Status SnapshotStreamWriter::WriteDoneFile() { std::string done_file_path = StreamDoneFilePath(params_.snapshot_path, params_.stream_index); return AtomicallyWriteStringToFile(done_file_path, "", params_.env); } absl::Status SnapshotStreamWriter::WriteErrorFile(const absl::Status& status) { std::string error_file_path = tsl::io::JoinPath(params_.StreamDirectory(), "ERROR"); return AtomicallyWriteStringToFile(error_file_path, status.ToString(), params_.env); } absl::StatusOr<bool> SnapshotStreamWriter::Completed() const TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); return completed_; } absl::StatusOr<bool> SnapshotStreamWriter::Wait() TF_LOCKS_EXCLUDED(mu_) { snapshot_thread_.reset(); mutex_lock l(mu_); return completed_; } void SnapshotStreamWriter::Cancel() TF_LOCKS_EXCLUDED(mu_) { mutex_lock l(mu_); completed_ = absl::CancelledError( "The tf.data service snapshot writer has been cancelled."); } absl::Status SnapshotStreamWriter::Save( const ParallelTFRecordWriter::FileToStatsMap& file_stats) { const size_t num_elements = TotalNumElements(file_stats); const ByteSize byte_size = TotalBytes(file_stats); LOG(INFO) << "Checkpointing distributed tf.data snapshot writer for snapshot " << params_.DebugString() << ". Stream " << params_.stream_index << ", chunk " << chunk_index_ << ", number of elements in chunk: " << num_elements << ", chunk size: " << byte_size << "."; tsl::profiler::TraceMe activity("SnapshotCheckpoint", tsl::profiler::TraceMeLevel::kInfo); absl::Time start_time = absl::FromUnixMicros(params_.env->NowMicros()); int64_t checkpoint_index = chunk_index_ + file_stats.size(); std::string checkpoint_path = CheckpointPath(checkpoint_index, num_elements); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_iterator, iterator_->Save()); TF_RETURN_IF_ERROR(AtomicallyWriteTFRecords( checkpoint_path, serialized_iterator, params_.compression, params_.env)); absl::Time end_time = absl::FromUnixMicros(params_.env->NowMicros()); LOG(INFO) << "Wrote checkpoint file " << checkpoint_path << ". " << "Checkpointing distributed tf.data snapshot writer took " << (end_time - start_time); return DeleteOutdatedCheckpoints(checkpoint_index); } absl::Status SnapshotStreamWriter::DeleteOutdatedCheckpoints( int64_t checkpoint_index) { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } std::vector<std::string> checkpoint_filenames; TF_RETURN_IF_ERROR(params_.env->GetChildren(params_.CheckpointsDirectory(), &checkpoint_filenames)); for (const std::string& checkpoint_filename : checkpoint_filenames) { std::string checkpoint_filepath = tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_filename); if (IsTemporaryFile(checkpoint_filename)) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); continue; } TF_ASSIGN_OR_RETURN(auto checkpoint_filename_tokens, ParseCheckpointFilename(checkpoint_filename)); auto [checkpoint_file_index, _] = checkpoint_filename_tokens; if (checkpoint_file_index < checkpoint_index) { TF_RETURN_IF_ERROR(params_.env->DeleteFile(checkpoint_filepath)); } } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::DeleteCheckpoints() { if (params_.test_only_keep_temp_files) { return absl::OkStatus(); } LOG(INFO) << "Deleting tf.data snapshot checkpoints directory: " << params_.CheckpointsDirectory(); if (params_.env->FileExists(params_.CheckpointsDirectory()).ok()) { int64_t undeleted_files, undeleted_dirs; return params_.env->DeleteRecursively(params_.CheckpointsDirectory(), &undeleted_files, &undeleted_dirs); } return absl::OkStatus(); } absl::Status SnapshotStreamWriter::Restore() { absl::StatusOr<std::string> checkpoint_name = LastCheckpointName(); if (absl::IsNotFound(checkpoint_name.status())) { return SyncCheckpointWithChunks(std::nullopt, kUnknownNumElements); } TF_RETURN_IF_ERROR(checkpoint_name.status()); snapshot_util::TFRecordReaderImpl reader( CheckpointPath(*checkpoint_name), params_.compression, kTFRecordReaderOutputBufferSize.ToUnsignedBytes()); TF_RETURN_IF_ERROR(reader.Initialize(params_.env)); TF_ASSIGN_OR_RETURN(std::vector<Tensor> serialized_tensors, reader.GetTensors()); TF_RETURN_IF_ERROR(iterator_->Restore(serialized_tensors)); TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(*checkpoint_name)); auto [checkpoint_index, checkpoint_num_elements] = checkpoint_name_tokens; TF_RETURN_IF_ERROR( SyncCheckpointWithChunks(checkpoint_index, checkpoint_num_elements)); chunk_index_ = checkpoint_index; LOG(INFO) << "Restored distributed tf.data snapshot writer. Snapshot " << params_.snapshot_path << ", stream " << params_.stream_index << ", chunk " << checkpoint_index << "."; return absl::OkStatus(); } absl::StatusOr<std::string> SnapshotStreamWriter::LastCheckpointName() const { TF_ASSIGN_OR_RETURN(std::vector<std::string> checkpoint_names, GetChildren(params_.CheckpointsDirectory(), params_.env)); if (checkpoint_names.empty()) { return absl::NotFoundError( absl::StrCat("No checkpoint has been written in directory ", params_.CheckpointsDirectory())); } int64_t last_index = -1; std::string last_checkpoint_name = ""; for (const std::string& checkpoint_name : checkpoint_names) { TF_ASSIGN_OR_RETURN(auto checkpoint_name_tokens, ParseCheckpointFilename(checkpoint_name)); auto [checkpoint_index, unused] = checkpoint_name_tokens; if (checkpoint_index > last_index) { last_index = checkpoint_index; last_checkpoint_name = checkpoint_name; } } return last_checkpoint_name; } absl::Status SnapshotStreamWriter::SyncCheckpointWithChunks( std::optional<int64_t> checkpoint_index, int64_t checkpoint_num_elements) { TF_ASSIGN_OR_RETURN( std::vector<std::string> uncommitted_chunks, GetChildren(params_.UncommittedChunksDirectory(), params_.env)); TF_ASSIGN_OR_RETURN(int64_t last_committed_chunk_index, LastCommittedChunkIndex()); int64_t next_chunk_index = last_committed_chunk_index + 1; for (const std::string& uncommitted_chunk : uncommitted_chunks) { std::string uncommitted_chunk_filename = tsl::io::JoinPath( params_.UncommittedChunksDirectory(), uncommitted_chunk); TF_ASSIGN_OR_RETURN(int64_t uncommitted_chunk_index, GetUncommittedChunkIndex(uncommitted_chunk)); if (checkpoint_index.has_value() && uncommitted_chunk_index < *checkpoint_index) { int64_t chunk_num_elements = (next_chunk_index == *checkpoint_index - 1) ? checkpoint_num_elements : kUnknownNumElements; std::string committed_chunk_filename = tsl::io::JoinPath( params_.CommittedChunksDirectory(), absl::StrCat("chunk_", params_.stream_index, "_", next_chunk_index, "_", chunk_num_elements)); TF_RETURN_IF_ERROR(params_.env->RenameFile(uncommitted_chunk_filename, committed_chunk_filename)); ++next_chunk_index; } else { TF_RETURN_IF_ERROR(params_.env->DeleteFile(uncommitted_chunk_filename)); } } if (checkpoint_index.has_value() && next_chunk_index != *checkpoint_index) { return absl::InternalError(absl::StrCat( "Failed to recover tf.data snapshot writer: Unable to find chunks [", next_chunk_index, ", ", *checkpoint_index, ").")); } return absl::OkStatus(); } absl::StatusOr<int64_t> SnapshotStreamWriter::LastCommittedChunkIndex() { std::string committed_chunks_directory = params_.CommittedChunksDirectory(); TF_ASSIGN_OR_RETURN( std::vector<std::string> committed_chunks, GetChildren(params_.CommittedChunksDirectory(), params_.env)); int64_t last_committed_chunk_index = -1; for (const std::string& committed_chunk : committed_chunks) { TF_ASSIGN_OR_RETURN(auto chunk_filename_tokens, ParseChunkFilename(committed_chunk)); const auto [stream_index, chunk_index, _] = chunk_filename_tokens; if (stream_index != params_.stream_index) { continue; } if (chunk_index > last_committed_chunk_index) { last_committed_chunk_index = chunk_index; } } return last_committed_chunk_index; } std::string SnapshotStreamWriter::CheckpointPath( int64_t chunk_index, int64_t chunk_num_elements) const { return tsl::io::JoinPath( params_.CheckpointsDirectory(), absl::StrCat("checkpoint_", chunk_index, "_", chunk_num_elements)); } std::string SnapshotStreamWriter::CheckpointPath( const std::string& checkpoint_name) const { return tsl::io::JoinPath(params_.CheckpointsDirectory(), checkpoint_name); } } }
#include "tensorflow/core/data/service/snapshot/snapshot_stream_writer.h" #include <cstddef> #include <cstdint> #include <memory> #include <optional> #include <string> #include <utility> #include <vector> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_cat.h" #include "tensorflow/core/data/service/byte_size.h" #include "tensorflow/core/data/service/common.pb.h" #include "tensorflow/core/data/service/snapshot/file_utils.h" #include "tensorflow/core/data/service/snapshot/path_utils.h" #include "tensorflow/core/data/service/snapshot/test_utils.h" #include "tensorflow/core/data/service/task_runner.h" #include "tensorflow/core/data/service/test_util.h" #include "tensorflow/core/data/snapshot_utils.h" #include "tensorflow/core/data/standalone.h" #include "tensorflow/core/framework/tensor.h" #include "tsl/lib/core/status_test_util.h" #include "tsl/lib/io/compression.h" #include "tsl/lib/monitoring/cell_reader.h" #include "tsl/platform/env.h" #include "tsl/platform/path.h" #include "tsl/platform/status_matchers.h" #include "tsl/platform/test.h" #include "tsl/protobuf/error_codes.pb.h" namespace tensorflow { namespace data { namespace { using ::testing::HasSubstr; using ::testing::IsEmpty; using ::testing::SizeIs; using ::testing::UnorderedElementsAre; using ::testing::ValuesIn; using ::tsl::monitoring::testing::CellReader; using ::tsl::testing::IsOkAndHolds; using ::tsl::testing::StatusIs; absl::StatusOr<std::unique_ptr<StandaloneTaskIterator>> TestIterator( const DatasetDef& dataset_def) { std::unique_ptr<standalone::Dataset> dataset; TF_RETURN_IF_ERROR(standalone::Dataset::FromGraph( standalone::Dataset::Params(), dataset_def.graph(), &dataset)); std::unique_ptr<standalone::Iterator> iterator; TF_RETURN_IF_ERROR(dataset->MakeIterator(&iterator)); return std::make_unique<StandaloneTaskIterator>(std::move(dataset), std::move(iterator)); } template <class T> class ElementOrErrorIterator : public TaskIterator { public: explicit ElementOrErrorIterator( const std::vector<absl::StatusOr<T>>& elements) : elements_(elements) {} absl::Status GetNext(std::vector<Tensor>& element, bool& end_of_sequence) override { end_of_sequence = (next_ >= elements_.size()); if (end_of_sequence) { return absl::OkStatus(); } const absl::StatusOr<T>& next_element = elements_[next_++]; TF_RETURN_IF_ERROR(next_element.status()); element = {Tensor{*next_element}}; return absl::OkStatus(); } absl::StatusOr<std::vector<Tensor>> Save() override { return std::vector<Tensor>{}; } absl::Status Restore(const std::vector<Tensor>& saved_iterator) override { return absl::OkStatus(); } int64_t Cardinality() const override { return elements_.size(); } private: const std::vector<absl::StatusOr<T>> elements_; int64_t next_ = 0; }; absl::StatusOr<std::string> CreateSnapshotDirectory() { std::string snapshot_path; if (!Env::Default()->LocalTempFilename(&snapshot_path)) { return absl::FailedPreconditionError( "Failed to create local temp file for snapshot."); } TF_RETURN_IF_ERROR(Env::Default()->RecursivelyCreateDir( CommittedChunksDirectory(snapshot_path))); return snapshot_path; } absl::StatusOr<std::unique_ptr<snapshot_util::Reader>> CreateSnapshotReader( const std::string& snapshot_path, int64_t num_elements, const std::string& compression, Env* env) { static constexpr int kTFRecordReader = 2; DataTypeVector dtypes(num_elements, DT_INT64); std::unique_ptr<snapshot_util::Reader> reader; TF_RETURN_IF_ERROR(snapshot_util::Reader::Create( env, snapshot_path, compression, kTFRecordReader, dtypes, &reader)); return reader; } template <class T> absl::StatusOr<std::vector<T>> ReadSnapshot(const std::string& snapshot_path, const std::string& compression, int64_t num_elements) { TF_ASSIGN_OR_RETURN(std::unique_ptr<snapshot_util::Reader> reader, CreateSnapshotReader(snapshot_path, num_elements, compression, Env::Default())); std::vector<Tensor> tensors; TF_RETURN_IF_ERROR(reader->ReadTensors(&tensors)); std::vector<T> result; for (const Tensor& tensor : tensors) { result.push_back(tensor.unaligned_flat<T>().data()[0]); } return result; } absl::StatusOr<std::string> ReadStringFromFile(const std::string& filename) { std::string data; TF_RETURN_IF_ERROR(ReadFileToString(Env::Default(), filename, &data)); return data; } class SnapshotStreamWriterParameterizedTest : public ::testing::TestWithParam<std::string> { public: std::string Compression() const { return GetParam(); } }; TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshot) { CellReader<int64_t> cell_reader( "/tensorflow/data/service/snapshot_bytes_committed"); EXPECT_EQ(cell_reader.Delta(), 0); int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); EXPECT_THAT( GetChildren(writer_params.UncommittedChunksDirectory(), Env::Default()), IsOkAndHolds(IsEmpty())); EXPECT_GE(cell_reader.Delta(), 80); } TEST_P(SnapshotStreamWriterParameterizedTest, StreamAlreadyCompleted) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); TF_ASSERT_OK_AND_ASSIGN(iterator, TestIterator(testing::RangeDataset(range))); SnapshotStreamWriter duplicate_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteSnapshotChunks) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT( GetChildren(writer_params.CommittedChunksDirectory(), Env::Default()), IsOkAndHolds(SizeIs(range))); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, Compression()), IsOkAndHolds(UnorderedElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9))); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteDoneFile) { int64_t range = 10; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); TF_EXPECT_OK(Env::Default()->FileExists(done_file_path)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(snapshot_writer.Completed(), IsOkAndHolds(true)); } TEST_P(SnapshotStreamWriterParameterizedTest, WriteErrorFile) { auto error_iterator = std::make_unique<ElementOrErrorIterator<tstring>>( std::vector<absl::StatusOr<tstring>>{ tstring("First element"), absl::InvalidArgumentError("Invalid argument"), tstring("Second element"), absl::AbortedError("Aborted")}); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); std::string done_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "DONE"); std::string error_file_path = tsl::io::JoinPath( StreamDirectory(snapshot_path, 0), "ERROR"); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); EXPECT_THAT(Env::Default()->FileExists(error_file_path), StatusIs(absl::StatusCode::kNotFound)); SnapshotWriterParams writer_params{snapshot_path, 0, Compression(), Env::Default(), ByteSize::Bytes(1)}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(error_iterator)); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kInvalidArgument)); EXPECT_THAT(Env::Default()->FileExists(done_file_path), StatusIs(absl::StatusCode::kNotFound)); TF_EXPECT_OK(Env::Default()->FileExists(error_file_path)); EXPECT_THAT(ReadStringFromFile(error_file_path), IsOkAndHolds(HasSubstr("Invalid argument"))); EXPECT_THAT(snapshot_writer.Completed(), StatusIs(absl::StatusCode::kInvalidArgument)); } INSTANTIATE_TEST_SUITE_P(Compression, SnapshotStreamWriterParameterizedTest, ValuesIn<std::string>({tsl::io::compression::kNone, tsl::io::compression::kGzip, tsl::io::compression::kSnappy, tsl::io::compression::kZlib})); TEST(SnapshotStreamWriterTest, EmptyDataset) { TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(0))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); EXPECT_THAT(snapshot_writer.Wait(), IsOkAndHolds(true)); EXPECT_THAT(testing::ReadSnapshot<int64_t>(snapshot_path, tsl::io::compression::kSnappy), IsOkAndHolds(IsEmpty())); } TEST(SnapshotStreamWriterTest, Cancel) { const int64_t range = 10000; TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<StandaloneTaskIterator> iterator, TestIterator(testing::RangeDataset(range))); TF_ASSERT_OK_AND_ASSIGN(std::string snapshot_path, CreateSnapshotDirectory()); SnapshotWriterParams writer_params{snapshot_path, 0, tsl::io::compression::kSnappy, Env::Default()}; SnapshotStreamWriter snapshot_writer(writer_params, std::move(iterator)); snapshot_writer.Cancel(); EXPECT_THAT(snapshot_writer.Wait(), StatusIs(absl::StatusCode::kCancelled)); } } } }
94
#ifndef TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_NNAPI_PLUGIN_H_ #define TENSORFLOW_LITE_CORE_ACCELERATION_CONFIGURATION_C_NNAPI_PLUGIN_H_ #include "tensorflow/lite/core/acceleration/configuration/c/delegate_plugin.h" #ifdef __cplusplus extern "C" { #endif const TfLiteDelegatePlugin* TfLiteNnapiDelegatePluginCApi(); #ifdef __cplusplus } #endif #endif #include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <memory> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/acceleration/configuration/nnapi_plugin.h" #include "tensorflow/lite/core/c/common.h" #include "tensorflow/lite/delegates/nnapi/nnapi_delegate.h" extern "C" { static TfLiteDelegate* CreateDelegate(const void* settings) { const ::tflite::TFLiteSettings* tflite_settings = static_cast<const ::tflite::TFLiteSettings*>(settings); tflite::delegates::NnapiPlugin nnapi_plugin(*tflite_settings); auto support_library_handle = nnapi_plugin.GetSupportLibraryHandle(); if (support_library_handle) { auto nnapi_support_library_driver = reinterpret_cast<const NnApiSLDriverImplFL5*>(support_library_handle); return new tflite::StatefulNnApiDelegate(nnapi_support_library_driver, nnapi_plugin.Options()); } return new tflite::StatefulNnApiDelegate(nnapi_plugin.Options()); } static void DestroyDelegate(TfLiteDelegate* delegate) { delete static_cast<tflite::StatefulNnApiDelegate*>(delegate); } static int DelegateErrno(TfLiteDelegate* from_delegate) { auto nnapi_delegate = static_cast<tflite::StatefulNnApiDelegate*>(from_delegate); return nnapi_delegate->GetNnApiErrno(); } static constexpr TfLiteDelegatePlugin kPluginCApi{ CreateDelegate, DestroyDelegate, DelegateErrno, }; const TfLiteDelegatePlugin* TfLiteNnapiDelegatePluginCApi() { return &kPluginCApi; } }
#include "tensorflow/lite/core/acceleration/configuration/c/nnapi_plugin.h" #include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/acceleration/configuration/configuration_generated.h" #include "tensorflow/lite/core/c/common.h" namespace tflite { class NnapiTest : public testing::Test { public: void SetUp() override { NNAPISettingsBuilder nnapi_settings_builder(flatbuffer_builder_); flatbuffers::Offset<NNAPISettings> nnapi_settings = nnapi_settings_builder.Finish(); TFLiteSettingsBuilder tflite_settings_builder(flatbuffer_builder_); tflite_settings_builder.add_nnapi_settings(nnapi_settings); flatbuffers::Offset<TFLiteSettings> tflite_settings = tflite_settings_builder.Finish(); flatbuffer_builder_.Finish(tflite_settings); settings_ = flatbuffers::GetRoot<TFLiteSettings>( flatbuffer_builder_.GetBufferPointer()); } ~NnapiTest() override {} protected: flatbuffers::FlatBufferBuilder flatbuffer_builder_; const TFLiteSettings *settings_; }; TEST_F(NnapiTest, CanCreateAndDestroyDelegate) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); EXPECT_NE(delegate, nullptr); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } TEST_F(NnapiTest, CanGetDelegateErrno) { TfLiteDelegate *delegate = TfLiteNnapiDelegatePluginCApi()->create(settings_); int error_number = TfLiteNnapiDelegatePluginCApi()->get_delegate_errno(delegate); EXPECT_EQ(error_number, 0); TfLiteNnapiDelegatePluginCApi()->destroy(delegate); } }
95
#ifndef THIRD_PARTY_CEL_CPP_PARSER_MACRO_EXPR_FACTORY_H_ #define THIRD_PARTY_CEL_CPP_PARSER_MACRO_EXPR_FACTORY_H_ #include <algorithm> #include <cstdint> #include <string> #include <type_traits> #include <utility> #include <vector> #include "absl/base/attributes.h" #include "absl/base/nullability.h" #include "absl/strings/string_view.h" #include "common/expr.h" #include "common/expr_factory.h" namespace cel { class ParserMacroExprFactory; class TestMacroExprFactory; class MacroExprFactory : protected ExprFactory { protected: using ExprFactory::IsArrayLike; using ExprFactory::IsExprLike; using ExprFactory::IsStringLike; template <typename T, typename U> struct IsRValue : std::bool_constant< std::disjunction_v<std::is_same<T, U>, std::is_same<T, U&&>>> {}; public: ABSL_MUST_USE_RESULT Expr Copy(const Expr& expr); ABSL_MUST_USE_RESULT ListExprElement Copy(const ListExprElement& element); ABSL_MUST_USE_RESULT StructExprField Copy(const StructExprField& field); ABSL_MUST_USE_RESULT MapExprEntry Copy(const MapExprEntry& entry); ABSL_MUST_USE_RESULT Expr NewUnspecified() { return NewUnspecified(NextId()); } ABSL_MUST_USE_RESULT Expr NewNullConst() { return NewNullConst(NextId()); } ABSL_MUST_USE_RESULT Expr NewBoolConst(bool value) { return NewBoolConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewIntConst(int64_t value) { return NewIntConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewUintConst(uint64_t value) { return NewUintConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewDoubleConst(double value) { return NewDoubleConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewBytesConst(std::string value) { return NewBytesConst(NextId(), std::move(value)); } ABSL_MUST_USE_RESULT Expr NewBytesConst(absl::string_view value) { return NewBytesConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewBytesConst(absl::Nullable<const char*> value) { return NewBytesConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewStringConst(std::string value) { return NewStringConst(NextId(), std::move(value)); } ABSL_MUST_USE_RESULT Expr NewStringConst(absl::string_view value) { return NewStringConst(NextId(), value); } ABSL_MUST_USE_RESULT Expr NewStringConst(absl::Nullable<const char*> value) { return NewStringConst(NextId(), value); } template <typename Name, typename = std::enable_if_t<IsStringLike<Name>::value>> ABSL_MUST_USE_RESULT Expr NewIdent(Name name) { return NewIdent(NextId(), std::move(name)); } ABSL_MUST_USE_RESULT Expr NewAccuIdent() { return NewAccuIdent(NextId()); } template <typename Operand, typename Field, typename = std::enable_if_t<IsExprLike<Operand>::value>, typename = std::enable_if_t<IsStringLike<Field>::value>> ABSL_MUST_USE_RESULT Expr NewSelect(Operand operand, Field field) { return NewSelect(NextId(), std::move(operand), std::move(field)); } template <typename Operand, typename Field, typename = std::enable_if_t<IsExprLike<Operand>::value>, typename = std::enable_if_t<IsStringLike<Field>::value>> ABSL_MUST_USE_RESULT Expr NewPresenceTest(Operand operand, Field field) { return NewPresenceTest(NextId(), std::move(operand), std::move(field)); } template < typename Function, typename... Args, typename = std::enable_if_t<IsStringLike<Function>::value>, typename = std::enable_if_t<std::conjunction_v<IsRValue<Expr, Args>...>>> ABSL_MUST_USE_RESULT Expr NewCall(Function function, Args&&... args) { std::vector<Expr> array; array.reserve(sizeof...(Args)); (array.push_back(std::forward<Args>(args)), ...); return NewCall(NextId(), std::move(function), std::move(array)); } template <typename Function, typename Args, typename = std::enable_if_t<IsStringLike<Function>::value>, typename = std::enable_if_t<IsArrayLike<Expr, Args>::value>> ABSL_MUST_USE_RESULT Expr NewCall(Function function, Args args) { return NewCall(NextId(), std::move(function), std::move(args)); } template < typename Function, typename Target, typename... Args, typename = std::enable_if_t<IsStringLike<Function>::value>, typename = std::enable_if_t<IsExprLike<Target>::value>, typename = std::enable_if_t<std::conjunction_v<IsRValue<Expr, Args>...>>> ABSL_MUST_USE_RESULT Expr NewMemberCall(Function function, Target target, Args&&... args) { std::vector<Expr> array; array.reserve(sizeof...(Args)); (array.push_back(std::forward<Args>(args)), ...); return NewMemberCall(NextId(), std::move(function), std::move(target), std::move(array)); } template <typename Function, typename Target, typename Args, typename = std::enable_if_t<IsStringLike<Function>::value>, typename = std::enable_if_t<IsExprLike<Target>::value>, typename = std::enable_if_t<IsArrayLike<Expr, Args>::value>> ABSL_MUST_USE_RESULT Expr NewMemberCall(Function function, Target target, Args args) { return NewMemberCall(NextId(), std::move(function), std::move(target), std::move(args)); } using ExprFactory::NewListElement; template <typename... Elements, typename = std::enable_if_t< std::conjunction_v<IsRValue<ListExprElement, Elements>...>>> ABSL_MUST_USE_RESULT Expr NewList(Elements&&... elements) { std::vector<ListExprElement> array; array.reserve(sizeof...(Elements)); (array.push_back(std::forward<Elements>(elements)), ...); return NewList(NextId(), std::move(array)); } template <typename Elements, typename = std::enable_if_t<IsArrayLike<ListExprElement, Elements>::value>> ABSL_MUST_USE_RESULT Expr NewList(Elements elements) { return NewList(NextId(), std::move(elements)); } template <typename Name, typename Value, typename = std::enable_if_t<IsStringLike<Name>::value>, typename = std::enable_if_t<IsExprLike<Value>::value>> ABSL_MUST_USE_RESULT StructExprField NewStructField(Name name, Value value, bool optional = false) { return NewStructField(NextId(), std::move(name), std::move(value), optional); } template <typename Name, typename... Fields, typename = std::enable_if_t<IsStringLike<Name>::value>, typename = std::enable_if_t< std::conjunction_v<IsRValue<StructExprField, Fields>...>>> ABSL_MUST_USE_RESULT Expr NewStruct(Name name, Fields&&... fields) { std::vector<StructExprField> array; array.reserve(sizeof...(Fields)); (array.push_back(std::forward<Fields>(fields)), ...); return NewStruct(NextId(), std::move(name), std::move(array)); } template < typename Name, typename Fields, typename = std::enable_if_t<IsStringLike<Name>::value>, typename = std::enable_if_t<IsArrayLike<StructExprField, Fields>::value>> ABSL_MUST_USE_RESULT Expr NewStruct(Name name, Fields fields) { return NewStruct(NextId(), std::move(name), std::move(fields)); } template <typename Key, typename Value, typename = std::enable_if_t<IsExprLike<Key>::value>, typename = std::enable_if_t<IsExprLike<Value>::value>> ABSL_MUST_USE_RESULT MapExprEntry NewMapEntry(Key key, Value value, bool optional = false) { return NewMapEntry(NextId(), std::move(key), std::move(value), optional); } template <typename... Entries, typename = std::enable_if_t<std::conjunction_v< IsRValue<MapExprEntry, Entries>...>>> ABSL_MUST_USE_RESULT Expr NewMap(Entries&&... entries) { std::vector<MapExprEntry> array; array.reserve(sizeof...(Entries)); (array.push_back(std::forward<Entries>(entries)), ...); return NewMap(NextId(), std::move(array)); } template <typename Entries, typename = std::enable_if_t< IsArrayLike<MapExprEntry, Entries>::value>> ABSL_MUST_USE_RESULT Expr NewMap(Entries entries) { return NewMap(NextId(), std::move(entries)); } template <typename IterVar, typename IterRange, typename AccuVar, typename AccuInit, typename LoopCondition, typename LoopStep, typename Result, typename = std::enable_if_t<IsStringLike<IterVar>::value>, typename = std::enable_if_t<IsExprLike<IterRange>::value>, typename = std::enable_if_t<IsStringLike<AccuVar>::value>, typename = std::enable_if_t<IsExprLike<AccuInit>::value>, typename = std::enable_if_t<IsExprLike<LoopStep>::value>, typename = std::enable_if_t<IsExprLike<LoopCondition>::value>, typename = std::enable_if_t<IsExprLike<Result>::value>> ABSL_MUST_USE_RESULT Expr NewComprehension(IterVar iter_var, IterRange iter_range, AccuVar accu_var, AccuInit accu_init, LoopCondition loop_condition, LoopStep loop_step, Result result) { return NewComprehension(NextId(), std::move(iter_var), std::move(iter_range), std::move(accu_var), std::move(accu_init), std::move(loop_condition), std::move(loop_step), std::move(result)); } ABSL_MUST_USE_RESULT virtual Expr ReportError(absl::string_view message) = 0; ABSL_MUST_USE_RESULT virtual Expr ReportErrorAt( const Expr& expr, absl::string_view message) = 0; protected: using ExprFactory::NewAccuIdent; using ExprFactory::NewBoolConst; using ExprFactory::NewBytesConst; using ExprFactory::NewCall; using ExprFactory::NewComprehension; using ExprFactory::NewConst; using ExprFactory::NewDoubleConst; using ExprFactory::NewIdent; using ExprFactory::NewIntConst; using ExprFactory::NewList; using ExprFactory::NewMap; using ExprFactory::NewMapEntry; using ExprFactory::NewMemberCall; using ExprFactory::NewNullConst; using ExprFactory::NewPresenceTest; using ExprFactory::NewSelect; using ExprFactory::NewStringConst; using ExprFactory::NewStruct; using ExprFactory::NewStructField; using ExprFactory::NewUintConst; using ExprFactory::NewUnspecified; ABSL_MUST_USE_RESULT virtual ExprId NextId() = 0; ABSL_MUST_USE_RESULT virtual ExprId CopyId(ExprId id) = 0; ABSL_MUST_USE_RESULT ExprId CopyId(const Expr& expr) { return CopyId(expr.id()); } private: friend class ParserMacroExprFactory; friend class TestMacroExprFactory; MacroExprFactory() : ExprFactory() {} }; } #endif #include "parser/macro_expr_factory.h" #include <utility> #include <vector> #include "absl/functional/overload.h" #include "absl/types/optional.h" #include "absl/types/variant.h" #include "common/constant.h" #include "common/expr.h" namespace cel { Expr MacroExprFactory::Copy(const Expr& expr) { return absl::visit( absl::Overload( [this, &expr](const UnspecifiedExpr&) -> Expr { return NewUnspecified(CopyId(expr)); }, [this, &expr](const Constant& const_expr) -> Expr { return NewConst(CopyId(expr), const_expr); }, [this, &expr](const IdentExpr& ident_expr) -> Expr { return NewIdent(CopyId(expr), ident_expr.name()); }, [this, &expr](const SelectExpr& select_expr) -> Expr { const auto id = CopyId(expr); return select_expr.test_only() ? NewPresenceTest(id, Copy(select_expr.operand()), select_expr.field()) : NewSelect(id, Copy(select_expr.operand()), select_expr.field()); }, [this, &expr](const CallExpr& call_expr) -> Expr { const auto id = CopyId(expr); absl::optional<Expr> target; if (call_expr.has_target()) { target = Copy(call_expr.target()); } std::vector<Expr> args; args.reserve(call_expr.args().size()); for (const auto& arg : call_expr.args()) { args.push_back(Copy(arg)); } return target.has_value() ? NewMemberCall(id, call_expr.function(), std::move(*target), std::move(args)) : NewCall(id, call_expr.function(), std::move(args)); }, [this, &expr](const ListExpr& list_expr) -> Expr { const auto id = CopyId(expr); std::vector<ListExprElement> elements; elements.reserve(list_expr.elements().size()); for (const auto& element : list_expr.elements()) { elements.push_back(Copy(element)); } return NewList(id, std::move(elements)); }, [this, &expr](const StructExpr& struct_expr) -> Expr { const auto id = CopyId(expr); std::vector<StructExprField> fields; fields.reserve(struct_expr.fields().size()); for (const auto& field : struct_expr.fields()) { fields.push_back(Copy(field)); } return NewStruct(id, struct_expr.name(), std::move(fields)); }, [this, &expr](const MapExpr& map_expr) -> Expr { const auto id = CopyId(expr); std::vector<MapExprEntry> entries; entries.reserve(map_expr.entries().size()); for (const auto& entry : map_expr.entries()) { entries.push_back(Copy(entry)); } return NewMap(id, std::move(entries)); }, [this, &expr](const ComprehensionExpr& comprehension_expr) -> Expr { const auto id = CopyId(expr); auto iter_range = Copy(comprehension_expr.iter_range()); auto accu_init = Copy(comprehension_expr.accu_init()); auto loop_condition = Copy(comprehension_expr.loop_condition()); auto loop_step = Copy(comprehension_expr.loop_step()); auto result = Copy(comprehension_expr.result()); return NewComprehension( id, comprehension_expr.iter_var(), std::move(iter_range), comprehension_expr.accu_var(), std::move(accu_init), std::move(loop_condition), std::move(loop_step), std::move(result)); }), expr.kind()); } ListExprElement MacroExprFactory::Copy(const ListExprElement& element) { return NewListElement(Copy(element.expr()), element.optional()); } StructExprField MacroExprFactory::Copy(const StructExprField& field) { auto field_id = CopyId(field.id()); auto field_value = Copy(field.value()); return NewStructField(field_id, field.name(), std::move(field_value), field.optional()); } MapExprEntry MacroExprFactory::Copy(const MapExprEntry& entry) { auto entry_id = CopyId(entry.id()); auto entry_key = Copy(entry.key()); auto entry_value = Copy(entry.value()); return NewMapEntry(entry_id, std::move(entry_key), std::move(entry_value), entry.optional()); } }
#include "parser/macro_expr_factory.h" #include <cstdint> #include <vector> #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "common/expr.h" #include "common/expr_factory.h" #include "internal/testing.h" namespace cel { class TestMacroExprFactory final : public MacroExprFactory { public: TestMacroExprFactory() : MacroExprFactory() {} ExprId id() const { return id_; } Expr ReportError(absl::string_view) override { return NewUnspecified(NextId()); } Expr ReportErrorAt(const Expr&, absl::string_view) override { return NewUnspecified(NextId()); } using MacroExprFactory::NewBoolConst; using MacroExprFactory::NewCall; using MacroExprFactory::NewComprehension; using MacroExprFactory::NewIdent; using MacroExprFactory::NewList; using MacroExprFactory::NewListElement; using MacroExprFactory::NewMap; using MacroExprFactory::NewMapEntry; using MacroExprFactory::NewMemberCall; using MacroExprFactory::NewSelect; using MacroExprFactory::NewStruct; using MacroExprFactory::NewStructField; using MacroExprFactory::NewUnspecified; protected: ExprId NextId() override { return id_++; } ExprId CopyId(ExprId id) override { if (id == 0) { return 0; } return NextId(); } private: int64_t id_ = 1; }; namespace { TEST(MacroExprFactory, CopyUnspecified) { TestMacroExprFactory factory; EXPECT_EQ(factory.Copy(factory.NewUnspecified()), factory.NewUnspecified(2)); } TEST(MacroExprFactory, CopyIdent) { TestMacroExprFactory factory; EXPECT_EQ(factory.Copy(factory.NewIdent("foo")), factory.NewIdent(2, "foo")); } TEST(MacroExprFactory, CopyConst) { TestMacroExprFactory factory; EXPECT_EQ(factory.Copy(factory.NewBoolConst(true)), factory.NewBoolConst(2, true)); } TEST(MacroExprFactory, CopySelect) { TestMacroExprFactory factory; EXPECT_EQ(factory.Copy(factory.NewSelect(factory.NewIdent("foo"), "bar")), factory.NewSelect(3, factory.NewIdent(4, "foo"), "bar")); } TEST(MacroExprFactory, CopyCall) { TestMacroExprFactory factory; std::vector<Expr> copied_args; copied_args.reserve(1); copied_args.push_back(factory.NewIdent(6, "baz")); EXPECT_EQ(factory.Copy(factory.NewMemberCall("bar", factory.NewIdent("foo"), factory.NewIdent("baz"))), factory.NewMemberCall(4, "bar", factory.NewIdent(5, "foo"), absl::MakeSpan(copied_args))); } TEST(MacroExprFactory, CopyList) { TestMacroExprFactory factory; std::vector<ListExprElement> copied_elements; copied_elements.reserve(1); copied_elements.push_back(factory.NewListElement(factory.NewIdent(4, "foo"))); EXPECT_EQ(factory.Copy(factory.NewList( factory.NewListElement(factory.NewIdent("foo")))), factory.NewList(3, absl::MakeSpan(copied_elements))); } TEST(MacroExprFactory, CopyStruct) { TestMacroExprFactory factory; std::vector<StructExprField> copied_fields; copied_fields.reserve(1); copied_fields.push_back( factory.NewStructField(5, "bar", factory.NewIdent(6, "baz"))); EXPECT_EQ(factory.Copy(factory.NewStruct( "foo", factory.NewStructField("bar", factory.NewIdent("baz")))), factory.NewStruct(4, "foo", absl::MakeSpan(copied_fields))); } TEST(MacroExprFactory, CopyMap) { TestMacroExprFactory factory; std::vector<MapExprEntry> copied_entries; copied_entries.reserve(1); copied_entries.push_back(factory.NewMapEntry(6, factory.NewIdent(7, "bar"), factory.NewIdent(8, "baz"))); EXPECT_EQ(factory.Copy(factory.NewMap(factory.NewMapEntry( factory.NewIdent("bar"), factory.NewIdent("baz")))), factory.NewMap(5, absl::MakeSpan(copied_entries))); } TEST(MacroExprFactory, CopyComprehension) { TestMacroExprFactory factory; EXPECT_EQ( factory.Copy(factory.NewComprehension( "foo", factory.NewList(), "bar", factory.NewBoolConst(true), factory.NewIdent("baz"), factory.NewIdent("foo"), factory.NewIdent("bar"))), factory.NewComprehension( 7, "foo", factory.NewList(8, std::vector<ListExprElement>()), "bar", factory.NewBoolConst(9, true), factory.NewIdent(10, "baz"), factory.NewIdent(11, "foo"), factory.NewIdent(12, "bar"))); } } }
96
#ifndef TENSORFLOW_TSL_LIB_RANDOM_SIMPLE_PHILOX_H_ #define TENSORFLOW_TSL_LIB_RANDOM_SIMPLE_PHILOX_H_ #include <math.h> #include <string.h> #include <algorithm> #include "tsl/lib/random/philox_random.h" #include "tsl/lib/random/random_distributions.h" namespace tsl { namespace random { class SimplePhilox { public: PHILOX_DEVICE_INLINE explicit SimplePhilox(PhiloxRandom* gen) : single_(gen) {} PHILOX_DEVICE_INLINE uint32 Rand32() { return single_(); } PHILOX_DEVICE_INLINE uint64 Rand64() { const uint32 lo = single_(), hi = single_(); return lo | static_cast<uint64>(hi) << 32; } PHILOX_DEVICE_INLINE float RandFloat() { return Uint32ToFloat(single_()); } PHILOX_DEVICE_INLINE double RandDouble() { const uint32 x0 = single_(), x1 = single_(); return Uint64ToDouble(x0, x1); } uint32 Uniform(uint32 n); uint64 Uniform64(uint64 n); bool OneIn(uint32 n) { return Uniform(n) == 0; } uint32 Skewed(int max_log); private: SingleSampleAdapter<PhiloxRandom> single_; }; } } #endif #include "tsl/lib/random/simple_philox.h" #include "tsl/lib/random/exact_uniform_int.h" #include "tsl/platform/logging.h" namespace tsl { namespace random { uint32 SimplePhilox::Uniform(uint32 n) { return ExactUniformInt<uint32>(n, [this]() { return Rand32(); }); } uint64 SimplePhilox::Uniform64(uint64 n) { return ExactUniformInt<uint64>(n, [this]() { return Rand64(); }); } uint32 SimplePhilox::Skewed(int max_log) { CHECK(0 <= max_log && max_log <= 32); const int shift = Rand32() % (max_log + 1); const uint32 mask = shift == 32 ? ~static_cast<uint32>(0) : (1 << shift) - 1; return Rand32() & mask; } } }
#include "tsl/lib/random/simple_philox.h" #include <set> #include <string> #include "tsl/platform/logging.h" #include "tsl/platform/test.h" #include "tsl/platform/types.h" namespace tsl { namespace random { namespace { TEST(SimplePhiloxTest, FloatTest) { PhiloxRandom philox(7, 7); SimplePhilox gen(&philox); static const int kIters = 1000000; for (int i = 0; i < kIters; ++i) { float f = gen.RandFloat(); EXPECT_LE(0.0f, f); EXPECT_GT(1.0f, f); } for (int i = 0; i < kIters; ++i) { double d = gen.RandDouble(); EXPECT_LE(0.0, d); EXPECT_GT(1.0, d); } } static void DifferenceTest(const char *names, SimplePhilox *gen1, SimplePhilox *gen2) { static const int kIters = 100; bool different = false; for (int i = 0; i < kIters; ++i) { if (gen1->Rand32() != gen2->Rand32()) { different = true; break; } } CHECK(different) << "different seeds but same output!"; } TEST(SimplePhiloxTest, DifferenceTest) { PhiloxRandom philox1(1, 1), philox2(17, 17); SimplePhilox gen1(&philox1), gen2(&philox2); DifferenceTest("SimplePhilox: different seeds", &gen1, &gen2); } TEST(SimplePhiloxTest, DifferenceTestCloseSeeds) { PhiloxRandom philox1(1, 1), philox2(2, 1); SimplePhilox gen1(&philox1), gen2(&philox2); DifferenceTest("SimplePhilox: close seeds", &gen1, &gen2); } TEST(SimplePhiloxTest, Regression_CloseSeedsAreDifferent) { const int kCount = 1000; PhiloxRandom philox1(0, 1), philox2(1, 1); SimplePhilox gen1(&philox1), gen2(&philox2); std::set<uint32> first; std::set<uint32> all; for (int i = 0; i < kCount; ++i) { uint32 v = gen1.Rand32(); first.insert(v); all.insert(v); all.insert(gen2.Rand32()); } EXPECT_EQ(kCount, first.size()); EXPECT_EQ(2 * kCount, all.size()); } TEST(SimplePhiloxTest, TestUniform) { PhiloxRandom philox(17, 17); SimplePhilox gen(&philox); uint32 range = 3 * (1L << 29); uint32 threshold = 1L << 30; size_t count = 0; static const int kTrials = 100000; for (int i = 0; i < kTrials; ++i) { uint32 rnd = gen.Uniform(range); if (rnd < threshold) { ++count; } } EXPECT_LT(fabs((threshold + 0.0) / range - (count + 0.0) / kTrials), 0.005); } TEST(SimplePhiloxTest, TestUniform64) { PhiloxRandom philox(17, 17); SimplePhilox gen(&philox); uint64 range = 3 * (1LL << 59); uint64 threshold = 1LL << 60; size_t count = 0; static const int kTrials = 100000; for (int i = 0; i < kTrials; ++i) { uint64 rnd = gen.Uniform64(range); if (rnd < threshold) { ++count; } } EXPECT_LT(fabs((threshold + 0.0) / range - (count + 0.0) / kTrials), 0.005); } } } }
97
#ifndef TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_FILTER_FUSION_H_ #define TENSORFLOW_CORE_GRAPPLER_OPTIMIZERS_DATA_FILTER_FUSION_H_ #include "tensorflow/core/grappler/optimizers/data/optimizer_base.h" namespace tensorflow { namespace grappler { class FilterFusion : public TFDataOptimizerBase { public: FilterFusion() = default; ~FilterFusion() override = default; string name() const override { return "filter_fusion"; }; bool UsesFunctionLibrary() const override { return false; } Status Init( const tensorflow::RewriterConfig_CustomGraphOptimizer* config) override { return absl::OkStatus(); } Status OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) override; }; } } #endif #include "tensorflow/core/grappler/optimizers/data/filter_fusion.h" #include "absl/container/flat_hash_set.h" #include "tensorflow/core/framework/attr_value.pb.h" #include "tensorflow/core/framework/node_def.pb.h" #include "tensorflow/core/grappler/clusters/cluster.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/mutable_graph_view.h" #include "tensorflow/core/grappler/op_types.h" #include "tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.h" #include "tensorflow/core/grappler/optimizers/data/fusion_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/grappler/utils.h" #include "tensorflow/core/grappler/utils/topological_sort.h" #include "tensorflow/core/platform/protobuf.h" namespace tensorflow { namespace grappler { namespace { NodeDef MakeFusedFilterNode(const NodeDef& first_filter_node, const NodeDef& second_filter_node, const FunctionDef& fused_function, MutableGraphView* graph) { NodeDef fused_node; graph_utils::SetUniqueGraphNodeName("fused_filter", graph->graph(), &fused_node); fused_node.set_op("FilterDataset"); fused_node.add_input(first_filter_node.input(0)); auto attr = first_filter_node.attr().at("predicate"); *attr.mutable_func()->mutable_name() = fused_function.signature().name(); (*fused_node.mutable_attr())["predicate"] = std::move(attr); graph_utils::CopyAttribute("Targuments", first_filter_node, &fused_node); for (auto key : {"output_shapes", "output_types"}) graph_utils::CopyAttribute(key, second_filter_node, &fused_node); graph_utils::MaybeSetFusedMetadata(first_filter_node, second_filter_node, &fused_node); return fused_node; } } Status FilterFusion::OptimizeAndCollectStats(Cluster* cluster, const GrapplerItem& item, GraphDef* output, OptimizationStats* stats) { GraphDef sorted_old_graph = item.graph; TF_RETURN_IF_ERROR(TopologicalSort(&sorted_old_graph)); *output = sorted_old_graph; MutableGraphView graph(output); absl::flat_hash_set<string> nodes_to_delete; FunctionLibraryDefinition function_library(OpRegistry::Global(), output->library()); auto get_filter_node = [](const NodeDef& node) -> const NodeDef* { if (node.op() == "FilterDataset" && node.input_size() == 1) return &node; return nullptr; }; auto make_fused_function = [&](const NodeDef* first_filter_node, const NodeDef* second_filter_node) -> FunctionDef* { const auto& parent_fun = first_filter_node->attr().at("predicate"); const FunctionDef* first_func = function_library.Find(parent_fun.func().name()); const auto& fun = second_filter_node->attr().at("predicate"); const FunctionDef* second_func = function_library.Find(fun.func().name()); if (!fusion_utils::HasSameSignature(first_func->signature(), second_func->signature())) { VLOG(1) << "Can't fuse Filters because they have different signature\n"; return nullptr; } return fusion_utils::FuseFunctions( *first_func, *second_func, "fused_predicate", fusion_utils::SameSignature, fusion_utils::SameInput, fusion_utils::LazyConjunctionOutput, fusion_utils::LazyConjunctionNodes, output->mutable_library()); }; for (const NodeDef& node : sorted_old_graph.node()) { const NodeDef* second_filter_node = get_filter_node(node); if (!second_filter_node) continue; const NodeDef* first_filter_node = get_filter_node(*graph_utils::GetInputNode(*second_filter_node, graph)); if (!first_filter_node) continue; const auto* fused_predicate = make_fused_function(first_filter_node, second_filter_node); if (!fused_predicate) continue; const auto* fused_filter_node = graph.AddNode(MakeFusedFilterNode( *first_filter_node, *second_filter_node, *fused_predicate, &graph)); TF_RETURN_IF_ERROR(graph.UpdateFanouts(second_filter_node->name(), fused_filter_node->name())); TF_RETURN_IF_ERROR(function_library.AddFunctionDef(*fused_predicate)); nodes_to_delete.insert(first_filter_node->name()); nodes_to_delete.insert(second_filter_node->name()); stats->num_changes++; } TF_RETURN_IF_ERROR(graph.DeleteNodes(nodes_to_delete)); return absl::OkStatus(); } REGISTER_GRAPH_OPTIMIZER_AS(FilterFusion, "filter_fusion"); } }
#include "tensorflow/core/grappler/optimizers/data/filter_fusion.h" #include "tensorflow/core/framework/attr_value_util.h" #include "tensorflow/core/framework/function_testlib.h" #include "tensorflow/core/framework/tensor_testutil.h" #include "tensorflow/core/grappler/grappler_item.h" #include "tensorflow/core/grappler/optimizers/data/graph_test_utils.h" #include "tensorflow/core/grappler/optimizers/data/graph_utils.h" #include "tensorflow/core/lib/core/status_test_util.h" #include "tensorflow/core/platform/test.h" namespace tensorflow { namespace grappler { namespace { using graph_tests_utils::MakeFilterNode; TEST(FilterFusionTest, FuseTwoFilterIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range"), MakeFilterNode("filter2", "filter1")}, { test::function::IsZero(), }); FilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); } TEST(FilterFusionTest, FuseThreeNodesIntoOne) { using test::function::NDef; GrapplerItem item; item.graph = test::function::GDef( {NDef("start", "Const", {}, {{"value", 0}, {"dtype", DT_INT32}}), NDef("stop", "Const", {}, {{"value", 10}, {"dtype", DT_INT32}}), NDef("step", "Const", {}, {{"value", 1}, {"dtype", DT_INT32}}), NDef("filename", "Const", {}, {{"value", ""}, {"dtype", DT_STRING}}), NDef("range", "RangeDataset", {"start", "stop", "step"}, {}), MakeFilterNode("filter1", "range"), MakeFilterNode("filter2", "filter1"), MakeFilterNode("filter3", "filter2"), NDef("cache", "CacheDataset", {"filter3", "filename"}, {})}, { test::function::IsZero(), }); FilterFusion optimizer; GraphDef output; TF_ASSERT_OK(optimizer.Optimize(nullptr, item, &output)); EXPECT_TRUE(graph_utils::ContainsNodeWithOp("FilterDataset", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter1", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter2", output)); EXPECT_FALSE(graph_utils::ContainsGraphNodeWithName("filter3", output)); } } } }
98
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CONVOLUTION_TRANSPOSED_THIN_H_ #define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_CONVOLUTION_TRANSPOSED_THIN_H_ #include <memory> #include <string> #include <utility> #include <vector> #include "tensorflow/lite/delegates/gpu/common/data_type.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/shape.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/task/buffer_desc.h" #include "tensorflow/lite/delegates/gpu/common/task/gpu_operation.h" #include "tensorflow/lite/delegates/gpu/common/task/tensor_desc.h" #include "tensorflow/lite/delegates/gpu/common/tensor.h" #include "tensorflow/lite/delegates/gpu/common/types.h" namespace tflite { namespace gpu { class ConvolutionTransposedThin : public GPUOperation { public: ConvolutionTransposedThin() = default; int3 GetGridSize() const override; ConvolutionTransposedThin(ConvolutionTransposedThin&& operation); ConvolutionTransposedThin& operator=(ConvolutionTransposedThin&& operation); ConvolutionTransposedThin(const ConvolutionTransposedThin&) = delete; ConvolutionTransposedThin& operator=(const ConvolutionTransposedThin&) = delete; private: friend ConvolutionTransposedThin CreateConvolutionTransposedThin( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposedAttributes& attr); ConvolutionTransposedThin(const OperationDef& definition, const ConvolutionTransposedAttributes& attr, const GpuInfo& gpu_info); template <DataType T> void UploadData(const tflite::gpu::Tensor<OHWI, T>& weights, const tflite::gpu::Tensor<Linear, T>& biases); template <DataType S, typename T> void RearrangeWeightsData(const tflite::gpu::Tensor<OHWI, S>& weights, absl::Span<T> dst); std::string GenerateConvolutionTransposedCode(const OperationDef& op_def, int src_depth, int dst_channels, const int2& kernel_size); }; template <DataType T> void ConvolutionTransposedThin::UploadData( const tflite::gpu::Tensor<OHWI, T>& weights, const tflite::gpu::Tensor<Linear, T>& biases) { const int src_depth = DivideRoundUp(weights.shape.i, 4); const int flt4_count = weights.shape.w * weights.shape.h * src_depth * weights.shape.o; const bool f32_weights = definition_.precision == CalculationsPrecision::F32; const int flt4_size = f32_weights ? sizeof(float4) : sizeof(half4); BufferDescriptor desc; desc.element_type = f32_weights ? DataType::FLOAT32 : DataType::FLOAT16; desc.element_size = 4; desc.memory_type = MemoryType::CONSTANT; desc.size = flt4_size * (flt4_count + 1); desc.data.resize(desc.size); if (f32_weights) { float4* gpu_data = reinterpret_cast<float4*>(desc.data.data()); RearrangeWeightsData(weights, absl::MakeSpan(gpu_data, flt4_count)); float4 bias_value(0.0f); for (int i = 0; i < weights.shape.o; ++i) { bias_value[i] = biases.data[i]; } gpu_data[flt4_count] = bias_value; } else { half4* gpu_data = reinterpret_cast<half4*>(desc.data.data()); RearrangeWeightsData(weights, absl::MakeSpan(gpu_data, flt4_count)); half4 bias_value(0.0f); for (int i = 0; i < weights.shape.o; ++i) { bias_value[i] = biases.data[i]; } gpu_data[flt4_count] = bias_value; } args_.AddObject("weights", std::make_unique<BufferDescriptor>(std::move(desc))); } template <DataType S, typename T> void ConvolutionTransposedThin::RearrangeWeightsData( const tflite::gpu::Tensor<OHWI, S>& weights, absl::Span<T> dst) { const int src_depth = DivideRoundUp(weights.shape.i, 4); const int kernel_x = weights.shape.w; const int kernel_y = weights.shape.h; int counter = 0; for (int s = 0; s < src_depth; ++s) { for (int y = 0; y < kernel_y; ++y) { for (int x = 0; x < kernel_x; ++x) { std::vector<T> filters(weights.shape.o); for (int j = 0; j < weights.shape.o; ++j) { for (int i = 0; i < 4; ++i) { const int s_ch = s * 4 + i; const int d_ch = j; if (s_ch < weights.shape.i && d_ch < weights.shape.o) { const int f_index = weights.shape.LinearIndex({d_ch, y, x, s_ch}); filters[j][i] = weights.data[f_index]; } else { filters[j][i] = 0.0f; } } } for (int j = 0; j < weights.shape.o; ++j) { dst[counter++] = filters[j]; } } } } } bool IsConvolutionTransposedThinSupported( const ConvolutionTransposedAttributes& attr); ConvolutionTransposedThin CreateConvolutionTransposedThin( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposedAttributes& attr); } } #endif #include "tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed_thin.h" #include <string> #include <utility> #include <vector> #include "tensorflow/lite/delegates/gpu/common/task/work_group_picking.h" namespace tflite { namespace gpu { ConvolutionTransposedThin::ConvolutionTransposedThin( const OperationDef& definition, const ConvolutionTransposedAttributes& attr, const GpuInfo& gpu_info) : GPUOperation(definition) { code_ = GenerateConvolutionTransposedCode( definition_, DivideRoundUp(attr.weights.shape.i, 4), attr.weights.shape.o, int2(attr.weights.shape.w, attr.weights.shape.h)); if (definition_.precision == CalculationsPrecision::F16 && gpu_info.IsAdreno() && gpu_info.adreno_info.IsAdreno3xx()) { compiler_options_.push_back(CompilerOptions::kAdrenoFullSimd); } } ConvolutionTransposedThin::ConvolutionTransposedThin( ConvolutionTransposedThin&& operation) : GPUOperation(std::move(operation)) {} ConvolutionTransposedThin& ConvolutionTransposedThin::operator=( ConvolutionTransposedThin&& operation) { if (this != &operation) { GPUOperation::operator=(std::move(operation)); } return *this; } std::string ConvolutionTransposedThin::GenerateConvolutionTransposedCode( const OperationDef& op_def, int src_depth, int dst_channels, const int2& kernel_size) { AddSrcTensor("src_tensor", op_def.src_tensors[0]); AddDstTensor("dst_tensor", op_def.dst_tensors[0]); const std::string channel_x = dst_channels == 1 ? "" : ".x"; const std::vector<std::string> postfix = {channel_x, ".y", ".z", ".w"}; const std::vector<std::string> channel = {".x", ".y", ".z", ".w"}; const std::string type_postfix = dst_channels == 1 ? "" : std::to_string(dst_channels); std::string accum_type; switch (op_def.precision) { case CalculationsPrecision::F32: case CalculationsPrecision::F32_F16: accum_type = "float" + type_postfix; break; case CalculationsPrecision::F16: accum_type = "half" + type_postfix; break; } std::string c; c += "MAIN_FUNCTION($0) {\n"; if (op_def.IsBatchSupported()) { c += " int linear_id = GLOBAL_ID_0;\n"; c += " int X = linear_id / args.dst_tensor.Batch();\n"; c += " int B = linear_id % args.dst_tensor.Batch();\n"; c += " args.dst_tensor.SetBatchRef(B);\n"; c += " args.src_tensor.SetBatchRef(B);\n"; } else { c += " int X = GLOBAL_ID_0;\n"; } c += " int Y = GLOBAL_ID_1;\n"; c += " if (X >= args.src_tensor.Width() || Y >= args.src_tensor.Height()) " "return;\n"; c += " " + accum_type + " r[" + std::to_string(kernel_size.y) + "][" + std::to_string(kernel_size.x) + "];\n"; c += " {\n"; c += " FLT4 src = args.src_tensor.Read(X, Y, 0);\n"; int index = 0; for (int y = 0; y < kernel_size.y; ++y) { for (int x = 0; x < kernel_size.x; ++x) { std::string r_s = " r[" + std::to_string(y) + "][" + std::to_string(x) + "]"; for (int d = 0; d < dst_channels; ++d) { c += r_s + postfix[d] + " = dot(src, args.weights.Read(" + std::to_string(index) + "));\n"; index++; } } } c += " }\n"; for (int i = 1; i < src_depth; ++i) { c += " if (X > " + std::to_string(-i) + ") { c += " FLT4 src = args.src_tensor.Read(X, Y, " + std::to_string(i) + ");\n"; for (int y = 0; y < kernel_size.y; ++y) { for (int x = 0; x < kernel_size.x; ++x) { std::string r_s = " r[" + std::to_string(y) + "][" + std::to_string(x) + "]"; for (int d = 0; d < dst_channels; ++d) { c += r_s + postfix[d] + " += dot(src, args.weights.Read(" + std::to_string(index) + "));\n"; index++; } } } c += " }\n"; } c += " X *= " + std::to_string(kernel_size.x) + ";\n"; c += " Y *= " + std::to_string(kernel_size.y) + ";\n"; for (int y = 0; y < kernel_size.y; ++y) { for (int x = 0; x < kernel_size.x; ++x) { const std::string x_coord = "X + " + std::to_string(x); const std::string y_coord = "Y + " + std::to_string(y); c += " if (" + x_coord + " < args.dst_tensor.Width() && " + y_coord + " < args.dst_tensor.Height()) {\n"; c += " FLT4 result = args.weights.Read(" + std::to_string(index) + ");\n"; for (int d = 0; d < dst_channels; ++d) { c += " result" + channel[d] + " += r[" + std::to_string(y) + "][" + std::to_string(x) + "]" + postfix[d] + ";\n"; } c += " args.dst_tensor.Write(result, " + x_coord + ", " + y_coord + ", 0);\n"; c += " }\n"; } } c += "}\n"; return c; } int3 ConvolutionTransposedThin::GetGridSize() const { const int grid_x = src_[0]->Width() * dst_[0]->Batch(); const int grid_y = src_[0]->Height(); const int grid_z = 1; return int3(grid_x, grid_y, grid_z); } bool IsConvolutionTransposedThinSupported( const ConvolutionTransposedAttributes& attr) { return attr.weights.shape.o <= 4 && attr.weights.shape.w == attr.stride.w && attr.weights.shape.h == attr.stride.h && attr.padding.prepended.w == 0 && attr.padding.prepended.h == 0 && attr.padding.appended.w == 0 && attr.padding.appended.h == 0; } ConvolutionTransposedThin CreateConvolutionTransposedThin( const GpuInfo& gpu_info, const OperationDef& definition, const ConvolutionTransposedAttributes& attr) { ConvolutionTransposedThin result(definition, attr, gpu_info); result.UploadData(attr.weights, attr.bias); return result; } } }
#include <gmock/gmock.h> #include <gtest/gtest.h> #include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h" #include "tensorflow/lite/delegates/gpu/common/operations.h" #include "tensorflow/lite/delegates/gpu/common/status.h" #include "tensorflow/lite/delegates/gpu/common/tasks/convolution_transposed_thin_test_util.h" namespace tflite { namespace gpu { namespace cl { TEST_F(OpenCLOperationTest, ConvolutionTransposedThinSimpleWeights) { auto status = ConvolutionTransposedThinSimpleWeightsTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } TEST_F(OpenCLOperationTest, ConvolutionTransposedThin) { auto status = ConvolutionTransposedThinTest(&exec_env_); ASSERT_TRUE(status.ok()) << status.message(); } } } }
99
#ifndef AROLLA_QEXPR_OPERATORS_STRINGS_FORMAT_H_ #define AROLLA_QEXPR_OPERATORS_STRINGS_FORMAT_H_ #include <cstdint> #include <string> #include <type_traits> #include <utility> #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/qtype.h" #include "arolla/util/bytes.h" namespace arolla { constexpr absl::string_view kFormatOperatorName = "strings.format"; class FormatOperatorFamily : public OperatorFamily { public: using returns_status_or = std::true_type; template <class... Args> auto operator()(const Args&... args) const { if constexpr ((is_optional_v<Args> || ...)) { if ((ArgPresent(args) && ...)) { auto res_or = FormatImpl(ArgValue(args)...); if (res_or.ok()) { return absl::StatusOr<OptionalValue<Bytes>>(res_or.value()); } else { return absl::StatusOr<OptionalValue<Bytes>>(res_or.status()); } } else { return absl::StatusOr<OptionalValue<Bytes>>(OptionalValue<Bytes>()); } } else { return FormatImpl(args...); } } private: template <typename T> bool ArgPresent(const T& arg) const { if constexpr (is_optional_v<T>) { return arg.present; } else { return true; } } template <typename T> const auto& ArgValue(const T& arg) const { if constexpr (is_optional_v<T>) { return arg.value; } else { return arg; } } template <typename T> static constexpr bool IsSupportedArgType() { return std::is_same_v<T, int32_t> || std::is_same_v<T, int64_t> || std::is_same_v<T, float> || std::is_same_v<T, double> || std::is_same_v<T, Bytes> || std::is_same_v<T, bool>; } template <typename... Args> struct FirstUnsupported; template <typename Arg> struct FirstUnsupported<Arg> { using type = Arg; }; template <typename Arg, typename... Args> struct FirstUnsupported<Arg, Args...> { using type = std::conditional_t<IsSupportedArgType<Arg>(), typename FirstUnsupported<Args...>::type, Arg>; }; template <class... Args> absl::StatusOr<Bytes> FormatImpl(const Bytes& format_spec, const Args&... args) const { if constexpr ((IsSupportedArgType<Args>() && ...)) { absl::UntypedFormatSpec fmt(format_spec); std::string out; if (absl::FormatUntyped(&out, fmt, {absl::FormatArg(args)...})) { return Bytes(std::move(out)); } else { return absl::InvalidArgumentError(absl::StrFormat( "format specification '%s' doesn't match format arguments", format_spec)); } } else { return absl::InvalidArgumentError(absl::StrFormat( "%s is not a supported format argument type", GetQType<typename FirstUnsupported<Args...>::type>()->name())); } } absl::StatusOr<OperatorPtr> DoGetOperator( absl::Span<const QTypePtr> input_types, QTypePtr output_type) const final; }; } #endif #include "arolla/qexpr/operators/strings/format.h" #include <cstddef> #include <cstdint> #include <deque> #include <memory> #include <string> #include <utility> #include <vector> #include "absl/container/flat_hash_map.h" #include "absl/log/check.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "absl/strings/str_format.h" #include "absl/strings/string_view.h" #include "absl/types/span.h" #include "arolla/memory/frame.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/bound_operators.h" #include "arolla/qexpr/eval_context.h" #include "arolla/qexpr/operator_errors.h" #include "arolla/qexpr/operators.h" #include "arolla/qexpr/qexpr_operator_signature.h" #include "arolla/qtype/base_types.h" #include "arolla/qtype/optional_qtype.h" #include "arolla/qtype/qtype.h" #include "arolla/qtype/qtype_traits.h" #include "arolla/qtype/typed_ref.h" #include "arolla/qtype/typed_slot.h" #include "arolla/qtype/weak_qtype.h" #include "arolla/util/bytes.h" #include "arolla/util/indestructible.h" #include "arolla/util/status_macros_backport.h" namespace arolla { namespace { template <typename T> using Slot = FrameLayout::Slot<T>; class ValueHolder { public: const absl::string_view& AddValue(absl::string_view value) { return values_.emplace_back(value); } private: std::deque<absl::string_view> values_; }; template <typename T> absl::FormatArg WrapValueImpl(const void* source, ValueHolder*) { const T& value_ref = *(reinterpret_cast<const T*>(source)); return absl::FormatArg(value_ref); } template <> absl::FormatArg WrapValueImpl<Bytes>(const void* source, ValueHolder* value_holder) { const Bytes& value_ref = *(reinterpret_cast<const Bytes*>(source)); return absl::FormatArg(value_holder->AddValue(value_ref)); } using WrapValueFn = absl::FormatArg (*)(const void*, ValueHolder*); absl::StatusOr<WrapValueFn> GetWrapValueFn(QTypePtr qtype) { static const Indestructible<absl::flat_hash_map<QTypePtr, WrapValueFn>> converter_map([](void* self) { new (self) absl::flat_hash_map<QTypePtr, WrapValueFn>{ {GetQType<int32_t>(), &WrapValueImpl<int32_t>}, {GetQType<int64_t>(), &WrapValueImpl<int64_t>}, {GetQType<float>(), &WrapValueImpl<float>}, {GetQType<double>(), &WrapValueImpl<double>}, {GetWeakFloatQType(), &WrapValueImpl<double>}, {GetQType<Bytes>(), &WrapValueImpl<Bytes>}, {GetQType<bool>(), &WrapValueImpl<bool>}}; }); auto iter = converter_map->find(qtype); if (iter == converter_map->end()) { return absl::InvalidArgumentError(absl::StrFormat( "%s is not a supported format argument type", qtype->name())); } return iter->second; } class SlotFormatter { public: static absl::StatusOr<SlotFormatter> Create(TypedSlot slot) { ASSIGN_OR_RETURN(auto wrap_value_fn, GetWrapValueFn(slot.GetType())); return SlotFormatter(slot, wrap_value_fn); } absl::FormatArg Format(FramePtr frame, ValueHolder* value_holder) const { TypedRef ref = TypedRef::FromSlot(slot_, frame); return wrap_value_fn_(ref.GetRawPointer(), value_holder); } private: SlotFormatter(TypedSlot slot, WrapValueFn wrap_value_fn) : slot_(slot), wrap_value_fn_(wrap_value_fn) {} TypedSlot slot_; WrapValueFn wrap_value_fn_; }; class FormatBoundOperator : public BoundOperator { public: FormatBoundOperator(Slot<Bytes> format_spec_slot, std::vector<SlotFormatter> slot_formatters, Slot<Bytes> output_slot) : format_spec_slot_(format_spec_slot), slot_formatters_(std::move(slot_formatters)), output_slot_(output_slot) {} void Run(EvaluationContext* ctx, FramePtr frame) const override { absl::string_view fmt_spec = frame.Get(format_spec_slot_); absl::UntypedFormatSpec fmt(fmt_spec); ValueHolder value_holder; std::vector<absl::FormatArg> fmt_args; fmt_args.reserve(slot_formatters_.size()); for (const auto& slot_formatter : slot_formatters_) { fmt_args.push_back(slot_formatter.Format(frame, &value_holder)); } std::string out; if (absl::FormatUntyped(&out, fmt, fmt_args)) { frame.Set(output_slot_, Bytes(std::move(out))); } else { ctx->set_status(absl::InvalidArgumentError(absl::StrFormat( "format specification '%s' doesn't match format arguments", fmt_spec))); } } private: Slot<Bytes> format_spec_slot_; std::vector<SlotFormatter> slot_formatters_; Slot<Bytes> output_slot_; }; class FormatOperator : public QExprOperator { public: explicit FormatOperator(const QExprOperatorSignature* type) : QExprOperator(std::string(kFormatOperatorName), type) {} private: absl::StatusOr<std::unique_ptr<BoundOperator>> DoBind( absl::Span<const TypedSlot> typed_input_slots, TypedSlot typed_output_slot) const override { std::vector<Slot<bool>> presence_slots; Slot<Bytes> format_spec_slot = Slot<Bytes>::UnsafeSlotFromOffset( 0); if (IsOptionalQType(typed_input_slots[0].GetType())) { DCHECK_EQ(typed_input_slots[0].SubSlotCount(), 2); ASSIGN_OR_RETURN(auto presence_slot, typed_input_slots[0].SubSlot(0).ToSlot<bool>()); presence_slots.push_back(presence_slot); ASSIGN_OR_RETURN(format_spec_slot, typed_input_slots[0].SubSlot(1).ToSlot<Bytes>()); } else { ASSIGN_OR_RETURN(format_spec_slot, typed_input_slots[0].ToSlot<Bytes>()); } auto arg_slots = typed_input_slots.subspan(1); std::vector<SlotFormatter> slot_formatters; slot_formatters.reserve(arg_slots.size()); for (auto arg_slot : arg_slots) { TypedSlot value_slot = arg_slot; if (IsOptionalQType(arg_slot.GetType())) { ASSIGN_OR_RETURN(Slot<bool> presence_slot, GetPresenceSubslotFromOptional(arg_slot)); presence_slots.push_back(presence_slot); ASSIGN_OR_RETURN(value_slot, GetValueSubslotFromOptional(arg_slot)); } ASSIGN_OR_RETURN(auto slot_formatter, SlotFormatter::Create(value_slot)); slot_formatters.push_back(slot_formatter); } if (presence_slots.empty()) { ASSIGN_OR_RETURN(Slot<Bytes> output_slot, typed_output_slot.ToSlot<Bytes>()); return {std::make_unique<FormatBoundOperator>( format_spec_slot, slot_formatters, output_slot)}; } else { ASSIGN_OR_RETURN(Slot<OptionalValue<Bytes>> output_slot, typed_output_slot.ToSlot<OptionalValue<Bytes>>()); FormatBoundOperator format_op(format_spec_slot, slot_formatters, GetValueSubslotFromOptional(output_slot)); return {std::unique_ptr<BoundOperator>(new WhereAllBoundOperator( presence_slots, GetPresenceSubslotFromOptional(output_slot), std::move(format_op)))}; } } }; } absl::StatusOr<OperatorPtr> FormatOperatorFamily::DoGetOperator( absl::Span<const QTypePtr> input_types, QTypePtr output_type) const { if (input_types.empty()) { return OperatorNotDefinedError(kFormatOperatorName, input_types, "expected at least 1 argument"); } if (DecayOptionalQType(input_types[0]) != GetQType<Bytes>()) { return OperatorNotDefinedError(kFormatOperatorName, input_types, "format_spec must have BYTES QType"); } bool has_optional_arg = IsOptionalQType(input_types[0]); for (size_t i = 1; i < input_types.size(); ++i) { QTypePtr value_type = input_types[i]; if (IsOptionalQType(value_type)) { has_optional_arg = true; value_type = DecayOptionalQType(value_type); } RETURN_IF_ERROR(GetWrapValueFn(value_type).status()); } QTypePtr result_type = has_optional_arg ? GetQType<OptionalValue<Bytes>>() : GetQType<Bytes>(); return EnsureOutputQTypeMatches( OperatorPtr(std::make_unique<FormatOperator>( QExprOperatorSignature::Get(input_types, result_type))), input_types, output_type); } }
#include "arolla/qexpr/operators/strings/format.h" #include <cstdint> #include <type_traits> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/status/status.h" #include "absl/status/statusor.h" #include "arolla/memory/optional_value.h" #include "arolla/qexpr/operators.h" #include "arolla/qtype/base_types.h" #include "arolla/util/bytes.h" #include "arolla/util/testing/status_matchers_backport.h" #include "arolla/util/text.h" namespace arolla { using ::arolla::testing::IsOkAndHolds; using ::arolla::testing::StatusIs; using ::testing::HasSubstr; namespace { template <typename EvalAsFunctor> class FormatTest : public ::testing::Test { public: template <typename... Args> absl::StatusOr<Bytes> InvokeOperator(const Args&... args) { if constexpr (EvalAsFunctor::value) { auto result = FormatOperatorFamily{}(args...); static_assert(std::is_same_v<decltype(result), absl::StatusOr<Bytes>>); return result; } else { return ::arolla::InvokeOperator<Bytes>("strings._format_bytes", args...); } } template <typename... Args> absl::StatusOr<OptionalValue<Bytes>> InvokeOperatorOptional( const Args&... args) { if constexpr (EvalAsFunctor::value) { auto result = FormatOperatorFamily{}(args...); static_assert(std::is_same_v<decltype(result), absl::StatusOr<OptionalValue<Bytes>>>); return result; } else { return ::arolla::InvokeOperator<OptionalValue<Bytes>>( "strings._format_bytes", args...); } } }; TYPED_TEST_SUITE_P(FormatTest); TYPED_TEST_P(FormatTest, FormatFloats) { Bytes format_spec("a=%0.2f b=%0.3f"); float a = 20.5f; double b = 3.75; EXPECT_THAT(this->InvokeOperator(format_spec, a, b), IsOkAndHolds(Bytes("a=20.50 b=3.750"))); } TYPED_TEST_P(FormatTest, FormatIntegers) { Bytes format_spec("c=%02d, d=%d"); int32_t c = 3; int64_t d = 4; EXPECT_THAT(this->InvokeOperator(format_spec, c, d), IsOkAndHolds(Bytes("c=03, d=4"))); } TYPED_TEST_P(FormatTest, FormatText) { Bytes format_spec("%s is %d years older than %s."); EXPECT_THAT( this->InvokeOperator(format_spec, Bytes("Sophie"), 2, Bytes("Katie")), IsOkAndHolds(Bytes("Sophie is 2 years older than Katie."))); } TYPED_TEST_P(FormatTest, FormatOptional) { Bytes format_spec("The atomic weight of %s is %0.3f"); EXPECT_THAT( this->InvokeOperatorOptional(format_spec, OptionalValue<Bytes>("Iron"), OptionalValue<float>(55.845)), IsOkAndHolds( OptionalValue<Bytes>("The atomic weight of Iron is 55.845"))); EXPECT_THAT(this->InvokeOperatorOptional(OptionalValue<Bytes>(format_spec), OptionalValue<Bytes>("Iron"), OptionalValue<float>(55.845)), IsOkAndHolds( OptionalValue<Bytes>("The atomic weight of Iron is 55.845"))); EXPECT_THAT(this->InvokeOperatorOptional(format_spec, OptionalValue<Bytes>("Unobtainium"), OptionalValue<float>{}), IsOkAndHolds(OptionalValue<Bytes>{})); EXPECT_THAT(this->InvokeOperatorOptional(OptionalValue<Bytes>(), OptionalValue<Bytes>("Unobtainium"), OptionalValue<float>{0}), IsOkAndHolds(OptionalValue<Bytes>{})); } TYPED_TEST_P(FormatTest, FormatMismatchedTypes) { Bytes format_spec("%s's atomic weight is %f"); EXPECT_THAT(this->InvokeOperator(format_spec, 1.0079, Bytes("Hydrogen")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("doesn't match format arguments"))); } TYPED_TEST_P(FormatTest, FormatUnsupportedType) { Bytes format_spec("Payload is %s."); EXPECT_THAT( this->InvokeOperator(format_spec, Text("abc")), StatusIs(absl::StatusCode::kInvalidArgument, HasSubstr("TEXT is not a supported format argument type"))); } REGISTER_TYPED_TEST_SUITE_P(FormatTest, FormatFloats, FormatIntegers, FormatText, FormatOptional, FormatMismatchedTypes, FormatUnsupportedType); INSTANTIATE_TYPED_TEST_SUITE_P(Operator, FormatTest, std::bool_constant<false>); INSTANTIATE_TYPED_TEST_SUITE_P(Functor, FormatTest, std::bool_constant<true>); } }