repo_id
stringlengths
15
86
file_path
stringlengths
27
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos
hf_public_repos/pytorch-image-models/CONTRIBUTING.md
*This guideline is very much a work-in-progress.* Contriubtions to `timm` for code, documentation, tests are more than welcome! There haven't been any formal guidelines to date so please bear with me, and feel free to add to this guide. # Coding style Code linting and auto-format (black) are not currently in place but open to consideration. In the meantime, the style to follow is (mostly) aligned with Google's guide: https://google.github.io/styleguide/pyguide.html. A few specific differences from Google style (or black) 1. Line length is 120 char. Going over is okay in some cases (e.g. I prefer not to break URL across lines). 2. Hanging indents are always prefered, please avoid aligning arguments with closing brackets or braces. Example, from Google guide, but this is a NO here: ``` # Aligned with opening delimiter. foo = long_function_name(var_one, var_two, var_three, var_four) meal = (spam, beans) # Aligned with opening delimiter in a dictionary. foo = { 'long_dictionary_key': value1 + value2, ... } ``` This is YES: ``` # 4-space hanging indent; nothing on first line, # closing parenthesis on a new line. foo = long_function_name( var_one, var_two, var_three, var_four ) meal = ( spam, beans, ) # 4-space hanging indent in a dictionary. foo = { 'long_dictionary_key': long_dictionary_value, ... } ``` When there is descrepancy in a given source file (there are many origins for various bits of code and not all have been updated to what I consider current goal), please follow the style in a given file. In general, if you add new code, formatting it with black using the following options should result in a style that is compatible with the rest of the code base: ``` black --skip-string-normalization --line-length 120 <path-to-file> ``` Avoid formatting code that is unrelated to your PR though. PR with pure formatting / style fixes will be accepted but only in isolation from functional changes, best to ask before starting such a change. # Documentation As with code style, docstrings style based on the Google guide: guide: https://google.github.io/styleguide/pyguide.html The goal for the code is to eventually move to have all major functions and `__init__` methods use PEP484 type annotations. When type annotations are used for a function, as per the Google pyguide, they should **NOT** be duplicated in the docstrings, please leave annotations as the one source of truth re typing. There are a LOT of gaps in current documentation relative to the functionality in timm, please, document away! # Installation Create a Python virtual environment using Python 3.10. Inside the environment, install torch` and `torchvision` using the instructions matching your system as listed on the [PyTorch website](https://pytorch.org/). Then install the remaining dependencies: ``` python -m pip install -r requirements.txt python -m pip install -r requirements-dev.txt # for testing python -m pip install -e . ``` ## Unit tests Run the tests using: ``` pytest tests/ ``` Since the whole test suite takes a lot of time to run locally (a few hours), you may want to select a subset of tests relating to the changes you made by using the `-k` option of [`pytest`](https://docs.pytest.org/en/7.1.x/example/markers.html#using-k-expr-to-select-tests-based-on-their-name). Moreover, running tests in parallel (in this example 4 processes) with the `-n` option may help: ``` pytest -k "substring-to-match" -n 4 tests/ ``` ## Building documentation Please refer to [this document](https://github.com/huggingface/pytorch-image-models/tree/main/hfdocs). # Questions If you have any questions about contribution, where / how to contribute, please ask in the [Discussions](https://github.com/huggingface/pytorch-image-models/discussions/categories/contributing) (there is a `Contributing` topic).
0
hf_public_repos
hf_public_repos/pytorch-image-models/LICENSE
Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: (a) You must give any other recipients of the Work or Derivative Works a copy of this License; and (b) You must cause any modified files to carry prominent notices stating that You changed the files; and (c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and (d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: How to apply the Apache License to your work. To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets "{}" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We also recommend that a file or class name and description of purpose be included on the same "printed page" as the copyright notice for easier identification within third-party archives. Copyright 2019 Ross Wightman Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
0
hf_public_repos
hf_public_repos/pytorch-image-models/MANIFEST.in
include timm/models/_pruned/*.txt include timm/data/_info/*.txt include timm/data/_info/*.json
0
hf_public_repos
hf_public_repos/pytorch-image-models/README.md
# PyTorch Image Models - [Sponsors](#sponsors) - [What's New](#whats-new) - [Introduction](#introduction) - [Models](#models) - [Features](#features) - [Results](#results) - [Getting Started (Documentation)](#getting-started-documentation) - [Train, Validation, Inference Scripts](#train-validation-inference-scripts) - [Awesome PyTorch Resources](#awesome-pytorch-resources) - [Licenses](#licenses) - [Citing](#citing) ## Sponsors Thanks to the following for hardware support: * TPU Research Cloud (TRC) (https://sites.research.google/trc/about/) * Nvidia (https://www.nvidia.com/en-us/) And a big thanks to all GitHub sponsors who helped with some of my costs before I joined Hugging Face. ## What's New ❗Updates after Oct 10, 2022 are available in version >= 0.9❗ * Many changes since the last 0.6.x stable releases. They were previewed in 0.8.x dev releases but not everyone transitioned. * `timm.models.layers` moved to `timm.layers`: * `from timm.models.layers import name` will still work via deprecation mapping (but please transition to `timm.layers`). * `import timm.models.layers.module` or `from timm.models.layers.module import name` needs to be changed now. * Builder, helper, non-model modules in `timm.models` have a `_` prefix added, ie `timm.models.helpers` -> `timm.models._helpers`, there are temporary deprecation mapping files but those will be removed. * All models now support `architecture.pretrained_tag` naming (ex `resnet50.rsb_a1`). * The pretrained_tag is the specific weight variant (different head) for the architecture. * Using only `architecture` defaults to the first weights in the default_cfgs for that model architecture. * In adding pretrained tags, many model names that existed to differentiate were renamed to use the tag (ex: `vit_base_patch16_224_in21k` -> `vit_base_patch16_224.augreg_in21k`). There are deprecation mappings for these. * A number of models had their checkpoints remaped to match architecture changes needed to better support `features_only=True`, there are `checkpoint_filter_fn` methods in any model module that was remapped. These can be passed to `timm.models.load_checkpoint(..., filter_fn=timm.models.swin_transformer_v2.checkpoint_filter_fn)` to remap your existing checkpoint. * The Hugging Face Hub (https://huggingface.co/timm) is now the primary source for `timm` weights. Model cards include link to papers, original source, license. * Previous 0.6.x can be cloned from [0.6.x](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) branch or installed via pip with version. ### Aug 3, 2023 * Add GluonCV weights for HRNet w18_small and w18_small_v2. Converted by [SeeFun](https://github.com/seefun) * Fix `selecsls*` model naming regression * Patch and position embedding for ViT/EVA works for bfloat16/float16 weights on load (or activations for on-the-fly resize) * v0.9.5 release prep ### July 27, 2023 * Added timm trained `seresnextaa201d_32x8d.sw_in12k_ft_in1k_384` weights (and `.sw_in12k` pretrain) with 87.3% top-1 on ImageNet-1k, best ImageNet ResNet family model I'm aware of. * RepViT model and weights (https://arxiv.org/abs/2307.09283) added by [wangao](https://github.com/jameslahm) * I-JEPA ViT feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * SAM-ViT (segment anything) feature weights (no classifier) added by [SeeFun](https://github.com/seefun) * Add support for alternative feat extraction methods and -ve indices to EfficientNet * Add NAdamW optimizer * Misc fixes ### May 11, 2023 * `timm` 0.9 released, transition from 0.8.xdev releases ### May 10, 2023 * Hugging Face Hub downloading is now default, 1132 models on https://huggingface.co/timm, 1163 weights in `timm` * DINOv2 vit feature backbone weights added thanks to [Leng Yue](https://github.com/leng-yue) * FB MAE vit feature backbone weights added * OpenCLIP DataComp-XL L/14 feat backbone weights added * MetaFormer (poolformer-v2, caformer, convformer, updated poolformer (v1)) w/ weights added by [Fredo Guan](https://github.com/fffffgggg54) * Experimental `get_intermediate_layers` function on vit/deit models for grabbing hidden states (inspired by DINO impl). This is WIP and may change significantly... feedback welcome. * Model creation throws error if `pretrained=True` and no weights exist (instead of continuing with random initialization) * Fix regression with inception / nasnet TF sourced weights with 1001 classes in original classifiers * bitsandbytes (https://github.com/TimDettmers/bitsandbytes) optimizers added to factory, use `bnb` prefix, ie `bnbadam8bit` * Misc cleanup and fixes * Final testing before switching to a 0.9 and bringing `timm` out of pre-release state ### April 27, 2023 * 97% of `timm` models uploaded to HF Hub and almost all updated to support multi-weight pretrained configs * Minor cleanup and refactoring of another batch of models as multi-weight added. More fused_attn (F.sdpa) and features_only support, and torchscript fixes. ### April 21, 2023 * Gradient accumulation support added to train script and tested (`--grad-accum-steps`), thanks [Taeksang Kim](https://github.com/voidbag) * More weights on HF Hub (cspnet, cait, volo, xcit, tresnet, hardcorenas, densenet, dpn, vovnet, xception_aligned) * Added `--head-init-scale` and `--head-init-bias` to train.py to scale classiifer head and set fixed bias for fine-tune * Remove all InplaceABN (`inplace_abn`) use, replaced use in tresnet with standard BatchNorm (modified weights accordingly). ### April 12, 2023 * Add ONNX export script, validate script, helpers that I've had kicking around for along time. Tweak 'same' padding for better export w/ recent ONNX + pytorch. * Refactor dropout args for vit and vit-like models, separate drop_rate into `drop_rate` (classifier dropout), `proj_drop_rate` (block mlp / out projections), `pos_drop_rate` (position embedding drop), `attn_drop_rate` (attention dropout). Also add patch dropout (FLIP) to vit and eva models. * fused F.scaled_dot_product_attention support to more vit models, add env var (TIMM_FUSED_ATTN) to control, and config interface to enable/disable * Add EVA-CLIP backbones w/ image tower weights, all the way up to 4B param 'enormous' model, and 336x336 OpenAI ViT mode that was missed. ### April 5, 2023 * ALL ResNet models pushed to Hugging Face Hub with multi-weight support * All past `timm` trained weights added with recipe based tags to differentiate * All ResNet strikes back A1/A2/A3 (seed 0) and R50 example B/C1/C2/D weights available * Add torchvision v2 recipe weights to existing torchvision originals * See comparison table in https://huggingface.co/timm/seresnextaa101d_32x8d.sw_in12k_ft_in1k_288#model-comparison * New ImageNet-12k + ImageNet-1k fine-tunes available for a few anti-aliased ResNet models * `resnetaa50d.sw_in12k_ft_in1k` - 81.7 @ 224, 82.6 @ 288 * `resnetaa101d.sw_in12k_ft_in1k` - 83.5 @ 224, 84.1 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k` - 86.0 @ 224, 86.5 @ 288 * `seresnextaa101d_32x8d.sw_in12k_ft_in1k_288` - 86.5 @ 288, 86.7 @ 320 ### March 31, 2023 * Add first ConvNext-XXLarge CLIP -> IN-1k fine-tune and IN-12k intermediate fine-tunes for convnext-base/large CLIP models. | model |top1 |top5 |img_size|param_count|gmacs |macts | |----------------------------------------------------------------------------------------------------------------------|------|------|--------|-----------|------|------| | [convnext_xxlarge.clip_laion2b_soup_ft_in1k](https://huggingface.co/timm/convnext_xxlarge.clip_laion2b_soup_ft_in1k) |88.612|98.704|256 |846.47 |198.09|124.45| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_384 |88.312|98.578|384 |200.13 |101.11|126.74| | convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 |87.968|98.47 |320 |200.13 |70.21 |88.02 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k_384 |87.138|98.212|384 |88.59 |45.21 |84.49 | | convnext_base.clip_laion2b_augreg_ft_in12k_in1k |86.344|97.97 |256 |88.59 |20.09 |37.55 | * Add EVA-02 MIM pretrained and fine-tuned weights, push to HF hub and update model cards for all EVA models. First model over 90% top-1 (99% top-5)! Check out the original code & weights at https://github.com/baaivision/EVA for more details on their work blending MIM, CLIP w/ many model, dataset, and train recipe tweaks. | model |top1 |top5 |param_count|img_size| |----------------------------------------------------|------|------|-----------|--------| | [eva02_large_patch14_448.mim_m38m_ft_in22k_in1k](https://huggingface.co/timm/eva02_large_patch14_448.mim_m38m_ft_in1k) |90.054|99.042|305.08 |448 | | eva02_large_patch14_448.mim_in22k_ft_in22k_in1k |89.946|99.01 |305.08 |448 | | eva_giant_patch14_560.m30m_ft_in22k_in1k |89.792|98.992|1014.45 |560 | | eva02_large_patch14_448.mim_in22k_ft_in1k |89.626|98.954|305.08 |448 | | eva02_large_patch14_448.mim_m38m_ft_in1k |89.57 |98.918|305.08 |448 | | eva_giant_patch14_336.m30m_ft_in22k_in1k |89.56 |98.956|1013.01 |336 | | eva_giant_patch14_336.clip_ft_in1k |89.466|98.82 |1013.01 |336 | | eva_large_patch14_336.in22k_ft_in22k_in1k |89.214|98.854|304.53 |336 | | eva_giant_patch14_224.clip_ft_in1k |88.882|98.678|1012.56 |224 | | eva02_base_patch14_448.mim_in22k_ft_in22k_in1k |88.692|98.722|87.12 |448 | | eva_large_patch14_336.in22k_ft_in1k |88.652|98.722|304.53 |336 | | eva_large_patch14_196.in22k_ft_in22k_in1k |88.592|98.656|304.14 |196 | | eva02_base_patch14_448.mim_in22k_ft_in1k |88.23 |98.564|87.12 |448 | | eva_large_patch14_196.in22k_ft_in1k |87.934|98.504|304.14 |196 | | eva02_small_patch14_336.mim_in22k_ft_in1k |85.74 |97.614|22.13 |336 | | eva02_tiny_patch14_336.mim_in22k_ft_in1k |80.658|95.524|5.76 |336 | * Multi-weight and HF hub for DeiT and MLP-Mixer based models ### March 22, 2023 * More weights pushed to HF hub along with multi-weight support, including: `regnet.py`, `rexnet.py`, `byobnet.py`, `resnetv2.py`, `swin_transformer.py`, `swin_transformer_v2.py`, `swin_transformer_v2_cr.py` * Swin Transformer models support feature extraction (NCHW feat maps for `swinv2_cr_*`, and NHWC for all others) and spatial embedding outputs. * FocalNet (from https://github.com/microsoft/FocalNet) models and weights added with significant refactoring, feature extraction, no fixed resolution / sizing constraint * RegNet weights increased with HF hub push, SWAG, SEER, and torchvision v2 weights. SEER is pretty poor wrt to performance for model size, but possibly useful. * More ImageNet-12k pretrained and 1k fine-tuned `timm` weights: * `rexnetr_200.sw_in12k_ft_in1k` - 82.6 @ 224, 83.2 @ 288 * `rexnetr_300.sw_in12k_ft_in1k` - 84.0 @ 224, 84.5 @ 288 * `regnety_120.sw_in12k_ft_in1k` - 85.0 @ 224, 85.4 @ 288 * `regnety_160.lion_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 * `regnety_160.sw_in12k_ft_in1k` - 85.6 @ 224, 86.0 @ 288 (compare to SWAG PT + 1k FT this is same BUT much lower res, blows SEER FT away) * Model name deprecation + remapping functionality added (a milestone for bringing 0.8.x out of pre-release). Mappings being added... * Minor bug fixes and improvements. ### Feb 26, 2023 * Add ConvNeXt-XXLarge CLIP pretrained image tower weights for fine-tune & features (fine-tuning TBD) -- see [model card](https://huggingface.co/laion/CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg-soup) * Update `convnext_xxlarge` default LayerNorm eps to 1e-5 (for CLIP weights, improved stability) * 0.8.15dev0 ### Feb 20, 2023 * Add 320x320 `convnext_large_mlp.clip_laion2b_ft_320` and `convnext_lage_mlp.clip_laion2b_ft_soup_320` CLIP image tower weights for features & fine-tune * 0.8.13dev0 pypi release for latest changes w/ move to huggingface org ### Feb 16, 2023 * `safetensor` checkpoint support added * Add ideas from 'Scaling Vision Transformers to 22 B. Params' (https://arxiv.org/abs/2302.05442) -- qk norm, RmsNorm, parallel block * Add F.scaled_dot_product_attention support (PyTorch 2.0 only) to `vit_*`, `vit_relpos*`, `coatnet` / `maxxvit` (to start) * Lion optimizer (w/ multi-tensor option) added (https://arxiv.org/abs/2302.06675) * gradient checkpointing works with `features_only=True` ### Feb 7, 2023 * New inference benchmark numbers added in [results](results/) folder. * Add convnext LAION CLIP trained weights and initial set of in1k fine-tunes * `convnext_base.clip_laion2b_augreg_ft_in1k` - 86.2% @ 256x256 * `convnext_base.clip_laiona_augreg_ft_in1k_384` - 86.5% @ 384x384 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k` - 87.3% @ 256x256 * `convnext_large_mlp.clip_laion2b_augreg_ft_in1k_384` - 87.9% @ 384x384 * Add DaViT models. Supports `features_only=True`. Adapted from https://github.com/dingmyu/davit by [Fredo](https://github.com/fffffgggg54). * Use a common NormMlpClassifierHead across MaxViT, ConvNeXt, DaViT * Add EfficientFormer-V2 model, update EfficientFormer, and refactor LeViT (closely related architectures). Weights on HF hub. * New EfficientFormer-V2 arch, significant refactor from original at (https://github.com/snap-research/EfficientFormer). Supports `features_only=True`. * Minor updates to EfficientFormer. * Refactor LeViT models to stages, add `features_only=True` support to new `conv` variants, weight remap required. * Move ImageNet meta-data (synsets, indices) from `/results` to [`timm/data/_info`](timm/data/_info/). * Add ImageNetInfo / DatasetInfo classes to provide labelling for various ImageNet classifier layouts in `timm` * Update `inference.py` to use, try: `python inference.py /folder/to/images --model convnext_small.in12k --label-type detail --topk 5` * Ready for 0.8.10 pypi pre-release (final testing). ### Jan 20, 2023 * Add two convnext 12k -> 1k fine-tunes at 384x384 * `convnext_tiny.in12k_ft_in1k_384` - 85.1 @ 384 * `convnext_small.in12k_ft_in1k_384` - 86.2 @ 384 * Push all MaxxViT weights to HF hub, and add new ImageNet-12k -> 1k fine-tunes for `rw` base MaxViT and CoAtNet 1/2 models |model |top1 |top5 |samples / sec |Params (M) |GMAC |Act (M)| |------------------------------------------------------------------------------------------------------------------------|----:|----:|--------------:|--------------:|-----:|------:| |[maxvit_xlarge_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) |88.53|98.64| 21.76| 475.77|534.14|1413.22| |[maxvit_xlarge_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) |88.32|98.54| 42.53| 475.32|292.78| 668.76| |[maxvit_base_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) |88.20|98.53| 50.87| 119.88|138.02| 703.99| |[maxvit_large_tf_512.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) |88.04|98.40| 36.42| 212.33|244.75| 942.15| |[maxvit_large_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) |87.98|98.56| 71.75| 212.03|132.55| 445.84| |[maxvit_base_tf_384.in21k_ft_in1k](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) |87.92|98.54| 104.71| 119.65| 73.80| 332.90| |[maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.81|98.37| 106.55| 116.14| 70.97| 318.95| |[maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_384.sw_in12k_ft_in1k) |87.47|98.37| 149.49| 116.09| 72.98| 213.74| |[coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_384.sw_in12k_ft_in1k) |87.39|98.31| 160.80| 73.88| 47.69| 209.43| |[maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxvit_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.89|98.02| 375.86| 116.14| 23.15| 92.64| |[maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/maxxvitv2_rmlp_base_rw_224.sw_in12k_ft_in1k) |86.64|98.02| 501.03| 116.09| 24.20| 62.77| |[maxvit_base_tf_512.in1k](https://huggingface.co/timm/maxvit_base_tf_512.in1k) |86.60|97.92| 50.75| 119.88|138.02| 703.99| |[coatnet_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_2_rw_224.sw_in12k_ft_in1k) |86.57|97.89| 631.88| 73.87| 15.09| 49.22| |[maxvit_large_tf_512.in1k](https://huggingface.co/timm/maxvit_large_tf_512.in1k) |86.52|97.88| 36.04| 212.33|244.75| 942.15| |[coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in12k_ft_in1k) |86.49|97.90| 620.58| 73.88| 15.18| 54.78| |[maxvit_base_tf_384.in1k](https://huggingface.co/timm/maxvit_base_tf_384.in1k) |86.29|97.80| 101.09| 119.65| 73.80| 332.90| |[maxvit_large_tf_384.in1k](https://huggingface.co/timm/maxvit_large_tf_384.in1k) |86.23|97.69| 70.56| 212.03|132.55| 445.84| |[maxvit_small_tf_512.in1k](https://huggingface.co/timm/maxvit_small_tf_512.in1k) |86.10|97.76| 88.63| 69.13| 67.26| 383.77| |[maxvit_tiny_tf_512.in1k](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) |85.67|97.58| 144.25| 31.05| 33.49| 257.59| |[maxvit_small_tf_384.in1k](https://huggingface.co/timm/maxvit_small_tf_384.in1k) |85.54|97.46| 188.35| 69.02| 35.87| 183.65| |[maxvit_tiny_tf_384.in1k](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) |85.11|97.38| 293.46| 30.98| 17.53| 123.42| |[maxvit_large_tf_224.in1k](https://huggingface.co/timm/maxvit_large_tf_224.in1k) |84.93|96.97| 247.71| 211.79| 43.68| 127.35| |[coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw2_224.sw_in12k_ft_in1k) |84.90|96.96| 1025.45| 41.72| 8.11| 40.13| |[maxvit_base_tf_224.in1k](https://huggingface.co/timm/maxvit_base_tf_224.in1k) |84.85|96.99| 358.25| 119.47| 24.04| 95.01| |[maxxvit_rmlp_small_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_small_rw_256.sw_in1k) |84.63|97.06| 575.53| 66.01| 14.67| 58.38| |[coatnet_rmlp_2_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_2_rw_224.sw_in1k) |84.61|96.74| 625.81| 73.88| 15.18| 54.78| |[maxvit_rmlp_small_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_small_rw_224.sw_in1k) |84.49|96.76| 693.82| 64.90| 10.75| 49.30| |[maxvit_small_tf_224.in1k](https://huggingface.co/timm/maxvit_small_tf_224.in1k) |84.43|96.83| 647.96| 68.93| 11.66| 53.17| |[maxvit_rmlp_tiny_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_tiny_rw_256.sw_in1k) |84.23|96.78| 807.21| 29.15| 6.77| 46.92| |[coatnet_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_1_rw_224.sw_in1k) |83.62|96.38| 989.59| 41.72| 8.04| 34.60| |[maxvit_tiny_rw_224.sw_in1k](https://huggingface.co/timm/maxvit_tiny_rw_224.sw_in1k) |83.50|96.50| 1100.53| 29.06| 5.11| 33.11| |[maxvit_tiny_tf_224.in1k](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) |83.41|96.59| 1004.94| 30.92| 5.60| 35.78| |[coatnet_rmlp_1_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_1_rw_224.sw_in1k) |83.36|96.45| 1093.03| 41.69| 7.85| 35.47| |[maxxvitv2_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvitv2_nano_rw_256.sw_in1k) |83.11|96.33| 1276.88| 23.70| 6.26| 23.05| |[maxxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxxvit_rmlp_nano_rw_256.sw_in1k) |83.03|96.34| 1341.24| 16.78| 4.37| 26.05| |[maxvit_rmlp_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_nano_rw_256.sw_in1k) |82.96|96.26| 1283.24| 15.50| 4.47| 31.92| |[maxvit_nano_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_nano_rw_256.sw_in1k) |82.93|96.23| 1218.17| 15.45| 4.46| 30.28| |[coatnet_bn_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_bn_0_rw_224.sw_in1k) |82.39|96.19| 1600.14| 27.44| 4.67| 22.04| |[coatnet_0_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_0_rw_224.sw_in1k) |82.39|95.84| 1831.21| 27.44| 4.43| 18.73| |[coatnet_rmlp_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_rmlp_nano_rw_224.sw_in1k) |82.05|95.87| 2109.09| 15.15| 2.62| 20.34| |[coatnext_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnext_nano_rw_224.sw_in1k) |81.95|95.92| 2525.52| 14.70| 2.47| 12.80| |[coatnet_nano_rw_224.sw_in1k](https://huggingface.co/timm/coatnet_nano_rw_224.sw_in1k) |81.70|95.64| 2344.52| 15.14| 2.41| 15.41| |[maxvit_rmlp_pico_rw_256.sw_in1k](https://huggingface.co/timm/maxvit_rmlp_pico_rw_256.sw_in1k) |80.53|95.21| 1594.71| 7.52| 1.85| 24.86| ### Jan 11, 2023 * Update ConvNeXt ImageNet-12k pretrain series w/ two new fine-tuned weights (and pre FT `.in12k` tags) * `convnext_nano.in12k_ft_in1k` - 82.3 @ 224, 82.9 @ 288 (previously released) * `convnext_tiny.in12k_ft_in1k` - 84.2 @ 224, 84.5 @ 288 * `convnext_small.in12k_ft_in1k` - 85.2 @ 224, 85.3 @ 288 ### Jan 6, 2023 * Finally got around to adding `--model-kwargs` and `--opt-kwargs` to scripts to pass through rare args directly to model classes from cmd line * `train.py /imagenet --model resnet50 --amp --model-kwargs output_stride=16 act_layer=silu` * `train.py /imagenet --model vit_base_patch16_clip_224 --img-size 240 --amp --model-kwargs img_size=240 patch_size=12` * Cleanup some popular models to better support arg passthrough / merge with model configs, more to go. ### Jan 5, 2023 * ConvNeXt-V2 models and weights added to existing `convnext.py` * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) ### Dec 23, 2022 🎄☃ * Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP * Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) * More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) * More ImageNet-12k (subset of 22k) pretrain models popping up: * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 ### Dec 8, 2022 * Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) * original source: https://github.com/baaivision/EVA | model | top1 | param_count | gmac | macts | hub | |:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| | eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 6, 2022 * Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. * original source: https://github.com/baaivision/EVA * paper: https://arxiv.org/abs/2211.07636 | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| | eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 5, 2022 * Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` * vision_transformer, maxvit, convnext are the first three model impl w/ support * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling * bugs are likely, but I need feedback so please try it out * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) * Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument * Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output * Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models | model | top1 | param_count | gmac | macts | hub | |:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| | vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | | vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | | vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | | vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | * Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| | maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | | maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | | maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | | maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | | maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | | maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | | maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | | maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | | maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | | maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | | maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | | maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | | maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | | maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | | maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | | maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | ### Oct 15, 2022 * Train and validation script enhancements * Non-GPU (ie CPU) device support * SLURM compatibility for train script * HF datasets support (via ReaderHfds) * TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) * in_chans !=3 support for scripts / loader * Adan optimizer * Can enable per-step LR scheduling via args * Dataset 'parsers' renamed to 'readers', more descriptive of purpose * AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` * main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds * master -> main branch rename ### Oct 10, 2022 * More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. ### Sept 23, 2022 * LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) * vit_base_patch32_224_clip_laion2b * vit_large_patch14_224_clip_laion2b * vit_huge_patch14_224_clip_laion2b * vit_giant_patch14_224_clip_laion2b ### Sept 7, 2022 * Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future * Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 * Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) ### Aug 29, 2022 * MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) ### Aug 26, 2022 * CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit * Initial CoAtNet and MaxVit timm pretrained weights (working on more): * `coatnet_nano_rw_224` - 81.7 @ 224 (T) * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks * `coatnet_bn_0_rw_224` - 82.4 (T) * `maxvit_nano_rw_256` - 82.9 @ 256 (T) * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) * `coatnet_1_rw_224` - 83.6 @ 224 (G) * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained * GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) * MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) * EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) * PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) * 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) ### Aug 15, 2022 * ConvNeXt atto weights added * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 ### Aug 5, 2022 * More custom ConvNeXt smaller model defs with weights * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 * Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) ### July 28, 2022 * Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! ### July 27, 2022 * All runtime benchmark and validation result csv files are finally up-to-date! * A few more weights & model defs added: * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 * `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! * Add output_stride=8 and 16 support to ConvNeXt (dilation) * deit3 models not being able to resize pos_emb fixed * Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) ### July 8, 2022 More models, more fixes * Official research models (w/ weights) added: * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) * MobileViT-V2 from (https://github.com/apple/ml-cvnets) * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) * My own models: * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. * My own model weight results (all ImageNet-1k training) * `resnet10t` - 66.5 @ 176, 68.3 @ 224 * `resnet14t` - 71.3 @ 176, 72.3 @ 224 * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 * `darknet53` - 80.0 @ 256, 80.5 @ 288 * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 * `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. * Hugging Face Hub support fixes verified, demo notebook TBA * Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. * Add support to change image extensions scanned by `timm` datasets/readers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) * Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` * Numerous bug fixes * Currently testing for imminent PyPi 0.6.x release * LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? * ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... ### May 13, 2022 * Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. * Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. * More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) * Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) * Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials * Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) ### May 2, 2022 * Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool * Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) * `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). ### April 22, 2022 * `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). * Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 ### March 23, 2022 * Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) * `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. ### March 21, 2022 * Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. * Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) * `regnety_040` - 82.3 @ 224, 82.96 @ 288 * `regnety_064` - 83.0 @ 224, 83.65 @ 288 * `regnety_080` - 83.17 @ 224, 83.86 @ 288 * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) * `xception41p` - 82 @ 299 (timm pre-act) * `xception65` - 83.17 @ 299 * `xception65p` - 83.14 @ 299 (timm pre-act) * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 * HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) * SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. * Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 * MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets * PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer * VOLO models w/ weights adapted from https://github.com/sail-sg/volo * Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc * Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception * Grouped conv support added to EfficientNet family * Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler * Gradient checkpointing support added to many models * `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` * All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` ### Feb 2, 2022 * [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) * I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. ### Jan 14, 2022 * Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... * Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features * Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... * `mnasnet_small` - 65.6 top-1 * `mobilenetv2_050` - 65.9 * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 * `semnasnet_075` - 73 * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 * TinyNet models added by [rsomani95](https://github.com/rsomani95) * LCNet added via MobileNetV3 architecture ## Introduction Py**T**orch **Im**age **M**odels (`timm`) is a collection of image models, layers, utilities, optimizers, schedulers, data-loaders / augmentations, and reference training / validation scripts that aim to pull together a wide variety of SOTA models with ability to reproduce ImageNet training results. The work of many others is present here. I've tried to make sure all source material is acknowledged via links to github, arxiv papers, etc in the README, documentation, and code docstrings. Please let me know if I missed anything. ## Models All model architecture families include variants with pretrained weights. There are specific model variants without any weights, it is NOT a bug. Help training new or better weights is always appreciated. * Aggregating Nested Transformers - https://arxiv.org/abs/2105.12723 * BEiT - https://arxiv.org/abs/2106.08254 * Big Transfer ResNetV2 (BiT) - https://arxiv.org/abs/1912.11370 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * CaiT (Class-Attention in Image Transformers) - https://arxiv.org/abs/2103.17239 * CoaT (Co-Scale Conv-Attentional Image Transformers) - https://arxiv.org/abs/2104.06399 * CoAtNet (Convolution and Attention) - https://arxiv.org/abs/2106.04803 * ConvNeXt - https://arxiv.org/abs/2201.03545 * ConvNeXt-V2 - http://arxiv.org/abs/2301.00808 * ConViT (Soft Convolutional Inductive Biases Vision Transformers)- https://arxiv.org/abs/2103.10697 * CspNet (Cross-Stage Partial Networks) - https://arxiv.org/abs/1911.11929 * DeiT - https://arxiv.org/abs/2012.12877 * DeiT-III - https://arxiv.org/pdf/2204.07118.pdf * DenseNet - https://arxiv.org/abs/1608.06993 * DLA - https://arxiv.org/abs/1707.06484 * DPN (Dual-Path Network) - https://arxiv.org/abs/1707.01629 * EdgeNeXt - https://arxiv.org/abs/2206.10589 * EfficientFormer - https://arxiv.org/abs/2206.01191 * EfficientNet (MBConvNet Family) * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * EfficientNet V2 - https://arxiv.org/abs/2104.00298 * FBNet-C - https://arxiv.org/abs/1812.03443 * MixNet - https://arxiv.org/abs/1907.09595 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * Single-Path NAS - https://arxiv.org/abs/1904.02877 * TinyNet - https://arxiv.org/abs/2010.14819 * EVA - https://arxiv.org/abs/2211.07636 * EVA-02 - https://arxiv.org/abs/2303.11331 * FlexiViT - https://arxiv.org/abs/2212.08013 * FocalNet (Focal Modulation Networks) - https://arxiv.org/abs/2203.11926 * GCViT (Global Context Vision Transformer) - https://arxiv.org/abs/2206.09959 * GhostNet - https://arxiv.org/abs/1911.11907 * gMLP - https://arxiv.org/abs/2105.08050 * GPU-Efficient Networks - https://arxiv.org/abs/2006.14090 * Halo Nets - https://arxiv.org/abs/2103.12731 * HRNet - https://arxiv.org/abs/1908.07919 * Inception-V3 - https://arxiv.org/abs/1512.00567 * Inception-ResNet-V2 and Inception-V4 - https://arxiv.org/abs/1602.07261 * Lambda Networks - https://arxiv.org/abs/2102.08602 * LeViT (Vision Transformer in ConvNet's Clothing) - https://arxiv.org/abs/2104.01136 * MaxViT (Multi-Axis Vision Transformer) - https://arxiv.org/abs/2204.01697 * MLP-Mixer - https://arxiv.org/abs/2105.01601 * MobileNet-V3 (MBConvNet w/ Efficient Head) - https://arxiv.org/abs/1905.02244 * FBNet-V3 - https://arxiv.org/abs/2006.02049 * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 * LCNet - https://arxiv.org/abs/2109.15099 * MobileViT - https://arxiv.org/abs/2110.02178 * MobileViT-V2 - https://arxiv.org/abs/2206.02680 * MViT-V2 (Improved Multiscale Vision Transformer) - https://arxiv.org/abs/2112.01526 * NASNet-A - https://arxiv.org/abs/1707.07012 * NesT - https://arxiv.org/abs/2105.12723 * NFNet-F - https://arxiv.org/abs/2102.06171 * NF-RegNet / NF-ResNet - https://arxiv.org/abs/2101.08692 * PNasNet - https://arxiv.org/abs/1712.00559 * PoolFormer (MetaFormer) - https://arxiv.org/abs/2111.11418 * Pooling-based Vision Transformer (PiT) - https://arxiv.org/abs/2103.16302 * PVT-V2 (Improved Pyramid Vision Transformer) - https://arxiv.org/abs/2106.13797 * RegNet - https://arxiv.org/abs/2003.13678 * RegNetZ - https://arxiv.org/abs/2103.06877 * RepVGG - https://arxiv.org/abs/2101.03697 * ResMLP - https://arxiv.org/abs/2105.03404 * ResNet/ResNeXt * ResNet (v1b/v1.5) - https://arxiv.org/abs/1512.03385 * ResNeXt - https://arxiv.org/abs/1611.05431 * 'Bag of Tricks' / Gluon C, D, E, S variations - https://arxiv.org/abs/1812.01187 * Weakly-supervised (WSL) Instagram pretrained / ImageNet tuned ResNeXt101 - https://arxiv.org/abs/1805.00932 * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet/ResNeXts - https://arxiv.org/abs/1905.00546 * ECA-Net (ECAResNet) - https://arxiv.org/abs/1910.03151v4 * Squeeze-and-Excitation Networks (SEResNet) - https://arxiv.org/abs/1709.01507 * ResNet-RS - https://arxiv.org/abs/2103.07579 * Res2Net - https://arxiv.org/abs/1904.01169 * ResNeSt - https://arxiv.org/abs/2004.08955 * ReXNet - https://arxiv.org/abs/2007.00992 * SelecSLS - https://arxiv.org/abs/1907.00837 * Selective Kernel Networks - https://arxiv.org/abs/1903.06586 * Sequencer2D - https://arxiv.org/abs/2205.01972 * Swin S3 (AutoFormerV2) - https://arxiv.org/abs/2111.14725 * Swin Transformer - https://arxiv.org/abs/2103.14030 * Swin Transformer V2 - https://arxiv.org/abs/2111.09883 * Transformer-iN-Transformer (TNT) - https://arxiv.org/abs/2103.00112 * TResNet - https://arxiv.org/abs/2003.13630 * Twins (Spatial Attention in Vision Transformers) - https://arxiv.org/pdf/2104.13840.pdf * Visformer - https://arxiv.org/abs/2104.12533 * Vision Transformer - https://arxiv.org/abs/2010.11929 * VOLO (Vision Outlooker) - https://arxiv.org/abs/2106.13112 * VovNet V2 and V1 - https://arxiv.org/abs/1911.06667 * Xception - https://arxiv.org/abs/1610.02357 * Xception (Modified Aligned, Gluon) - https://arxiv.org/abs/1802.02611 * Xception (Modified Aligned, TF) - https://arxiv.org/abs/1802.02611 * XCiT (Cross-Covariance Image Transformers) - https://arxiv.org/abs/2106.09681 ## Features Several (less common) features that I often utilize in my projects are included. Many of their additions are the reason why I maintain my own set of models, instead of using others' via PIP: * All models have a common default configuration interface and API for * accessing/changing the classifier - `get_classifier` and `reset_classifier` * doing a forward pass on just the features - `forward_features` (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) * these makes it easy to write consistent network wrappers that work with any of the models * All models support multi-scale feature map extraction (feature pyramids) via create_model (see [documentation](https://huggingface.co/docs/timm/feature_extraction)) * `create_model(name, features_only=True, out_indices=..., output_stride=...)` * `out_indices` creation arg specifies which feature maps to return, these indices are 0 based and generally correspond to the `C(i + 1)` feature level. * `output_stride` creation arg controls output stride of the network by using dilated convolutions. Most networks are stride 32 by default. Not all networks support this. * feature map channel counts, reduction level (stride) can be queried AFTER model creation via the `.feature_info` member * All models have a consistent pretrained weight loader that adapts last linear if necessary, and from 3 to 1 channel input if desired * High performance [reference training, validation, and inference scripts](https://huggingface.co/docs/timm/training_script) that work in several process/GPU modes: * NVIDIA DDP w/ a single GPU per process, multiple processes with APEX present (AMP mixed-precision optional) * PyTorch DistributedDataParallel w/ multi-gpu, single process (AMP disabled as it crashes when enabled) * PyTorch w/ single GPU single process (AMP optional) * A dynamic global pool implementation that allows selecting from average pooling, max pooling, average + max, or concat([average, max]) at model creation. All global pooling is adaptive average by default and compatible with pretrained weights. * A 'Test Time Pool' wrapper that can wrap any of the included models and usually provides improved performance doing inference with input images larger than the training size. Idea adapted from original DPN implementation when I ported (https://github.com/cypw/DPNs) * Learning rate schedulers * Ideas adopted from * [AllenNLP schedulers](https://github.com/allenai/allennlp/tree/master/allennlp/training/learning_rate_schedulers) * [FAIRseq lr_scheduler](https://github.com/pytorch/fairseq/tree/master/fairseq/optim/lr_scheduler) * SGDR: Stochastic Gradient Descent with Warm Restarts (https://arxiv.org/abs/1608.03983) * Schedulers include `step`, `cosine` w/ restarts, `tanh` w/ restarts, `plateau` * Optimizers: * `rmsprop_tf` adapted from PyTorch RMSProp by myself. Reproduces much improved Tensorflow RMSProp behaviour. * `radam` by [Liyuan Liu](https://github.com/LiyuanLucasLiu/RAdam) (https://arxiv.org/abs/1908.03265) * `novograd` by [Masashi Kimura](https://github.com/convergence-lab/novograd) (https://arxiv.org/abs/1905.11286) * `lookahead` adapted from impl by [Liam](https://github.com/alphadl/lookahead.pytorch) (https://arxiv.org/abs/1907.08610) * `fused<name>` optimizers by name with [NVIDIA Apex](https://github.com/NVIDIA/apex/tree/master/apex/optimizers) installed * `adamp` and `sgdp` by [Naver ClovAI](https://github.com/clovaai) (https://arxiv.org/abs/2006.08217) * `adafactor` adapted from [FAIRSeq impl](https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py) (https://arxiv.org/abs/1804.04235) * `adahessian` by [David Samuel](https://github.com/davda54/ada-hessian) (https://arxiv.org/abs/2006.00719) * Random Erasing from [Zhun Zhong](https://github.com/zhunzhong07/Random-Erasing/blob/master/transforms.py) (https://arxiv.org/abs/1708.04896) * Mixup (https://arxiv.org/abs/1710.09412) * CutMix (https://arxiv.org/abs/1905.04899) * AutoAugment (https://arxiv.org/abs/1805.09501) and RandAugment (https://arxiv.org/abs/1909.13719) ImageNet configurations modeled after impl for EfficientNet training (https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py) * AugMix w/ JSD loss (https://arxiv.org/abs/1912.02781), JSD w/ clean + augmented mixing support works with AutoAugment and RandAugment as well * SplitBachNorm - allows splitting batch norm layers between clean and augmented (auxiliary batch norm) data * DropPath aka "Stochastic Depth" (https://arxiv.org/abs/1603.09382) * DropBlock (https://arxiv.org/abs/1810.12890) * Blur Pooling (https://arxiv.org/abs/1904.11486) * Space-to-Depth by [mrT23](https://github.com/mrT23/TResNet/blob/master/src/models/tresnet/layers/space_to_depth.py) (https://arxiv.org/abs/1801.04590) -- original paper? * Adaptive Gradient Clipping (https://arxiv.org/abs/2102.06171, https://github.com/deepmind/deepmind-research/tree/master/nfnets) * An extensive selection of channel and/or spatial attention modules: * Bottleneck Transformer - https://arxiv.org/abs/2101.11605 * CBAM - https://arxiv.org/abs/1807.06521 * Effective Squeeze-Excitation (ESE) - https://arxiv.org/abs/1911.06667 * Efficient Channel Attention (ECA) - https://arxiv.org/abs/1910.03151 * Gather-Excite (GE) - https://arxiv.org/abs/1810.12348 * Global Context (GC) - https://arxiv.org/abs/1904.11492 * Halo - https://arxiv.org/abs/2103.12731 * Involution - https://arxiv.org/abs/2103.06255 * Lambda Layer - https://arxiv.org/abs/2102.08602 * Non-Local (NL) - https://arxiv.org/abs/1711.07971 * Squeeze-and-Excitation (SE) - https://arxiv.org/abs/1709.01507 * Selective Kernel (SK) - (https://arxiv.org/abs/1903.06586 * Split (SPLAT) - https://arxiv.org/abs/2004.08955 * Shifted Window (SWIN) - https://arxiv.org/abs/2103.14030 ## Results Model validation results can be found in the [results tables](results/README.md) ## Getting Started (Documentation) The official documentation can be found at https://huggingface.co/docs/hub/timm. Documentation contributions are welcome. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) by [Chris Hughes](https://github.com/Chris-hughes10) is an extensive blog post covering many aspects of `timm` in detail. [timmdocs](http://timm.fast.ai/) is an alternate set of documentation for `timm`. A big thanks to [Aman Arora](https://github.com/amaarora) for his efforts creating timmdocs. [paperswithcode](https://paperswithcode.com/lib/timm) is a good resource for browsing the models within `timm`. ## Train, Validation, Inference Scripts The root folder of the repository contains reference train, validation, and inference scripts that work with the included models and other features of this repository. They are adaptable for other datasets and use cases with a little hacking. See [documentation](https://huggingface.co/docs/timm/training_script). ## Awesome PyTorch Resources One of the greatest assets of PyTorch is the community and their contributions. A few of my favourite resources that pair well with the models and components here are listed below. ### Object Detection, Instance and Semantic Segmentation * Detectron2 - https://github.com/facebookresearch/detectron2 * Segmentation Models (Semantic) - https://github.com/qubvel/segmentation_models.pytorch * EfficientDet (Obj Det, Semantic soon) - https://github.com/rwightman/efficientdet-pytorch ### Computer Vision / Image Augmentation * Albumentations - https://github.com/albumentations-team/albumentations * Kornia - https://github.com/kornia/kornia ### Knowledge Distillation * RepDistiller - https://github.com/HobbitLong/RepDistiller * torchdistill - https://github.com/yoshitomo-matsubara/torchdistill ### Metric Learning * PyTorch Metric Learning - https://github.com/KevinMusgrave/pytorch-metric-learning ### Training / Frameworks * fastai - https://github.com/fastai/fastai ## Licenses ### Code The code here is licensed Apache 2.0. I've taken care to make sure any third party code included or adapted has compatible (permissive) licenses such as MIT, BSD, etc. I've made an effort to avoid any GPL / LGPL conflicts. That said, it is your responsibility to ensure you comply with licenses here and conditions of any dependent licenses. Where applicable, I've linked the sources/references for various components in docstrings. If you think I've missed anything please create an issue. ### Pretrained Weights So far all of the pretrained weights available here are pretrained on ImageNet with a select few that have some additional pretraining (see extra note below). ImageNet was released for non-commercial research purposes only (https://image-net.org/download). It's not clear what the implications of that are for the use of pretrained weights from that dataset. Any models I have trained with ImageNet are done for research purposes and one should assume that the original dataset license applies to the weights. It's best to seek legal advice if you intend to use the pretrained weights in a commercial product. #### Pretrained on more than ImageNet Several weights included or references here were pretrained with proprietary datasets that I do not have access to. These include the Facebook WSL, SSL, SWSL ResNe(Xt) and the Google Noisy Student EfficientNet models. The Facebook models have an explicit non-commercial license (CC-BY-NC 4.0, https://github.com/facebookresearch/semi-supervised-ImageNet1K-models, https://github.com/facebookresearch/WSL-Images). The Google models do not appear to have any restriction beyond the Apache 2.0 license (and ImageNet concerns). In either case, you should contact Facebook or Google with any questions. ## Citing ### BibTeX ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` ### Latest DOI [![DOI](https://zenodo.org/badge/168799526.svg)](https://zenodo.org/badge/latestdoi/168799526)
0
hf_public_repos
hf_public_repos/pytorch-image-models/avg_checkpoints.py
#!/usr/bin/env python3 """ Checkpoint Averaging Script This script averages all model weights for checkpoints in specified path that match the specified filter wildcard. All checkpoints must be from the exact same model. For any hope of decent results, the checkpoints should be from the same or child (via resumes) training session. This can be viewed as similar to maintaining running EMA (exponential moving average) of the model weights or performing SWA (stochastic weight averaging), but post-training. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch import argparse import os import glob import hashlib from timm.models import load_state_dict try: import safetensors.torch _has_safetensors = True except ImportError: _has_safetensors = False DEFAULT_OUTPUT = "./averaged.pth" DEFAULT_SAFE_OUTPUT = "./averaged.safetensors" parser = argparse.ArgumentParser(description='PyTorch Checkpoint Averager') parser.add_argument('--input', default='', type=str, metavar='PATH', help='path to base input folder containing checkpoints') parser.add_argument('--filter', default='*.pth.tar', type=str, metavar='WILDCARD', help='checkpoint filter (path wildcard)') parser.add_argument('--output', default=DEFAULT_OUTPUT, type=str, metavar='PATH', help=f'Output filename. Defaults to {DEFAULT_SAFE_OUTPUT} when passing --safetensors.') parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='Force not using ema version of weights (if present)') parser.add_argument('--no-sort', dest='no_sort', action='store_true', help='Do not sort and select by checkpoint metric, also makes "n" argument irrelevant') parser.add_argument('-n', type=int, default=10, metavar='N', help='Number of checkpoints to average') parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') def checkpoint_metric(checkpoint_path): if not checkpoint_path or not os.path.isfile(checkpoint_path): return {} print("=> Extracting metric from checkpoint '{}'".format(checkpoint_path)) checkpoint = torch.load(checkpoint_path, map_location='cpu') metric = None if 'metric' in checkpoint: metric = checkpoint['metric'] elif 'metrics' in checkpoint and 'metric_name' in checkpoint: metrics = checkpoint['metrics'] print(metrics) metric = metrics[checkpoint['metric_name']] return metric def main(): args = parser.parse_args() # by default use the EMA weights (if present) args.use_ema = not args.no_use_ema # by default sort by checkpoint metric (if present) and avg top n checkpoints args.sort = not args.no_sort if args.safetensors and args.output == DEFAULT_OUTPUT: # Default path changes if using safetensors args.output = DEFAULT_SAFE_OUTPUT output, output_ext = os.path.splitext(args.output) if not output_ext: output_ext = ('.safetensors' if args.safetensors else '.pth') output = output + output_ext if args.safetensors and not output_ext == ".safetensors": print( "Warning: saving weights as safetensors but output file extension is not " f"set to '.safetensors': {args.output}" ) if os.path.exists(output): print("Error: Output filename ({}) already exists.".format(output)) exit(1) pattern = args.input if not args.input.endswith(os.path.sep) and not args.filter.startswith(os.path.sep): pattern += os.path.sep pattern += args.filter checkpoints = glob.glob(pattern, recursive=True) if args.sort: checkpoint_metrics = [] for c in checkpoints: metric = checkpoint_metric(c) if metric is not None: checkpoint_metrics.append((metric, c)) checkpoint_metrics = list(sorted(checkpoint_metrics)) checkpoint_metrics = checkpoint_metrics[-args.n:] if checkpoint_metrics: print("Selected checkpoints:") [print(m, c) for m, c in checkpoint_metrics] avg_checkpoints = [c for m, c in checkpoint_metrics] else: avg_checkpoints = checkpoints if avg_checkpoints: print("Selected checkpoints:") [print(c) for c in checkpoints] if not avg_checkpoints: print('Error: No checkpoints found to average.') exit(1) avg_state_dict = {} avg_counts = {} for c in avg_checkpoints: new_state_dict = load_state_dict(c, args.use_ema) if not new_state_dict: print(f"Error: Checkpoint ({c}) doesn't exist") continue for k, v in new_state_dict.items(): if k not in avg_state_dict: avg_state_dict[k] = v.clone().to(dtype=torch.float64) avg_counts[k] = 1 else: avg_state_dict[k] += v.to(dtype=torch.float64) avg_counts[k] += 1 for k, v in avg_state_dict.items(): v.div_(avg_counts[k]) # float32 overflow seems unlikely based on weights seen to date, but who knows float32_info = torch.finfo(torch.float32) final_state_dict = {} for k, v in avg_state_dict.items(): v = v.clamp(float32_info.min, float32_info.max) final_state_dict[k] = v.to(dtype=torch.float32) if args.safetensors: assert _has_safetensors, "`pip install safetensors` to use .safetensors" safetensors.torch.save_file(final_state_dict, output) else: torch.save(final_state_dict, output) with open(output, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() print(f"=> Saved state_dict to '{output}, SHA256: {sha_hash}'") if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/benchmark.py
#!/usr/bin/env python3 """ Model Benchmark Script An inference and train step benchmark script for timm models. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import json import logging import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import resolve_data_config from timm.layers import set_fast_norm from timm.models import create_model, is_model, list_models from timm.optim import create_optimizer_v2 from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs has_apex = False try: from apex import amp has_apex = True except ImportError: pass has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from deepspeed.profiling.flops_profiler import get_model_profile has_deepspeed_profiling = True except ImportError as e: has_deepspeed_profiling = False try: from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis has_fvcore_profiling = True except ImportError as e: FlopCountAnalysis = None has_fvcore_profiling = False try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch Benchmark') # benchmark specific args parser.add_argument('--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument('--bench', default='both', type=str, help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") parser.add_argument('--detail', action='store_true', default=False, help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') parser.add_argument('--no-retry', action='store_true', default=False, help='Do not decay batch size and retry on error.') parser.add_argument('--results-file', default='', type=str, help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--num-warm-iter', default=10, type=int, help='Number of warmup iterations (default: 10)') parser.add_argument('--num-bench-iter', default=40, type=int, help='Number of benchmark iterations (default: 40)') parser.add_argument('--device', default='cuda', type=str, help="device to run benchmark on") # common inference / train args parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', help='model architecture (default: resnet50)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='Run inference at train size, not test-input-size if it exists.') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') parser.add_argument('--amp', action='store_true', default=False, help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') parser.add_argument('--precision', default='float32', type=str, help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) # codegen (model compilation) options scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='convert model torchscript for inference') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd optimization.") # train optimizer parameters parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd"') parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') parser.add_argument('--weight-decay', type=float, default=0.0001, help='weight decay (default: 0.0001)') parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') # model regularization / loss params that impact model or loss fn parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') def timestamp(sync=False): return time.perf_counter() def cuda_timestamp(sync=False, device=None): if sync: torch.cuda.synchronize(device=device) return time.perf_counter() def count_params(model: nn.Module): return sum([m.numel() for m in model.parameters()]) def resolve_precision(precision: str): assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') amp_dtype = None # amp disabled model_dtype = torch.float32 data_dtype = torch.float32 if precision == 'amp': amp_dtype = torch.float16 elif precision == 'amp_bfloat16': amp_dtype = torch.bfloat16 elif precision == 'float16': model_dtype = torch.float16 data_dtype = torch.float16 elif precision == 'bfloat16': model_dtype = torch.bfloat16 data_dtype = torch.bfloat16 return amp_dtype, model_dtype, data_dtype def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): _, macs, _ = get_model_profile( model=model, input_shape=(batch_size,) + input_size, # input shape/resolution print_profile=detailed, # prints the model graph with the measured profile attached to each module detailed=detailed, # print the detailed profile warm_up=10, # the number of warm-ups before measuring the time of each module as_string=False, # print raw numbers (e.g. 1000) or as human-readable strings (e.g. 1k) output_file=None, # path to the output file. If None, the profiler prints to stdout. ignore_modules=None) # the list of modules to ignore in the profiling return macs, 0 # no activation count in DS def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): if force_cpu: model = model.to('cpu') device, dtype = next(model.parameters()).device, next(model.parameters()).dtype example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) fca = FlopCountAnalysis(model, example_input) aca = ActivationCountAnalysis(model, example_input) if detailed: fcs = flop_count_str(fca) print(fcs) return fca.total(), aca.total() class BenchmarkRunner: def __init__( self, model_name, detail=False, device='cuda', torchscript=False, torchcompile=None, aot_autograd=False, precision='float32', fuser='', num_warm_iter=10, num_bench_iter=50, use_train_size=False, **kwargs ): self.model_name = model_name self.detail = detail self.device = device self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision) self.channels_last = kwargs.pop('channels_last', False) if self.amp_dtype is not None: self.amp_autocast = partial(torch.cuda.amp.autocast, dtype=self.amp_dtype) else: self.amp_autocast = suppress if fuser: set_jit_fuser(fuser) self.model = create_model( model_name, num_classes=kwargs.pop('num_classes', None), in_chans=3, global_pool=kwargs.pop('gp', 'fast'), scriptable=torchscript, drop_rate=kwargs.pop('drop', 0.), drop_path_rate=kwargs.pop('drop_path', None), drop_block_rate=kwargs.pop('drop_block', None), **kwargs.pop('model_kwargs', {}), ) self.model.to( device=self.device, dtype=self.model_dtype, memory_format=torch.channels_last if self.channels_last else None) self.num_classes = self.model.num_classes self.param_count = count_params(self.model) _logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) self.input_size = data_config['input_size'] self.batch_size = kwargs.pop('batch_size', 256) self.compiled = False if torchscript: self.model = torch.jit.script(self.model) self.compiled = True elif torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' torch._dynamo.reset() self.model = torch.compile(self.model, backend=torchcompile) self.compiled = True elif aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" self.model = memory_efficient_fusion(self.model) self.compiled = True self.example_inputs = None self.num_warm_iter = num_warm_iter self.num_bench_iter = num_bench_iter self.log_freq = num_bench_iter // 5 if 'cuda' in self.device: self.time_fn = partial(cuda_timestamp, device=self.device) else: self.time_fn = timestamp def _init_input(self): self.example_inputs = torch.randn( (self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) if self.channels_last: self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) class InferenceBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.eval() def run(self): def _step(): t_step_start = self.time_fn() with self.amp_autocast(): output = self.model(self.example_inputs) t_step_end = self.time_fn(True) return t_step_end - t_step_start _logger.info( f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') with torch.no_grad(): self._init_input() for _ in range(self.num_warm_iter): _step() total_step = 0. num_samples = 0 t_run_start = self.time_fn() for i in range(self.num_bench_iter): delta_fwd = _step() total_step += delta_fwd num_samples += self.batch_size num_steps = i + 1 if num_steps % self.log_freq == 0: _logger.info( f"Infer [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_end = self.time_fn(True) t_run_elapsed = t_run_end - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) retries = 0 if self.compiled else 2 # skip profiling if model is scripted while retries: retries -= 1 try: if has_deepspeed_profiling: macs, _ = profile_deepspeed(self.model, self.input_size) results['gmacs'] = round(macs / 1e9, 2) elif has_fvcore_profiling: macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries) results['gmacs'] = round(macs / 1e9, 2) results['macts'] = round(activations / 1e6, 2) except RuntimeError as e: pass _logger.info( f"Inference benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") return results class TrainBenchmarkRunner(BenchmarkRunner): def __init__( self, model_name, device='cuda', torchscript=False, **kwargs ): super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) self.model.train() self.loss = nn.CrossEntropyLoss().to(self.device) self.target_shape = tuple() self.optimizer = create_optimizer_v2( self.model, opt=kwargs.pop('opt', 'sgd'), lr=kwargs.pop('lr', 1e-4)) if kwargs.pop('grad_checkpointing', False): self.model.set_grad_checkpointing() def _gen_target(self, batch_size): return torch.empty( (batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) def run(self): def _step(detail=False): self.optimizer.zero_grad() # can this be ignored? t_start = self.time_fn() t_fwd_end = t_start t_bwd_end = t_start with self.amp_autocast(): output = self.model(self.example_inputs) if isinstance(output, tuple): output = output[0] if detail: t_fwd_end = self.time_fn(True) target = self._gen_target(output.shape[0]) self.loss(output, target).backward() if detail: t_bwd_end = self.time_fn(True) self.optimizer.step() t_end = self.time_fn(True) if detail: delta_fwd = t_fwd_end - t_start delta_bwd = t_bwd_end - t_fwd_end delta_opt = t_end - t_bwd_end return delta_fwd, delta_bwd, delta_opt else: delta_step = t_end - t_start return delta_step _logger.info( f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') self._init_input() for _ in range(self.num_warm_iter): _step() t_run_start = self.time_fn() if self.detail: total_fwd = 0. total_bwd = 0. total_opt = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_fwd, delta_bwd, delta_opt = _step(True) num_samples += self.batch_size total_fwd += delta_fwd total_bwd += delta_bwd total_opt += delta_opt num_steps = (i + 1) if num_steps % self.log_freq == 0: total_step = total_fwd + total_bwd + total_opt _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd," f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd," f" {1000 * total_opt / num_steps:0.3f} ms/step opt." ) total_step = total_fwd + total_bwd + total_opt t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), opt_time=round(1000 * total_opt / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) else: total_step = 0. num_samples = 0 for i in range(self.num_bench_iter): delta_step = _step(False) num_samples += self.batch_size total_step += delta_step num_steps = (i + 1) if num_steps % self.log_freq == 0: _logger.info( f"Train [{num_steps}/{self.num_bench_iter}]." f" {num_samples / total_step:0.2f} samples/sec." f" {1000 * total_step / num_steps:0.3f} ms/step.") t_run_elapsed = self.time_fn() - t_run_start results = dict( samples_per_sec=round(num_samples / t_run_elapsed, 2), step_time=round(1000 * total_step / self.num_bench_iter, 3), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Train benchmark of {self.model_name} done. " f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") return results class ProfileRunner(BenchmarkRunner): def __init__(self, model_name, device='cuda', profiler='', **kwargs): super().__init__(model_name=model_name, device=device, **kwargs) if not profiler: if has_deepspeed_profiling: profiler = 'deepspeed' elif has_fvcore_profiling: profiler = 'fvcore' assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work." self.profiler = profiler self.model.eval() def run(self): _logger.info( f'Running profiler on {self.model_name} w/ ' f'input size {self.input_size} and batch size {self.batch_size}.') macs = 0 activations = 0 if self.profiler == 'deepspeed': macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) elif self.profiler == 'fvcore': macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) results = dict( gmacs=round(macs / 1e9, 2), macts=round(activations / 1e6, 2), batch_size=self.batch_size, img_size=self.input_size[-1], param_count=round(self.param_count / 1e6, 2), ) _logger.info( f"Profile of {self.model_name} done. " f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") return results def _try_run( model_name, bench_fn, bench_kwargs, initial_batch_size, no_batch_size_retry=False ): batch_size = initial_batch_size results = dict() error_str = 'Unknown' while batch_size: try: torch.cuda.empty_cache() bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) results = bench.run() return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running benchmark.') if not check_batch_size_retry(error_str): _logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') break if no_batch_size_retry: break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str return results def benchmark(args): if args.amp: _logger.warning("Overriding precision to 'amp' since --amp flag set.") args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) _logger.info(f'Benchmarking in {args.precision} precision. ' f'{"NHWC" if args.channels_last else "NCHW"} layout. ' f'torchscript {"enabled" if args.torchscript else "disabled"}') bench_kwargs = vars(args).copy() bench_kwargs.pop('amp') model = bench_kwargs.pop('model') batch_size = bench_kwargs.pop('batch_size') bench_fns = (InferenceBenchmarkRunner,) prefixes = ('infer',) if args.bench == 'both': bench_fns = ( InferenceBenchmarkRunner, TrainBenchmarkRunner ) prefixes = ('infer', 'train') elif args.bench == 'train': bench_fns = TrainBenchmarkRunner, prefixes = 'train', elif args.bench.startswith('profile'): # specific profiler used if included in bench mode string, otherwise default to deepspeed, fallback to fvcore if 'deepspeed' in args.bench: assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter" bench_kwargs['profiler'] = 'deepspeed' elif 'fvcore' in args.bench: assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter" bench_kwargs['profiler'] = 'fvcore' bench_fns = ProfileRunner, batch_size = 1 model_results = OrderedDict(model=model) for prefix, bench_fn in zip(prefixes, bench_fns): run_results = _try_run( model, bench_fn, bench_kwargs=bench_kwargs, initial_batch_size=batch_size, no_batch_size_retry=args.no_retry, ) if prefix and 'error' not in run_results: run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} model_results.update(run_results) if 'error' in run_results: break if 'error' not in model_results: param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) model_results.setdefault('param_count', param_count) model_results.pop('train_param_count', 0) return model_results def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if args.fast_norm: set_fast_norm() if args.model_list: args.model = '' with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names] elif args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models(pretrained=True, exclude_filters=['*in21k']) model_cfgs = [(n, None) for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model) model_cfgs = [(n, None) for n in model_names] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: for m, _ in model_cfgs: if not m: continue args.model = m r = benchmark(args) if r: results.append(r) time.sleep(10) except KeyboardInterrupt as e: pass sort_key = 'infer_samples_per_sec' if 'train' in args.bench: sort_key = 'train_samples_per_sec' elif 'profile' in args.bench: sort_key = 'infer_gmacs' results = filter(lambda x: sort_key in x, results) results = sorted(results, key=lambda x: x[sort_key], reverse=True) else: results = benchmark(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/bulk_runner.py
#!/usr/bin/env python3 """ Bulk Model Script Runner Run validation or benchmark script in separate process for each model Benchmark all 'vit*' models: python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512 Validate all models: python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py /imagenet/validation/ --amp -b 512 --retry Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import os import sys import csv import json import subprocess import time from typing import Callable, List, Tuple, Union from timm.models import is_model, list_models parser = argparse.ArgumentParser(description='Per-model process launcher') # model and results args parser.add_argument( '--model-list', metavar='NAME', default='', help='txt file based list of model names to benchmark') parser.add_argument( '--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument( '--sort-key', default='', type=str, metavar='COL', help='Specify sort key for results csv') parser.add_argument( "--pretrained", action='store_true', help="only run models with pretrained weights") parser.add_argument( "--delay", type=float, default=0, help="Interval, in seconds, to delay between model invocations.", ) parser.add_argument( "--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"], help="Multiprocessing start method to use when creating workers.", ) parser.add_argument( "--no_python", help="Skip prepending the script with 'python' - just execute it directly. Useful " "when the script is not a Python script.", ) parser.add_argument( "-m", "--module", help="Change each process to interpret the launch script as a Python module, executing " "with the same behavior as 'python -m'.", ) # positional parser.add_argument( "script", type=str, help="Full path to the program/script to be launched for each model config.", ) parser.add_argument("script_args", nargs=argparse.REMAINDER) def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]: # If ``args`` not passed, defaults to ``sys.argv[:1]`` with_python = not args.no_python cmd: Union[Callable, str] cmd_args = [] if with_python: cmd = os.getenv("PYTHON_EXEC", sys.executable) cmd_args.append("-u") if args.module: cmd_args.append("-m") cmd_args.append(args.script) else: if args.module: raise ValueError( "Don't use both the '--no_python' flag" " and the '--module' flag at the same time." ) cmd = args.script cmd_args.extend(args.script_args) return cmd, cmd_args def main(): args = parser.parse_args() cmd, cmd_args = cmd_from_args(args) model_cfgs = [] model_names = [] if args.model_list == 'all': # NOTE should make this config, for validation / benchmark runs the focus is 1k models, # so we filter out 21/22k and some other unusable heads. This will change in the future... exclude_model_filters = ['*in21k', '*in22k', '*dino', '*_22k'] model_names = list_models( pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set exclude_filters=exclude_model_filters ) model_cfgs = [(n, None) for n in model_names] elif not is_model(args.model_list): # model name doesn't exist, try as wildcard filter model_names = list_models(args.model_list) model_cfgs = [(n, None) for n in model_names] if not model_cfgs and os.path.exists(args.model_list): with open(args.model_list) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names] if len(model_cfgs): results_file = args.results_file or './results.csv' results = [] errors = [] print('Running script on these models: {}'.format(', '.join(model_names))) if not args.sort_key: if 'benchmark' in args.script: if any(['train' in a for a in args.script_args]): sort_key = 'train_samples_per_sec' else: sort_key = 'infer_samples_per_sec' else: sort_key = 'top1' else: sort_key = args.sort_key print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}') try: for m, _ in model_cfgs: if not m: continue args_str = (cmd, *[str(e) for e in cmd_args], '--model', m) try: o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1] r = json.loads(o) results.append(r) except Exception as e: # FIXME batch_size retry loop is currently done in either validation.py or benchmark.py # for further robustness (but more overhead), we may want to manage that by looping here... errors.append(dict(model=m, error=str(e))) if args.delay: time.sleep(args.delay) except KeyboardInterrupt as e: pass errors.extend(list(filter(lambda x: 'error' in x, results))) if errors: print(f'{len(errors)} models had errors during run.') for e in errors: print(f"\t {e['model']} ({e.get('error', 'Unknown')})") results = list(filter(lambda x: 'error' not in x, results)) no_sortkey = list(filter(lambda x: sort_key not in x, results)) if no_sortkey: print(f'{len(no_sortkey)} results missing sort key, skipping sort.') else: results = sorted(results, key=lambda x: x[sort_key], reverse=True) if len(results): print(f'{len(results)} models run successfully. Saving results to {results_file}.') write_results(results_file, results) def write_results(results_file, results): with open(results_file, mode='w') as cf: dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/clean_checkpoint.py
#!/usr/bin/env python3 """ Checkpoint Cleaning Script Takes training checkpoints with GPU tensors, optimizer state, extra dict keys, etc. and outputs a CPU tensor checkpoint with only the `state_dict` along with SHA256 calculation for model zoo compatibility. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import torch import argparse import os import hashlib import shutil import tempfile from timm.models import load_state_dict try: import safetensors.torch _has_safetensors = True except ImportError: _has_safetensors = False parser = argparse.ArgumentParser(description='PyTorch Checkpoint Cleaner') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--output', default='', type=str, metavar='PATH', help='output path') parser.add_argument('--no-use-ema', dest='no_use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--no-hash', dest='no_hash', action='store_true', help='no hash in output filename') parser.add_argument('--clean-aux-bn', dest='clean_aux_bn', action='store_true', help='remove auxiliary batch norm layers (from SplitBN training) from checkpoint') parser.add_argument('--safetensors', action='store_true', help='Save weights using safetensors instead of the default torch way (pickle).') def main(): args = parser.parse_args() if os.path.exists(args.output): print("Error: Output filename ({}) already exists.".format(args.output)) exit(1) clean_checkpoint( args.checkpoint, args.output, not args.no_use_ema, args.no_hash, args.clean_aux_bn, safe_serialization=args.safetensors, ) def clean_checkpoint( checkpoint, output, use_ema=True, no_hash=False, clean_aux_bn=False, safe_serialization: bool=False, ): # Load an existing checkpoint to CPU, strip everything but the state_dict and re-save if checkpoint and os.path.isfile(checkpoint): print("=> Loading checkpoint '{}'".format(checkpoint)) state_dict = load_state_dict(checkpoint, use_ema=use_ema) new_state_dict = {} for k, v in state_dict.items(): if clean_aux_bn and 'aux_bn' in k: # If all aux_bn keys are removed, the SplitBN layers will end up as normal and # load with the unmodified model using BatchNorm2d. continue name = k[7:] if k.startswith('module.') else k new_state_dict[name] = v print("=> Loaded state_dict from '{}'".format(checkpoint)) ext = '' if output: checkpoint_root, checkpoint_base = os.path.split(output) checkpoint_base, ext = os.path.splitext(checkpoint_base) else: checkpoint_root = '' checkpoint_base = os.path.split(checkpoint)[1] checkpoint_base = os.path.splitext(checkpoint_base)[0] temp_filename = '__' + checkpoint_base if safe_serialization: assert _has_safetensors, "`pip install safetensors` to use .safetensors" safetensors.torch.save_file(new_state_dict, temp_filename) else: torch.save(new_state_dict, temp_filename) with open(temp_filename, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() if ext: final_ext = ext else: final_ext = ('.safetensors' if safe_serialization else '.pth') if no_hash: final_filename = checkpoint_base + final_ext else: final_filename = '-'.join([checkpoint_base, sha_hash[:8]]) + final_ext shutil.move(temp_filename, os.path.join(checkpoint_root, final_filename)) print("=> Saved state_dict to '{}, SHA256: {}'".format(final_filename, sha_hash)) return final_filename else: print("Error: Checkpoint ({}) doesn't exist".format(checkpoint)) return '' if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/distributed_train.sh
#!/bin/bash NUM_PROC=$1 shift torchrun --nproc_per_node=$NUM_PROC train.py "$@"
0
hf_public_repos
hf_public_repos/pytorch-image-models/hubconf.py
dependencies = ['torch'] import timm globals().update(timm.models._registry._model_entrypoints)
0
hf_public_repos
hf_public_repos/pytorch-image-models/inference.py
#!/usr/bin/env python3 """PyTorch Inference Script An example inference script that outputs top-k class ids for images in a folder into a csv. Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import argparse import json import logging import os import time from contextlib import suppress from functools import partial import numpy as np import pandas as pd import torch from timm.data import create_dataset, create_loader, resolve_data_config, ImageNetInfo, infer_imagenet_subset from timm.layers import apply_test_time_pool from timm.models import create_model from timm.utils import AverageMeter, setup_default_logging, set_jit_fuser, ParseKwargs try: from apex import amp has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _FMT_EXT = { 'json': '.json', 'json-record': '.json', 'json-split': '.json', 'parquet': '.parquet', 'csv': '.csv', } torch.backends.cudnn.benchmark = True _logger = logging.getLogger('inference') parser = argparse.ArgumentParser(description='PyTorch ImageNet Inference') parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') parser.add_argument('--model', '-m', metavar='MODEL', default='resnet50', help='model architecture (default: resnet50)') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--device', default='cuda', type=str, help="Device (accelerator) to use.") parser.add_argument('--amp', action='store_true', default=False, help='use Native AMP for mixed precision training') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd support.") parser.add_argument('--results-dir', type=str, default=None, help='folder for output results') parser.add_argument('--results-file', type=str, default=None, help='results filename (relative to results-dir)') parser.add_argument('--results-format', type=str, nargs='+', default=['csv'], help='results format (one of "csv", "json", "json-split", "parquet")') parser.add_argument('--results-separate-col', action='store_true', default=False, help='separate output columns per result index.') parser.add_argument('--topk', default=1, type=int, metavar='N', help='Top-k to output to CSV') parser.add_argument('--fullname', action='store_true', default=False, help='use full sample name in output (not just basename).') parser.add_argument('--filename-col', type=str, default='filename', help='name for filename / sample name column') parser.add_argument('--index-col', type=str, default='index', help='name for output indices column(s)') parser.add_argument('--label-col', type=str, default='label', help='name for output indices column(s)') parser.add_argument('--output-col', type=str, default=None, help='name for logit/probs output column(s)') parser.add_argument('--output-type', type=str, default='prob', help='output type colum ("prob" for probabilities, "logit" for raw logits)') parser.add_argument('--label-type', type=str, default='description', help='type of label to output, one of "none", "name", "description", "detailed"') parser.add_argument('--include-index', action='store_true', default=False, help='include the class index in results') parser.add_argument('--exclude-output', action='store_true', default=False, help='exclude logits/probs from results, just indices. topk must be set !=0.') def main(): setup_default_logging() args = parser.parse_args() # might as well try to do something useful... args.pretrained = args.pretrained or not args.checkpoint if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True device = torch.device(args.device) # resolve AMP arguments based on PyTorch / Apex availability amp_autocast = suppress if args.amp: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' assert args.amp_dtype in ('float16', 'bfloat16') amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) _logger.info('Running inference in mixed precision with native PyTorch AMP.') else: _logger.info('Running inference in float32. AMP not enabled.') if args.fuser: set_jit_fuser(args.fuser) # create model in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, num_classes=args.num_classes, in_chans=in_chans, pretrained=args.pretrained, checkpoint_path=args.checkpoint, **args.model_kwargs, ) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes _logger.info( f'Model {args.model} created, param count: {sum([m.numel() for m in model.parameters()])}') data_config = resolve_data_config(vars(args), model=model) test_time_pool = False if args.test_pool: model, test_time_pool = apply_test_time_pool(model, data_config) model = model.to(device) model.eval() if args.channels_last: model = model.to(memory_format=torch.channels_last) if args.torchscript: model = torch.jit.script(model) elif args.torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' torch._dynamo.reset() model = torch.compile(model, backend=args.torchcompile) elif args.aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" model = memory_efficient_fusion(model) if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) root_dir = args.data or args.data_dir dataset = create_dataset( root=root_dir, name=args.dataset, split=args.split, class_map=args.class_map, ) if test_time_pool: data_config['crop_pct'] = 1.0 workers = 1 if 'tfds' in args.dataset or 'wds' in args.dataset else args.workers loader = create_loader( dataset, batch_size=args.batch_size, use_prefetcher=True, num_workers=workers, **data_config, ) to_label = None if args.label_type in ('name', 'description', 'detail'): imagenet_subset = infer_imagenet_subset(model) if imagenet_subset is not None: dataset_info = ImageNetInfo(imagenet_subset) if args.label_type == 'name': to_label = lambda x: dataset_info.index_to_label_name(x) elif args.label_type == 'detail': to_label = lambda x: dataset_info.index_to_description(x, detailed=True) else: to_label = lambda x: dataset_info.index_to_description(x) to_label = np.vectorize(to_label) else: _logger.error("Cannot deduce ImageNet subset from model, no labelling will be performed.") top_k = min(args.topk, args.num_classes) batch_time = AverageMeter() end = time.time() all_indices = [] all_labels = [] all_outputs = [] use_probs = args.output_type == 'prob' with torch.no_grad(): for batch_idx, (input, _) in enumerate(loader): with amp_autocast(): output = model(input) if use_probs: output = output.softmax(-1) if top_k: output, indices = output.topk(top_k) np_indices = indices.cpu().numpy() if args.include_index: all_indices.append(np_indices) if to_label is not None: np_labels = to_label(np_indices) all_labels.append(np_labels) all_outputs.append(output.cpu().numpy()) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info('Predict: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( batch_idx, len(loader), batch_time=batch_time)) all_indices = np.concatenate(all_indices, axis=0) if all_indices else None all_labels = np.concatenate(all_labels, axis=0) if all_labels else None all_outputs = np.concatenate(all_outputs, axis=0).astype(np.float32) filenames = loader.dataset.filenames(basename=not args.fullname) output_col = args.output_col or ('prob' if use_probs else 'logit') data_dict = {args.filename_col: filenames} if args.results_separate_col and all_outputs.shape[-1] > 1: if all_indices is not None: for i in range(all_indices.shape[-1]): data_dict[f'{args.index_col}_{i}'] = all_indices[:, i] if all_labels is not None: for i in range(all_labels.shape[-1]): data_dict[f'{args.label_col}_{i}'] = all_labels[:, i] for i in range(all_outputs.shape[-1]): data_dict[f'{output_col}_{i}'] = all_outputs[:, i] else: if all_indices is not None: if all_indices.shape[-1] == 1: all_indices = all_indices.squeeze(-1) data_dict[args.index_col] = list(all_indices) if all_labels is not None: if all_labels.shape[-1] == 1: all_labels = all_labels.squeeze(-1) data_dict[args.label_col] = list(all_labels) if all_outputs.shape[-1] == 1: all_outputs = all_outputs.squeeze(-1) data_dict[output_col] = list(all_outputs) df = pd.DataFrame(data=data_dict) results_filename = args.results_file if results_filename: filename_no_ext, ext = os.path.splitext(results_filename) if ext and ext in _FMT_EXT.values(): # if filename provided with one of expected ext, # remove it as it will be added back results_filename = filename_no_ext else: # base default filename on model name + img-size img_size = data_config["input_size"][1] results_filename = f'{args.model}-{img_size}' if args.results_dir: results_filename = os.path.join(args.results_dir, results_filename) for fmt in args.results_format: save_results(df, results_filename, fmt) print(f'--result') print(df.set_index(args.filename_col).to_json(orient='index', indent=4)) def save_results(df, results_filename, results_format='csv', filename_col='filename'): results_filename += _FMT_EXT[results_format] if results_format == 'parquet': df.set_index(filename_col).to_parquet(results_filename) elif results_format == 'json': df.set_index(filename_col).to_json(results_filename, indent=4, orient='index') elif results_format == 'json-records': df.to_json(results_filename, lines=True, orient='records') elif results_format == 'json-split': df.to_json(results_filename, indent=4, orient='split', index=False) else: df.to_csv(results_filename, index=False) if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/mkdocs.yml
site_name: 'Pytorch Image Models' site_description: 'Pretained Image Recognition Models' repo_name: 'rwightman/pytorch-image-models' repo_url: 'https://github.com/rwightman/pytorch-image-models' nav: - index.md - models.md - ... | models/*.md - results.md - scripts.md - training_hparam_examples.md - feature_extraction.md - changes.md - archived_changes.md theme: name: 'material' feature: tabs: false extra_javascript: - 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML' - https://cdnjs.cloudflare.com/ajax/libs/tablesort/5.2.1/tablesort.min.js - javascripts/tables.js markdown_extensions: - codehilite: linenums: true - admonition - pymdownx.arithmatex - pymdownx.betterem: smart_enable: all - pymdownx.caret - pymdownx.critic - pymdownx.details - pymdownx.emoji: emoji_generator: !!python/name:pymdownx.emoji.to_svg - pymdownx.inlinehilite - pymdownx.magiclink - pymdownx.mark - pymdownx.smartsymbols - pymdownx.superfences - pymdownx.tasklist: custom_checkbox: true - pymdownx.tilde - mdx_truly_sane_lists plugins: - search - awesome-pages - redirects: redirect_maps: 'index.md': 'https://huggingface.co/docs/timm/index' 'models.md': 'https://huggingface.co/docs/timm/models' 'results.md': 'https://huggingface.co/docs/timm/results' 'scripts.md': 'https://huggingface.co/docs/timm/training_script' 'training_hparam_examples.md': 'https://huggingface.co/docs/timm/training_script#training-examples' 'feature_extraction.md': 'https://huggingface.co/docs/timm/feature_extraction'
0
hf_public_repos
hf_public_repos/pytorch-image-models/model-index.yml
Import: - ./docs/models/*.md Library: Name: PyTorch Image Models Headline: PyTorch image models, scripts, pretrained weights Website: https://rwightman.github.io/pytorch-image-models/ Repository: https://github.com/rwightman/pytorch-image-models Docs: https://rwightman.github.io/pytorch-image-models/ README: "# PyTorch Image Models\r\n\r\nPyTorch Image Models (TIMM) is a library\ \ for state-of-the-art image classification. With this library you can:\r\n\r\n\ - Choose from 300+ pre-trained state-of-the-art image classification models.\r\ \n- Train models afresh on research datasets such as ImageNet using provided scripts.\r\ \n- Finetune pre-trained models on your own datasets, including the latest cutting\ \ edge models."
0
hf_public_repos
hf_public_repos/pytorch-image-models/onnx_export.py
""" ONNX export script Export PyTorch models as ONNX graphs. This export script originally started as an adaptation of code snippets found at https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html The default parameters work with PyTorch 1.6 and ONNX 1.7 and produce an optimal ONNX graph for hosting in the ONNX runtime (see onnx_validate.py). To export an ONNX model compatible with caffe2 (see caffe2_benchmark.py and caffe2_validate.py), the --keep-init and --aten-fallback flags are currently required. Older versions of PyTorch/ONNX (tested PyTorch 1.4, ONNX 1.5) do not need extra flags for caffe2 compatibility, but they produce a model that isn't as fast running on ONNX runtime. Most new release of PyTorch and ONNX cause some sort of breakage in the export / usage of ONNX models. Please do your research and search ONNX and PyTorch issue tracker before asking me. Thanks. Copyright 2020 Ross Wightman """ import argparse import timm from timm.utils.onnx import onnx_export parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('output', metavar='ONNX_FILE', help='output model filename') parser.add_argument('--model', '-m', metavar='MODEL', default='mobilenetv3_large_100', help='model architecture (default: mobilenetv3_large_100)') parser.add_argument('--opset', type=int, default=None, help='ONNX opset to use (default: 10)') parser.add_argument('--keep-init', action='store_true', default=False, help='Keep initializers as input. Needed for Caffe2 compatible export in newer PyTorch/ONNX.') parser.add_argument('--aten-fallback', action='store_true', default=False, help='Fallback to ATEN ops. Helps fix AdaptiveAvgPool issue with Caffe2 in newer PyTorch/ONNX.') parser.add_argument('--dynamic-size', action='store_true', default=False, help='Export model width dynamic width/height. Not recommended for "tf" models with SAME padding.') parser.add_argument('--check-forward', action='store_true', default=False, help='Do a full check of torch vs onnx forward after export.') parser.add_argument('-b', '--batch-size', default=1, type=int, metavar='N', help='mini-batch size (default: 1)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--num-classes', type=int, default=1000, help='Number classes in dataset') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to checkpoint (default: none)') def main(): args = parser.parse_args() args.pretrained = True if args.checkpoint: args.pretrained = False print("==> Creating PyTorch {} model".format(args.model)) # NOTE exportable=True flag disables autofn/jit scripted activations and uses Conv2dSameExport layers # for models using SAME padding model = timm.create_model( args.model, num_classes=args.num_classes, in_chans=3, pretrained=args.pretrained, checkpoint_path=args.checkpoint, exportable=True, ) onnx_export( model, args.output, opset=args.opset, dynamic_size=args.dynamic_size, aten_fallback=args.aten_fallback, keep_initializers=args.keep_init, check_forward=args.check_forward, ) if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/onnx_validate.py
""" ONNX-runtime validation script This script was created to verify accuracy and performance of exported ONNX models running with the onnxruntime. It utilizes the PyTorch dataloader/processing pipeline for a fair comparison against the originals. Copyright 2020 Ross Wightman """ import argparse import numpy as np import onnxruntime from timm.data import create_loader, resolve_data_config, create_dataset from timm.utils import AverageMeter import time parser = argparse.ArgumentParser(description='ONNX Validation') parser.add_argument('data', metavar='DIR', help='path to dataset') parser.add_argument('--onnx-input', default='', type=str, metavar='PATH', help='path to onnx model/weights file') parser.add_argument('--onnx-output-opt', default='', type=str, metavar='PATH', help='path to output optimized onnx graph') parser.add_argument('--profile', action='store_true', default=False, help='Enable profiler output.') parser.add_argument('-j', '--workers', default=2, type=int, metavar='N', help='number of data loading workers (default: 2)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--crop-pct', type=float, default=None, metavar='PCT', help='Override default crop pct of 0.875') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency (default: 10)') def main(): args = parser.parse_args() args.gpu_id = 0 # Set graph optimization level sess_options = onnxruntime.SessionOptions() sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL if args.profile: sess_options.enable_profiling = True if args.onnx_output_opt: sess_options.optimized_model_filepath = args.onnx_output_opt session = onnxruntime.InferenceSession(args.onnx_input, sess_options) data_config = resolve_data_config(vars(args)) loader = create_loader( create_dataset('', args.data), input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=False, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=data_config['crop_pct'] ) input_name = session.get_inputs()[0].name batch_time = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() for i, (input, target) in enumerate(loader): # run the net and return prediction output = session.run([], {input_name: input.data.numpy()}) output = output[0] # measure accuracy and record loss prec1, prec5 = accuracy_np(output, target.numpy()) top1.update(prec1.item(), input.size(0)) top5.update(prec5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print( f'Test: [{i}/{len(loader)}]\t' f'Time {batch_time.val:.3f} ({batch_time.avg:.3f}, {input.size(0) / batch_time.avg:.3f}/s, ' f'{100 * batch_time.avg / input.size(0):.3f} ms/sample) \t' f'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t' f'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' ) print(f' * Prec@1 {top1.avg:.3f} ({100-top1.avg:.3f}) Prec@5 {top5.avg:.3f} ({100.-top5.avg:.3f})') def accuracy_np(output, target): max_indices = np.argsort(output, axis=1)[:, ::-1] top5 = 100 * np.equal(max_indices[:, :5], target[:, np.newaxis]).sum(axis=1).mean() top1 = 100 * np.equal(max_indices[:, 0], target).mean() return top1, top5 if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/pyproject.toml
[tool.pytest.ini_options] markers = [ "base: marker for model tests using the basic setup", "cfg: marker for model tests checking the config", "torchscript: marker for model tests using torchscript", "features: marker for model tests checking feature extraction", "fxforward: marker for model tests using torch fx (only forward)", "fxbackward: marker for model tests using torch fx (only backward)", ] [tool.black] line-length = 120 target-version = ['py37', 'py38', 'py39', 'py310', 'py311'] skip-string-normalization = true
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements-dev.txt
pytest pytest-timeout pytest-xdist pytest-forked expecttest
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements-docs.txt
mkdocs mkdocs-material mkdocs-redirects mdx_truly_sane_lists mkdocs-awesome-pages-plugin
0
hf_public_repos
hf_public_repos/pytorch-image-models/requirements.txt
torch>=1.7 torchvision pyyaml huggingface_hub safetensors>=0.2
0
hf_public_repos
hf_public_repos/pytorch-image-models/setup.cfg
[dist_conda] conda_name_differences = 'torch:pytorch' channels = pytorch noarch = True
0
hf_public_repos
hf_public_repos/pytorch-image-models/setup.py
""" Setup """ from setuptools import setup, find_packages from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() exec(open('timm/version.py').read()) setup( name='timm', version=__version__, description='PyTorch Image Models', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/huggingface/pytorch-image-models', author='Ross Wightman', author_email='ross@huggingface.co', classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Artificial Intelligence', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', ], # Note that this is a string of words separated by whitespace, not a list. keywords='pytorch pretrained models efficientnet mobilenetv3 mnasnet resnet vision transformer vit', packages=find_packages(exclude=['convert', 'tests', 'results']), include_package_data=True, install_requires=['torch >= 1.7', 'torchvision', 'pyyaml', 'huggingface_hub', 'safetensors'], python_requires='>=3.7', )
0
hf_public_repos
hf_public_repos/pytorch-image-models/train.py
#!/usr/bin/env python3 """ ImageNet Training Script This is intended to be a lean and easily modifiable ImageNet training script that reproduces ImageNet training results with some of the latest networks and training techniques. It favours canonical PyTorch and standard Python style over trying to be able to 'do it all.' That said, it offers quite a few speed and training result improvements over the usual PyTorch example scripts. Repurpose as you see fit. This script was started from an early version of the PyTorch ImageNet example (https://github.com/pytorch/examples/tree/master/imagenet) NVIDIA CUDA specific speedups adopted from NVIDIA Apex examples (https://github.com/NVIDIA/apex/tree/master/examples/imagenet) Hacked together by / Copyright 2020 Ross Wightman (https://github.com/rwightman) """ import argparse import logging import os import time from collections import OrderedDict from contextlib import suppress from datetime import datetime from functools import partial import torch import torch.nn as nn import torchvision.utils import yaml from torch.nn.parallel import DistributedDataParallel as NativeDDP from timm import utils from timm.data import create_dataset, create_loader, resolve_data_config, Mixup, FastCollateMixup, AugMixDataset from timm.layers import convert_splitbn_model, convert_sync_batchnorm, set_fast_norm from timm.loss import JsdCrossEntropy, SoftTargetCrossEntropy, BinaryCrossEntropy, LabelSmoothingCrossEntropy from timm.models import create_model, safe_model_name, resume_checkpoint, load_checkpoint, model_parameters from timm.optim import create_optimizer_v2, optimizer_kwargs from timm.scheduler import create_scheduler_v2, scheduler_kwargs from timm.utils import ApexScaler, NativeScaler try: from apex import amp from apex.parallel import DistributedDataParallel as ApexDDP from apex.parallel import convert_syncbn_model has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: import wandb has_wandb = True except ImportError: has_wandb = False try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _logger = logging.getLogger('train') # The first arg parser parses out only the --config argument, this argument is used to # load a yaml file containing key-values that override the defaults for the main parser below config_parser = parser = argparse.ArgumentParser(description='Training Config', add_help=False) parser.add_argument('-c', '--config', default='', type=str, metavar='FILE', help='YAML config file specifying default arguments') parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') # Dataset parameters group = parser.add_argument_group('Dataset parameters') # Keep this argument outside the dataset group because it is positional. parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (positional is *deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') group.add_argument('--train-split', metavar='NAME', default='train', help='dataset train split (default: train)') group.add_argument('--val-split', metavar='NAME', default='validation', help='dataset validation split (default: validation)') group.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') group.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') # Model parameters group = parser.add_argument_group('Model parameters') group.add_argument('--model', default='resnet50', type=str, metavar='MODEL', help='Name of model to train (default: "resnet50")') group.add_argument('--pretrained', action='store_true', default=False, help='Start with pretrained version of specified network (if avail)') group.add_argument('--initial-checkpoint', default='', type=str, metavar='PATH', help='Initialize model from this checkpoint (default: none)') group.add_argument('--resume', default='', type=str, metavar='PATH', help='Resume full model and optimizer state from checkpoint (default: none)') group.add_argument('--no-resume-opt', action='store_true', default=False, help='prevent resume of optimizer state when resuming model') group.add_argument('--num-classes', type=int, default=None, metavar='N', help='number of label classes (Model default if None)') group.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') group.add_argument('--img-size', type=int, default=None, metavar='N', help='Image size (default: None => model default)') group.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') group.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') group.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop percent (for validation only)') group.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') group.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of dataset') group.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') group.add_argument('-b', '--batch-size', type=int, default=128, metavar='N', help='Input batch size for training (default: 128)') group.add_argument('-vb', '--validation-batch-size', type=int, default=None, metavar='N', help='Validation batch size override (default: None)') group.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') group.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") group.add_argument('--grad-accum-steps', type=int, default=1, metavar='N', help='The number of steps to accumulate gradients (default: 1)') group.add_argument('--grad-checkpointing', action='store_true', default=False, help='Enable gradient checkpointing through model blocks/stages') group.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') group.add_argument('--model-kwargs', nargs='*', default={}, action=utils.ParseKwargs) group.add_argument('--head-init-scale', default=None, type=float, help='Head initialization scale') group.add_argument('--head-init-bias', default=None, type=float, help='Head initialization bias value') # scripting / codegen scripting_group = group.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") # Optimizer parameters group = parser.add_argument_group('Optimizer parameters') group.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', help='Optimizer (default: "sgd")') group.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', help='Optimizer Epsilon (default: None, use opt default)') group.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', help='Optimizer Betas (default: None, use opt default)') group.add_argument('--momentum', type=float, default=0.9, metavar='M', help='Optimizer momentum (default: 0.9)') group.add_argument('--weight-decay', type=float, default=2e-5, help='weight decay (default: 2e-5)') group.add_argument('--clip-grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') group.add_argument('--clip-mode', type=str, default='norm', help='Gradient clipping mode. One of ("norm", "value", "agc")') group.add_argument('--layer-decay', type=float, default=None, help='layer-wise learning rate decay (default: None)') group.add_argument('--opt-kwargs', nargs='*', default={}, action=utils.ParseKwargs) # Learning rate schedule parameters group = parser.add_argument_group('Learning rate schedule parameters') group.add_argument('--sched', type=str, default='cosine', metavar='SCHEDULER', help='LR scheduler (default: "step"') group.add_argument('--sched-on-updates', action='store_true', default=False, help='Apply LR scheduler step on update instead of epoch end.') group.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate, overrides lr-base if set (default: None)') group.add_argument('--lr-base', type=float, default=0.1, metavar='LR', help='base learning rate: lr = lr_base * global_batch_size / base_size') group.add_argument('--lr-base-size', type=int, default=256, metavar='DIV', help='base learning rate batch size (divisor, default: 256).') group.add_argument('--lr-base-scale', type=str, default='', metavar='SCALE', help='base learning rate vs batch_size scaling ("linear", "sqrt", based on opt if empty)') group.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct', help='learning rate noise on/off epoch percentages') group.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT', help='learning rate noise limit percent (default: 0.67)') group.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV', help='learning rate noise std-dev (default: 1.0)') group.add_argument('--lr-cycle-mul', type=float, default=1.0, metavar='MULT', help='learning rate cycle len multiplier (default: 1.0)') group.add_argument('--lr-cycle-decay', type=float, default=0.5, metavar='MULT', help='amount to decay each learning rate cycle (default: 0.5)') group.add_argument('--lr-cycle-limit', type=int, default=1, metavar='N', help='learning rate cycle limit, cycles enabled if > 1') group.add_argument('--lr-k-decay', type=float, default=1.0, help='learning rate k-decay for cosine/poly (default: 1.0)') group.add_argument('--warmup-lr', type=float, default=1e-5, metavar='LR', help='warmup learning rate (default: 1e-5)') group.add_argument('--min-lr', type=float, default=0, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0 (default: 0)') group.add_argument('--epochs', type=int, default=300, metavar='N', help='number of epochs to train (default: 300)') group.add_argument('--epoch-repeats', type=float, default=0., metavar='N', help='epoch repeat multiplier (number of times to repeat dataset epoch per train epoch).') group.add_argument('--start-epoch', default=None, type=int, metavar='N', help='manual epoch number (useful on restarts)') group.add_argument('--decay-milestones', default=[90, 180, 270], type=int, nargs='+', metavar="MILESTONES", help='list of decay epoch indices for multistep lr. must be increasing') group.add_argument('--decay-epochs', type=float, default=90, metavar='N', help='epoch interval to decay LR') group.add_argument('--warmup-epochs', type=int, default=5, metavar='N', help='epochs to warmup LR, if scheduler supports') group.add_argument('--warmup-prefix', action='store_true', default=False, help='Exclude warmup period from decay schedule.'), group.add_argument('--cooldown-epochs', type=int, default=0, metavar='N', help='epochs to cooldown LR at min_lr, after cyclic schedule ends') group.add_argument('--patience-epochs', type=int, default=10, metavar='N', help='patience epochs for Plateau LR scheduler (default: 10)') group.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE', help='LR decay rate (default: 0.1)') # Augmentation & regularization parameters group = parser.add_argument_group('Augmentation and regularization parameters') group.add_argument('--no-aug', action='store_true', default=False, help='Disable all training augmentation, override other train aug args') group.add_argument('--scale', type=float, nargs='+', default=[0.08, 1.0], metavar='PCT', help='Random resize scale (default: 0.08 1.0)') group.add_argument('--ratio', type=float, nargs='+', default=[3. / 4., 4. / 3.], metavar='RATIO', help='Random resize aspect ratio (default: 0.75 1.33)') group.add_argument('--hflip', type=float, default=0.5, help='Horizontal flip training aug probability') group.add_argument('--vflip', type=float, default=0., help='Vertical flip training aug probability') group.add_argument('--color-jitter', type=float, default=0.4, metavar='PCT', help='Color jitter factor (default: 0.4)') group.add_argument('--aa', type=str, default=None, metavar='NAME', help='Use AutoAugment policy. "v0" or "original". (default: None)'), group.add_argument('--aug-repeats', type=float, default=0, help='Number of augmentation repetitions (distributed training only) (default: 0)') group.add_argument('--aug-splits', type=int, default=0, help='Number of augmentation splits (default: 0, valid: 0 or >=2)') group.add_argument('--jsd-loss', action='store_true', default=False, help='Enable Jensen-Shannon Divergence + CE loss. Use with `--aug-splits`.') group.add_argument('--bce-loss', action='store_true', default=False, help='Enable BCE loss w/ Mixup/CutMix use.') group.add_argument('--bce-target-thresh', type=float, default=None, help='Threshold for binarizing softened BCE targets (default: None, disabled)') group.add_argument('--reprob', type=float, default=0., metavar='PCT', help='Random erase prob (default: 0.)') group.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') group.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') group.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') group.add_argument('--mixup', type=float, default=0.0, help='mixup alpha, mixup enabled if > 0. (default: 0.)') group.add_argument('--cutmix', type=float, default=0.0, help='cutmix alpha, cutmix enabled if > 0. (default: 0.)') group.add_argument('--cutmix-minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') group.add_argument('--mixup-prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') group.add_argument('--mixup-switch-prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') group.add_argument('--mixup-mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') group.add_argument('--mixup-off-epoch', default=0, type=int, metavar='N', help='Turn off mixup after this epoch, disabled if 0 (default: 0)') group.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') group.add_argument('--train-interpolation', type=str, default='random', help='Training interpolation (random, bilinear, bicubic default: "random")') group.add_argument('--drop', type=float, default=0.0, metavar='PCT', help='Dropout rate (default: 0.)') group.add_argument('--drop-connect', type=float, default=None, metavar='PCT', help='Drop connect rate, DEPRECATED, use drop-path (default: None)') group.add_argument('--drop-path', type=float, default=None, metavar='PCT', help='Drop path rate (default: None)') group.add_argument('--drop-block', type=float, default=None, metavar='PCT', help='Drop block rate (default: None)') # Batch norm parameters (only works with gen_efficientnet based models currently) group = parser.add_argument_group('Batch norm parameters', 'Only works with gen_efficientnet based models currently.') group.add_argument('--bn-momentum', type=float, default=None, help='BatchNorm momentum override (if not None)') group.add_argument('--bn-eps', type=float, default=None, help='BatchNorm epsilon override (if not None)') group.add_argument('--sync-bn', action='store_true', help='Enable NVIDIA Apex or Torch synchronized BatchNorm.') group.add_argument('--dist-bn', type=str, default='reduce', help='Distribute BatchNorm stats between nodes after each epoch ("broadcast", "reduce", or "")') group.add_argument('--split-bn', action='store_true', help='Enable separate BN layers per augmentation split.') # Model Exponential Moving Average group = parser.add_argument_group('Model exponential moving average parameters') group.add_argument('--model-ema', action='store_true', default=False, help='Enable tracking moving average of model weights') group.add_argument('--model-ema-force-cpu', action='store_true', default=False, help='Force ema to be tracked on CPU, rank=0 node only. Disables EMA validation.') group.add_argument('--model-ema-decay', type=float, default=0.9998, help='decay factor for model weights moving average (default: 0.9998)') # Misc group = parser.add_argument_group('Miscellaneous parameters') group.add_argument('--seed', type=int, default=42, metavar='S', help='random seed (default: 42)') group.add_argument('--worker-seeding', type=str, default='all', help='worker seed mode (default: all)') group.add_argument('--log-interval', type=int, default=50, metavar='N', help='how many batches to wait before logging training status') group.add_argument('--recovery-interval', type=int, default=0, metavar='N', help='how many batches to wait before writing recovery checkpoint') group.add_argument('--checkpoint-hist', type=int, default=10, metavar='N', help='number of checkpoints to keep (default: 10)') group.add_argument('-j', '--workers', type=int, default=4, metavar='N', help='how many training processes to use (default: 4)') group.add_argument('--save-images', action='store_true', default=False, help='save images of input bathes every log interval for debugging') group.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') group.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') group.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') group.add_argument('--no-ddp-bb', action='store_true', default=False, help='Force broadcast buffers for native DDP to off.') group.add_argument('--synchronize-step', action='store_true', default=False, help='torch.cuda.synchronize() end of each step') group.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') group.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') group.add_argument('--output', default='', type=str, metavar='PATH', help='path to output folder (default: none, current dir)') group.add_argument('--experiment', default='', type=str, metavar='NAME', help='name of train experiment, name of sub-folder for output') group.add_argument('--eval-metric', default='top1', type=str, metavar='EVAL_METRIC', help='Best metric (default: "top1"') group.add_argument('--tta', type=int, default=0, metavar='N', help='Test/inference time augmentation (oversampling) factor. 0=None (default: 0)') group.add_argument("--local_rank", default=0, type=int) group.add_argument('--use-multi-epochs-loader', action='store_true', default=False, help='use the multi-epochs-loader to save time at the beginning of every epoch') group.add_argument('--log-wandb', action='store_true', default=False, help='log training and validation metrics to wandb') def _parse_args(): # Do we have a config file to parse? args_config, remaining = config_parser.parse_known_args() if args_config.config: with open(args_config.config, 'r') as f: cfg = yaml.safe_load(f) parser.set_defaults(**cfg) # The main arg parser parses the rest of the args, the usual # defaults will have been overridden if config file specified. args = parser.parse_args(remaining) # Cache the args as a text string to save them in the output dir later args_text = yaml.safe_dump(args.__dict__, default_flow_style=False) return args, args_text def main(): utils.setup_default_logging() args, args_text = _parse_args() if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True args.prefetcher = not args.no_prefetcher args.grad_accum_steps = max(1, args.grad_accum_steps) device = utils.init_distributed_device(args) if args.distributed: _logger.info( 'Training in distributed mode with multiple processes, 1 device per process.' f'Process {args.rank}, total {args.world_size}, device {args.device}.') else: _logger.info(f'Training with a single process on 1 device ({args.device}).') assert args.rank >= 0 # resolve AMP arguments based on PyTorch / Apex availability use_amp = None amp_dtype = torch.float16 if args.amp: if args.amp_impl == 'apex': assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' use_amp = 'apex' assert args.amp_dtype == 'float16' else: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' use_amp = 'native' assert args.amp_dtype in ('float16', 'bfloat16') if args.amp_dtype == 'bfloat16': amp_dtype = torch.bfloat16 utils.random_seed(args.seed, args.rank) if args.fuser: utils.set_jit_fuser(args.fuser) if args.fast_norm: set_fast_norm() in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, pretrained=args.pretrained, in_chans=in_chans, num_classes=args.num_classes, drop_rate=args.drop, drop_path_rate=args.drop_path, drop_block_rate=args.drop_block, global_pool=args.gp, bn_momentum=args.bn_momentum, bn_eps=args.bn_eps, scriptable=args.torchscript, checkpoint_path=args.initial_checkpoint, **args.model_kwargs, ) if args.head_init_scale is not None: with torch.no_grad(): model.get_classifier().weight.mul_(args.head_init_scale) model.get_classifier().bias.mul_(args.head_init_scale) if args.head_init_bias is not None: nn.init.constant_(model.get_classifier().bias, args.head_init_bias) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes # FIXME handle model default vs config num_classes more elegantly if args.grad_checkpointing: model.set_grad_checkpointing(enable=True) if utils.is_primary(args): _logger.info( f'Model {safe_model_name(args.model)} created, param count:{sum([m.numel() for m in model.parameters()])}') data_config = resolve_data_config(vars(args), model=model, verbose=utils.is_primary(args)) # setup augmentation batch splits for contrastive loss or split bn num_aug_splits = 0 if args.aug_splits > 0: assert args.aug_splits > 1, 'A split of 1 makes no sense' num_aug_splits = args.aug_splits # enable split bn (separate bn stats per batch-portion) if args.split_bn: assert num_aug_splits > 1 or args.resplit model = convert_splitbn_model(model, max(num_aug_splits, 2)) # move model to GPU, enable channels last layout if set model.to(device=device) if args.channels_last: model.to(memory_format=torch.channels_last) # setup synchronized BatchNorm for distributed training if args.distributed and args.sync_bn: args.dist_bn = '' # disable dist_bn when sync BN active assert not args.split_bn if has_apex and use_amp == 'apex': # Apex SyncBN used with Apex AMP # WARNING this won't currently work with models using BatchNormAct2d model = convert_syncbn_model(model) else: model = convert_sync_batchnorm(model) if utils.is_primary(args): _logger.info( 'Converted model to use Synchronized BatchNorm. WARNING: You may have issues if using ' 'zero initialized BN layers (enabled by default for ResNets) while sync-bn enabled.') if args.torchscript: assert not args.torchcompile assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' assert not args.sync_bn, 'Cannot use SyncBatchNorm with torchscripted model' model = torch.jit.script(model) if not args.lr: global_batch_size = args.batch_size * args.world_size * args.grad_accum_steps batch_ratio = global_batch_size / args.lr_base_size if not args.lr_base_scale: on = args.opt.lower() args.lr_base_scale = 'sqrt' if any([o in on for o in ('ada', 'lamb')]) else 'linear' if args.lr_base_scale == 'sqrt': batch_ratio = batch_ratio ** 0.5 args.lr = args.lr_base * batch_ratio if utils.is_primary(args): _logger.info( f'Learning rate ({args.lr}) calculated from base learning rate ({args.lr_base}) ' f'and effective global batch size ({global_batch_size}) with {args.lr_base_scale} scaling.') optimizer = create_optimizer_v2( model, **optimizer_kwargs(cfg=args), **args.opt_kwargs, ) # setup automatic mixed-precision (AMP) loss scaling and op casting amp_autocast = suppress # do nothing loss_scaler = None if use_amp == 'apex': assert device.type == 'cuda' model, optimizer = amp.initialize(model, optimizer, opt_level='O1') loss_scaler = ApexScaler() if utils.is_primary(args): _logger.info('Using NVIDIA APEX AMP. Training in mixed precision.') elif use_amp == 'native': try: amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) except (AttributeError, TypeError): # fallback to CUDA only AMP for PyTorch < 1.10 assert device.type == 'cuda' amp_autocast = torch.cuda.amp.autocast if device.type == 'cuda' and amp_dtype == torch.float16: # loss scaler only used for float16 (half) dtype, bfloat16 does not need it loss_scaler = NativeScaler() if utils.is_primary(args): _logger.info('Using native Torch AMP. Training in mixed precision.') else: if utils.is_primary(args): _logger.info('AMP not enabled. Training in float32.') # optionally resume from a checkpoint resume_epoch = None if args.resume: resume_epoch = resume_checkpoint( model, args.resume, optimizer=None if args.no_resume_opt else optimizer, loss_scaler=None if args.no_resume_opt else loss_scaler, log_info=utils.is_primary(args), ) # setup exponential moving average of model weights, SWA could be used here too model_ema = None if args.model_ema: # Important to create EMA model after cuda(), DP wrapper, and AMP but before DDP wrapper model_ema = utils.ModelEmaV2( model, decay=args.model_ema_decay, device='cpu' if args.model_ema_force_cpu else None) if args.resume: load_checkpoint(model_ema.module, args.resume, use_ema=True) # setup distributed training if args.distributed: if has_apex and use_amp == 'apex': # Apex DDP preferred unless native amp is activated if utils.is_primary(args): _logger.info("Using NVIDIA APEX DistributedDataParallel.") model = ApexDDP(model, delay_allreduce=True) else: if utils.is_primary(args): _logger.info("Using native Torch DistributedDataParallel.") model = NativeDDP(model, device_ids=[device], broadcast_buffers=not args.no_ddp_bb) # NOTE: EMA model does not need to be wrapped by DDP if args.torchcompile: # torch compile should be done after DDP assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' model = torch.compile(model, backend=args.torchcompile) # create the train and eval datasets if args.data and not args.data_dir: args.data_dir = args.data dataset_train = create_dataset( args.dataset, root=args.data_dir, split=args.train_split, is_training=True, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, seed=args.seed, repeats=args.epoch_repeats, ) dataset_eval = create_dataset( args.dataset, root=args.data_dir, split=args.val_split, is_training=False, class_map=args.class_map, download=args.dataset_download, batch_size=args.batch_size, ) # setup mixup / cutmix collate_fn = None mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: mixup_args = dict( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.num_classes ) if args.prefetcher: assert not num_aug_splits # collate conflict (need to support deinterleaving in collate mixup) collate_fn = FastCollateMixup(**mixup_args) else: mixup_fn = Mixup(**mixup_args) # wrap dataset in AugMix helper if num_aug_splits > 1: dataset_train = AugMixDataset(dataset_train, num_splits=num_aug_splits) # create data loaders w/ augmentation pipeiine train_interpolation = args.train_interpolation if args.no_aug or not train_interpolation: train_interpolation = data_config['interpolation'] loader_train = create_loader( dataset_train, input_size=data_config['input_size'], batch_size=args.batch_size, is_training=True, use_prefetcher=args.prefetcher, no_aug=args.no_aug, re_prob=args.reprob, re_mode=args.remode, re_count=args.recount, re_split=args.resplit, scale=args.scale, ratio=args.ratio, hflip=args.hflip, vflip=args.vflip, color_jitter=args.color_jitter, auto_augment=args.aa, num_aug_repeats=args.aug_repeats, num_aug_splits=num_aug_splits, interpolation=train_interpolation, mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, distributed=args.distributed, collate_fn=collate_fn, pin_memory=args.pin_mem, device=device, use_multi_epochs_loader=args.use_multi_epochs_loader, worker_seeding=args.worker_seeding, ) eval_workers = args.workers if args.distributed and ('tfds' in args.dataset or 'wds' in args.dataset): # FIXME reduces validation padding issues when using TFDS, WDS w/ workers and distributed training eval_workers = min(2, args.workers) loader_eval = create_loader( dataset_eval, input_size=data_config['input_size'], batch_size=args.validation_batch_size or args.batch_size, is_training=False, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=eval_workers, distributed=args.distributed, crop_pct=data_config['crop_pct'], pin_memory=args.pin_mem, device=device, ) # setup loss function if args.jsd_loss: assert num_aug_splits > 1 # JSD only valid with aug splits set train_loss_fn = JsdCrossEntropy(num_splits=num_aug_splits, smoothing=args.smoothing) elif mixup_active: # smoothing is handled with mixup target transform which outputs sparse, soft targets if args.bce_loss: train_loss_fn = BinaryCrossEntropy(target_threshold=args.bce_target_thresh) else: train_loss_fn = SoftTargetCrossEntropy() elif args.smoothing: if args.bce_loss: train_loss_fn = BinaryCrossEntropy(smoothing=args.smoothing, target_threshold=args.bce_target_thresh) else: train_loss_fn = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: train_loss_fn = nn.CrossEntropyLoss() train_loss_fn = train_loss_fn.to(device=device) validate_loss_fn = nn.CrossEntropyLoss().to(device=device) # setup checkpoint saver and eval metric tracking eval_metric = args.eval_metric best_metric = None best_epoch = None saver = None output_dir = None if utils.is_primary(args): if args.experiment: exp_name = args.experiment else: exp_name = '-'.join([ datetime.now().strftime("%Y%m%d-%H%M%S"), safe_model_name(args.model), str(data_config['input_size'][-1]) ]) output_dir = utils.get_outdir(args.output if args.output else './output/train', exp_name) decreasing = True if eval_metric == 'loss' else False saver = utils.CheckpointSaver( model=model, optimizer=optimizer, args=args, model_ema=model_ema, amp_scaler=loss_scaler, checkpoint_dir=output_dir, recovery_dir=output_dir, decreasing=decreasing, max_history=args.checkpoint_hist ) with open(os.path.join(output_dir, 'args.yaml'), 'w') as f: f.write(args_text) if utils.is_primary(args) and args.log_wandb: if has_wandb: wandb.init(project=args.experiment, config=args) else: _logger.warning( "You've requested to log metrics to wandb but package not found. " "Metrics not being logged to wandb, try `pip install wandb`") # setup learning rate schedule and starting epoch updates_per_epoch = (len(loader_train) + args.grad_accum_steps - 1) // args.grad_accum_steps lr_scheduler, num_epochs = create_scheduler_v2( optimizer, **scheduler_kwargs(args), updates_per_epoch=updates_per_epoch, ) start_epoch = 0 if args.start_epoch is not None: # a specified start_epoch will always override the resume epoch start_epoch = args.start_epoch elif resume_epoch is not None: start_epoch = resume_epoch if lr_scheduler is not None and start_epoch > 0: if args.sched_on_updates: lr_scheduler.step_update(start_epoch * updates_per_epoch) else: lr_scheduler.step(start_epoch) if utils.is_primary(args): _logger.info( f'Scheduled epochs: {num_epochs}. LR stepped per {"epoch" if lr_scheduler.t_in_epochs else "update"}.') try: for epoch in range(start_epoch, num_epochs): if hasattr(dataset_train, 'set_epoch'): dataset_train.set_epoch(epoch) elif args.distributed and hasattr(loader_train.sampler, 'set_epoch'): loader_train.sampler.set_epoch(epoch) train_metrics = train_one_epoch( epoch, model, loader_train, optimizer, train_loss_fn, args, lr_scheduler=lr_scheduler, saver=saver, output_dir=output_dir, amp_autocast=amp_autocast, loss_scaler=loss_scaler, model_ema=model_ema, mixup_fn=mixup_fn, ) if args.distributed and args.dist_bn in ('broadcast', 'reduce'): if utils.is_primary(args): _logger.info("Distributing BatchNorm running means and vars") utils.distribute_bn(model, args.world_size, args.dist_bn == 'reduce') eval_metrics = validate( model, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, ) if model_ema is not None and not args.model_ema_force_cpu: if args.distributed and args.dist_bn in ('broadcast', 'reduce'): utils.distribute_bn(model_ema, args.world_size, args.dist_bn == 'reduce') ema_eval_metrics = validate( model_ema.module, loader_eval, validate_loss_fn, args, amp_autocast=amp_autocast, log_suffix=' (EMA)', ) eval_metrics = ema_eval_metrics if output_dir is not None: lrs = [param_group['lr'] for param_group in optimizer.param_groups] utils.update_summary( epoch, train_metrics, eval_metrics, filename=os.path.join(output_dir, 'summary.csv'), lr=sum(lrs) / len(lrs), write_header=best_metric is None, log_wandb=args.log_wandb and has_wandb, ) if saver is not None: # save proper checkpoint with eval metric save_metric = eval_metrics[eval_metric] best_metric, best_epoch = saver.save_checkpoint(epoch, metric=save_metric) if lr_scheduler is not None: # step LR for next epoch lr_scheduler.step(epoch + 1, eval_metrics[eval_metric]) except KeyboardInterrupt: pass if best_metric is not None: _logger.info('*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch)) def train_one_epoch( epoch, model, loader, optimizer, loss_fn, args, device=torch.device('cuda'), lr_scheduler=None, saver=None, output_dir=None, amp_autocast=suppress, loss_scaler=None, model_ema=None, mixup_fn=None, ): if args.mixup_off_epoch and epoch >= args.mixup_off_epoch: if args.prefetcher and loader.mixup_enabled: loader.mixup_enabled = False elif mixup_fn is not None: mixup_fn.mixup_enabled = False second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order has_no_sync = hasattr(model, "no_sync") update_time_m = utils.AverageMeter() data_time_m = utils.AverageMeter() losses_m = utils.AverageMeter() model.train() accum_steps = args.grad_accum_steps last_accum_steps = len(loader) % accum_steps updates_per_epoch = (len(loader) + accum_steps - 1) // accum_steps num_updates = epoch * updates_per_epoch last_batch_idx = len(loader) - 1 last_batch_idx_to_accum = len(loader) - last_accum_steps data_start_time = update_start_time = time.time() optimizer.zero_grad() update_sample_count = 0 for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_batch_idx need_update = last_batch or (batch_idx + 1) % accum_steps == 0 update_idx = batch_idx // accum_steps if batch_idx >= last_batch_idx_to_accum: accum_steps = last_accum_steps if not args.prefetcher: input, target = input.to(device), target.to(device) if mixup_fn is not None: input, target = mixup_fn(input, target) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) # multiply by accum steps to get equivalent for full update data_time_m.update(accum_steps * (time.time() - data_start_time)) def _forward(): with amp_autocast(): output = model(input) loss = loss_fn(output, target) if accum_steps > 1: loss /= accum_steps return loss def _backward(_loss): if loss_scaler is not None: loss_scaler( _loss, optimizer, clip_grad=args.clip_grad, clip_mode=args.clip_mode, parameters=model_parameters(model, exclude_head='agc' in args.clip_mode), create_graph=second_order, need_update=need_update, ) else: _loss.backward(create_graph=second_order) if need_update: if args.clip_grad is not None: utils.dispatch_clip_grad( model_parameters(model, exclude_head='agc' in args.clip_mode), value=args.clip_grad, mode=args.clip_mode, ) optimizer.step() if has_no_sync and not need_update: with model.no_sync(): loss = _forward() _backward(loss) else: loss = _forward() _backward(loss) if not args.distributed: losses_m.update(loss.item() * accum_steps, input.size(0)) update_sample_count += input.size(0) if not need_update: data_start_time = time.time() continue num_updates += 1 optimizer.zero_grad() if model_ema is not None: model_ema.update(model) if args.synchronize_step and device.type == 'cuda': torch.cuda.synchronize() time_now = time.time() update_time_m.update(time.time() - update_start_time) update_start_time = time_now if update_idx % args.log_interval == 0: lrl = [param_group['lr'] for param_group in optimizer.param_groups] lr = sum(lrl) / len(lrl) if args.distributed: reduced_loss = utils.reduce_tensor(loss.data, args.world_size) losses_m.update(reduced_loss.item() * accum_steps, input.size(0)) update_sample_count *= args.world_size if utils.is_primary(args): _logger.info( f'Train: {epoch} [{update_idx:>4d}/{updates_per_epoch} ' f'({100. * update_idx / (updates_per_epoch - 1):>3.0f}%)] ' f'Loss: {losses_m.val:#.3g} ({losses_m.avg:#.3g}) ' f'Time: {update_time_m.val:.3f}s, {update_sample_count / update_time_m.val:>7.2f}/s ' f'({update_time_m.avg:.3f}s, {update_sample_count / update_time_m.avg:>7.2f}/s) ' f'LR: {lr:.3e} ' f'Data: {data_time_m.val:.3f} ({data_time_m.avg:.3f})' ) if args.save_images and output_dir: torchvision.utils.save_image( input, os.path.join(output_dir, 'train-batch-%d.jpg' % batch_idx), padding=0, normalize=True ) if saver is not None and args.recovery_interval and ( (update_idx + 1) % args.recovery_interval == 0): saver.save_recovery(epoch, batch_idx=update_idx) if lr_scheduler is not None: lr_scheduler.step_update(num_updates=num_updates, metric=losses_m.avg) update_sample_count = 0 data_start_time = time.time() # end for if hasattr(optimizer, 'sync_lookahead'): optimizer.sync_lookahead() return OrderedDict([('loss', losses_m.avg)]) def validate( model, loader, loss_fn, args, device=torch.device('cuda'), amp_autocast=suppress, log_suffix='' ): batch_time_m = utils.AverageMeter() losses_m = utils.AverageMeter() top1_m = utils.AverageMeter() top5_m = utils.AverageMeter() model.eval() end = time.time() last_idx = len(loader) - 1 with torch.no_grad(): for batch_idx, (input, target) in enumerate(loader): last_batch = batch_idx == last_idx if not args.prefetcher: input = input.to(device) target = target.to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): output = model(input) if isinstance(output, (tuple, list)): output = output[0] # augmentation reduction reduce_factor = args.tta if reduce_factor > 1: output = output.unfold(0, reduce_factor, reduce_factor).mean(dim=2) target = target[0:target.size(0):reduce_factor] loss = loss_fn(output, target) acc1, acc5 = utils.accuracy(output, target, topk=(1, 5)) if args.distributed: reduced_loss = utils.reduce_tensor(loss.data, args.world_size) acc1 = utils.reduce_tensor(acc1, args.world_size) acc5 = utils.reduce_tensor(acc5, args.world_size) else: reduced_loss = loss.data if device.type == 'cuda': torch.cuda.synchronize() losses_m.update(reduced_loss.item(), input.size(0)) top1_m.update(acc1.item(), output.size(0)) top5_m.update(acc5.item(), output.size(0)) batch_time_m.update(time.time() - end) end = time.time() if utils.is_primary(args) and (last_batch or batch_idx % args.log_interval == 0): log_name = 'Test' + log_suffix _logger.info( f'{log_name}: [{batch_idx:>4d}/{last_idx}] ' f'Time: {batch_time_m.val:.3f} ({batch_time_m.avg:.3f}) ' f'Loss: {losses_m.val:>7.3f} ({losses_m.avg:>6.3f}) ' f'Acc@1: {top1_m.val:>7.3f} ({top1_m.avg:>7.3f}) ' f'Acc@5: {top5_m.val:>7.3f} ({top5_m.avg:>7.3f})' ) metrics = OrderedDict([('loss', losses_m.avg), ('top1', top1_m.avg), ('top5', top5_m.avg)]) return metrics if __name__ == '__main__': main()
0
hf_public_repos
hf_public_repos/pytorch-image-models/validate.py
#!/usr/bin/env python3 """ ImageNet Validation Script This is intended to be a lean and easily modifiable ImageNet validation script for evaluating pretrained models or training checkpoints against ImageNet or similarly organized image datasets. It prioritizes canonical PyTorch, standard Python style, and good performance. Repurpose as you see fit. Hacked together by Ross Wightman (https://github.com/rwightman) """ import argparse import csv import glob import json import logging import os import time from collections import OrderedDict from contextlib import suppress from functools import partial import torch import torch.nn as nn import torch.nn.parallel from timm.data import create_dataset, create_loader, resolve_data_config, RealLabelsImagenet from timm.layers import apply_test_time_pool, set_fast_norm from timm.models import create_model, load_checkpoint, is_model, list_models from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging, set_jit_fuser, \ decay_batch_step, check_batch_size_retry, ParseKwargs try: from apex import amp has_apex = True except ImportError: has_apex = False has_native_amp = False try: if getattr(torch.cuda.amp, 'autocast') is not None: has_native_amp = True except AttributeError: pass try: from functorch.compile import memory_efficient_fusion has_functorch = True except ImportError as e: has_functorch = False has_compile = hasattr(torch, 'compile') _logger = logging.getLogger('validate') parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation') parser.add_argument('data', nargs='?', metavar='DIR', const=None, help='path to dataset (*deprecated*, use --data-dir)') parser.add_argument('--data-dir', metavar='DIR', help='path to dataset (root dir)') parser.add_argument('--dataset', metavar='NAME', default='', help='dataset type + name ("<type>/<name>") (default: ImageFolder or ImageTar if empty)') parser.add_argument('--split', metavar='NAME', default='validation', help='dataset split (default: validation)') parser.add_argument('--dataset-download', action='store_true', default=False, help='Allow download of dataset for torch/ and tfds/ datasets that support it.') parser.add_argument('--model', '-m', metavar='NAME', default='dpn92', help='model architecture (default: dpn92)') parser.add_argument('-j', '--workers', default=4, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('-b', '--batch-size', default=256, type=int, metavar='N', help='mini-batch size (default: 256)') parser.add_argument('--img-size', default=None, type=int, metavar='N', help='Input image dimension, uses model default if empty') parser.add_argument('--in-chans', type=int, default=None, metavar='N', help='Image input channels (default: None => 3)') parser.add_argument('--input-size', default=None, nargs=3, type=int, metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') parser.add_argument('--use-train-size', action='store_true', default=False, help='force use of train input size, even when test size is specified in pretrained cfg') parser.add_argument('--crop-pct', default=None, type=float, metavar='N', help='Input image center crop pct') parser.add_argument('--crop-mode', default=None, type=str, metavar='N', help='Input image crop mode (squash, border, center). Model default if None.') parser.add_argument('--mean', type=float, nargs='+', default=None, metavar='MEAN', help='Override mean pixel value of dataset') parser.add_argument('--std', type=float, nargs='+', default=None, metavar='STD', help='Override std deviation of of dataset') parser.add_argument('--interpolation', default='', type=str, metavar='NAME', help='Image resize interpolation type (overrides model)') parser.add_argument('--num-classes', type=int, default=None, help='Number classes in dataset') parser.add_argument('--class-map', default='', type=str, metavar='FILENAME', help='path to class to idx mapping file (default: "")') parser.add_argument('--gp', default=None, type=str, metavar='POOL', help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') parser.add_argument('--log-freq', default=10, type=int, metavar='N', help='batch logging frequency (default: 10)') parser.add_argument('--checkpoint', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--num-gpu', type=int, default=1, help='Number of GPUS to use') parser.add_argument('--test-pool', dest='test_pool', action='store_true', help='enable test time pool') parser.add_argument('--no-prefetcher', action='store_true', default=False, help='disable fast prefetcher') parser.add_argument('--pin-mem', action='store_true', default=False, help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--channels-last', action='store_true', default=False, help='Use channels_last memory layout') parser.add_argument('--device', default='cuda', type=str, help="Device (accelerator) to use.") parser.add_argument('--amp', action='store_true', default=False, help='use NVIDIA Apex AMP or Native AMP for mixed precision training') parser.add_argument('--amp-dtype', default='float16', type=str, help='lower precision AMP dtype (default: float16)') parser.add_argument('--amp-impl', default='native', type=str, help='AMP impl to use, "native" or "apex" (default: native)') parser.add_argument('--tf-preprocessing', action='store_true', default=False, help='Use Tensorflow preprocessing pipeline (require CPU TF installed') parser.add_argument('--use-ema', dest='use_ema', action='store_true', help='use ema version of weights if present') parser.add_argument('--fuser', default='', type=str, help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") parser.add_argument('--fast-norm', default=False, action='store_true', help='enable experimental fast-norm') parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) scripting_group = parser.add_mutually_exclusive_group() scripting_group.add_argument('--torchscript', default=False, action='store_true', help='torch.jit.script the full model') scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', help="Enable compilation w/ specified backend (default: inductor).") scripting_group.add_argument('--aot-autograd', default=False, action='store_true', help="Enable AOT Autograd support.") parser.add_argument('--results-file', default='', type=str, metavar='FILENAME', help='Output csv file for validation results (summary)') parser.add_argument('--results-format', default='csv', type=str, help='Format for results file one of (csv, json) (default: csv).') parser.add_argument('--real-labels', default='', type=str, metavar='FILENAME', help='Real labels JSON file for imagenet evaluation') parser.add_argument('--valid-labels', default='', type=str, metavar='FILENAME', help='Valid label indices txt file for validation of partial label space') parser.add_argument('--retry', default=False, action='store_true', help='Enable batch size decay & retry for single model validation') def validate(args): # might as well try to validate something args.pretrained = args.pretrained or not args.checkpoint args.prefetcher = not args.no_prefetcher if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.benchmark = True device = torch.device(args.device) # resolve AMP arguments based on PyTorch / Apex availability use_amp = None amp_autocast = suppress if args.amp: if args.amp_impl == 'apex': assert has_apex, 'AMP impl specified as APEX but APEX is not installed.' assert args.amp_dtype == 'float16' use_amp = 'apex' _logger.info('Validating in mixed precision with NVIDIA APEX AMP.') else: assert has_native_amp, 'Please update PyTorch to a version with native AMP (or use APEX).' assert args.amp_dtype in ('float16', 'bfloat16') use_amp = 'native' amp_dtype = torch.bfloat16 if args.amp_dtype == 'bfloat16' else torch.float16 amp_autocast = partial(torch.autocast, device_type=device.type, dtype=amp_dtype) _logger.info('Validating in mixed precision with native PyTorch AMP.') else: _logger.info('Validating in float32. AMP not enabled.') if args.fuser: set_jit_fuser(args.fuser) if args.fast_norm: set_fast_norm() # create model in_chans = 3 if args.in_chans is not None: in_chans = args.in_chans elif args.input_size is not None: in_chans = args.input_size[0] model = create_model( args.model, pretrained=args.pretrained, num_classes=args.num_classes, in_chans=in_chans, global_pool=args.gp, scriptable=args.torchscript, **args.model_kwargs, ) if args.num_classes is None: assert hasattr(model, 'num_classes'), 'Model must have `num_classes` attr if not set on cmd line/config.' args.num_classes = model.num_classes if args.checkpoint: load_checkpoint(model, args.checkpoint, args.use_ema) param_count = sum([m.numel() for m in model.parameters()]) _logger.info('Model %s created, param count: %d' % (args.model, param_count)) data_config = resolve_data_config( vars(args), model=model, use_test_size=not args.use_train_size, verbose=True, ) test_time_pool = False if args.test_pool: model, test_time_pool = apply_test_time_pool(model, data_config) model = model.to(device) if args.channels_last: model = model.to(memory_format=torch.channels_last) if args.torchscript: assert not use_amp == 'apex', 'Cannot use APEX AMP with torchscripted model' model = torch.jit.script(model) elif args.torchcompile: assert has_compile, 'A version of torch w/ torch.compile() is required for --compile, possibly a nightly.' torch._dynamo.reset() model = torch.compile(model, backend=args.torchcompile) elif args.aot_autograd: assert has_functorch, "functorch is needed for --aot-autograd" model = memory_efficient_fusion(model) if use_amp == 'apex': model = amp.initialize(model, opt_level='O1') if args.num_gpu > 1: model = torch.nn.DataParallel(model, device_ids=list(range(args.num_gpu))) criterion = nn.CrossEntropyLoss().to(device) root_dir = args.data or args.data_dir dataset = create_dataset( root=root_dir, name=args.dataset, split=args.split, download=args.dataset_download, load_bytes=args.tf_preprocessing, class_map=args.class_map, ) if args.valid_labels: with open(args.valid_labels, 'r') as f: valid_labels = [int(line.rstrip()) for line in f] else: valid_labels = None if args.real_labels: real_labels = RealLabelsImagenet(dataset.filenames(basename=True), real_json=args.real_labels) else: real_labels = None crop_pct = 1.0 if test_time_pool else data_config['crop_pct'] loader = create_loader( dataset, input_size=data_config['input_size'], batch_size=args.batch_size, use_prefetcher=args.prefetcher, interpolation=data_config['interpolation'], mean=data_config['mean'], std=data_config['std'], num_workers=args.workers, crop_pct=crop_pct, crop_mode=data_config['crop_mode'], pin_memory=args.pin_mem, device=device, tf_preprocessing=args.tf_preprocessing, ) batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() model.eval() with torch.no_grad(): # warmup, reduce variability of first batch time, especially for comparing torchscript vs non input = torch.randn((args.batch_size,) + tuple(data_config['input_size'])).to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) with amp_autocast(): model(input) end = time.time() for batch_idx, (input, target) in enumerate(loader): if args.no_prefetcher: target = target.to(device) input = input.to(device) if args.channels_last: input = input.contiguous(memory_format=torch.channels_last) # compute output with amp_autocast(): output = model(input) if valid_labels is not None: output = output[:, valid_labels] loss = criterion(output, target) if real_labels is not None: real_labels.add_result(output) # measure accuracy and record loss acc1, acc5 = accuracy(output.detach(), target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1.item(), input.size(0)) top5.update(acc5.item(), input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if batch_idx % args.log_freq == 0: _logger.info( 'Test: [{0:>4d}/{1}] ' 'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) ' 'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) ' 'Acc@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) ' 'Acc@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format( batch_idx, len(loader), batch_time=batch_time, rate_avg=input.size(0) / batch_time.avg, loss=losses, top1=top1, top5=top5 ) ) if real_labels is not None: # real labels mode replaces topk values at the end top1a, top5a = real_labels.get_accuracy(k=1), real_labels.get_accuracy(k=5) else: top1a, top5a = top1.avg, top5.avg results = OrderedDict( model=args.model, top1=round(top1a, 4), top1_err=round(100 - top1a, 4), top5=round(top5a, 4), top5_err=round(100 - top5a, 4), param_count=round(param_count / 1e6, 2), img_size=data_config['input_size'][-1], crop_pct=crop_pct, interpolation=data_config['interpolation'], ) _logger.info(' * Acc@1 {:.3f} ({:.3f}) Acc@5 {:.3f} ({:.3f})'.format( results['top1'], results['top1_err'], results['top5'], results['top5_err'])) return results def _try_run(args, initial_batch_size): batch_size = initial_batch_size results = OrderedDict() error_str = 'Unknown' while batch_size: args.batch_size = batch_size * args.num_gpu # multiply by num-gpu for DataParallel case try: if torch.cuda.is_available() and 'cuda' in args.device: torch.cuda.empty_cache() results = validate(args) return results except RuntimeError as e: error_str = str(e) _logger.error(f'"{error_str}" while running validation.') if not check_batch_size_retry(error_str): break batch_size = decay_batch_step(batch_size) _logger.warning(f'Reducing batch size to {batch_size} for retry.') results['error'] = error_str _logger.error(f'{args.model} failed to validate ({error_str}).') return results _NON_IN1K_FILTERS = ['*_in21k', '*_in22k', '*in12k', '*_dino', '*fcmae', '*seer'] def main(): setup_default_logging() args = parser.parse_args() model_cfgs = [] model_names = [] if os.path.isdir(args.checkpoint): # validate all checkpoints in a path with same model checkpoints = glob.glob(args.checkpoint + '/*.pth.tar') checkpoints += glob.glob(args.checkpoint + '/*.pth') model_names = list_models(args.model) model_cfgs = [(args.model, c) for c in sorted(checkpoints, key=natural_key)] else: if args.model == 'all': # validate all models in a list of names with pretrained checkpoints args.pretrained = True model_names = list_models( pretrained=True, exclude_filters=_NON_IN1K_FILTERS, ) model_cfgs = [(n, '') for n in model_names] elif not is_model(args.model): # model name doesn't exist, try as wildcard filter model_names = list_models( args.model, pretrained=True, ) model_cfgs = [(n, '') for n in model_names] if not model_cfgs and os.path.isfile(args.model): with open(args.model) as f: model_names = [line.rstrip() for line in f] model_cfgs = [(n, None) for n in model_names if n] if len(model_cfgs): _logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) results = [] try: initial_batch_size = args.batch_size for m, c in model_cfgs: args.model = m args.checkpoint = c r = _try_run(args, initial_batch_size) if 'error' in r: continue if args.checkpoint: r['checkpoint'] = args.checkpoint results.append(r) except KeyboardInterrupt as e: pass results = sorted(results, key=lambda x: x['top1'], reverse=True) else: if args.retry: results = _try_run(args, args.batch_size) else: results = validate(args) if args.results_file: write_results(args.results_file, results, format=args.results_format) # output results in JSON to stdout w/ delimiter for runner script print(f'--result\n{json.dumps(results, indent=4)}') def write_results(results_file, results, format='csv'): with open(results_file, mode='w') as cf: if format == 'json': json.dump(results, cf, indent=4) else: if not isinstance(results, (list, tuple)): results = [results] if not results: return dw = csv.DictWriter(cf, fieldnames=results[0].keys()) dw.writeheader() for r in results: dw.writerow(r) cf.flush() if __name__ == '__main__': main()
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/convert/convert_from_mxnet.py
import argparse import hashlib import os import mxnet as mx import gluoncv import torch from timm import create_model parser = argparse.ArgumentParser(description='Convert from MXNet') parser.add_argument('--model', default='all', type=str, metavar='MODEL', help='Name of model to train (default: "all"') def convert(mxnet_name, torch_name): # download and load the pre-trained model net = gluoncv.model_zoo.get_model(mxnet_name, pretrained=True) # create corresponding torch model torch_net = create_model(torch_name) mxp = [(k, v) for k, v in net.collect_params().items() if 'running' not in k] torchp = list(torch_net.named_parameters()) torch_params = {} # convert parameters # NOTE: we are relying on the fact that the order of parameters # are usually exactly the same between these models, thus no key name mapping # is necessary. Asserts will trip if this is not the case. for (tn, tv), (mn, mv) in zip(torchp, mxp): m_split = mn.split('_') t_split = tn.split('.') print(t_split, m_split) print(tv.shape, mv.shape) # ensure ordering of BN params match since their sizes are not specific if m_split[-1] == 'gamma': assert t_split[-1] == 'weight' if m_split[-1] == 'beta': assert t_split[-1] == 'bias' # ensure shapes match assert all(t == m for t, m in zip(tv.shape, mv.shape)) torch_tensor = torch.from_numpy(mv.data().asnumpy()) torch_params[tn] = torch_tensor # convert buffers (batch norm running stats) mxb = [(k, v) for k, v in net.collect_params().items() if any(x in k for x in ['running_mean', 'running_var'])] torchb = [(k, v) for k, v in torch_net.named_buffers() if 'num_batches' not in k] for (tn, tv), (mn, mv) in zip(torchb, mxb): print(tn, mn) print(tv.shape, mv.shape) # ensure ordering of BN params match since their sizes are not specific if 'running_var' in tn: assert 'running_var' in mn if 'running_mean' in tn: assert 'running_mean' in mn torch_tensor = torch.from_numpy(mv.data().asnumpy()) torch_params[tn] = torch_tensor torch_net.load_state_dict(torch_params) torch_filename = './%s.pth' % torch_name torch.save(torch_net.state_dict(), torch_filename) with open(torch_filename, 'rb') as f: sha_hash = hashlib.sha256(f.read()).hexdigest() final_filename = os.path.splitext(torch_filename)[0] + '-' + sha_hash[:8] + '.pth' os.rename(torch_filename, final_filename) print("=> Saved converted model to '{}, SHA256: {}'".format(final_filename, sha_hash)) def map_mx_to_torch_model(mx_name): torch_name = mx_name.lower() if torch_name.startswith('se_'): torch_name = torch_name.replace('se_', 'se') elif torch_name.startswith('senet_'): torch_name = torch_name.replace('senet_', 'senet') elif torch_name.startswith('inceptionv3'): torch_name = torch_name.replace('inceptionv3', 'inception_v3') torch_name = 'gluon_' + torch_name return torch_name ALL = ['resnet18_v1b', 'resnet34_v1b', 'resnet50_v1b', 'resnet101_v1b', 'resnet152_v1b', 'resnet50_v1c', 'resnet101_v1c', 'resnet152_v1c', 'resnet50_v1d', 'resnet101_v1d', 'resnet152_v1d', #'resnet50_v1e', 'resnet101_v1e', 'resnet152_v1e', 'resnet50_v1s', 'resnet101_v1s', 'resnet152_v1s', 'resnext50_32x4d', 'resnext101_32x4d', 'resnext101_64x4d', 'se_resnext50_32x4d', 'se_resnext101_32x4d', 'se_resnext101_64x4d', 'senet_154', 'inceptionv3'] def main(): args = parser.parse_args() if not args.model or args.model == 'all': for mx_model in ALL: torch_model = map_mx_to_torch_model(mx_model) convert(mx_model, torch_model) else: mx_model = args.model torch_model = map_mx_to_torch_model(mx_model) convert(mx_model, torch_model) if __name__ == '__main__': main()
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/convert/convert_nest_flax.py
""" Convert weights from https://github.com/google-research/nested-transformer NOTE: You'll need https://github.com/google/CommonLoopUtils, not included in requirements.txt """ import sys import numpy as np import torch from clu import checkpoint arch_depths = { 'nest_base': [2, 2, 20], 'nest_small': [2, 2, 20], 'nest_tiny': [2, 2, 8], } def convert_nest(checkpoint_path, arch): """ Expects path to checkpoint which is a dir containing 4 files like in each of these folders - https://console.cloud.google.com/storage/browser/gresearch/nest-checkpoints `arch` is needed to Returns a state dict that can be used with `torch.nn.Module.load_state_dict` Hint: Follow timm.models.nest.Nest.__init__ and https://github.com/google-research/nested-transformer/blob/main/models/nest_net.py """ assert arch in ['nest_base', 'nest_small', 'nest_tiny'], "Your `arch` is not supported" flax_dict = checkpoint.load_state_dict(checkpoint_path)['optimizer']['target'] state_dict = {} # Patch embedding state_dict['patch_embed.proj.weight'] = torch.tensor( flax_dict['PatchEmbedding_0']['Conv_0']['kernel']).permute(3, 2, 0, 1) state_dict['patch_embed.proj.bias'] = torch.tensor(flax_dict['PatchEmbedding_0']['Conv_0']['bias']) # Positional embeddings posemb_keys = [k for k in flax_dict.keys() if k.startswith('PositionEmbedding')] for i, k in enumerate(posemb_keys): state_dict[f'levels.{i}.pos_embed'] = torch.tensor(flax_dict[k]['pos_embedding']) # Transformer encoders depths = arch_depths[arch] for level in range(len(depths)): for layer in range(depths[level]): global_layer_ix = sum(depths[:level]) + layer # Norms for i in range(2): state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.weight'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['scale']) state_dict[f'levels.{level}.transformer_encoder.{layer}.norm{i+1}.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}'][f'LayerNorm_{i}']['bias']) # Attention qkv w_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['kernel'] w_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['kernel'] # Pay attention to dims here (maybe get pen and paper) w_kv = np.concatenate(np.split(w_kv, 2, -1), 1) w_qkv = np.concatenate([w_q, w_kv], 1) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.weight'] = torch.tensor(w_qkv).flatten(1).permute(1,0) b_q = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_0']['bias'] b_kv = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['DenseGeneral_1']['bias'] # Pay attention to dims here (maybe get pen and paper) b_kv = np.concatenate(np.split(b_kv, 2, -1), 0) b_qkv = np.concatenate([b_q, b_kv], 0) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.qkv.bias'] = torch.tensor(b_qkv).reshape(-1) # Attention proj w_proj = flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['proj_kernel'] w_proj = torch.tensor(w_proj).permute(2, 1, 0).flatten(1) state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.weight'] = w_proj state_dict[f'levels.{level}.transformer_encoder.{layer}.attn.proj.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MultiHeadAttention_0']['bias']) # MLP for i in range(2): state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.weight'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['kernel']).permute(1, 0) state_dict[f'levels.{level}.transformer_encoder.{layer}.mlp.fc{i+1}.bias'] = torch.tensor( flax_dict[f'EncoderNDBlock_{global_layer_ix}']['MlpBlock_0'][f'Dense_{i}']['bias']) # Block aggregations (ConvPool) for level in range(1, len(depths)): # Convs state_dict[f'levels.{level}.pool.conv.weight'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['Conv_0']['kernel']).permute(3, 2, 0, 1) state_dict[f'levels.{level}.pool.conv.bias'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['Conv_0']['bias']) # Norms state_dict[f'levels.{level}.pool.norm.weight'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['scale']) state_dict[f'levels.{level}.pool.norm.bias'] = torch.tensor( flax_dict[f'ConvPool_{level-1}']['LayerNorm_0']['bias']) # Final norm state_dict[f'norm.weight'] = torch.tensor(flax_dict['LayerNorm_0']['scale']) state_dict[f'norm.bias'] = torch.tensor(flax_dict['LayerNorm_0']['bias']) # Classifier state_dict['head.weight'] = torch.tensor(flax_dict['Dense_0']['kernel']).permute(1, 0) state_dict['head.bias'] = torch.tensor(flax_dict['Dense_0']['bias']) return state_dict if __name__ == '__main__': variant = sys.argv[1] # base, small, or tiny state_dict = convert_nest(f'./nest-{variant[0]}_imagenet', f'nest_{variant}') torch.save(state_dict, f'./jx_nest_{variant}.pth')
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/archived_changes.md
# Archived Changes ### Nov 22, 2021 * A number of updated weights anew new model defs * `eca_halonext26ts` - 79.5 @ 256 * `resnet50_gn` (new) - 80.1 @ 224, 81.3 @ 288 * `resnet50` - 80.7 @ 224, 80.9 @ 288 (trained at 176, not replacing current a1 weights as default since these don't scale as well to higher res, [weights](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1h2_176-001a1197.pth)) * `resnext50_32x4d` - 81.1 @ 224, 82.0 @ 288 * `sebotnet33ts_256` (new) - 81.2 @ 224 * `lamhalobotnet50ts_256` - 81.5 @ 256 * `halonet50ts` - 81.7 @ 256 * `halo2botnet50ts_256` - 82.0 @ 256 * `resnet101` - 82.0 @ 224, 82.8 @ 288 * `resnetv2_101` (new) - 82.1 @ 224, 83.0 @ 288 * `resnet152` - 82.8 @ 224, 83.5 @ 288 * `regnetz_d8` (new) - 83.5 @ 256, 84.0 @ 320 * `regnetz_e8` (new) - 84.5 @ 256, 85.0 @ 320 * `vit_base_patch8_224` (85.8 top-1) & `in21k` variant weights added thanks [Martins Bruveris](https://github.com/martinsbruveris) * Groundwork in for FX feature extraction thanks to [Alexander Soare](https://github.com/alexander-soare) * models updated for tracing compatibility (almost full support with some distlled transformer exceptions) ### Oct 19, 2021 * ResNet strikes back (https://arxiv.org/abs/2110.00476) weights added, plus any extra training components used. Model weights and some more details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-rsb-weights) * BCE loss and Repeated Augmentation support for RSB paper * 4 series of ResNet based attention model experiments being added (implemented across byobnet.py/byoanet.py). These include all sorts of attention, from channel attn like SE, ECA to 2D QKV self-attention layers such as Halo, Bottlneck, Lambda. Details here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights) * Working implementations of the following 2D self-attention modules (likely to be differences from paper or eventual official impl): * Halo (https://arxiv.org/abs/2103.12731) * Bottleneck Transformer (https://arxiv.org/abs/2101.11605) * LambdaNetworks (https://arxiv.org/abs/2102.08602) * A RegNetZ series of models with some attention experiments (being added to). These do not follow the paper (https://arxiv.org/abs/2103.06877) in any way other than block architecture, details of official models are not available. See more here (https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-attn-weights) * ConvMixer (https://openreview.net/forum?id=TVHS5Y4dNvM), CrossVit (https://arxiv.org/abs/2103.14899), and BeiT (https://arxiv.org/abs/2106.08254) architectures + weights added * freeze/unfreeze helpers by [Alexander Soare](https://github.com/alexander-soare) ### Aug 18, 2021 * Optimizer bonanza! * Add LAMB and LARS optimizers, incl trust ratio clipping options. Tweaked to work properly in PyTorch XLA (tested on TPUs w/ `timm bits` [branch](https://github.com/rwightman/pytorch-image-models/tree/bits_and_tpu/timm/bits)) * Add MADGRAD from FB research w/ a few tweaks (decoupled decay option, step handling that works with PyTorch XLA) * Some cleanup on all optimizers and factory. No more `.data`, a bit more consistency, unit tests for all! * SGDP and AdamP still won't work with PyTorch XLA but others should (have yet to test Adabelief, Adafactor, Adahessian myself). * EfficientNet-V2 XL TF ported weights added, but they don't validate well in PyTorch (L is better). The pre-processing for the V2 TF training is a bit diff and the fine-tuned 21k -> 1k weights are very sensitive and less robust than the 1k weights. * Added PyTorch trained EfficientNet-V2 'Tiny' w/ GlobalContext attn weights. Only .1-.2 top-1 better than the SE so more of a curiosity for those interested. ### July 12, 2021 * Add XCiT models from [official facebook impl](https://github.com/facebookresearch/xcit). Contributed by [Alexander Soare](https://github.com/alexander-soare) ### July 5-9, 2021 * Add `efficientnetv2_rw_t` weights, a custom 'tiny' 13.6M param variant that is a bit better than (non NoisyStudent) B3 models. Both faster and better accuracy (at same or lower res) * top-1 82.34 @ 288x288 and 82.54 @ 320x320 * Add [SAM pretrained](https://arxiv.org/abs/2106.01548) in1k weight for ViT B/16 (`vit_base_patch16_sam_224`) and B/32 (`vit_base_patch32_sam_224`) models. * Add 'Aggregating Nested Transformer' (NesT) w/ weights converted from official [Flax impl](https://github.com/google-research/nested-transformer). Contributed by [Alexander Soare](https://github.com/alexander-soare). * `jx_nest_base` - 83.534, `jx_nest_small` - 83.120, `jx_nest_tiny` - 81.426 ### June 23, 2021 * Reproduce gMLP model training, `gmlp_s16_224` trained to 79.6 top-1, matching [paper](https://arxiv.org/abs/2105.08050). Hparams for this and other recent MLP training [here](https://gist.github.com/rwightman/d6c264a9001f9167e06c209f630b2cc6) ### June 20, 2021 * Release Vision Transformer 'AugReg' weights from [How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers](https://arxiv.org/abs/2106.10270) * .npz weight loading support added, can load any of the 50K+ weights from the [AugReg series](https://console.cloud.google.com/storage/browser/vit_models/augreg) * See [example notebook](https://colab.research.google.com/github/google-research/vision_transformer/blob/master/vit_jax_augreg.ipynb) from [official impl](https://github.com/google-research/vision_transformer/) for navigating the augreg weights * Replaced all default weights w/ best AugReg variant (if possible). All AugReg 21k classifiers work. * Highlights: `vit_large_patch16_384` (87.1 top-1), `vit_large_r50_s32_384` (86.2 top-1), `vit_base_patch16_384` (86.0 top-1) * `vit_deit_*` renamed to just `deit_*` * Remove my old small model, replace with DeiT compatible small w/ AugReg weights * Add 1st training of my `gmixer_24_224` MLP /w GLU, 78.1 top-1 w/ 25M params. * Add weights from official ResMLP release (https://github.com/facebookresearch/deit) * Add `eca_nfnet_l2` weights from my 'lightweight' series. 84.7 top-1 at 384x384. * Add distilled BiT 50x1 student and 152x2 Teacher weights from [Knowledge distillation: A good teacher is patient and consistent](https://arxiv.org/abs/2106.05237) * NFNets and ResNetV2-BiT models work w/ Pytorch XLA now * weight standardization uses F.batch_norm instead of std_mean (std_mean wasn't lowered) * eps values adjusted, will be slight differences but should be quite close * Improve test coverage and classifier interface of non-conv (vision transformer and mlp) models * Cleanup a few classifier / flatten details for models w/ conv classifiers or early global pool * Please report any regressions, this PR touched quite a few models. ### June 8, 2021 * Add first ResMLP weights, trained in PyTorch XLA on TPU-VM w/ my XLA branch. 24 block variant, 79.2 top-1. * Add ResNet51-Q model w/ pretrained weights at 82.36 top-1. * NFNet inspired block layout with quad layer stem and no maxpool * Same param count (35.7M) and throughput as ResNetRS-50 but +1.5 top-1 @ 224x224 and +2.5 top-1 at 288x288 ### May 25, 2021 * Add LeViT, Visformer, Convit (PR by Aman Arora), Twins (PR by paper authors) transformer models * Cleanup input_size/img_size override handling and testing for all vision transformer models * Add `efficientnetv2_rw_m` model and weights (started training before official code). 84.8 top-1, 53M params. ### May 14, 2021 * Add EfficientNet-V2 official model defs w/ ported weights from official [Tensorflow/Keras](https://github.com/google/automl/tree/master/efficientnetv2) impl. * 1k trained variants: `tf_efficientnetv2_s/m/l` * 21k trained variants: `tf_efficientnetv2_s/m/l_in21k` * 21k pretrained -> 1k fine-tuned: `tf_efficientnetv2_s/m/l_in21ft1k` * v2 models w/ v1 scaling: `tf_efficientnetv2_b0` through `b3` * Rename my prev V2 guess `efficientnet_v2s` -> `efficientnetv2_rw_s` * Some blank `efficientnetv2_*` models in-place for future native PyTorch training ### May 5, 2021 * Add MLP-Mixer models and port pretrained weights from [Google JAX impl](https://github.com/google-research/vision_transformer/tree/linen) * Add CaiT models and pretrained weights from [FB](https://github.com/facebookresearch/deit) * Add ResNet-RS models and weights from [TF](https://github.com/tensorflow/tpu/tree/master/models/official/resnet/resnet_rs). Thanks [Aman Arora](https://github.com/amaarora) * Add CoaT models and weights. Thanks [Mohammed Rizin](https://github.com/morizin) * Add new ImageNet-21k weights & finetuned weights for TResNet, MobileNet-V3, ViT models. Thanks [mrT](https://github.com/mrT23) * Add GhostNet models and weights. Thanks [Kai Han](https://github.com/iamhankai) * Update ByoaNet attention modles * Improve SA module inits * Hack together experimental stand-alone Swin based attn module and `swinnet` * Consistent '26t' model defs for experiments. * Add improved Efficientnet-V2S (prelim model def) weights. 83.8 top-1. * WandB logging support ### April 13, 2021 * Add Swin Transformer models and weights from https://github.com/microsoft/Swin-Transformer ### April 12, 2021 * Add ECA-NFNet-L1 (slimmed down F1 w/ SiLU, 41M params) trained with this code. 84% top-1 @ 320x320. Trained at 256x256. * Add EfficientNet-V2S model (unverified model definition) weights. 83.3 top-1 @ 288x288. Only trained single res 224. Working on progressive training. * Add ByoaNet model definition (Bring-your-own-attention) w/ SelfAttention block and corresponding SA/SA-like modules and model defs * Lambda Networks - https://arxiv.org/abs/2102.08602 * Bottleneck Transformers - https://arxiv.org/abs/2101.11605 * Halo Nets - https://arxiv.org/abs/2103.12731 * Adabelief optimizer contributed by Juntang Zhuang ### April 1, 2021 * Add snazzy `benchmark.py` script for bulk `timm` model benchmarking of train and/or inference * Add Pooling-based Vision Transformer (PiT) models (from https://github.com/naver-ai/pit) * Merged distilled variant into main for torchscript compatibility * Some `timm` cleanup/style tweaks and weights have hub download support * Cleanup Vision Transformer (ViT) models * Merge distilled (DeiT) model into main so that torchscript can work * Support updated weight init (defaults to old still) that closer matches original JAX impl (possibly better training from scratch) * Separate hybrid model defs into different file and add several new model defs to fiddle with, support patch_size != 1 for hybrids * Fix fine-tuning num_class changes (PiT and ViT) and pos_embed resizing (Vit) with distilled variants * nn.Sequential for block stack (does not break downstream compat) * TnT (Transformer-in-Transformer) models contributed by author (from https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/TNT) * Add RegNetY-160 weights from DeiT teacher model * Add new NFNet-L0 w/ SE attn (rename `nfnet_l0b`->`nfnet_l0`) weights 82.75 top-1 @ 288x288 * Some fixes/improvements for TFDS dataset wrapper ### March 7, 2021 * First 0.4.x PyPi release w/ NFNets (& related), ByoB (GPU-Efficient, RepVGG, etc). * Change feature extraction for pre-activation nets (NFNets, ResNetV2) to return features before activation. ### Feb 18, 2021 * Add pretrained weights and model variants for NFNet-F* models from [DeepMind Haiku impl](https://github.com/deepmind/deepmind-research/tree/master/nfnets). * Models are prefixed with `dm_`. They require SAME padding conv, skipinit enabled, and activation gains applied in act fn. * These models are big, expect to run out of GPU memory. With the GELU activiation + other options, they are roughly 1/2 the inference speed of my SiLU PyTorch optimized `s` variants. * Original model results are based on pre-processing that is not the same as all other models so you'll see different results in the results csv (once updated). * Matching the original pre-processing as closely as possible I get these results: * `dm_nfnet_f6` - 86.352 * `dm_nfnet_f5` - 86.100 * `dm_nfnet_f4` - 85.834 * `dm_nfnet_f3` - 85.676 * `dm_nfnet_f2` - 85.178 * `dm_nfnet_f1` - 84.696 * `dm_nfnet_f0` - 83.464 ### Feb 16, 2021 * Add Adaptive Gradient Clipping (AGC) as per https://arxiv.org/abs/2102.06171. Integrated w/ PyTorch gradient clipping via mode arg that defaults to prev 'norm' mode. For backward arg compat, clip-grad arg must be specified to enable when using train.py. * AGC w/ default clipping factor `--clip-grad .01 --clip-mode agc` * PyTorch global norm of 1.0 (old behaviour, always norm), `--clip-grad 1.0` * PyTorch value clipping of 10, `--clip-grad 10. --clip-mode value` * AGC performance is definitely sensitive to the clipping factor. More experimentation needed to determine good values for smaller batch sizes and optimizers besides those in paper. So far I've found .001-.005 is necessary for stable RMSProp training w/ NFNet/NF-ResNet. ### Feb 12, 2021 * Update Normalization-Free nets to include new NFNet-F (https://arxiv.org/abs/2102.06171) model defs ### Feb 10, 2021 * More model archs, incl a flexible ByobNet backbone ('Bring-your-own-blocks') * GPU-Efficient-Networks (https://github.com/idstcv/GPU-Efficient-Networks), impl in `byobnet.py` * RepVGG (https://github.com/DingXiaoH/RepVGG), impl in `byobnet.py` * classic VGG (from torchvision, impl in `vgg`) * Refinements to normalizer layer arg handling and normalizer+act layer handling in some models * Default AMP mode changed to native PyTorch AMP instead of APEX. Issues not being fixed with APEX. Native works with `--channels-last` and `--torchscript` model training, APEX does not. * Fix a few bugs introduced since last pypi release ### Feb 8, 2021 * Add several ResNet weights with ECA attention. 26t & 50t trained @ 256, test @ 320. 269d train @ 256, fine-tune @320, test @ 352. * `ecaresnet26t` - 79.88 top-1 @ 320x320, 79.08 @ 256x256 * `ecaresnet50t` - 82.35 top-1 @ 320x320, 81.52 @ 256x256 * `ecaresnet269d` - 84.93 top-1 @ 352x352, 84.87 @ 320x320 * Remove separate tiered (`t`) vs tiered_narrow (`tn`) ResNet model defs, all `tn` changed to `t` and `t` models removed (`seresnext26t_32x4d` only model w/ weights that was removed). * Support model default_cfgs with separate train vs test resolution `test_input_size` and remove extra `_320` suffix ResNet model defs that were just for test. ### Jan 30, 2021 * Add initial "Normalization Free" NF-RegNet-B* and NF-ResNet model definitions based on [paper](https://arxiv.org/abs/2101.08692) ### Jan 25, 2021 * Add ResNetV2 Big Transfer (BiT) models w/ ImageNet-1k and 21k weights from https://github.com/google-research/big_transfer * Add official R50+ViT-B/16 hybrid models + weights from https://github.com/google-research/vision_transformer * ImageNet-21k ViT weights are added w/ model defs and representation layer (pre logits) support * NOTE: ImageNet-21k classifier heads were zero'd in original weights, they are only useful for transfer learning * Add model defs and weights for DeiT Vision Transformer models from https://github.com/facebookresearch/deit * Refactor dataset classes into ImageDataset/IterableImageDataset + dataset specific parser classes * Add Tensorflow-Datasets (TFDS) wrapper to allow use of TFDS image classification sets with train script * Ex: `train.py /data/tfds --dataset tfds/oxford_iiit_pet --val-split test --model resnet50 -b 256 --amp --num-classes 37 --opt adamw --lr 3e-4 --weight-decay .001 --pretrained -j 2` * Add improved .tar dataset parser that reads images from .tar, folder of .tar files, or .tar within .tar * Run validation on full ImageNet-21k directly from tar w/ BiT model: `validate.py /data/fall11_whole.tar --model resnetv2_50x1_bitm_in21k --amp` * Models in this update should be stable w/ possible exception of ViT/BiT, possibility of some regressions with train/val scripts and dataset handling ### Jan 3, 2021 * Add SE-ResNet-152D weights * 256x256 val, 0.94 crop top-1 - 83.75 * 320x320 val, 1.0 crop - 84.36 * Update results files ### Dec 18, 2020 * Add ResNet-101D, ResNet-152D, and ResNet-200D weights trained @ 256x256 * 256x256 val, 0.94 crop (top-1) - 101D (82.33), 152D (83.08), 200D (83.25) * 288x288 val, 1.0 crop - 101D (82.64), 152D (83.48), 200D (83.76) * 320x320 val, 1.0 crop - 101D (83.00), 152D (83.66), 200D (84.01) ### Dec 7, 2020 * Simplify EMA module (ModelEmaV2), compatible with fully torchscripted models * Misc fixes for SiLU ONNX export, default_cfg missing from Feature extraction models, Linear layer w/ AMP + torchscript * PyPi release @ 0.3.2 (needed by EfficientDet) ### Oct 30, 2020 * Test with PyTorch 1.7 and fix a small top-n metric view vs reshape issue. * Convert newly added 224x224 Vision Transformer weights from official JAX repo. 81.8 top-1 for B/16, 83.1 L/16. * Support PyTorch 1.7 optimized, native SiLU (aka Swish) activation. Add mapping to 'silu' name, custom swish will eventually be deprecated. * Fix regression for loading pretrained classifier via direct model entrypoint functions. Didn't impact create_model() factory usage. * PyPi release @ 0.3.0 version! ### Oct 26, 2020 * Update Vision Transformer models to be compatible with official code release at https://github.com/google-research/vision_transformer * Add Vision Transformer weights (ImageNet-21k pretrain) for 384x384 base and large models converted from official jax impl * ViT-B/16 - 84.2 * ViT-B/32 - 81.7 * ViT-L/16 - 85.2 * ViT-L/32 - 81.5 ### Oct 21, 2020 * Weights added for Vision Transformer (ViT) models. 77.86 top-1 for 'small' and 79.35 for 'base'. Thanks to [Christof](https://www.kaggle.com/christofhenkel) for training the base model w/ lots of GPUs. ### Oct 13, 2020 * Initial impl of Vision Transformer models. Both patch and hybrid (CNN backbone) variants. Currently trying to train... * Adafactor and AdaHessian (FP32 only, no AMP) optimizers * EdgeTPU-M (`efficientnet_em`) model trained in PyTorch, 79.3 top-1 * Pip release, doc updates pending a few more changes... ### Sept 18, 2020 * New ResNet 'D' weights. 72.7 (top-1) ResNet-18-D, 77.1 ResNet-34-D, 80.5 ResNet-50-D * Added a few untrained defs for other ResNet models (66D, 101D, 152D, 200/200D) ### Sept 3, 2020 * New weights * Wide-ResNet50 - 81.5 top-1 (vs 78.5 torchvision) * SEResNeXt50-32x4d - 81.3 top-1 (vs 79.1 cadene) * Support for native Torch AMP and channels_last memory format added to train/validate scripts (`--channels-last`, `--native-amp` vs `--apex-amp`) * Models tested with channels_last on latest NGC 20.08 container. AdaptiveAvgPool in attn layers changed to mean((2,3)) to work around bug with NHWC kernel. ### Aug 12, 2020 * New/updated weights from training experiments * EfficientNet-B3 - 82.1 top-1 (vs 81.6 for official with AA and 81.9 for AdvProp) * RegNetY-3.2GF - 82.0 top-1 (78.9 from official ver) * CSPResNet50 - 79.6 top-1 (76.6 from official ver) * Add CutMix integrated w/ Mixup. See [pull request](https://github.com/rwightman/pytorch-image-models/pull/218) for some usage examples * Some fixes for using pretrained weights with `in_chans` != 3 on several models. ### Aug 5, 2020 Universal feature extraction, new models, new weights, new test sets. * All models support the `features_only=True` argument for `create_model` call to return a network that extracts feature maps from the deepest layer at each stride. * New models * CSPResNet, CSPResNeXt, CSPDarkNet, DarkNet * ReXNet * (Modified Aligned) Xception41/65/71 (a proper port of TF models) * New trained weights * SEResNet50 - 80.3 top-1 * CSPDarkNet53 - 80.1 top-1 * CSPResNeXt50 - 80.0 top-1 * DPN68b - 79.2 top-1 * EfficientNet-Lite0 (non-TF ver) - 75.5 (submitted by [@hal-314](https://github.com/hal-314)) * Add 'real' labels for ImageNet and ImageNet-Renditions test set, see [`results/README.md`](results/README.md) * Test set ranking/top-n diff script by [@KushajveerSingh](https://github.com/KushajveerSingh) * Train script and loader/transform tweaks to punch through more aug arguments * README and documentation overhaul. See initial (WIP) documentation at https://rwightman.github.io/pytorch-image-models/ * adamp and sgdp optimizers added by [@hellbell](https://github.com/hellbell) ### June 11, 2020 Bunch of changes: * DenseNet models updated with memory efficient addition from torchvision (fixed a bug), blur pooling and deep stem additions * VoVNet V1 and V2 models added, 39 V2 variant (ese_vovnet_39b) trained to 79.3 top-1 * Activation factory added along with new activations: * select act at model creation time for more flexibility in using activations compatible with scripting or tracing (ONNX export) * hard_mish (experimental) added with memory-efficient grad, along with ME hard_swish * context mgr for setting exportable/scriptable/no_jit states * Norm + Activation combo layers added with initial trial support in DenseNet and VoVNet along with impl of EvoNorm and InplaceAbn wrapper that fit the interface * Torchscript works for all but two of the model types as long as using Pytorch 1.5+, tests added for this * Some import cleanup and classifier reset changes, all models will have classifier reset to nn.Identity on reset_classifer(0) call * Prep for 0.1.28 pip release ### May 12, 2020 * Add ResNeSt models (code adapted from https://github.com/zhanghang1989/ResNeSt, paper https://arxiv.org/abs/2004.08955)) ### May 3, 2020 * Pruned EfficientNet B1, B2, and B3 (https://arxiv.org/abs/2002.08258) contributed by [Yonathan Aflalo](https://github.com/yoniaflalo) ### May 1, 2020 * Merged a number of execellent contributions in the ResNet model family over the past month * BlurPool2D and resnetblur models initiated by [Chris Ha](https://github.com/VRandme), I trained resnetblur50 to 79.3. * TResNet models and SpaceToDepth, AntiAliasDownsampleLayer layers by [mrT23](https://github.com/mrT23) * ecaresnet (50d, 101d, light) models and two pruned variants using pruning as per (https://arxiv.org/abs/2002.08258) by [Yonathan Aflalo](https://github.com/yoniaflalo) * 200 pretrained models in total now with updated results csv in results folder ### April 5, 2020 * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite * 3.5M param MobileNet-V2 100 @ 73% * 4.5M param MobileNet-V2 110d @ 75% * 6.1M param MobileNet-V2 140 @ 76.5% * 5.8M param MobileNet-V2 120d @ 77.3% ### March 18, 2020 * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite) * Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### April 5, 2020 * Add some newly trained MobileNet-V2 models trained with latest h-params, rand augment. They compare quite favourably to EfficientNet-Lite * 3.5M param MobileNet-V2 100 @ 73% * 4.5M param MobileNet-V2 110d @ 75% * 6.1M param MobileNet-V2 140 @ 76.5% * 5.8M param MobileNet-V2 120d @ 77.3% ### March 18, 2020 * Add EfficientNet-Lite models w/ weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet/lite) * Add RandAugment trained ResNeXt-50 32x4d weights with 79.8 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### Feb 29, 2020 * New MobileNet-V3 Large weights trained from stratch with this code to 75.77% top-1 * IMPORTANT CHANGE - default weight init changed for all MobilenetV3 / EfficientNet / related models * overall results similar to a bit better training from scratch on a few smaller models tried * performance early in training seems consistently improved but less difference by end * set `fix_group_fanout=False` in `_init_weight_goog` fn if you need to reproducte past behaviour * Experimental LR noise feature added applies a random perturbation to LR each epoch in specified range of training ### Feb 18, 2020 * Big refactor of model layers and addition of several attention mechanisms. Several additions motivated by 'Compounding the Performance Improvements...' (https://arxiv.org/abs/2001.06268): * Move layer/module impl into `layers` subfolder/module of `models` and organize in a more granular fashion * ResNet downsample paths now properly support dilation (output stride != 32) for avg_pool ('D' variant) and 3x3 (SENets) networks * Add Selective Kernel Nets on top of ResNet base, pretrained weights * skresnet18 - 73% top-1 * skresnet34 - 76.9% top-1 * skresnext50_32x4d (equiv to SKNet50) - 80.2% top-1 * ECA and CECA (circular padding) attention layer contributed by [Chris Ha](https://github.com/VRandme) * CBAM attention experiment (not the best results so far, may remove) * Attention factory to allow dynamically selecting one of SE, ECA, CBAM in the `.se` position for all ResNets * Add DropBlock and DropPath (formerly DropConnect for EfficientNet/MobileNetv3) support to all ResNet variants * Full dataset results updated that incl NoisyStudent weights and 2 of the 3 SK weights ### Feb 12, 2020 * Add EfficientNet-L2 and B0-B7 NoisyStudent weights ported from [Tensorflow TPU](https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet) ### Feb 6, 2020 * Add RandAugment trained EfficientNet-ES (EdgeTPU-Small) weights with 78.1 top-1. Trained by [Andrew Lavin](https://github.com/andravin) (see Training section for hparams) ### Feb 1/2, 2020 * Port new EfficientNet-B8 (RandAugment) weights, these are different than the B8 AdvProp, different input normalization. * Update results csv files on all models for ImageNet validation and three other test sets * Push PyPi package update ### Jan 31, 2020 * Update ResNet50 weights with a new 79.038 result from further JSD / AugMix experiments. Full command line for reproduction in training section below. ### Jan 11/12, 2020 * Master may be a bit unstable wrt to training, these changes have been tested but not all combos * Implementations of AugMix added to existing RA and AA. Including numerous supporting pieces like JSD loss (Jensen-Shannon divergence + CE), and AugMixDataset * SplitBatchNorm adaptation layer added for implementing Auxiliary BN as per AdvProp paper * ResNet-50 AugMix trained model w/ 79% top-1 added * `seresnext26tn_32x4d` - 77.99 top-1, 93.75 top-5 added to tiered experiment, higher img/s than 't' and 'd' ### Jan 3, 2020 * Add RandAugment trained EfficientNet-B0 weight with 77.7 top-1. Trained by [Michael Klachko](https://github.com/michaelklachko) with this code and recent hparams (see Training section) * Add `avg_checkpoints.py` script for post training weight averaging and update all scripts with header docstrings and shebangs. ### Dec 30, 2019 * Merge [Dushyant Mehta's](https://github.com/mehtadushy) PR for SelecSLS (Selective Short and Long Range Skip Connections) networks. Good GPU memory consumption and throughput. Original: https://github.com/mehtadushy/SelecSLS-Pytorch ### Dec 28, 2019 * Add new model weights and training hparams (see Training Hparams section) * `efficientnet_b3` - 81.5 top-1, 95.7 top-5 at default res/crop, 81.9, 95.8 at 320x320 1.0 crop-pct * trained with RandAugment, ended up with an interesting but less than perfect result (see training section) * `seresnext26d_32x4d`- 77.6 top-1, 93.6 top-5 * deep stem (32, 32, 64), avgpool downsample * stem/dowsample from bag-of-tricks paper * `seresnext26t_32x4d`- 78.0 top-1, 93.7 top-5 * deep tiered stem (24, 48, 64), avgpool downsample (a modified 'D' variant) * stem sizing mods from Jeremy Howard and fastai devs discussing ResNet architecture experiments ### Dec 23, 2019 * Add RandAugment trained MixNet-XL weights with 80.48 top-1. * `--dist-bn` argument added to train.py, will distribute BN stats between nodes after each train epoch, before eval ### Dec 4, 2019 * Added weights from the first training from scratch of an EfficientNet (B2) with my new RandAugment implementation. Much better than my previous B2 and very close to the official AdvProp ones (80.4 top-1, 95.08 top-5). ### Nov 29, 2019 * Brought EfficientNet and MobileNetV3 up to date with my https://github.com/rwightman/gen-efficientnet-pytorch code. Torchscript and ONNX export compat excluded. * AdvProp weights added * Official TF MobileNetv3 weights added * EfficientNet and MobileNetV3 hook based 'feature extraction' classes added. Will serve as basis for using models as backbones in obj detection/segmentation tasks. Lots more to be done here... * HRNet classification models and weights added from https://github.com/HRNet/HRNet-Image-Classification * Consistency in global pooling, `reset_classifer`, and `forward_features` across models * `forward_features` always returns unpooled feature maps now * Reasonable chance I broke something... let me know ### Nov 22, 2019 * Add ImageNet training RandAugment implementation alongside AutoAugment. PyTorch Transform compatible format, using PIL. Currently training two EfficientNet models from scratch with promising results... will update. * `drop-connect` cmd line arg finally added to `train.py`, no need to hack model fns. Works for efficientnet/mobilenetv3 based models, ignored otherwise.
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/changes.md
# Recent Changes ### Jan 5, 2023 * ConvNeXt-V2 models and weights added to existing `convnext.py` * Paper: [ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders](http://arxiv.org/abs/2301.00808) * Reference impl: https://github.com/facebookresearch/ConvNeXt-V2 (NOTE: weights currently CC-BY-NC) ### Dec 23, 2022 🎄☃ * Add FlexiViT models and weights from https://github.com/google-research/big_vision (check out paper at https://arxiv.org/abs/2212.08013) * NOTE currently resizing is static on model creation, on-the-fly dynamic / train patch size sampling is a WIP * Many more models updated to multi-weight and downloadable via HF hub now (convnext, efficientnet, mobilenet, vision_transformer*, beit) * More model pretrained tag and adjustments, some model names changed (working on deprecation translations, consider main branch DEV branch right now, use 0.6.x for stable use) * More ImageNet-12k (subset of 22k) pretrain models popping up: * `efficientnet_b5.in12k_ft_in1k` - 85.9 @ 448x448 * `vit_medium_patch16_gap_384.in12k_ft_in1k` - 85.5 @ 384x384 * `vit_medium_patch16_gap_256.in12k_ft_in1k` - 84.5 @ 256x256 * `convnext_nano.in12k_ft_in1k` - 82.9 @ 288x288 ### Dec 8, 2022 * Add 'EVA l' to `vision_transformer.py`, MAE style ViT-L/14 MIM pretrain w/ EVA-CLIP targets, FT on ImageNet-1k (w/ ImageNet-22k intermediate for some) * original source: https://github.com/baaivision/EVA | model | top1 | param_count | gmac | macts | hub | |:------------------------------------------|-----:|------------:|------:|------:|:----------------------------------------| | eva_large_patch14_336.in22k_ft_in22k_in1k | 89.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_336.in22k_ft_in1k | 88.7 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in22k_in1k | 88.6 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | | eva_large_patch14_196.in22k_ft_in1k | 87.9 | 304.1 | 61.6 | 63.5 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 6, 2022 * Add 'EVA g', BEiT style ViT-g/14 model weights w/ both MIM pretrain and CLIP pretrain to `beit.py`. * original source: https://github.com/baaivision/EVA * paper: https://arxiv.org/abs/2211.07636 | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------------|-------:|--------------:|-------:|--------:|:----------------------------------------| | eva_giant_patch14_560.m30m_ft_in22k_in1k | 89.8 | 1014.4 | 1906.8 | 2577.2 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.m30m_ft_in22k_in1k | 89.6 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_336.clip_ft_in1k | 89.4 | 1013 | 620.6 | 550.7 | [link](https://huggingface.co/BAAI/EVA) | | eva_giant_patch14_224.clip_ft_in1k | 89.1 | 1012.6 | 267.2 | 192.6 | [link](https://huggingface.co/BAAI/EVA) | ### Dec 5, 2022 * Pre-release (`0.8.0dev0`) of multi-weight support (`model_arch.pretrained_tag`). Install with `pip install --pre timm` * vision_transformer, maxvit, convnext are the first three model impl w/ support * model names are changing with this (previous _21k, etc. fn will merge), still sorting out deprecation handling * bugs are likely, but I need feedback so please try it out * if stability is needed, please use 0.6.x pypi releases or clone from [0.6.x branch](https://github.com/rwightman/pytorch-image-models/tree/0.6.x) * Support for PyTorch 2.0 compile is added in train/validate/inference/benchmark, use `--torchcompile` argument * Inference script allows more control over output, select k for top-class index + prob json, csv or parquet output * Add a full set of fine-tuned CLIP image tower weights from both LAION-2B and original OpenAI CLIP models | model | top1 | param_count | gmac | macts | hub | |:-------------------------------------------------|-------:|--------------:|-------:|--------:|:-------------------------------------------------------------------------------------| | vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k | 88.6 | 632.5 | 391 | 407.5 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.openai_ft_in12k_in1k | 88.3 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.openai_ft_in12k_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k | 88.2 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in12k_in1k | 88.2 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in12k_in1k | 88.2 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in12k_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in12k_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in12k_in1k) | | vit_large_patch14_clip_224.openai_ft_in1k | 87.9 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.openai_ft_in1k) | | vit_large_patch14_clip_336.laion2b_ft_in1k | 87.9 | 304.5 | 191.1 | 270.2 | [link](https://huggingface.co/timm/vit_large_patch14_clip_336.laion2b_ft_in1k) | | vit_huge_patch14_clip_224.laion2b_ft_in1k | 87.6 | 632 | 167.4 | 139.4 | [link](https://huggingface.co/timm/vit_huge_patch14_clip_224.laion2b_ft_in1k) | | vit_large_patch14_clip_224.laion2b_ft_in1k | 87.3 | 304.2 | 81.1 | 88.8 | [link](https://huggingface.co/timm/vit_large_patch14_clip_224.laion2b_ft_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in12k_in1k | 87.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_384.openai_ft_in12k_in1k | 87 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in12k_in1k) | | vit_base_patch16_clip_384.laion2b_ft_in1k | 86.6 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.laion2b_ft_in1k) | | vit_base_patch16_clip_384.openai_ft_in1k | 86.2 | 86.9 | 55.5 | 101.6 | [link](https://huggingface.co/timm/vit_base_patch16_clip_384.openai_ft_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in12k_in1k | 86.2 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in12k_in1k | 85.9 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in12k_in1k) | | vit_base_patch32_clip_448.laion2b_ft_in12k_in1k | 85.8 | 88.3 | 17.9 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch32_clip_448.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.laion2b_ft_in1k | 85.5 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_384.laion2b_ft_in12k_in1k | 85.4 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.laion2b_ft_in12k_in1k) | | vit_base_patch16_clip_224.openai_ft_in1k | 85.3 | 86.6 | 17.6 | 23.9 | [link](https://huggingface.co/timm/vit_base_patch16_clip_224.openai_ft_in1k) | | vit_base_patch32_clip_384.openai_ft_in12k_in1k | 85.2 | 88.3 | 13.1 | 16.5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_384.openai_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in12k_in1k | 83.3 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in12k_in1k) | | vit_base_patch32_clip_224.laion2b_ft_in1k | 82.6 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.laion2b_ft_in1k) | | vit_base_patch32_clip_224.openai_ft_in1k | 81.9 | 88.2 | 4.4 | 5 | [link](https://huggingface.co/timm/vit_base_patch32_clip_224.openai_ft_in1k) | * Port of MaxViT Tensorflow Weights from official impl at https://github.com/google-research/maxvit * There was larger than expected drops for the upscaled 384/512 in21k fine-tune weights, possible detail missing, but the 21k FT did seem sensitive to small preprocessing | model | top1 | param_count | gmac | macts | hub | |:-----------------------------------|-------:|--------------:|-------:|--------:|:-----------------------------------------------------------------------| | maxvit_xlarge_tf_512.in21k_ft_in1k | 88.5 | 475.8 | 534.1 | 1413.2 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_512.in21k_ft_in1k) | | maxvit_xlarge_tf_384.in21k_ft_in1k | 88.3 | 475.3 | 292.8 | 668.8 | [link](https://huggingface.co/timm/maxvit_xlarge_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in21k_ft_in1k | 88.2 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in21k_ft_in1k) | | maxvit_large_tf_512.in21k_ft_in1k | 88 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in21k_ft_in1k) | | maxvit_large_tf_384.in21k_ft_in1k | 88 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in21k_ft_in1k) | | maxvit_base_tf_384.in21k_ft_in1k | 87.9 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in21k_ft_in1k) | | maxvit_base_tf_512.in1k | 86.6 | 119.9 | 138 | 704 | [link](https://huggingface.co/timm/maxvit_base_tf_512.in1k) | | maxvit_large_tf_512.in1k | 86.5 | 212.3 | 244.8 | 942.2 | [link](https://huggingface.co/timm/maxvit_large_tf_512.in1k) | | maxvit_base_tf_384.in1k | 86.3 | 119.6 | 73.8 | 332.9 | [link](https://huggingface.co/timm/maxvit_base_tf_384.in1k) | | maxvit_large_tf_384.in1k | 86.2 | 212 | 132.6 | 445.8 | [link](https://huggingface.co/timm/maxvit_large_tf_384.in1k) | | maxvit_small_tf_512.in1k | 86.1 | 69.1 | 67.3 | 383.8 | [link](https://huggingface.co/timm/maxvit_small_tf_512.in1k) | | maxvit_tiny_tf_512.in1k | 85.7 | 31 | 33.5 | 257.6 | [link](https://huggingface.co/timm/maxvit_tiny_tf_512.in1k) | | maxvit_small_tf_384.in1k | 85.5 | 69 | 35.9 | 183.6 | [link](https://huggingface.co/timm/maxvit_small_tf_384.in1k) | | maxvit_tiny_tf_384.in1k | 85.1 | 31 | 17.5 | 123.4 | [link](https://huggingface.co/timm/maxvit_tiny_tf_384.in1k) | | maxvit_large_tf_224.in1k | 84.9 | 211.8 | 43.7 | 127.4 | [link](https://huggingface.co/timm/maxvit_large_tf_224.in1k) | | maxvit_base_tf_224.in1k | 84.9 | 119.5 | 24 | 95 | [link](https://huggingface.co/timm/maxvit_base_tf_224.in1k) | | maxvit_small_tf_224.in1k | 84.4 | 68.9 | 11.7 | 53.2 | [link](https://huggingface.co/timm/maxvit_small_tf_224.in1k) | | maxvit_tiny_tf_224.in1k | 83.4 | 30.9 | 5.6 | 35.8 | [link](https://huggingface.co/timm/maxvit_tiny_tf_224.in1k) | ### Oct 15, 2022 * Train and validation script enhancements * Non-GPU (ie CPU) device support * SLURM compatibility for train script * HF datasets support (via ReaderHfds) * TFDS/WDS dataloading improvements (sample padding/wrap for distributed use fixed wrt sample count estimate) * in_chans !=3 support for scripts / loader * Adan optimizer * Can enable per-step LR scheduling via args * Dataset 'parsers' renamed to 'readers', more descriptive of purpose * AMP args changed, APEX via `--amp-impl apex`, bfloat16 supportedf via `--amp-dtype bfloat16` * main branch switched to 0.7.x version, 0.6x forked for stable release of weight only adds * master -> main branch rename ### Oct 10, 2022 * More weights in `maxxvit` series, incl first ConvNeXt block based `coatnext` and `maxxvit` experiments: * `coatnext_nano_rw_224` - 82.0 @ 224 (G) -- (uses ConvNeXt conv block, no BatchNorm) * `maxxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.7 @ 320 (G) (uses ConvNeXt conv block, no BN) * `maxvit_rmlp_small_rw_224` - 84.5 @ 224, 85.1 @ 320 (G) * `maxxvit_rmlp_small_rw_256` - 84.6 @ 256, 84.9 @ 288 (G) -- could be trained better, hparams need tuning (uses ConvNeXt block, no BN) * `coatnet_rmlp_2_rw_224` - 84.6 @ 224, 85 @ 320 (T) * NOTE: official MaxVit weights (in1k) have been released at https://github.com/google-research/maxvit -- some extra work is needed to port and adapt since my impl was created independently of theirs and has a few small differences + the whole TF same padding fun. ### Sept 23, 2022 * LAION-2B CLIP image towers supported as pretrained backbones for fine-tune or features (no classifier) * vit_base_patch32_224_clip_laion2b * vit_large_patch14_224_clip_laion2b * vit_huge_patch14_224_clip_laion2b * vit_giant_patch14_224_clip_laion2b ### Sept 7, 2022 * Hugging Face [`timm` docs](https://huggingface.co/docs/hub/timm) home now exists, look for more here in the future * Add BEiT-v2 weights for base and large 224x224 models from https://github.com/microsoft/unilm/tree/master/beit2 * Add more weights in `maxxvit` series incl a `pico` (7.5M params, 1.9 GMACs), two `tiny` variants: * `maxvit_rmlp_pico_rw_256` - 80.5 @ 256, 81.3 @ 320 (T) * `maxvit_tiny_rw_224` - 83.5 @ 224 (G) * `maxvit_rmlp_tiny_rw_256` - 84.2 @ 256, 84.8 @ 320 (T) ### Aug 29, 2022 * MaxVit window size scales with img_size by default. Add new RelPosMlp MaxViT weight that leverages this: * `maxvit_rmlp_nano_rw_256` - 83.0 @ 256, 83.6 @ 320 (T) ### Aug 26, 2022 * CoAtNet (https://arxiv.org/abs/2106.04803) and MaxVit (https://arxiv.org/abs/2204.01697) `timm` original models * both found in [`maxxvit.py`](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/maxxvit.py) model def, contains numerous experiments outside scope of original papers * an unfinished Tensorflow version from MaxVit authors can be found https://github.com/google-research/maxvit * Initial CoAtNet and MaxVit timm pretrained weights (working on more): * `coatnet_nano_rw_224` - 81.7 @ 224 (T) * `coatnet_rmlp_nano_rw_224` - 82.0 @ 224, 82.8 @ 320 (T) * `coatnet_0_rw_224` - 82.4 (T) -- NOTE timm '0' coatnets have 2 more 3rd stage blocks * `coatnet_bn_0_rw_224` - 82.4 (T) * `maxvit_nano_rw_256` - 82.9 @ 256 (T) * `coatnet_rmlp_1_rw_224` - 83.4 @ 224, 84 @ 320 (T) * `coatnet_1_rw_224` - 83.6 @ 224 (G) * (T) = TPU trained with `bits_and_tpu` branch training code, (G) = GPU trained * GCVit (weights adapted from https://github.com/NVlabs/GCVit, code 100% `timm` re-write for license purposes) * MViT-V2 (multi-scale vit, adapted from https://github.com/facebookresearch/mvit) * EfficientFormer (adapted from https://github.com/snap-research/EfficientFormer) * PyramidVisionTransformer-V2 (adapted from https://github.com/whai362/PVT) * 'Fast Norm' support for LayerNorm and GroupNorm that avoids float32 upcast w/ AMP (uses APEX LN if available for further boost) ### Aug 15, 2022 * ConvNeXt atto weights added * `convnext_atto` - 75.7 @ 224, 77.0 @ 288 * `convnext_atto_ols` - 75.9 @ 224, 77.2 @ 288 ### Aug 5, 2022 * More custom ConvNeXt smaller model defs with weights * `convnext_femto` - 77.5 @ 224, 78.7 @ 288 * `convnext_femto_ols` - 77.9 @ 224, 78.9 @ 288 * `convnext_pico` - 79.5 @ 224, 80.4 @ 288 * `convnext_pico_ols` - 79.5 @ 224, 80.5 @ 288 * `convnext_nano_ols` - 80.9 @ 224, 81.6 @ 288 * Updated EdgeNeXt to improve ONNX export, add new base variant and weights from original (https://github.com/mmaaz60/EdgeNeXt) ### July 28, 2022 * Add freshly minted DeiT-III Medium (width=512, depth=12, num_heads=8) model weights. Thanks [Hugo Touvron](https://github.com/TouvronHugo)! ### July 27, 2022 * All runtime benchmark and validation result csv files are up-to-date! * A few more weights & model defs added: * `darknetaa53` - 79.8 @ 256, 80.5 @ 288 * `convnext_nano` - 80.8 @ 224, 81.5 @ 288 * `cs3sedarknet_l` - 81.2 @ 256, 81.8 @ 288 * `cs3darknet_x` - 81.8 @ 256, 82.2 @ 288 * `cs3sedarknet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3edgenet_x` - 82.2 @ 256, 82.7 @ 288 * `cs3se_edgenet_x` - 82.8 @ 256, 83.5 @ 320 * `cs3*` weights above all trained on TPU w/ `bits_and_tpu` branch. Thanks to TRC program! * Add output_stride=8 and 16 support to ConvNeXt (dilation) * deit3 models not being able to resize pos_emb fixed * Version 0.6.7 PyPi release (/w above bug fixes and new weighs since 0.6.5) ### July 8, 2022 More models, more fixes * Official research models (w/ weights) added: * EdgeNeXt from (https://github.com/mmaaz60/EdgeNeXt) * MobileViT-V2 from (https://github.com/apple/ml-cvnets) * DeiT III (Revenge of the ViT) from (https://github.com/facebookresearch/deit) * My own models: * Small `ResNet` defs added by request with 1 block repeats for both basic and bottleneck (resnet10 and resnet14) * `CspNet` refactored with dataclass config, simplified CrossStage3 (`cs3`) option. These are closer to YOLO-v5+ backbone defs. * More relative position vit fiddling. Two `srelpos` (shared relative position) models trained, and a medium w/ class token. * Add an alternate downsample mode to EdgeNeXt and train a `small` model. Better than original small, but not their new USI trained weights. * My own model weight results (all ImageNet-1k training) * `resnet10t` - 66.5 @ 176, 68.3 @ 224 * `resnet14t` - 71.3 @ 176, 72.3 @ 224 * `resnetaa50` - 80.6 @ 224 , 81.6 @ 288 * `darknet53` - 80.0 @ 256, 80.5 @ 288 * `cs3darknet_m` - 77.0 @ 256, 77.6 @ 288 * `cs3darknet_focus_m` - 76.7 @ 256, 77.3 @ 288 * `cs3darknet_l` - 80.4 @ 256, 80.9 @ 288 * `cs3darknet_focus_l` - 80.3 @ 256, 80.9 @ 288 * `vit_srelpos_small_patch16_224` - 81.1 @ 224, 82.1 @ 320 * `vit_srelpos_medium_patch16_224` - 82.3 @ 224, 83.1 @ 320 * `vit_relpos_small_patch16_cls_224` - 82.6 @ 224, 83.6 @ 320 * `edgnext_small_rw` - 79.6 @ 224, 80.4 @ 320 * `cs3`, `darknet`, and `vit_*relpos` weights above all trained on TPU thanks to TRC program! Rest trained on overheating GPUs. * Hugging Face Hub support fixes verified, demo notebook TBA * Pretrained weights / configs can be loaded externally (ie from local disk) w/ support for head adaptation. * Add support to change image extensions scanned by `timm` datasets/parsers. See (https://github.com/rwightman/pytorch-image-models/pull/1274#issuecomment-1178303103) * Default ConvNeXt LayerNorm impl to use `F.layer_norm(x.permute(0, 2, 3, 1), ...).permute(0, 3, 1, 2)` via `LayerNorm2d` in all cases. * a bit slower than previous custom impl on some hardware (ie Ampere w/ CL), but overall fewer regressions across wider HW / PyTorch version ranges. * previous impl exists as `LayerNormExp2d` in `models/layers/norm.py` * Numerous bug fixes * Currently testing for imminent PyPi 0.6.x release * LeViT pretraining of larger models still a WIP, they don't train well / easily without distillation. Time to add distill support (finally)? * ImageNet-22k weight training + finetune ongoing, work on multi-weight support (slowly) chugging along (there are a LOT of weights, sigh) ... ### May 13, 2022 * Official Swin-V2 models and weights added from (https://github.com/microsoft/Swin-Transformer). Cleaned up to support torchscript. * Some refactoring for existing `timm` Swin-V2-CR impl, will likely do a bit more to bring parts closer to official and decide whether to merge some aspects. * More Vision Transformer relative position / residual post-norm experiments (all trained on TPU thanks to TRC program) * `vit_relpos_small_patch16_224` - 81.5 @ 224, 82.5 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_medium_patch16_rpn_224` - 82.3 @ 224, 83.1 @ 320 -- rel pos + res-post-norm, no class token, avg pool * `vit_relpos_medium_patch16_224` - 82.5 @ 224, 83.3 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_relpos_base_patch16_gapcls_224` - 82.8 @ 224, 83.9 @ 320 -- rel pos, layer scale, class token, avg pool (by mistake) * Bring 512 dim, 8-head 'medium' ViT model variant back to life (after using in a pre DeiT 'small' model for first ViT impl back in 2020) * Add ViT relative position support for switching btw existing impl and some additions in official Swin-V2 impl for future trials * Sequencer2D impl (https://arxiv.org/abs/2205.01972), added via PR from author (https://github.com/okojoalg) ### May 2, 2022 * Vision Transformer experiments adding Relative Position (Swin-V2 log-coord) (`vision_transformer_relpos.py`) and Residual Post-Norm branches (from Swin-V2) (`vision_transformer*.py`) * `vit_relpos_base_patch32_plus_rpn_256` - 79.5 @ 256, 80.6 @ 320 -- rel pos + extended width + res-post-norm, no class token, avg pool * `vit_relpos_base_patch16_224` - 82.5 @ 224, 83.6 @ 320 -- rel pos, layer scale, no class token, avg pool * `vit_base_patch16_rpn_224` - 82.3 @ 224 -- rel pos + res-post-norm, no class token, avg pool * Vision Transformer refactor to remove representation layer that was only used in initial vit and rarely used since with newer pretrain (ie `How to Train Your ViT`) * `vit_*` models support removal of class token, use of global average pool, use of fc_norm (ala beit, mae). ### April 22, 2022 * `timm` models are now officially supported in [fast.ai](https://www.fast.ai/)! Just in time for the new Practical Deep Learning course. `timmdocs` documentation link updated to [timm.fast.ai](http://timm.fast.ai/). * Two more model weights added in the TPU trained [series](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights). Some In22k pretrain still in progress. * `seresnext101d_32x8d` - 83.69 @ 224, 84.35 @ 288 * `seresnextaa101d_32x8d` (anti-aliased w/ AvgPool2d) - 83.85 @ 224, 84.57 @ 288 ### March 23, 2022 * Add `ParallelBlock` and `LayerScale` option to base vit models to support model configs in [Three things everyone should know about ViT](https://arxiv.org/abs/2203.09795) * `convnext_tiny_hnf` (head norm first) weights trained with (close to) A2 recipe, 82.2% top-1, could do better with more epochs. ### March 21, 2022 * Merge `norm_norm_norm`. **IMPORTANT** this update for a coming 0.6.x release will likely de-stabilize the master branch for a while. Branch [`0.5.x`](https://github.com/rwightman/pytorch-image-models/tree/0.5.x) or a previous 0.5.x release can be used if stability is required. * Significant weights update (all TPU trained) as described in this [release](https://github.com/rwightman/pytorch-image-models/releases/tag/v0.1-tpu-weights) * `regnety_040` - 82.3 @ 224, 82.96 @ 288 * `regnety_064` - 83.0 @ 224, 83.65 @ 288 * `regnety_080` - 83.17 @ 224, 83.86 @ 288 * `regnetv_040` - 82.44 @ 224, 83.18 @ 288 (timm pre-act) * `regnetv_064` - 83.1 @ 224, 83.71 @ 288 (timm pre-act) * `regnetz_040` - 83.67 @ 256, 84.25 @ 320 * `regnetz_040h` - 83.77 @ 256, 84.5 @ 320 (w/ extra fc in head) * `resnetv2_50d_gn` - 80.8 @ 224, 81.96 @ 288 (pre-act GroupNorm) * `resnetv2_50d_evos` 80.77 @ 224, 82.04 @ 288 (pre-act EvoNormS) * `regnetz_c16_evos` - 81.9 @ 256, 82.64 @ 320 (EvoNormS) * `regnetz_d8_evos` - 83.42 @ 256, 84.04 @ 320 (EvoNormS) * `xception41p` - 82 @ 299 (timm pre-act) * `xception65` - 83.17 @ 299 * `xception65p` - 83.14 @ 299 (timm pre-act) * `resnext101_64x4d` - 82.46 @ 224, 83.16 @ 288 * `seresnext101_32x8d` - 83.57 @ 224, 84.270 @ 288 * `resnetrs200` - 83.85 @ 256, 84.44 @ 320 * HuggingFace hub support fixed w/ initial groundwork for allowing alternative 'config sources' for pretrained model definitions and weights (generic local file / remote url support soon) * SwinTransformer-V2 implementation added. Submitted by [Christoph Reich](https://github.com/ChristophReich1996). Training experiments and model changes by myself are ongoing so expect compat breaks. * Swin-S3 (AutoFormerV2) models / weights added from https://github.com/microsoft/Cream/tree/main/AutoFormerV2 * MobileViT models w/ weights adapted from https://github.com/apple/ml-cvnets * PoolFormer models w/ weights adapted from https://github.com/sail-sg/poolformer * VOLO models w/ weights adapted from https://github.com/sail-sg/volo * Significant work experimenting with non-BatchNorm norm layers such as EvoNorm, FilterResponseNorm, GroupNorm, etc * Enhance support for alternate norm + act ('NormAct') layers added to a number of models, esp EfficientNet/MobileNetV3, RegNet, and aligned Xception * Grouped conv support added to EfficientNet family * Add 'group matching' API to all models to allow grouping model parameters for application of 'layer-wise' LR decay, lr scale added to LR scheduler * Gradient checkpointing support added to many models * `forward_head(x, pre_logits=False)` fn added to all models to allow separate calls of `forward_features` + `forward_head` * All vision transformer and vision MLP models update to return non-pooled / non-token selected features from `foward_features`, for consistency with CNN models, token selection or pooling now applied in `forward_head` ### Feb 2, 2022 * [Chris Hughes](https://github.com/Chris-hughes10) posted an exhaustive run through of `timm` on his blog yesterday. Well worth a read. [Getting Started with PyTorch Image Models (timm): A Practitioner’s Guide](https://towardsdatascience.com/getting-started-with-pytorch-image-models-timm-a-practitioners-guide-4e77b4bf9055) * I'm currently prepping to merge the `norm_norm_norm` branch back to master (ver 0.6.x) in next week or so. * The changes are more extensive than usual and may destabilize and break some model API use (aiming for full backwards compat). So, beware `pip install git+https://github.com/rwightman/pytorch-image-models` installs! * `0.5.x` releases and a `0.5.x` branch will remain stable with a cherry pick or two until dust clears. Recommend sticking to pypi install for a bit if you want stable. ### Jan 14, 2022 * Version 0.5.4 w/ release to be pushed to pypi. It's been a while since last pypi update and riskier changes will be merged to main branch soon.... * Add ConvNeXT models /w weights from official impl (https://github.com/facebookresearch/ConvNeXt), a few perf tweaks, compatible with timm features * Tried training a few small (~1.8-3M param) / mobile optimized models, a few are good so far, more on the way... * `mnasnet_small` - 65.6 top-1 * `mobilenetv2_050` - 65.9 * `lcnet_100/075/050` - 72.1 / 68.8 / 63.1 * `semnasnet_075` - 73 * `fbnetv3_b/d/g` - 79.1 / 79.7 / 82.0 * TinyNet models added by [rsomani95](https://github.com/rsomani95) * LCNet added via MobileNetV3 architecture
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/feature_extraction.md
# Feature Extraction All of the models in `timm` have consistent mechanisms for obtaining various types of features from the model for tasks besides classification. ## Penultimate Layer Features (Pre-Classifier Features) The features from the penultimate model layer can be obtained in several ways without requiring model surgery (although feel free to do surgery). One must first decide if they want pooled or un-pooled features. ### Unpooled There are three ways to obtain unpooled features. Without modifying the network, one can call `model.forward_features(input)` on any model instead of the usual `model(input)`. This will bypass the head classifier and global pooling for networks. If one wants to explicitly modify the network to return unpooled features, they can either create the model without a classifier and pooling, or remove it later. Both paths remove the parameters associated with the classifier from the network. #### forward_features() ```python hl_lines="3 6" import torch import timm m = timm.create_model('xception41', pretrained=True) o = m(torch.randn(2, 3, 299, 299)) print(f'Original shape: {o.shape}') o = m.forward_features(torch.randn(2, 3, 299, 299)) print(f'Unpooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Unpooled shape: torch.Size([2, 2048, 10, 10]) ``` #### Create with no classifier and pooling ```python hl_lines="3" import torch import timm m = timm.create_model('resnet50', pretrained=True, num_classes=0, global_pool='') o = m(torch.randn(2, 3, 224, 224)) print(f'Unpooled shape: {o.shape}') ``` Output: ```text Unpooled shape: torch.Size([2, 2048, 7, 7]) ``` #### Remove it later ```python hl_lines="3 6" import torch import timm m = timm.create_model('densenet121', pretrained=True) o = m(torch.randn(2, 3, 224, 224)) print(f'Original shape: {o.shape}') m.reset_classifier(0, '') o = m(torch.randn(2, 3, 224, 224)) print(f'Unpooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Unpooled shape: torch.Size([2, 1024, 7, 7]) ``` ### Pooled To modify the network to return pooled features, one can use `forward_features()` and pool/flatten the result themselves, or modify the network like above but keep pooling intact. #### Create with no classifier ```python hl_lines="3" import torch import timm m = timm.create_model('resnet50', pretrained=True, num_classes=0) o = m(torch.randn(2, 3, 224, 224)) print(f'Pooled shape: {o.shape}') ``` Output: ```text Pooled shape: torch.Size([2, 2048]) ``` #### Remove it later ```python hl_lines="3 6" import torch import timm m = timm.create_model('ese_vovnet19b_dw', pretrained=True) o = m(torch.randn(2, 3, 224, 224)) print(f'Original shape: {o.shape}') m.reset_classifier(0) o = m(torch.randn(2, 3, 224, 224)) print(f'Pooled shape: {o.shape}') ``` Output: ```text Original shape: torch.Size([2, 1000]) Pooled shape: torch.Size([2, 1024]) ``` ## Multi-scale Feature Maps (Feature Pyramid) Object detection, segmentation, keypoint, and a variety of dense pixel tasks require access to feature maps from the backbone network at multiple scales. This is often done by modifying the original classification network. Since each network varies quite a bit in structure, it's not uncommon to see only a few backbones supported in any given obj detection or segmentation library. `timm` allows a consistent interface for creating any of the included models as feature backbones that output feature maps for selected levels. A feature backbone can be created by adding the argument `features_only=True` to any `create_model` call. By default 5 strides will be output from most models (not all have that many), with the first starting at 2 (some start at 1 or 4). ### Create a feature map extraction model ```python hl_lines="3" import torch import timm m = timm.create_model('resnest26d', features_only=True, pretrained=True) o = m(torch.randn(2, 3, 224, 224)) for x in o: print(x.shape) ``` Output: ```text torch.Size([2, 64, 112, 112]) torch.Size([2, 256, 56, 56]) torch.Size([2, 512, 28, 28]) torch.Size([2, 1024, 14, 14]) torch.Size([2, 2048, 7, 7]) ``` ### Query the feature information After a feature backbone has been created, it can be queried to provide channel or resolution reduction information to the downstream heads without requiring static config or hardcoded constants. The `.feature_info` attribute is a class encapsulating the information about the feature extraction points. ```python hl_lines="3 4" import torch import timm m = timm.create_model('regnety_032', features_only=True, pretrained=True) print(f'Feature channels: {m.feature_info.channels()}') o = m(torch.randn(2, 3, 224, 224)) for x in o: print(x.shape) ``` Output: ```text Feature channels: [32, 72, 216, 576, 1512] torch.Size([2, 32, 112, 112]) torch.Size([2, 72, 56, 56]) torch.Size([2, 216, 28, 28]) torch.Size([2, 576, 14, 14]) torch.Size([2, 1512, 7, 7]) ``` ### Select specific feature levels or limit the stride There are two additional creation arguments impacting the output features. * `out_indices` selects which indices to output * `output_stride` limits the feature output stride of the network (also works in classification mode BTW) `out_indices` is supported by all models, but not all models have the same index to feature stride mapping. Look at the code or check feature_info to compare. The out indices generally correspond to the `C(i+1)th` feature level (a `2^(i+1)` reduction). For most models, index 0 is the stride 2 features, and index 4 is stride 32. `output_stride` is achieved by converting layers to use dilated convolutions. Doing so is not always straightforward, some networks only support `output_stride=32`. ```python hl_lines="3 4 5" import torch import timm m = timm.create_model('ecaresnet101d', features_only=True, output_stride=8, out_indices=(2, 4), pretrained=True) print(f'Feature channels: {m.feature_info.channels()}') print(f'Feature reduction: {m.feature_info.reduction()}') o = m(torch.randn(2, 3, 320, 320)) for x in o: print(x.shape) ``` Output: ```text Feature channels: [512, 2048] Feature reduction: [8, 8] torch.Size([2, 512, 40, 40]) torch.Size([2, 2048, 40, 40]) ```
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/index.md
# Getting Started ## Welcome Welcome to the `timm` documentation, a lean set of docs that covers the basics of `timm`. For a more comprehensive set of docs (currently under development), please visit [timmdocs](http://timm.fast.ai) by [Aman Arora](https://github.com/amaarora). ## Install The library can be installed with pip: ``` pip install timm ``` I update the PyPi (pip) packages when I'm confident there are no significant model regressions from previous releases. If you want to pip install the bleeding edge from GitHub, use: ``` pip install git+https://github.com/rwightman/pytorch-image-models.git ``` !!! info "Conda Environment" All development and testing has been done in Conda Python 3 environments on Linux x86-64 systems, specifically 3.7, 3.8, 3.9, 3.10 Little to no care has been taken to be Python 2.x friendly and will not support it. If you run into any challenges running on Windows, or other OS, I'm definitely open to looking into those issues so long as it's in a reproducible (read Conda) environment. PyTorch versions 1.9, 1.10, 1.11 have been tested with the latest versions of this code. I've tried to keep the dependencies minimal, the setup is as per the PyTorch default install instructions for Conda: ``` conda create -n torch-env conda activate torch-env conda install pytorch torchvision cudatoolkit=11.3 -c pytorch conda install pyyaml ``` ## Load a Pretrained Model Pretrained models can be loaded using `timm.create_model` ```python import timm m = timm.create_model('mobilenetv3_large_100', pretrained=True) m.eval() ``` ## List Models with Pretrained Weights ```python import timm from pprint import pprint model_names = timm.list_models(pretrained=True) pprint(model_names) >>> ['adv_inception_v3', 'cspdarknet53', 'cspresnext50', 'densenet121', 'densenet161', 'densenet169', 'densenet201', 'densenetblur121d', 'dla34', 'dla46_c', ... ] ``` ## List Model Architectures by Wildcard ```python import timm from pprint import pprint model_names = timm.list_models('*resne*t*') pprint(model_names) >>> ['cspresnet50', 'cspresnet50d', 'cspresnet50w', 'cspresnext50', ... ] ```
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/models.md
# Model Summaries The model architectures included come from a wide variety of sources. Sources, including papers, original impl ("reference code") that I rewrote / adapted, and PyTorch impl that I leveraged directly ("code") are listed below. Most included models have pretrained weights. The weights are either: 1. from their original sources 2. ported by myself from their original impl in a different framework (e.g. Tensorflow models) 3. trained from scratch using the included training script The validation results for the pretrained weights are [here](results.md) A more exciting view (with pretty pictures) of the models within `timm` can be found at [paperswithcode](https://paperswithcode.com/lib/timm). ## Big Transfer ResNetV2 (BiT) [[resnetv2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnetv2.py)] * Paper: `Big Transfer (BiT): General Visual Representation Learning` - https://arxiv.org/abs/1912.11370 * Reference code: https://github.com/google-research/big_transfer ## Cross-Stage Partial Networks [[cspnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/cspnet.py)] * Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 * Reference impl: https://github.com/WongKinYiu/CrossStagePartialNetworks ## DenseNet [[densenet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/densenet.py)] * Paper: `Densely Connected Convolutional Networks` - https://arxiv.org/abs/1608.06993 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## DLA [[dla.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dla.py)] * Paper: https://arxiv.org/abs/1707.06484 * Code: https://github.com/ucbdrive/dla ## Dual-Path Networks [[dpn.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/dpn.py)] * Paper: `Dual Path Networks` - https://arxiv.org/abs/1707.01629 * My PyTorch code: https://github.com/rwightman/pytorch-dpn-pretrained * Reference code: https://github.com/cypw/DPNs ## GPU-Efficient Networks [[byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py)] * Paper: `Neural Architecture Design for GPU-Efficient Networks` - https://arxiv.org/abs/2006.14090 * Reference code: https://github.com/idstcv/GPU-Efficient-Networks ## HRNet [[hrnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/hrnet.py)] * Paper: `Deep High-Resolution Representation Learning for Visual Recognition` - https://arxiv.org/abs/1908.07919 * Code: https://github.com/HRNet/HRNet-Image-Classification ## Inception-V3 [[inception_v3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v3.py)] * Paper: `Rethinking the Inception Architecture for Computer Vision` - https://arxiv.org/abs/1512.00567 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models ## Inception-V4 [[inception_v4.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_v4.py)] * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## Inception-ResNet-V2 [[inception_resnet_v2.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/inception_resnet_v2.py)] * Paper: `Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning` - https://arxiv.org/abs/1602.07261 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets ## NASNet-A [[nasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/nasnet.py)] * Papers: `Learning Transferable Architectures for Scalable Image Recognition` - https://arxiv.org/abs/1707.07012 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## PNasNet-5 [[pnasnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/pnasnet.py)] * Papers: `Progressive Neural Architecture Search` - https://arxiv.org/abs/1712.00559 * Code: https://github.com/Cadene/pretrained-models.pytorch * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/nasnet ## EfficientNet [[efficientnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/efficientnet.py)] * Papers: * EfficientNet NoisyStudent (B0-B7, L2) - https://arxiv.org/abs/1911.04252 * EfficientNet AdvProp (B0-B8) - https://arxiv.org/abs/1911.09665 * EfficientNet (B0-B7) - https://arxiv.org/abs/1905.11946 * EfficientNet-EdgeTPU (S, M, L) - https://ai.googleblog.com/2019/08/efficientnet-edgetpu-creating.html * MixNet - https://arxiv.org/abs/1907.09595 * MNASNet B1, A1 (Squeeze-Excite), and Small - https://arxiv.org/abs/1807.11626 * MobileNet-V2 - https://arxiv.org/abs/1801.04381 * FBNet-C - https://arxiv.org/abs/1812.03443 * Single-Path NAS - https://arxiv.org/abs/1904.02877 * My PyTorch code: https://github.com/rwightman/gen-efficientnet-pytorch * Reference code: https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet ## MobileNet-V3 [[mobilenetv3.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mobilenetv3.py)] * Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 * Reference code: https://github.com/tensorflow/models/tree/master/research/slim/nets/mobilenet ## RegNet [[regnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/regnet.py)] * Paper: `Designing Network Design Spaces` - https://arxiv.org/abs/2003.13678 * Reference code: https://github.com/facebookresearch/pycls/blob/master/pycls/models/regnet.py ## RepVGG [[byobnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/byobnet.py)] * Paper: `Making VGG-style ConvNets Great Again` - https://arxiv.org/abs/2101.03697 * Reference code: https://github.com/DingXiaoH/RepVGG ## ResNet, ResNeXt [[resnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py)] * ResNet (V1B) * Paper: `Deep Residual Learning for Image Recognition` - https://arxiv.org/abs/1512.03385 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * ResNeXt * Paper: `Aggregated Residual Transformations for Deep Neural Networks` - https://arxiv.org/abs/1611.05431 * Code: https://github.com/pytorch/vision/tree/master/torchvision/models * 'Bag of Tricks' / Gluon C, D, E, S ResNet variants * Paper: `Bag of Tricks for Image Classification with CNNs` - https://arxiv.org/abs/1812.01187 * Code: https://github.com/dmlc/gluon-cv/blob/master/gluoncv/model_zoo/resnetv1b.py * Instagram pretrained / ImageNet tuned ResNeXt101 * Paper: `Exploring the Limits of Weakly Supervised Pretraining` - https://arxiv.org/abs/1805.00932 * Weights: https://pytorch.org/hub/facebookresearch_WSL-Images_resnext (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Semi-supervised (SSL) / Semi-weakly Supervised (SWSL) ResNet and ResNeXts * Paper: `Billion-scale semi-supervised learning for image classification` - https://arxiv.org/abs/1905.00546 * Weights: https://github.com/facebookresearch/semi-supervised-ImageNet1K-models (NOTE: CC BY-NC 4.0 License, NOT commercial friendly) * Squeeze-and-Excitation Networks * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: Added to ResNet base, this is current version going forward, old `senet.py` is being deprecated * ECAResNet (ECA-Net) * Paper: `ECA-Net: Efficient Channel Attention for Deep CNN` - https://arxiv.org/abs/1910.03151v4 * Code: Added to ResNet base, ECA module contributed by @VRandme, reference https://github.com/BangguWu/ECANet ## Res2Net [[res2net.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/res2net.py)] * Paper: `Res2Net: A New Multi-scale Backbone Architecture` - https://arxiv.org/abs/1904.01169 * Code: https://github.com/gasvn/Res2Net ## ResNeSt [[resnest.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnest.py)] * Paper: `ResNeSt: Split-Attention Networks` - https://arxiv.org/abs/2004.08955 * Code: https://github.com/zhanghang1989/ResNeSt ## ReXNet [[rexnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/rexnet.py)] * Paper: `ReXNet: Diminishing Representational Bottleneck on CNN` - https://arxiv.org/abs/2007.00992 * Code: https://github.com/clovaai/rexnet ## Selective-Kernel Networks [[sknet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/sknet.py)] * Paper: `Selective-Kernel Networks` - https://arxiv.org/abs/1903.06586 * Code: https://github.com/implus/SKNet, https://github.com/clovaai/assembled-cnn ## SelecSLS [[selecsls.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/selecsls.py)] * Paper: `XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera` - https://arxiv.org/abs/1907.00837 * Code: https://github.com/mehtadushy/SelecSLS-Pytorch ## Squeeze-and-Excitation Networks [[senet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/senet.py)] NOTE: I am deprecating this version of the networks, the new ones are part of `resnet.py` * Paper: `Squeeze-and-Excitation Networks` - https://arxiv.org/abs/1709.01507 * Code: https://github.com/Cadene/pretrained-models.pytorch ## TResNet [[tresnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/tresnet.py)] * Paper: `TResNet: High Performance GPU-Dedicated Architecture` - https://arxiv.org/abs/2003.13630 * Code: https://github.com/mrT23/TResNet ## VGG [[vgg.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vgg.py)] * Paper: `Very Deep Convolutional Networks For Large-Scale Image Recognition` - https://arxiv.org/pdf/1409.1556.pdf * Reference code: https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py ## Vision Transformer [[vision_transformer.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py)] * Paper: `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 * Reference code and pretrained weights: https://github.com/google-research/vision_transformer ## VovNet V2 and V1 [[vovnet.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vovnet.py)] * Paper: `CenterMask : Real-Time Anchor-Free Instance Segmentation` - https://arxiv.org/abs/1911.06667 * Reference code: https://github.com/youngwanLEE/vovnet-detectron2 ## Xception [[xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/xception.py)] * Paper: `Xception: Deep Learning with Depthwise Separable Convolutions` - https://arxiv.org/abs/1610.02357 * Code: https://github.com/Cadene/pretrained-models.pytorch ## Xception (Modified Aligned, Gluon) [[gluon_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/gluon_xception.py)] * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/dmlc/gluon-cv/tree/master/gluoncv/model_zoo, https://github.com/jfzhang95/pytorch-deeplab-xception/ ## Xception (Modified Aligned, TF) [[aligned_xception.py](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/aligned_xception.py)] * Paper: `Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation` - https://arxiv.org/abs/1802.02611 * Reference code: https://github.com/tensorflow/models/tree/master/research/deeplab
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/results.md
# Results CSV files containing an ImageNet-1K and out-of-distribution (OOD) test set validation results for all models with pretrained weights is located in the repository [results folder](https://github.com/rwightman/pytorch-image-models/tree/master/results). ## Self-trained Weights The table below includes ImageNet-1k validation results of model weights that I've trained myself. It is not updated as frequently as the csv results outputs linked above. |Model | Acc@1 (Err) | Acc@5 (Err) | Param # (M) | Interpolation | Image Size | |---|---|---|---|---|---| | efficientnet_b3a | 82.242 (17.758) | 96.114 (3.886) | 12.23 | bicubic | 320 (1.0 crop) | | efficientnet_b3 | 82.076 (17.924) | 96.020 (3.980) | 12.23 | bicubic | 300 | | regnet_32 | 82.002 (17.998) | 95.906 (4.094) | 19.44 | bicubic | 224 | | skresnext50d_32x4d | 81.278 (18.722) | 95.366 (4.634) | 27.5 | bicubic | 288 (1.0 crop) | | seresnext50d_32x4d | 81.266 (18.734) | 95.620 (4.380) | 27.6 | bicubic | 224 | | efficientnet_b2a | 80.608 (19.392) | 95.310 (4.690) | 9.11 | bicubic | 288 (1.0 crop) | | resnet50d | 80.530 (19.470) | 95.160 (4.840) | 25.6 | bicubic | 224 | | mixnet_xl | 80.478 (19.522) | 94.932 (5.068) | 11.90 | bicubic | 224 | | efficientnet_b2 | 80.402 (19.598) | 95.076 (4.924) | 9.11 | bicubic | 260 | | seresnet50 | 80.274 (19.726) | 95.070 (4.930) | 28.1 | bicubic | 224 | | skresnext50d_32x4d | 80.156 (19.844) | 94.642 (5.358) | 27.5 | bicubic | 224 | | cspdarknet53 | 80.058 (19.942) | 95.084 (4.916) | 27.6 | bicubic | 256 | | cspresnext50 | 80.040 (19.960) | 94.944 (5.056) | 20.6 | bicubic | 224 | | resnext50_32x4d | 79.762 (20.238) | 94.600 (5.400) | 25 | bicubic | 224 | | resnext50d_32x4d | 79.674 (20.326) | 94.868 (5.132) | 25.1 | bicubic | 224 | | cspresnet50 | 79.574 (20.426) | 94.712 (5.288) | 21.6 | bicubic | 256 | | ese_vovnet39b | 79.320 (20.680) | 94.710 (5.290) | 24.6 | bicubic | 224 | | resnetblur50 | 79.290 (20.710) | 94.632 (5.368) | 25.6 | bicubic | 224 | | dpn68b | 79.216 (20.784) | 94.414 (5.586) | 12.6 | bicubic | 224 | | resnet50 | 79.038 (20.962) | 94.390 (5.610) | 25.6 | bicubic | 224 | | mixnet_l | 78.976 (21.024 | 94.184 (5.816) | 7.33 | bicubic | 224 | | efficientnet_b1 | 78.692 (21.308) | 94.086 (5.914) | 7.79 | bicubic | 240 | | efficientnet_es | 78.066 (21.934) | 93.926 (6.074) | 5.44 | bicubic | 224 | | seresnext26t_32x4d | 77.998 (22.002) | 93.708 (6.292) | 16.8 | bicubic | 224 | | seresnext26tn_32x4d | 77.986 (22.014) | 93.746 (6.254) | 16.8 | bicubic | 224 | | efficientnet_b0 | 77.698 (22.302) | 93.532 (6.468) | 5.29 | bicubic | 224 | | seresnext26d_32x4d | 77.602 (22.398) | 93.608 (6.392) | 16.8 | bicubic | 224 | | mobilenetv2_120d | 77.294 (22.706 | 93.502 (6.498) | 5.8 | bicubic | 224 | | mixnet_m | 77.256 (22.744) | 93.418 (6.582) | 5.01 | bicubic | 224 | | resnet34d | 77.116 (22.884) | 93.382 (6.618) | 21.8 | bicubic | 224 | | seresnext26_32x4d | 77.104 (22.896) | 93.316 (6.684) | 16.8 | bicubic | 224 | | skresnet34 | 76.912 (23.088) | 93.322 (6.678) | 22.2 | bicubic | 224 | | ese_vovnet19b_dw | 76.798 (23.202) | 93.268 (6.732) | 6.5 | bicubic | 224 | | resnet26d | 76.68 (23.32) | 93.166 (6.834) | 16 | bicubic | 224 | | densenetblur121d | 76.576 (23.424) | 93.190 (6.810) | 8.0 | bicubic | 224 | | mobilenetv2_140 | 76.524 (23.476) | 92.990 (7.010) | 6.1 | bicubic | 224 | | mixnet_s | 75.988 (24.012) | 92.794 (7.206) | 4.13 | bicubic | 224 | | mobilenetv3_large_100 | 75.766 (24.234) | 92.542 (7.458) | 5.5 | bicubic | 224 | | mobilenetv3_rw | 75.634 (24.366) | 92.708 (7.292) | 5.5 | bicubic | 224 | | mnasnet_a1 | 75.448 (24.552) | 92.604 (7.396) | 3.89 | bicubic | 224 | | resnet26 | 75.292 (24.708) | 92.57 (7.43) | 16 | bicubic | 224 | | fbnetc_100 | 75.124 (24.876) | 92.386 (7.614) | 5.6 | bilinear | 224 | | resnet34 | 75.110 (24.890) | 92.284 (7.716) | 22 | bilinear | 224 | | mobilenetv2_110d | 75.052 (24.948) | 92.180 (7.820) | 4.5 | bicubic | 224 | | seresnet34 | 74.808 (25.192) | 92.124 (7.876) | 22 | bilinear | 224 | | mnasnet_b1 | 74.658 (25.342) | 92.114 (7.886) | 4.38 | bicubic | 224 | | spnasnet_100 | 74.084 (25.916) | 91.818 (8.182) | 4.42 | bilinear | 224 | | skresnet18 | 73.038 (26.962) | 91.168 (8.832) | 11.9 | bicubic | 224 | | mobilenetv2_100 | 72.978 (27.022) | 91.016 (8.984) | 3.5 | bicubic | 224 | | resnet18d | 72.260 (27.740) | 90.696 (9.304) | 11.7 | bicubic | 224 | | seresnet18 | 71.742 (28.258) | 90.334 (9.666) | 11.8 | bicubic | 224 | ## Ported and Other Weights For weights ported from other deep learning frameworks (Tensorflow, MXNet GluonCV) or copied from other PyTorch sources, please see the full results tables for ImageNet and various OOD test sets at in the [results tables](https://github.com/rwightman/pytorch-image-models/tree/master/results). Model code .py files contain links to original sources of models and weights.
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/scripts.md
# Scripts A train, validation, inference, and checkpoint cleaning script included in the github root folder. Scripts are not currently packaged in the pip release. The training and validation scripts evolved from early versions of the [PyTorch Imagenet Examples](https://github.com/pytorch/examples). I have added significant functionality over time, including CUDA specific performance enhancements based on [NVIDIA's APEX Examples](https://github.com/NVIDIA/apex/tree/master/examples). ## Training Script The variety of training args is large and not all combinations of options (or even options) have been fully tested. For the training dataset folder, specify the folder to the base that contains a `train` and `validation` folder. To train an SE-ResNet34 on ImageNet, locally distributed, 4 GPUs, one process per GPU w/ cosine schedule, random-erasing prob of 50% and per-pixel random value: `./distributed_train.sh 4 /data/imagenet --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4` NOTE: It is recommended to use PyTorch 1.9+ w/ PyTorch native AMP and DDP instead of APEX AMP. `--amp` defaults to native AMP as of timm ver 0.4.3. `--apex-amp` will force use of APEX components if they are installed. ## Validation / Inference Scripts Validation and inference scripts are similar in usage. One outputs metrics on a validation set and the other outputs topk class ids in a csv. Specify the folder containing validation images, not the base as in training script. To validate with the model's pretrained weights (if they exist): `python validate.py /imagenet/validation/ --model seresnext26_32x4d --pretrained` To run inference from a checkpoint: `python inference.py /imagenet/validation/ --model mobilenetv3_large_100 --checkpoint ./output/train/model_best.pth.tar`
0
hf_public_repos/pytorch-image-models
hf_public_repos/pytorch-image-models/docs/training_hparam_examples.md
# Training Examples ## EfficientNet-B2 with RandAugment - 80.4 top-1, 95.1 top-5 These params are for dual Titan RTX cards with NVIDIA Apex installed: `./distributed_train.sh 2 /imagenet/ --model efficientnet_b2 -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .016` ## MixNet-XL with RandAugment - 80.5 top-1, 94.9 top-5 This params are for dual Titan RTX cards with NVIDIA Apex installed: `./distributed_train.sh 2 /imagenet/ --model mixnet_xl -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .969 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.3 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.3 --amp --lr .016 --dist-bn reduce` ## SE-ResNeXt-26-D and SE-ResNeXt-26-T These hparams (or similar) work well for a wide range of ResNet architecture, generally a good idea to increase the epoch # as the model size increases... ie approx 180-200 for ResNe(X)t50, and 220+ for larger. Increase batch size and LR proportionally for better GPUs or with AMP enabled. These params were for 2 1080Ti cards: `./distributed_train.sh 2 /imagenet/ --model seresnext26t_32x4d --lr 0.1 --warmup-epochs 5 --epochs 160 --weight-decay 1e-4 --sched cosine --reprob 0.4 --remode pixel -b 112` ## EfficientNet-B3 with RandAugment - 81.5 top-1, 95.7 top-5 The training of this model started with the same command line as EfficientNet-B2 w/ RA above. After almost three weeks of training the process crashed. The results weren't looking amazing so I resumed the training several times with tweaks to a few params (increase RE prob, decrease rand-aug, increase ema-decay). Nothing looked great. I ended up averaging the best checkpoints from all restarts. The result is mediocre at default res/crop but oddly performs much better with a full image test crop of 1.0. ## EfficientNet-B0 with RandAugment - 77.7 top-1, 95.3 top-5 [Michael Klachko](https://github.com/michaelklachko) achieved these results with the command line for B2 adapted for larger batch size, with the recommended B0 dropout rate of 0.2. `./distributed_train.sh 2 /imagenet/ --model efficientnet_b0 -b 384 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .048` ## ResNet50 with JSD loss and RandAugment (clean + 2x RA augs) - 79.04 top-1, 94.39 top-5 Trained on two older 1080Ti cards, this took a while. Only slightly, non statistically better ImageNet validation result than my first good AugMix training of 78.99. However, these weights are more robust on tests with ImageNetV2, ImageNet-Sketch, etc. Unlike my first AugMix runs, I've enabled SplitBatchNorm, disabled random erasing on the clean split, and cranked up random erasing prob on the 2 augmented paths. `./distributed_train.sh 2 /imagenet -b 64 --model resnet50 --sched cosine --epochs 200 --lr 0.05 --amp --remode pixel --reprob 0.6 --aug-splits 3 --aa rand-m9-mstd0.5-inc1 --resplit --split-bn --jsd --dist-bn reduce` ## EfficientNet-ES (EdgeTPU-Small) with RandAugment - 78.066 top-1, 93.926 top-5 Trained by [Andrew Lavin](https://github.com/andravin) with 8 V100 cards. Model EMA was not used, final checkpoint is the average of 8 best checkpoints during training. `./distributed_train.sh 8 /imagenet --model efficientnet_es -b 128 --sched step --epochs 450 --decay-epochs 2.4 --decay-rate .97 --opt rmsproptf --opt-eps .001 -j 8 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064` ## MobileNetV3-Large-100 - 75.766 top-1, 92,542 top-5 `./distributed_train.sh 2 /imagenet/ --model mobilenetv3_large_100 -b 512 --sched step --epochs 600 --decay-epochs 2.4 --decay-rate .973 --opt rmsproptf --opt-eps .001 -j 7 --warmup-lr 1e-6 --weight-decay 1e-5 --drop 0.2 --drop-path 0.2 --model-ema --model-ema-decay 0.9999 --aa rand-m9-mstd0.5 --remode pixel --reprob 0.2 --amp --lr .064 --lr-noise 0.42 0.9` ## ResNeXt-50 32x4d w/ RandAugment - 79.762 top-1, 94.60 top-5 These params will also work well for SE-ResNeXt-50 and SK-ResNeXt-50 and likely 101. I used them for the SK-ResNeXt-50 32x4d that I trained with 2 GPU using a slightly higher LR per effective batch size (lr=0.18, b=192 per GPU). The cmd line below are tuned for 8 GPU training. `./distributed_train.sh 8 /imagenet --model resnext50_32x4d --lr 0.6 --warmup-epochs 5 --epochs 240 --weight-decay 1e-4 --sched cosine --reprob 0.4 --recount 3 --remode pixel --aa rand-m7-mstd0.5-inc1 -b 192 -j 6 --amp --dist-bn reduce`
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/javascripts/tables.js
app.location$.subscribe(function() { var tables = document.querySelectorAll("article table") tables.forEach(function(table) { new Tablesort(table) }) })
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/.pages
title: Model Pages
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/adversarial-inception-v3.md
# Adversarial Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). This particular model was trained for study of adversarial examples (adversarial training). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('adv_inception_v3', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `adv_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('adv_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1804-00097, author = {Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan L. Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, title = {Adversarial Attacks and Defences Competition}, journal = {CoRR}, volume = {abs/1804.00097}, year = {2018}, url = {http://arxiv.org/abs/1804.00097}, archivePrefix = {arXiv}, eprint = {1804.00097}, timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Adversarial Inception v3 Paper: Title: Adversarial Attacks and Defences Competition URL: https://paperswithcode.com/paper/adversarial-attacks-and-defences-competition Models: - Name: adv_inception_v3 In Collection: Adversarial Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95549439 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: adv_inception_v3 Crop Pct: '0.875' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L456 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/adv_inception_v3-9e27bd63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.74% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/advprop.md
# AdvProp (EfficientNet) **AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples. The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{xie2020adversarial, title={Adversarial Examples Improve Image Recognition}, author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le}, year={2020}, eprint={1911.09665}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: AdvProp Paper: Title: Adversarial Examples Improve Image Recognition URL: https://paperswithcode.com/paper/adversarial-examples-improve-image Models: - Name: tf_efficientnet_b0_ap In Collection: AdvProp Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21385973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b0_ap LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1334 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.1% Top 5 Accuracy: 93.26% - Name: tf_efficientnet_b1_ap In Collection: AdvProp Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31515350 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b1_ap LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1344 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.28% Top 5 Accuracy: 94.3% - Name: tf_efficientnet_b2_ap In Collection: AdvProp Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36800745 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b2_ap LR: 0.256 Epochs: 350 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1354 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.3% Top 5 Accuracy: 95.03% - Name: tf_efficientnet_b3_ap In Collection: AdvProp Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49384538 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b3_ap LR: 0.256 Epochs: 350 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1364 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.82% Top 5 Accuracy: 95.62% - Name: tf_efficientnet_b4_ap In Collection: AdvProp Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77993585 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b4_ap LR: 0.256 Epochs: 350 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1374 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.26% Top 5 Accuracy: 96.39% - Name: tf_efficientnet_b5_ap In Collection: AdvProp Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122403150 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b5_ap LR: 0.256 Epochs: 350 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1384 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.25% Top 5 Accuracy: 96.97% - Name: tf_efficientnet_b6_ap In Collection: AdvProp Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173237466 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b6_ap LR: 0.256 Epochs: 350 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1394 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.79% Top 5 Accuracy: 97.14% - Name: tf_efficientnet_b7_ap In Collection: AdvProp Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266850607 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b7_ap LR: 0.256 Epochs: 350 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.12% Top 5 Accuracy: 97.25% - Name: tf_efficientnet_b8_ap In Collection: AdvProp Metadata: FLOPs: 80962956270 Parameters: 87410000 File Size: 351412563 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AdvProp - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b8_ap LR: 0.128 Epochs: 350 Crop Pct: '0.954' Momentum: 0.9 Batch Size: 2048 Image Size: '672' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1416 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.37% Top 5 Accuracy: 97.3% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/big-transfer.md
# Big Transfer (BiT) **Big Transfer (BiT)** is a type of pretraining recipe that pre-trains on a large supervised source dataset, and fine-tunes the weights on the target task. Models are trained on the JFT-300M dataset. The finetuned models contained in this collection are finetuned on ImageNet. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnetv2_101x1_bitm', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnetv2_101x1_bitm`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnetv2_101x1_bitm', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{kolesnikov2020big, title={Big Transfer (BiT): General Visual Representation Learning}, author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby}, year={2020}, eprint={1912.11370}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Big Transfer Paper: Title: 'Big Transfer (BiT): General Visual Representation Learning' URL: https://paperswithcode.com/paper/large-scale-learning-of-general-visual Models: - Name: resnetv2_101x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 44540000 File Size: 178256468 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x1_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L444 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.21% Top 5 Accuracy: 96.47% - Name: resnetv2_101x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 387930000 File Size: 1551830100 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_101x3_bitm LR: 0.03 Epochs: 90 Layers: 101 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L451 Weights: https://storage.googleapis.com/bit_models/BiT-M-R101x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.38% Top 5 Accuracy: 97.37% - Name: resnetv2_152x2_bitm In Collection: Big Transfer Metadata: FLOPs: 10659792 Parameters: 236340000 File Size: 945476668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M ID: resnetv2_152x2_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L458 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x2-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.4% Top 5 Accuracy: 97.43% - Name: resnetv2_152x4_bitm In Collection: Big Transfer Metadata: FLOPs: 21317584 Parameters: 936530000 File Size: 3746270104 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_152x4_bitm Crop Pct: '1.0' Image Size: '480' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L465 Weights: https://storage.googleapis.com/bit_models/BiT-M-R152x4-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.95% Top 5 Accuracy: 97.45% - Name: resnetv2_50x1_bitm In Collection: Big Transfer Metadata: FLOPs: 5330896 Parameters: 25550000 File Size: 102242668 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x1_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L430 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x1-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.19% Top 5 Accuracy: 95.63% - Name: resnetv2_50x3_bitm In Collection: Big Transfer Metadata: FLOPs: 15988688 Parameters: 217320000 File Size: 869321580 Architecture: - 1x1 Convolution - Bottleneck Residual Block - Convolution - Global Average Pooling - Group Normalization - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Weight Standardization Tasks: - Image Classification Training Techniques: - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPUv3-512 ID: resnetv2_50x3_bitm LR: 0.03 Epochs: 90 Layers: 50 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 4096 Image Size: '480' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnetv2.py#L437 Weights: https://storage.googleapis.com/bit_models/BiT-M-R50x3-ILSVRC2012.npz Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.75% Top 5 Accuracy: 97.12% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/csp-darknet.md
# CSP-DarkNet **CSPDarknet53** is a convolutional neural network and backbone for object detection that uses [DarkNet-53](https://paperswithcode.com/method/darknet-53). It employs a CSPNet strategy to partition the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. This CNN is used as the backbone for [YOLOv4](https://paperswithcode.com/method/yolov4). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('cspdarknet53', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspdarknet53`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('cspdarknet53', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{bochkovskiy2020yolov4, title={YOLOv4: Optimal Speed and Accuracy of Object Detection}, author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao}, year={2020}, eprint={2004.10934}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP DarkNet Paper: Title: 'YOLOv4: Optimal Speed and Accuracy of Object Detection' URL: https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object Models: - Name: cspdarknet53 In Collection: CSP DarkNet Metadata: FLOPs: 8545018880 Parameters: 27640000 File Size: 110775135 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Mish - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - CutMix - Label Smoothing - Mosaic - Polynomial Learning Rate Decay - SGD with Momentum - Self-Adversarial Training - Weight Decay Training Data: - ImageNet Training Resources: 1x NVIDIA RTX 2070 GPU ID: cspdarknet53 LR: 0.1 Layers: 53 Crop Pct: '0.887' Momentum: 0.9 Batch Size: 128 Image Size: '256' Warmup Steps: 1000 Weight Decay: 0.0005 Interpolation: bilinear Training Steps: 8000000 FPS (GPU RTX 2070): 66 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L441 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 95.09% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/csp-resnet.md
# CSP-ResNet **CSPResNet** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNet](https://paperswithcode.com/method/resnet). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('cspresnet50', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnet50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('cspresnet50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNet Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnet50 In Collection: CSP ResNet Metadata: FLOPs: 5924992000 Parameters: 21620000 File Size: 86679303 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: cspresnet50 LR: 0.1 Layers: 50 Crop Pct: '0.887' Momentum: 0.9 Batch Size: 128 Image Size: '256' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.57% Top 5 Accuracy: 94.71% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/csp-resnext.md
# CSP-ResNeXt **CSPResNeXt** is a convolutional neural network where we apply the Cross Stage Partial Network (CSPNet) approach to [ResNeXt](https://paperswithcode.com/method/resnext). The CSPNet partitions the feature map of the base layer into two parts and then merges them through a cross-stage hierarchy. The use of a split and merge strategy allows for more gradient flow through the network. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('cspresnext50', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `cspresnext50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('cspresnext50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wang2019cspnet, title={CSPNet: A New Backbone that can Enhance Learning Capability of CNN}, author={Chien-Yao Wang and Hong-Yuan Mark Liao and I-Hau Yeh and Yueh-Hua Wu and Ping-Yang Chen and Jun-Wei Hsieh}, year={2019}, eprint={1911.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: CSP ResNeXt Paper: Title: 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN' URL: https://paperswithcode.com/paper/cspnet-a-new-backbone-that-can-enhance Models: - Name: cspresnext50 In Collection: CSP ResNeXt Metadata: FLOPs: 3962945536 Parameters: 20570000 File Size: 82562887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - Polynomial Learning Rate Decay - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 1x GPU ID: cspresnext50 LR: 0.1 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 128 Image Size: '224' Weight Decay: 0.005 Interpolation: bilinear Training Steps: 8000000 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/cspnet.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.05% Top 5 Accuracy: 94.94% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/densenet.md
# DenseNet **DenseNet** is a type of convolutional neural network that utilises dense connections between layers, through [Dense Blocks](http://www.paperswithcode.com/method/dense-block), where we connect *all layers* (with matching feature-map sizes) directly with each other. To preserve the feed-forward nature, each layer obtains additional inputs from all preceding layers and passes on its own feature-maps to all subsequent layers. The **DenseNet Blur** variant in this collection by Ross Wightman employs [Blur Pooling](http://www.paperswithcode.com/method/blur-pooling) ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('densenet121', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `densenet121`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('densenet121', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HuangLW16a, author = {Gao Huang and Zhuang Liu and Kilian Q. Weinberger}, title = {Densely Connected Convolutional Networks}, journal = {CoRR}, volume = {abs/1608.06993}, year = {2016}, url = {http://arxiv.org/abs/1608.06993}, archivePrefix = {arXiv}, eprint = {1608.06993}, timestamp = {Mon, 10 Sep 2018 15:49:32 +0200}, biburl = {https://dblp.org/rec/journals/corr/HuangLW16a.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` ``` @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ``` <!-- Type: model-index Collections: - Name: DenseNet Paper: Title: Densely Connected Convolutional Networks URL: https://paperswithcode.com/paper/densely-connected-convolutional-networks Models: - Name: densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32376726 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet121 LR: 0.1 Epochs: 90 Layers: 121 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L295 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.56% Top 5 Accuracy: 92.65% - Name: densenet161 In Collection: DenseNet Metadata: FLOPs: 9931959264 Parameters: 28680000 File Size: 115730790 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet161 LR: 0.1 Epochs: 90 Layers: 161 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L347 Weights: https://download.pytorch.org/models/densenet161-8d451a50.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.36% Top 5 Accuracy: 93.63% - Name: densenet169 In Collection: DenseNet Metadata: FLOPs: 4316945792 Parameters: 14150000 File Size: 57365526 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet169 LR: 0.1 Epochs: 90 Layers: 169 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L327 Weights: https://download.pytorch.org/models/densenet169-b2777c0a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.9% Top 5 Accuracy: 93.02% - Name: densenet201 In Collection: DenseNet Metadata: FLOPs: 5514321024 Parameters: 20010000 File Size: 81131730 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Kaiming Initialization - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet ID: densenet201 LR: 0.1 Epochs: 90 Layers: 201 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L337 Weights: https://download.pytorch.org/models/densenet201-c1103571.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.29% Top 5 Accuracy: 93.48% - Name: densenetblur121d In Collection: DenseNet Metadata: FLOPs: 3947812864 Parameters: 8000000 File Size: 32456500 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: densenetblur121d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L305 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.59% Top 5 Accuracy: 93.2% - Name: tv_densenet121 In Collection: DenseNet Metadata: FLOPs: 3641843200 Parameters: 7980000 File Size: 32342954 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Block - Dense Connections - Dropout - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_densenet121 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/densenet.py#L379 Weights: https://download.pytorch.org/models/densenet121-a639ec97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.74% Top 5 Accuracy: 92.15% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/dla.md
# Deep Layer Aggregation Extending “shallow” skip connections, **Dense Layer Aggregation (DLA)** incorporates more depth and sharing. The authors introduce two structures for deep layer aggregation (DLA): iterative deep aggregation (IDA) and hierarchical deep aggregation (HDA). These structures are expressed through an architectural framework, independent of the choice of backbone, for compatibility with current and future networks. IDA focuses on fusing resolutions and scales while HDA focuses on merging features from all modules and channels. IDA follows the base hierarchy to refine resolution and aggregate scale stage-bystage. HDA assembles its own hierarchy of tree-structured connections that cross and merge stages to aggregate different levels of representation. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('dla102', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `dla102`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('dla102', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{yu2019deep, title={Deep Layer Aggregation}, author={Fisher Yu and Dequan Wang and Evan Shelhamer and Trevor Darrell}, year={2019}, eprint={1707.06484}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: DLA Paper: Title: Deep Layer Aggregation URL: https://paperswithcode.com/paper/deep-layer-aggregation Models: - Name: dla102 In Collection: DLA Metadata: FLOPs: 7192952808 Parameters: 33270000 File Size: 135290579 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L410 Weights: http://dl.yf.io/dla/models/imagenet/dla102-d94d9790.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.03% Top 5 Accuracy: 93.95% - Name: dla102x In Collection: DLA Metadata: FLOPs: 5886821352 Parameters: 26310000 File Size: 107552695 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L418 Weights: http://dl.yf.io/dla/models/imagenet/dla102x-ad62be81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.51% Top 5 Accuracy: 94.23% - Name: dla102x2 In Collection: DLA Metadata: FLOPs: 9343847400 Parameters: 41280000 File Size: 167645295 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla102x2 LR: 0.1 Epochs: 120 Layers: 102 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L426 Weights: http://dl.yf.io/dla/models/imagenet/dla102x2-262837b6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.44% Top 5 Accuracy: 94.65% - Name: dla169 In Collection: DLA Metadata: FLOPs: 11598004200 Parameters: 53390000 File Size: 216547113 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: dla169 LR: 0.1 Epochs: 120 Layers: 169 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L434 Weights: http://dl.yf.io/dla/models/imagenet/dla169-0914e092.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.69% Top 5 Accuracy: 94.33% - Name: dla34 In Collection: DLA Metadata: FLOPs: 3070105576 Parameters: 15740000 File Size: 63228658 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla34 LR: 0.1 Epochs: 120 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L362 Weights: http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.62% Top 5 Accuracy: 92.06% - Name: dla46_c In Collection: DLA Metadata: FLOPs: 583277288 Parameters: 1300000 File Size: 5307963 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L369 Weights: http://dl.yf.io/dla/models/imagenet/dla46_c-2bfd52c3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 64.87% Top 5 Accuracy: 86.29% - Name: dla46x_c In Collection: DLA Metadata: FLOPs: 544052200 Parameters: 1070000 File Size: 4387641 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla46x_c LR: 0.1 Epochs: 120 Layers: 46 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L378 Weights: http://dl.yf.io/dla/models/imagenet/dla46x_c-d761bae7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 65.98% Top 5 Accuracy: 86.99% - Name: dla60 In Collection: DLA Metadata: FLOPs: 4256251880 Parameters: 22040000 File Size: 89560235 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60 LR: 0.1 Epochs: 120 Layers: 60 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L394 Weights: http://dl.yf.io/dla/models/imagenet/dla60-24839fc4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.04% Top 5 Accuracy: 93.32% - Name: dla60_res2net In Collection: DLA Metadata: FLOPs: 4147578504 Parameters: 20850000 File Size: 84886593 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2net Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L346 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net_dla60_4s-d88db7f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.46% Top 5 Accuracy: 94.21% - Name: dla60_res2next In Collection: DLA Metadata: FLOPs: 3485335272 Parameters: 17030000 File Size: 69639245 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60_res2next Layers: 60 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L354 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next_dla60_4s-d327927b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.44% Top 5 Accuracy: 94.16% - Name: dla60x In Collection: DLA Metadata: FLOPs: 3544204264 Parameters: 17350000 File Size: 70883139 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L402 Weights: http://dl.yf.io/dla/models/imagenet/dla60x-d15cacda.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 94.02% - Name: dla60x_c In Collection: DLA Metadata: FLOPs: 593325032 Parameters: 1320000 File Size: 5454396 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - DLA Bottleneck Residual Block - DLA Residual Block - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: dla60x_c LR: 0.1 Epochs: 120 Layers: 60 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dla.py#L386 Weights: http://dl.yf.io/dla/models/imagenet/dla60x_c-b870c45c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 67.91% Top 5 Accuracy: 88.42% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/dpn.md
# Dual Path Network (DPN) A **Dual Path Network (DPN)** is a convolutional neural network which presents a new topology of connection paths internally. The intuition is that [ResNets](https://paperswithcode.com/method/resnet) enables feature re-usage while DenseNet enables new feature exploration, and both are important for learning good representations. To enjoy the benefits from both path topologies, Dual Path Networks share common features while maintaining the flexibility to explore new features through dual path architectures. The principal building block is an [DPN Block](https://paperswithcode.com/method/dpn-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('dpn107', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `dpn107`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('dpn107', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{chen2017dual, title={Dual Path Networks}, author={Yunpeng Chen and Jianan Li and Huaxin Xiao and Xiaojie Jin and Shuicheng Yan and Jiashi Feng}, year={2017}, eprint={1707.01629}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: DPN Paper: Title: Dual Path Networks URL: https://paperswithcode.com/paper/dual-path-networks Models: - Name: dpn107 In Collection: DPN Metadata: FLOPs: 23524280296 Parameters: 86920000 File Size: 348612331 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn107 LR: 0.316 Layers: 107 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L310 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn107_extra-1ac7121e2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.16% Top 5 Accuracy: 94.91% - Name: dpn131 In Collection: DPN Metadata: FLOPs: 20586274792 Parameters: 79250000 File Size: 318016207 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn131 LR: 0.316 Layers: 131 Crop Pct: '0.875' Batch Size: 960 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L302 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn131-71dfe43e0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.83% Top 5 Accuracy: 94.71% - Name: dpn68 In Collection: DPN Metadata: FLOPs: 2990567880 Parameters: 12610000 File Size: 50761994 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn68 LR: 0.316 Layers: 68 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L270 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn68-66bebafa7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.31% Top 5 Accuracy: 92.97% - Name: dpn68b In Collection: DPN Metadata: FLOPs: 2990567880 Parameters: 12610000 File Size: 50781025 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn68b LR: 0.316 Layers: 68 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L278 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/dpn68b_ra-a31ca160.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.21% Top 5 Accuracy: 94.42% - Name: dpn92 In Collection: DPN Metadata: FLOPs: 8357659624 Parameters: 37670000 File Size: 151248422 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn92 LR: 0.316 Layers: 92 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L286 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn92_extra-b040e4a9b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.99% Top 5 Accuracy: 94.84% - Name: dpn98 In Collection: DPN Metadata: FLOPs: 15003675112 Parameters: 61570000 File Size: 247021307 Architecture: - Batch Normalization - Convolution - DPN Block - Dense Connections - Global Average Pooling - Max Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 40x K80 GPUs ID: dpn98 LR: 0.4 Layers: 98 Crop Pct: '0.875' Batch Size: 1280 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/dpn.py#L294 Weights: https://github.com/rwightman/pytorch-dpn-pretrained/releases/download/v0.1/dpn98-5b90dec4d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.65% Top 5 Accuracy: 94.61% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ecaresnet.md
# ECA-ResNet An **ECA ResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that utilises an [Efficient Channel Attention module](https://paperswithcode.com/method/efficient-channel-attention). Efficient Channel Attention is an architectural unit based on [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) that reduces model complexity without dimensionality reduction. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ecaresnet101d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ecaresnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ecaresnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wang2020ecanet, title={ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks}, author={Qilong Wang and Banggu Wu and Pengfei Zhu and Peihua Li and Wangmeng Zuo and Qinghua Hu}, year={2020}, eprint={1910.03151}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ECAResNet Paper: Title: 'ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks' URL: https://paperswithcode.com/paper/eca-net-efficient-channel-attention-for-deep Models: - Name: ecaresnet101d In Collection: ECAResNet Metadata: FLOPs: 10377193728 Parameters: 44570000 File Size: 178815067 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet101d LR: 0.1 Epochs: 100 Layers: 101 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1087 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet101D_281c5844.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.18% Top 5 Accuracy: 96.06% - Name: ecaresnet101d_pruned In Collection: ECAResNet Metadata: FLOPs: 4463972081 Parameters: 24880000 File Size: 99852736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet101d_pruned Layers: 101 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1097 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45610/outputs/ECAResNet101D_P_75a3370e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.82% Top 5 Accuracy: 95.64% - Name: ecaresnet50d In Collection: ECAResNet Metadata: FLOPs: 5591090432 Parameters: 25580000 File Size: 102579290 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x RTX 2080Ti GPUs ID: ecaresnet50d LR: 0.1 Epochs: 100 Layers: 50 Crop Pct: '0.875' Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1045 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNet50D_833caf58.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.31% - Name: ecaresnet50d_pruned In Collection: ECAResNet Metadata: FLOPs: 3250730657 Parameters: 19940000 File Size: 79990436 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnet50d_pruned Layers: 50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1055 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45899/outputs/ECAResNet50D_P_9c67f710.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.71% Top 5 Accuracy: 94.88% - Name: ecaresnetlight In Collection: ECAResNet Metadata: FLOPs: 5276118784 Parameters: 30160000 File Size: 120956612 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Efficient Channel Attention - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: ecaresnetlight Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1077 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45402/outputs/ECAResNetLight_4f34b35b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.46% Top 5 Accuracy: 95.25% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/efficientnet-pruned.md
# EfficientNet (Knapsack Pruned) **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). This collection consists of pruned EfficientNet models. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('efficientnet_b1_pruned', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b1_pruned`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('efficientnet_b1_pruned', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` ``` @misc{aflalo2020knapsack, title={Knapsack Pruning with Inner Distillation}, author={Yonathan Aflalo and Asaf Noy and Ming Lin and Itamar Friedman and Lihi Zelnik}, year={2020}, eprint={2002.08258}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Pruned Paper: Title: Knapsack Pruning with Inner Distillation URL: https://paperswithcode.com/paper/knapsack-pruning-with-inner-distillation Models: - Name: efficientnet_b1_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 489653114 Parameters: 6330000 File Size: 25595162 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1_pruned Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1208 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb1_pruned_9ebb3fe6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.25% Top 5 Accuracy: 93.84% - Name: efficientnet_b2_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 878133915 Parameters: 8310000 File Size: 33555005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2_pruned Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1219 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb2_pruned_203f55bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.86% - Name: efficientnet_b3_pruned In Collection: EfficientNet Pruned Metadata: FLOPs: 1239590641 Parameters: 9860000 File Size: 39770812 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3_pruned Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1230 Weights: https://imvl-automl-sh.oss-cn-shanghai.aliyuncs.com/darts/hyperml/hyperml/job_45403/outputs/effnetb3_pruned_5abcc29f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.86% Top 5 Accuracy: 95.24% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/efficientnet.md
# EfficientNet **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('efficientnet_b0', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: EfficientNet Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: efficientnet_b0 In Collection: EfficientNet Metadata: FLOPs: 511241564 Parameters: 5290000 File Size: 21376743 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b0 Layers: 18 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1002 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b0_ra-3dd342df.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.71% Top 5 Accuracy: 93.52% - Name: efficientnet_b1 In Collection: EfficientNet Metadata: FLOPs: 909691920 Parameters: 7790000 File Size: 31502706 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b1 Crop Pct: '0.875' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1011 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b1-533bc792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.71% Top 5 Accuracy: 94.15% - Name: efficientnet_b2 In Collection: EfficientNet Metadata: FLOPs: 1265324514 Parameters: 9110000 File Size: 36788104 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2 Crop Pct: '0.875' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1020 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b2_ra-bcdf34b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.08% - Name: efficientnet_b2a In Collection: EfficientNet Metadata: FLOPs: 1452041554 Parameters: 9110000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b2a Crop Pct: '1.0' Image Size: '288' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1029 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.61% Top 5 Accuracy: 95.32% - Name: efficientnet_b3 In Collection: EfficientNet Metadata: FLOPs: 2327905920 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3 Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1038 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.08% Top 5 Accuracy: 96.03% - Name: efficientnet_b3a In Collection: EfficientNet Metadata: FLOPs: 2600628304 Parameters: 12230000 File Size: 49369973 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_b3a Crop Pct: '1.0' Image Size: '320' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1047 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_b3_ra2-cf984f9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.25% Top 5 Accuracy: 96.11% - Name: efficientnet_em In Collection: EfficientNet Metadata: FLOPs: 3935516480 Parameters: 6900000 File Size: 27927309 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_em Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1118 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_em_ra2-66250f76.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.26% Top 5 Accuracy: 94.79% - Name: efficientnet_es In Collection: EfficientNet Metadata: FLOPs: 2317181824 Parameters: 5440000 File Size: 22003339 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_es Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1110 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_es_ra-f111e99c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.09% Top 5 Accuracy: 93.93% - Name: efficientnet_lite0 In Collection: EfficientNet Metadata: FLOPs: 510605024 Parameters: 4650000 File Size: 18820005 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: efficientnet_lite0 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/efficientnet.py#L1163 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/efficientnet_lite0_ra-37913777.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.5% Top 5 Accuracy: 92.51% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ensemble-adversarial.md
# # Ensemble Adversarial Inception ResNet v2 **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). This particular model was trained for study of adversarial examples (adversarial training). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ens_adv_inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ens_adv_inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1804-00097, author = {Alexey Kurakin and Ian J. Goodfellow and Samy Bengio and Yinpeng Dong and Fangzhou Liao and Ming Liang and Tianyu Pang and Jun Zhu and Xiaolin Hu and Cihang Xie and Jianyu Wang and Zhishuai Zhang and Zhou Ren and Alan L. Yuille and Sangxia Huang and Yao Zhao and Yuzhe Zhao and Zhonglin Han and Junjiajia Long and Yerkebulan Berdibekov and Takuya Akiba and Seiya Tokui and Motoki Abe}, title = {Adversarial Attacks and Defences Competition}, journal = {CoRR}, volume = {abs/1804.00097}, year = {2018}, url = {http://arxiv.org/abs/1804.00097}, archivePrefix = {arXiv}, eprint = {1804.00097}, timestamp = {Thu, 31 Oct 2019 16:31:22 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1804-00097.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Ensemble Adversarial Paper: Title: Adversarial Attacks and Defences Competition URL: https://paperswithcode.com/paper/adversarial-attacks-and-defences-competition Models: - Name: ens_adv_inception_resnet_v2 In Collection: Ensemble Adversarial Metadata: FLOPs: 16959133120 Parameters: 55850000 File Size: 223774238 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: ens_adv_inception_resnet_v2 Crop Pct: '0.897' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L351 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ens_adv_inception_resnet_v2-2592a550.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 1.0% Top 5 Accuracy: 17.32% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ese-vovnet.md
# ESE-VoVNet **VoVNet** is a convolutional neural network that seeks to make [DenseNet](https://paperswithcode.com/method/densenet) more efficient by concatenating all features only once in the last feature map, which makes input size constant and enables enlarging new output channel. Read about [one-shot aggregation here](https://paperswithcode.com/method/one-shot-aggregation). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ese_vovnet19b_dw', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ese_vovnet19b_dw`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ese_vovnet19b_dw', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{lee2019energy, title={An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, author={Youngwan Lee and Joong-won Hwang and Sangrok Lee and Yuseok Bae and Jongyoul Park}, year={2019}, eprint={1904.09730}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ESE VovNet Paper: Title: 'CenterMask : Real-Time Anchor-Free Instance Segmentation' URL: https://paperswithcode.com/paper/centermask-real-time-anchor-free-instance-1 Models: - Name: ese_vovnet19b_dw In Collection: ESE VovNet Metadata: FLOPs: 1711959904 Parameters: 6540000 File Size: 26243175 Architecture: - Batch Normalization - Convolution - Max Pooling - One-Shot Aggregation - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: ese_vovnet19b_dw Layers: 19 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L361 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet19b_dw-a8741004.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.82% Top 5 Accuracy: 93.28% - Name: ese_vovnet39b In Collection: ESE VovNet Metadata: FLOPs: 9089259008 Parameters: 24570000 File Size: 98397138 Architecture: - Batch Normalization - Convolution - Max Pooling - One-Shot Aggregation - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: ese_vovnet39b Layers: 39 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/vovnet.py#L371 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/ese_vovnet39b-f912fe73.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.31% Top 5 Accuracy: 94.72% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/fbnet.md
# FBNet **FBNet** is a type of convolutional neural architectures discovered through [DNAS](https://paperswithcode.com/method/dnas) neural architecture search. It utilises a basic type of image model block inspired by [MobileNetv2](https://paperswithcode.com/method/mobilenetv2) that utilises depthwise convolutions and an inverted residual structure (see components). The principal building block is the [FBNet Block](https://paperswithcode.com/method/fbnet-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('fbnetc_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `fbnetc_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('fbnetc_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{wu2019fbnet, title={FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search}, author={Bichen Wu and Xiaoliang Dai and Peizhao Zhang and Yanghan Wang and Fei Sun and Yiming Wu and Yuandong Tian and Peter Vajda and Yangqing Jia and Kurt Keutzer}, year={2019}, eprint={1812.03443}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: FBNet Paper: Title: 'FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search' URL: https://paperswithcode.com/paper/fbnet-hardware-aware-efficient-convnet-design Models: - Name: fbnetc_100 In Collection: FBNet Metadata: FLOPs: 508940064 Parameters: 5570000 File Size: 22525094 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Dropout - FBNet Block - Global Average Pooling - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: fbnetc_100 LR: 0.1 Epochs: 360 Layers: 22 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0005 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L985 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetc_100-c345b898.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.12% Top 5 Accuracy: 92.37% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-inception-v3.md
# (Gluon) Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_inception_v3', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: gluon_inception_v3 In Collection: Gloun Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95567055 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_inception_v3 Crop Pct: '0.875' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L464 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_inception_v3-9f746940.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.8% Top 5 Accuracy: 94.38% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-resnet.md
# (Gluon) ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_resnet101_v1b', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_resnet101_v1b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_resnet101_v1b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: gluon_resnet101_v1b In Collection: Gloun ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178723172 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L89 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1b-3b017079.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: gluon_resnet101_v1c In Collection: Gloun ResNet Metadata: FLOPs: 10376567296 Parameters: 44570000 File Size: 178802575 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L113 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1c-1f26822a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.53% Top 5 Accuracy: 94.59% - Name: gluon_resnet101_v1d In Collection: Gloun ResNet Metadata: FLOPs: 10377018880 Parameters: 44570000 File Size: 178802755 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L138 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1d-0f9c8644.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.4% Top 5 Accuracy: 95.02% - Name: gluon_resnet101_v1s In Collection: Gloun ResNet Metadata: FLOPs: 11805511680 Parameters: 44670000 File Size: 179221777 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet101_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L166 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet101_v1s-60fe0cc1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.29% Top 5 Accuracy: 95.16% - Name: gluon_resnet152_v1b In Collection: Gloun ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241534001 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L97 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1b-c1edb0dd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.69% Top 5 Accuracy: 94.73% - Name: gluon_resnet152_v1c In Collection: Gloun ResNet Metadata: FLOPs: 15165680128 Parameters: 60210000 File Size: 241613404 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L121 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1c-a3bb0b98.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.91% Top 5 Accuracy: 94.85% - Name: gluon_resnet152_v1d In Collection: Gloun ResNet Metadata: FLOPs: 15166131712 Parameters: 60210000 File Size: 241613584 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L147 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1d-bd354e12.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.48% Top 5 Accuracy: 95.2% - Name: gluon_resnet152_v1s In Collection: Gloun ResNet Metadata: FLOPs: 16594624512 Parameters: 60320000 File Size: 242032606 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet152_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L175 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet152_v1s-dcc41b81.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.02% Top 5 Accuracy: 95.42% - Name: gluon_resnet18_v1b In Collection: Gloun ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46816736 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet18_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L65 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet18_v1b-0757602b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.84% Top 5 Accuracy: 89.76% - Name: gluon_resnet34_v1b In Collection: Gloun ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87295112 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet34_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L73 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet34_v1b-c6d82d59.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.59% Top 5 Accuracy: 92.0% - Name: gluon_resnet50_v1b In Collection: Gloun ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102493763 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L81 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1b-0ebe02e2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.58% Top 5 Accuracy: 93.72% - Name: gluon_resnet50_v1c In Collection: Gloun ResNet Metadata: FLOPs: 5590551040 Parameters: 25580000 File Size: 102573166 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1c Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L105 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1c-48092f55.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.01% Top 5 Accuracy: 93.99% - Name: gluon_resnet50_v1d In Collection: Gloun ResNet Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102573346 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L129 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1d-818a1b1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.46% - Name: gluon_resnet50_v1s In Collection: Gloun ResNet Metadata: FLOPs: 7019495424 Parameters: 25680000 File Size: 102992368 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnet50_v1s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L156 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnet50_v1s-1762acc0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.7% Top 5 Accuracy: 94.25% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-resnext.md
# (Gluon) ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_resnext101_32x4d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_resnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_resnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/XieGDTH16, author = {Saining Xie and Ross B. Girshick and Piotr Doll{\'{a}}r and Zhuowen Tu and Kaiming He}, title = {Aggregated Residual Transformations for Deep Neural Networks}, journal = {CoRR}, volume = {abs/1611.05431}, year = {2016}, url = {http://arxiv.org/abs/1611.05431}, archivePrefix = {arXiv}, eprint = {1611.05431}, timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Gloun ResNeXt Paper: Title: Aggregated Residual Transformations for Deep Neural Networks URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep Models: - Name: gluon_resnext101_32x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177367414 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext101_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L193 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_32x4d-b253c8c4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.33% Top 5 Accuracy: 94.91% - Name: gluon_resnext101_64x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 19954172928 Parameters: 83460000 File Size: 334737852 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext101_64x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L201 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext101_64x4d-f9a8e184.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.63% Top 5 Accuracy: 95.0% - Name: gluon_resnext50_32x4d In Collection: Gloun ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100441719 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_resnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L185 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_resnext50_32x4d-e6a097c1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.35% Top 5 Accuracy: 94.42% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-senet.md
# (Gluon) SENet A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_senet154', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_senet154`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun SENet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: gluon_senet154 In Collection: Gloun SENet Metadata: FLOPs: 26681705136 Parameters: 115090000 File Size: 461546622 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_senet154 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L239 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_senet154-70a1a3c0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.23% Top 5 Accuracy: 95.35% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-seresnext.md
# (Gluon) SE-ResNeXt **SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun SEResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: gluon_seresnext101_32x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 10302923504 Parameters: 48960000 File Size: 196505510 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext101_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L219 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_32x4d-cf52900d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.87% Top 5 Accuracy: 95.29% - Name: gluon_seresnext101_64x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 19958950640 Parameters: 88230000 File Size: 353875948 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext101_64x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L229 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext101_64x4d-f9926f93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.88% Top 5 Accuracy: 95.31% - Name: gluon_seresnext50_32x4d In Collection: Gloun SEResNeXt Metadata: FLOPs: 5475179184 Parameters: 27560000 File Size: 110578827 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: gluon_seresnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_resnet.py#L209 Weights: https://github.com/rwightman/pytorch-pretrained-gluonresnet/releases/download/v0.1/gluon_seresnext50_32x4d-90cf2d6e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.92% Top 5 Accuracy: 94.82% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/gloun-xception.md
# (Gluon) Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution](https://paperswithcode.com/method/depthwise-separable-convolution) layers. The weights from this model were ported from [Gluon](https://cv.gluon.ai/model_zoo/classification.html). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('gluon_xception65', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `gluon_xception65`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('gluon_xception65', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Gloun Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: gluon_xception65 In Collection: Gloun Xception Metadata: FLOPs: 17594889728 Parameters: 39920000 File Size: 160551306 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: gluon_xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/gluon_xception.py#L241 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_xception-7015a15c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.7% Top 5 Accuracy: 94.87% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/hrnet.md
# HRNet **HRNet**, or **High-Resolution Net**, is a general purpose convolutional neural network for tasks like semantic segmentation, object detection and image classification. It is able to maintain high resolution representations through the whole process. We start from a high-resolution convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the multi-resolution streams in parallel. The resulting network consists of several ($4$ in the paper) stages and the $n$th stage contains $n$ streams corresponding to $n$ resolutions. The authors conduct repeated multi-resolution fusions by exchanging the information across the parallel streams over and over. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('hrnet_w18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `hrnet_w18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('hrnet_w18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{sun2019highresolution, title={High-Resolution Representations for Labeling Pixels and Regions}, author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang}, year={2019}, eprint={1904.04514}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: HRNet Paper: Title: Deep High-Resolution Representation Learning for Visual Recognition URL: https://paperswithcode.com/paper/190807919 Models: - Name: hrnet_w18 In Collection: HRNet Metadata: FLOPs: 5547205500 Parameters: 21300000 File Size: 85718883 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L800 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w18-8cb57bb9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.76% Top 5 Accuracy: 93.44% - Name: hrnet_w18_small In Collection: HRNet Metadata: FLOPs: 2071651488 Parameters: 13190000 File Size: 52934302 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v1-f460c6bc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.34% Top 5 Accuracy: 90.68% - Name: hrnet_w18_small_v2 In Collection: HRNet Metadata: FLOPs: 3360023160 Parameters: 15600000 File Size: 62682879 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w18_small_v2 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L795 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnet_w18_small_v2-4c50a8cb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.41% - Name: hrnet_w30 In Collection: HRNet Metadata: FLOPs: 10474119492 Parameters: 37710000 File Size: 151452218 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w30 Epochs: 100 Layers: 30 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L805 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w30-8d7f8dab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.21% Top 5 Accuracy: 94.22% - Name: hrnet_w32 In Collection: HRNet Metadata: FLOPs: 11524528320 Parameters: 41230000 File Size: 165547812 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 60 hours ID: hrnet_w32 Epochs: 100 Layers: 32 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L810 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w32-90d8c5fb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.45% Top 5 Accuracy: 94.19% - Name: hrnet_w40 In Collection: HRNet Metadata: FLOPs: 16381182192 Parameters: 57560000 File Size: 230899236 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w40 Epochs: 100 Layers: 40 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L815 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w40-7cd397a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.93% Top 5 Accuracy: 94.48% - Name: hrnet_w44 In Collection: HRNet Metadata: FLOPs: 19202520264 Parameters: 67060000 File Size: 268957432 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w44 Epochs: 100 Layers: 44 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L820 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w44-c9ac8c18.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.89% Top 5 Accuracy: 94.37% - Name: hrnet_w48 In Collection: HRNet Metadata: FLOPs: 22285865760 Parameters: 77470000 File Size: 310603710 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs Training Time: 80 hours ID: hrnet_w48 Epochs: 100 Layers: 48 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L825 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w48-abd2e6ab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.32% Top 5 Accuracy: 94.51% - Name: hrnet_w64 In Collection: HRNet Metadata: FLOPs: 37239321984 Parameters: 128060000 File Size: 513071818 Architecture: - Batch Normalization - Convolution - ReLU - Residual Connection Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: hrnet_w64 Epochs: 100 Layers: 64 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/hrnet.py#L830 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-hrnet/hrnetv2_w64-b47cc881.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.46% Top 5 Accuracy: 94.65% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ig-resnext.md
# Instagram ResNeXt WSL A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. This model was trained on billions of Instagram images using thousands of distinct hashtags as labels exhibit excellent transfer learning performance. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ig_resnext101_32x16d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ig_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ig_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{mahajan2018exploring, title={Exploring the Limits of Weakly Supervised Pretraining}, author={Dhruv Mahajan and Ross Girshick and Vignesh Ramanathan and Kaiming He and Manohar Paluri and Yixuan Li and Ashwin Bharambe and Laurens van der Maaten}, year={2018}, eprint={1805.00932}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: IG ResNeXt Paper: Title: Exploring the Limits of Weakly Supervised Pretraining URL: https://paperswithcode.com/paper/exploring-the-limits-of-weakly-supervised Models: - Name: ig_resnext101_32x16d In Collection: IG ResNeXt Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x16d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L874 Weights: https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.16% Top 5 Accuracy: 97.19% - Name: ig_resnext101_32x32d In Collection: IG ResNeXt Metadata: FLOPs: 112225170432 Parameters: 468530000 File Size: 1876573776 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x32d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Minibatch Size: 8064 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L885 Weights: https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.09% Top 5 Accuracy: 97.44% - Name: ig_resnext101_32x48d In Collection: IG ResNeXt Metadata: FLOPs: 197446554624 Parameters: 828410000 File Size: 3317136976 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x48d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L896 Weights: https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.42% Top 5 Accuracy: 97.58% - Name: ig_resnext101_32x8d In Collection: IG ResNeXt Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - Nesterov Accelerated Gradient - Weight Decay Training Data: - IG-3.5B-17k - ImageNet Training Resources: 336x GPUs ID: ig_resnext101_32x8d Epochs: 100 Layers: 101 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8064 Image Size: '224' Weight Decay: 0.001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L863 Weights: https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.7% Top 5 Accuracy: 96.64% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/inception-resnet-v2.md
# Inception ResNet v2 **Inception-ResNet-v2** is a convolutional neural architecture that builds on the Inception family of architectures but incorporates [residual connections](https://paperswithcode.com/method/residual-connection) (replacing the filter concatenation stage of the Inception architecture). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('inception_resnet_v2', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_resnet_v2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('inception_resnet_v2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{szegedy2016inceptionv4, title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, year={2016}, eprint={1602.07261}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Inception ResNet v2 Paper: Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact Models: - Name: inception_resnet_v2 In Collection: Inception ResNet v2 Metadata: FLOPs: 16959133120 Parameters: 55850000 File Size: 223774238 Architecture: - Average Pooling - Dropout - Inception-ResNet-v2 Reduction-B - Inception-ResNet-v2-A - Inception-ResNet-v2-B - Inception-ResNet-v2-C - Reduction-A - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 20x NVIDIA Kepler GPUs ID: inception_resnet_v2 LR: 0.045 Dropout: 0.2 Crop Pct: '0.897' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_resnet_v2.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/inception_resnet_v2-940b1cd6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 0.95% Top 5 Accuracy: 17.29% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/inception-v3.md
# Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('inception_v3', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: inception_v3 In Collection: Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 108857766 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Gradient Clipping - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x NVIDIA Kepler GPUs ID: inception_v3 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L442 Weights: https://download.pytorch.org/models/inception_v3_google-1a9a5a14.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.46% Top 5 Accuracy: 93.48% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/inception-v4.md
# Inception v4 **Inception-v4** is a convolutional neural network architecture that builds on previous iterations of the Inception family by simplifying the architecture and using more inception modules than [Inception-v3](https://paperswithcode.com/method/inception-v3). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('inception_v4', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `inception_v4`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('inception_v4', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{szegedy2016inceptionv4, title={Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning}, author={Christian Szegedy and Sergey Ioffe and Vincent Vanhoucke and Alex Alemi}, year={2016}, eprint={1602.07261}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Inception v4 Paper: Title: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning URL: https://paperswithcode.com/paper/inception-v4-inception-resnet-and-the-impact Models: - Name: inception_v4 In Collection: Inception v4 Metadata: FLOPs: 15806527936 Parameters: 42680000 File Size: 171082495 Architecture: - Average Pooling - Dropout - Inception-A - Inception-B - Inception-C - Reduction-A - Reduction-B - Softmax Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 20x NVIDIA Kepler GPUs ID: inception_v4 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v4.py#L313 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/inceptionv4-8e4777a0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 1.01% Top 5 Accuracy: 16.85% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/legacy-se-resnet.md
# (Legacy) SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('legacy_seresnet101', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnet101`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('legacy_seresnet101', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnet101 In Collection: Legacy SE ResNet Metadata: FLOPs: 9762614000 Parameters: 49330000 File Size: 197822624 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet101 LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L426 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet101-7e38fcc6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.38% Top 5 Accuracy: 94.26% - Name: legacy_seresnet152 In Collection: Legacy SE ResNet Metadata: FLOPs: 14553578160 Parameters: 66819999 File Size: 268033864 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet152 LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet152-d17c99b7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.67% Top 5 Accuracy: 94.38% - Name: legacy_seresnet18 In Collection: Legacy SE ResNet Metadata: FLOPs: 2328876024 Parameters: 11780000 File Size: 47175663 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet18 LR: 0.6 Epochs: 100 Layers: 18 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L405 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet18-4bb0ce65.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 71.74% Top 5 Accuracy: 90.34% - Name: legacy_seresnet34 In Collection: Legacy SE ResNet Metadata: FLOPs: 4706201004 Parameters: 21960000 File Size: 87958697 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet34 LR: 0.6 Epochs: 100 Layers: 34 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet34-a4004e63.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.79% Top 5 Accuracy: 92.13% - Name: legacy_seresnet50 In Collection: Legacy SE ResNet Metadata: FLOPs: 4974351024 Parameters: 28090000 File Size: 112611220 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Interpolation: bilinear Minibatch Size: 1024 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L419 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/se_resnet50-ce0d4300.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.64% Top 5 Accuracy: 93.74% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/legacy-se-resnext.md
# (Legacy) SE-ResNeXt **SE ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_seresnext101_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('legacy_seresnext101_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SE ResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_seresnext101_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 10287698672 Parameters: 48960000 File Size: 196466866 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext101_32x4d LR: 0.6 Epochs: 100 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L462 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext101_32x4d-3b2fe3d8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.23% Top 5 Accuracy: 95.02% - Name: legacy_seresnext26_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 3187342304 Parameters: 16790000 File Size: 67346327 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext26_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L448 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26_32x4d-65ebdb501.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.31% - Name: legacy_seresnext50_32x4d In Collection: Legacy SE ResNeXt Metadata: FLOPs: 5459954352 Parameters: 27560000 File Size: 110559176 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L455 Weights: http://data.lip6.fr/cadene/pretrainedmodels/se_resnext50_32x4d-a260b3a4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.08% Top 5 Accuracy: 94.43% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/legacy-senet.md
# (Legacy) SENet A **SENet** is a convolutional neural network architecture that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. The weights from this model were ported from Gluon. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('legacy_senet154', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `legacy_senet154`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('legacy_senet154', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Legacy SENet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: legacy_senet154 In Collection: Legacy SENet Metadata: FLOPs: 26659556016 Parameters: 115090000 File Size: 461488402 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: legacy_senet154 LR: 0.6 Epochs: 100 Layers: 154 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/senet.py#L440 Weights: http://data.lip6.fr/cadene/pretrainedmodels/senet154-c7b49a05.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.33% Top 5 Accuracy: 95.51% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/mixnet.md
# MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('mixnet_l', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mixnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: mixnet_l In Collection: MixNet Metadata: FLOPs: 738671316 Parameters: 7330000 File Size: 29608232 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1669 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_l-5a9a2ed8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.98% Top 5 Accuracy: 94.18% - Name: mixnet_m In Collection: MixNet Metadata: FLOPs: 454543374 Parameters: 5010000 File Size: 20298347 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1660 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_m-4647fc68.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.27% Top 5 Accuracy: 93.42% - Name: mixnet_s In Collection: MixNet Metadata: FLOPs: 321264910 Parameters: 4130000 File Size: 16727982 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1651 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_s-a907afbc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.99% Top 5 Accuracy: 92.79% - Name: mixnet_xl In Collection: MixNet Metadata: FLOPs: 1195880424 Parameters: 11900000 File Size: 48001170 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: mixnet_xl Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1678 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mixnet_xl_ra-aac3c00c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.47% Top 5 Accuracy: 94.93% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/mnasnet.md
# MnasNet **MnasNet** is a type of convolutional neural network optimized for mobile devices that is discovered through mobile neural architecture search, which explicitly incorporates model latency into the main objective so that the search can identify a model that achieves a good trade-off between accuracy and latency. The main building block is an [inverted residual block](https://paperswithcode.com/method/inverted-residual-block) (from [MobileNetV2](https://paperswithcode.com/method/mobilenetv2)). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('mnasnet_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('mnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mnasnet, title={MnasNet: Platform-Aware Neural Architecture Search for Mobile}, author={Mingxing Tan and Bo Chen and Ruoming Pang and Vijay Vasudevan and Mark Sandler and Andrew Howard and Quoc V. Le}, year={2019}, eprint={1807.11626}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: MNASNet Paper: Title: 'MnasNet: Platform-Aware Neural Architecture Search for Mobile' URL: https://paperswithcode.com/paper/mnasnet-platform-aware-neural-architecture Models: - Name: mnasnet_100 In Collection: MNASNet Metadata: FLOPs: 416415488 Parameters: 4380000 File Size: 17731774 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet ID: mnasnet_100 Layers: 100 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4000 Image Size: '224' Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L894 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_b1-74cb7081.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.67% Top 5 Accuracy: 92.1% - Name: semnasnet_100 In Collection: MNASNet Metadata: FLOPs: 414570766 Parameters: 3890000 File Size: 15731489 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Global Average Pooling - Inverted Residual Block - Max Pooling - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Data: - ImageNet ID: semnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L928 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mnasnet_a1-d9418771.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.45% Top 5 Accuracy: 92.61% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/mobilenet-v2.md
# MobileNet v2 **MobileNetV2** is a convolutional neural network architecture that seeks to perform well on mobile devices. It is based on an [inverted residual structure](https://paperswithcode.com/method/inverted-residual-block) where the residual connections are between the bottleneck layers. The intermediate expansion layer uses lightweight depthwise convolutions to filter features as a source of non-linearity. As a whole, the architecture of MobileNetV2 contains the initial fully convolution layer with 32 filters, followed by 19 residual bottleneck layers. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('mobilenetv2_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv2_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('mobilenetv2_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1801-04381, author = {Mark Sandler and Andrew G. Howard and Menglong Zhu and Andrey Zhmoginov and Liang{-}Chieh Chen}, title = {Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation}, journal = {CoRR}, volume = {abs/1801.04381}, year = {2018}, url = {http://arxiv.org/abs/1801.04381}, archivePrefix = {arXiv}, eprint = {1801.04381}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1801-04381.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V2 Paper: Title: 'MobileNetV2: Inverted Residuals and Linear Bottlenecks' URL: https://paperswithcode.com/paper/mobilenetv2-inverted-residuals-and-linear Models: - Name: mobilenetv2_100 In Collection: MobileNet V2 Metadata: FLOPs: 401920448 Parameters: 3500000 File Size: 14202571 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L955 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_100_ra-b33bc2c4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.95% Top 5 Accuracy: 91.0% - Name: mobilenetv2_110d In Collection: MobileNet V2 Metadata: FLOPs: 573958832 Parameters: 4520000 File Size: 18316431 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_110d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L969 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_110d_ra-77090ade.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.19% - Name: mobilenetv2_120d In Collection: MobileNet V2 Metadata: FLOPs: 888510048 Parameters: 5830000 File Size: 23651121 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_120d LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L977 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_120d_ra-5987e2ed.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.28% Top 5 Accuracy: 93.51% - Name: mobilenetv2_140 In Collection: MobileNet V2 Metadata: FLOPs: 770196784 Parameters: 6110000 File Size: 24673555 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - Inverted Residual Block - Max Pooling - ReLU6 - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: mobilenetv2_140 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1536 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L962 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv2_140_ra-21a4e913.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.51% Top 5 Accuracy: 93.0% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/mobilenet-v3.md
# MobileNet v3 **MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('mobilenetv3_large_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, archivePrefix = {arXiv}, eprint = {1905.02244}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: MobileNet V3 Paper: Title: Searching for MobileNetV3 URL: https://paperswithcode.com/paper/searching-for-mobilenetv3 Models: - Name: mobilenetv3_large_100 In Collection: MobileNet V3 Metadata: FLOPs: 287193752 Parameters: 5480000 File Size: 22076443 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_large_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L363 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.77% Top 5 Accuracy: 92.54% - Name: mobilenetv3_rw In Collection: MobileNet V3 Metadata: FLOPs: 287190638 Parameters: 5480000 File Size: 22064048 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: mobilenetv3_rw LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L384 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.62% Top 5 Accuracy: 92.71% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/nasnet.md
# NASNet **NASNet** is a type of convolutional neural network discovered through neural architecture search. The building blocks consist of normal and reduction cells. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('nasnetalarge', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `nasnetalarge`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('nasnetalarge', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{zoph2018learning, title={Learning Transferable Architectures for Scalable Image Recognition}, author={Barret Zoph and Vijay Vasudevan and Jonathon Shlens and Quoc V. Le}, year={2018}, eprint={1707.07012}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: NASNet Paper: Title: Learning Transferable Architectures for Scalable Image Recognition URL: https://paperswithcode.com/paper/learning-transferable-architectures-for Models: - Name: nasnetalarge In Collection: NASNet Metadata: FLOPs: 30242402862 Parameters: 88750000 File Size: 356056626 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x Tesla K40 GPUs ID: nasnetalarge Dropout: 0.5 Crop Pct: '0.911' Momentum: 0.9 Image Size: '331' Interpolation: bicubic Label Smoothing: 0.1 RMSProp $\epsilon$: 1.0 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/nasnet.py#L562 Weights: http://data.lip6.fr/cadene/pretrainedmodels/nasnetalarge-a1897284.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.63% Top 5 Accuracy: 96.05% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/noisy-student.md
# Noisy Student (EfficientNet) **Noisy Student Training** is a semi-supervised learning approach. It extends the idea of self-training and distillation with the use of equal-or-larger student models and noise added to the student during learning. It has three main steps: 1. train a teacher model on labeled images 2. use the teacher to generate pseudo labels on unlabeled images 3. train a student model on the combination of labeled images and pseudo labeled images. The algorithm is iterated a few times by treating the student as a teacher to relabel the unlabeled data and training a new student. Noisy Student Training seeks to improve on self-training and distillation in two ways. First, it makes the student larger than, or at least equal to, the teacher so the student can better learn from a larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder from the pseudo labels. To noise the student, it uses input noise such as RandAugment data augmentation, and model noise such as dropout and stochastic depth during training. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ns`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_efficientnet_b0_ns', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{xie2020selftraining, title={Self-training with Noisy Student improves ImageNet classification}, author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le}, year={2020}, eprint={1911.04252}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: Noisy Student Paper: Title: Self-training with Noisy Student improves ImageNet classification URL: https://paperswithcode.com/paper/self-training-with-noisy-student-improves Models: - Name: tf_efficientnet_b0_ns In Collection: Noisy Student Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21386709 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b0_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ns-c0e6a31c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.66% Top 5 Accuracy: 94.37% - Name: tf_efficientnet_b1_ns In Collection: Noisy Student Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31516408 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b1_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1437 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ns-99dd0c41.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.39% Top 5 Accuracy: 95.74% - Name: tf_efficientnet_b2_ns In Collection: Noisy Student Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36801803 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b2_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1447 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ns-00306e48.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.39% Top 5 Accuracy: 96.24% - Name: tf_efficientnet_b3_ns In Collection: Noisy Student Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49385734 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b3_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ns-9d44bf68.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.04% Top 5 Accuracy: 96.91% - Name: tf_efficientnet_b4_ns In Collection: Noisy Student Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77995057 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b4_ns LR: 0.128 Epochs: 700 Dropout: 0.5 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1467 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ns-d6313a46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.15% Top 5 Accuracy: 97.47% - Name: tf_efficientnet_b5_ns In Collection: Noisy Student Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122404944 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b5_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1477 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ns-6f26d0cf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.08% Top 5 Accuracy: 97.75% - Name: tf_efficientnet_b6_ns In Collection: Noisy Student Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173239537 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b6_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1487 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ns-51548356.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.45% Top 5 Accuracy: 97.88% - Name: tf_efficientnet_b7_ns In Collection: Noisy Student Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266853140 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod ID: tf_efficientnet_b7_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1498 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ns-1dbc32de.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 86.83% Top 5 Accuracy: 98.08% - Name: tf_efficientnet_l2_ns In Collection: Noisy Student Metadata: FLOPs: 611646113804 Parameters: 480310000 File Size: 1925950424 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: Cloud TPU v3 Pod Training Time: 6 days ID: tf_efficientnet_l2_ns LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.96' Momentum: 0.9 Batch Size: 2048 Image Size: '800' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1520 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns-df73bb44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 88.35% Top 5 Accuracy: 98.66% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/pnasnet.md
# PNASNet **Progressive Neural Architecture Search**, or **PNAS**, is a method for learning the structure of convolutional neural networks (CNNs). It uses a sequential model-based optimization (SMBO) strategy, where we search the space of cell structures, starting with simple (shallow) models and progressing to complex ones, pruning out unpromising structures as we go. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('pnasnet5large', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `pnasnet5large`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('pnasnet5large', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{liu2018progressive, title={Progressive Neural Architecture Search}, author={Chenxi Liu and Barret Zoph and Maxim Neumann and Jonathon Shlens and Wei Hua and Li-Jia Li and Li Fei-Fei and Alan Yuille and Jonathan Huang and Kevin Murphy}, year={2018}, eprint={1712.00559}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: PNASNet Paper: Title: Progressive Neural Architecture Search URL: https://paperswithcode.com/paper/progressive-neural-architecture-search Models: - Name: pnasnet5large In Collection: PNASNet Metadata: FLOPs: 31458865950 Parameters: 86060000 File Size: 345153926 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Techniques: - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 100x NVIDIA P100 GPUs ID: pnasnet5large LR: 0.015 Dropout: 0.5 Crop Pct: '0.911' Momentum: 0.9 Batch Size: 1600 Image Size: '331' Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/pnasnet.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/pnasnet5large-bf079911.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 0.98% Top 5 Accuracy: 18.58% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/regnetx.md
# RegNetX **RegNetX** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): $$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$ For **RegNetX** we have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('regnetx_002', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnetx_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('regnetx_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetX Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnetx_002 In Collection: RegNetX Metadata: FLOPs: 255276032 Parameters: 2680000 File Size: 10862199 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L337 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_002-e7e85e5c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 68.75% Top 5 Accuracy: 88.56% - Name: regnetx_004 In Collection: RegNetX Metadata: FLOPs: 510619136 Parameters: 5160000 File Size: 20841309 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L343 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_004-7d0e9424.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.39% Top 5 Accuracy: 90.82% - Name: regnetx_006 In Collection: RegNetX Metadata: FLOPs: 771659136 Parameters: 6200000 File Size: 24965172 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_006-85ec1baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.84% Top 5 Accuracy: 91.68% - Name: regnetx_008 In Collection: RegNetX Metadata: FLOPs: 1027038208 Parameters: 7260000 File Size: 29235944 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L355 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_008-d8b470eb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.05% Top 5 Accuracy: 92.34% - Name: regnetx_016 In Collection: RegNetX Metadata: FLOPs: 2059337856 Parameters: 9190000 File Size: 36988158 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L361 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_016-65ca972a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.95% Top 5 Accuracy: 93.43% - Name: regnetx_032 In Collection: RegNetX Metadata: FLOPs: 4082555904 Parameters: 15300000 File Size: 61509573 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L367 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_032-ed0c7f7e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.15% Top 5 Accuracy: 94.09% - Name: regnetx_040 In Collection: RegNetX Metadata: FLOPs: 5095167744 Parameters: 22120000 File Size: 88844824 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L373 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_040-73c2a654.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.48% Top 5 Accuracy: 94.25% - Name: regnetx_064 In Collection: RegNetX Metadata: FLOPs: 8303405824 Parameters: 26210000 File Size: 105184854 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L379 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_064-29278baa.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.06% Top 5 Accuracy: 94.47% - Name: regnetx_080 In Collection: RegNetX Metadata: FLOPs: 10276726784 Parameters: 39570000 File Size: 158720042 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L385 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_080-7c7fcab1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.21% Top 5 Accuracy: 94.55% - Name: regnetx_120 In Collection: RegNetX Metadata: FLOPs: 15536378368 Parameters: 46110000 File Size: 184866342 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L391 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_120-65d5521e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.61% Top 5 Accuracy: 94.73% - Name: regnetx_160 In Collection: RegNetX Metadata: FLOPs: 20491740672 Parameters: 54280000 File Size: 217623862 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L397 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_160-c98c4112.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.84% Top 5 Accuracy: 94.82% - Name: regnetx_320 In Collection: RegNetX Metadata: FLOPs: 40798958592 Parameters: 107810000 File Size: 431962133 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnetx_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L403 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnetx_320-8ea38b93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.25% Top 5 Accuracy: 95.03% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/regnety.md
# RegNetY **RegNetY** is a convolutional network design space with simple, regular models with parameters: depth $d$, initial width $w\_{0} > 0$, and slope $w\_{a} > 0$, and generates a different block width $u\_{j}$ for each block $j < d$. The key restriction for the RegNet types of model is that there is a linear parameterisation of block widths (the design space only contains models with this linear structure): $$ u\_{j} = w\_{0} + w\_{a}\cdot{j} $$ For **RegNetX** authors have additional restrictions: we set $b = 1$ (the bottleneck ratio), $12 \leq d \leq 28$, and $w\_{m} \geq 2$ (the width multiplier). For **RegNetY** authors make one change, which is to include [Squeeze-and-Excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('regnety_002', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `regnety_002`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('regnety_002', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{radosavovic2020designing, title={Designing Network Design Spaces}, author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár}, year={2020}, eprint={2003.13678}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RegNetY Paper: Title: Designing Network Design Spaces URL: https://paperswithcode.com/paper/designing-network-design-spaces Models: - Name: regnety_002 In Collection: RegNetY Metadata: FLOPs: 255754236 Parameters: 3160000 File Size: 12782926 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_002 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L409 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_002-e68ca334.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 70.28% Top 5 Accuracy: 89.55% - Name: regnety_004 In Collection: RegNetY Metadata: FLOPs: 515664568 Parameters: 4340000 File Size: 17542753 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_004 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L415 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_004-0db870e6.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.02% Top 5 Accuracy: 91.76% - Name: regnety_006 In Collection: RegNetY Metadata: FLOPs: 771746928 Parameters: 6060000 File Size: 24394127 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_006 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_006-c67e57ec.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.27% Top 5 Accuracy: 92.53% - Name: regnety_008 In Collection: RegNetY Metadata: FLOPs: 1023448952 Parameters: 6260000 File Size: 25223268 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_008 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L427 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_008-dc900dbe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.32% Top 5 Accuracy: 93.07% - Name: regnety_016 In Collection: RegNetY Metadata: FLOPs: 2070895094 Parameters: 11200000 File Size: 45115589 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_016 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L433 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_016-54367f74.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.73% - Name: regnety_032 In Collection: RegNetY Metadata: FLOPs: 4081118714 Parameters: 19440000 File Size: 78084523 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_032 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/regnety_032_ra-7f2439f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.01% Top 5 Accuracy: 95.91% - Name: regnety_040 In Collection: RegNetY Metadata: FLOPs: 5105933432 Parameters: 20650000 File Size: 82913909 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_040 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L445 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_040-f0d569f9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.23% Top 5 Accuracy: 94.64% - Name: regnety_064 In Collection: RegNetY Metadata: FLOPs: 8167730444 Parameters: 30580000 File Size: 122751416 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_064 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L451 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_064-0a48325c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.73% Top 5 Accuracy: 94.76% - Name: regnety_080 In Collection: RegNetY Metadata: FLOPs: 10233621420 Parameters: 39180000 File Size: 157124671 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_080 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L457 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_080-e7f3eb93.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.87% Top 5 Accuracy: 94.83% - Name: regnety_120 In Collection: RegNetY Metadata: FLOPs: 15542094856 Parameters: 51820000 File Size: 207743949 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_120 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L463 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_120-721ba79a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.38% Top 5 Accuracy: 95.12% - Name: regnety_160 In Collection: RegNetY Metadata: FLOPs: 20450196852 Parameters: 83590000 File Size: 334916722 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_160 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L469 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_160-d64013cd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.28% Top 5 Accuracy: 94.97% - Name: regnety_320 In Collection: RegNetY Metadata: FLOPs: 41492618394 Parameters: 145050000 File Size: 580891965 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - ReLU - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA V100 GPUs ID: regnety_320 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 5.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/regnet.py#L475 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-regnet/regnety_320-ba464b29.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 95.25% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/res2net.md
# Res2Net **Res2Net** is an image model that employs a variation on bottleneck residual blocks, [Res2Net Blocks](https://paperswithcode.com/method/res2net-block). The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('res2net101_26w_4s', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `res2net101_26w_4s`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('res2net101_26w_4s', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{Gao_2021, title={Res2Net: A New Multi-Scale Backbone Architecture}, volume={43}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, DOI={10.1109/tpami.2019.2938758}, number={2}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, year={2021}, month={Feb}, pages={652–662} } ``` <!-- Type: model-index Collections: - Name: Res2Net Paper: Title: 'Res2Net: A New Multi-scale Backbone Architecture' URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone Models: - Name: res2net101_26w_4s In Collection: Res2Net Metadata: FLOPs: 10415881200 Parameters: 45210000 File Size: 181456059 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net101_26w_4s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L152 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.19% Top 5 Accuracy: 94.43% - Name: res2net50_14w_8s In Collection: Res2Net Metadata: FLOPs: 5403546768 Parameters: 25060000 File Size: 100638543 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_14w_8s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L196 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.14% Top 5 Accuracy: 93.86% - Name: res2net50_26w_4s In Collection: Res2Net Metadata: FLOPs: 5499974064 Parameters: 25700000 File Size: 103110087 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_4s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L141 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.85% - Name: res2net50_26w_6s In Collection: Res2Net Metadata: FLOPs: 8130156528 Parameters: 37050000 File Size: 148603239 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_6s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L163 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.57% Top 5 Accuracy: 94.12% - Name: res2net50_26w_8s In Collection: Res2Net Metadata: FLOPs: 10760338992 Parameters: 48400000 File Size: 194085165 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_26w_8s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L174 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.19% Top 5 Accuracy: 94.37% - Name: res2net50_48w_2s In Collection: Res2Net Metadata: FLOPs: 5375291520 Parameters: 25290000 File Size: 101421406 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2Net Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2net50_48w_2s LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L185 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.53% Top 5 Accuracy: 93.56% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/res2next.md
# Res2NeXt **Res2NeXt** is an image model that employs a variation on [ResNeXt](https://paperswithcode.com/method/resnext) bottleneck residual blocks. The motivation is to be able to represent features at multiple scales. This is achieved through a novel building block for CNNs that constructs hierarchical residual-like connections within one single residual block. This represents multi-scale features at a granular level and increases the range of receptive fields for each network layer. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('res2next50', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `res2next50`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('res2next50', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{Gao_2021, title={Res2Net: A New Multi-Scale Backbone Architecture}, volume={43}, ISSN={1939-3539}, url={http://dx.doi.org/10.1109/TPAMI.2019.2938758}, DOI={10.1109/tpami.2019.2938758}, number={2}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, year={2021}, month={Feb}, pages={652–662} } ``` <!-- Type: model-index Collections: - Name: Res2NeXt Paper: Title: 'Res2Net: A New Multi-scale Backbone Architecture' URL: https://paperswithcode.com/paper/res2net-a-new-multi-scale-backbone Models: - Name: res2next50 In Collection: Res2NeXt Metadata: FLOPs: 5396798208 Parameters: 24670000 File Size: 99019592 Architecture: - Batch Normalization - Convolution - Global Average Pooling - ReLU - Res2NeXt Block Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 4x Titan Xp GPUs ID: res2next50 LR: 0.1 Epochs: 100 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/res2net.py#L207 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.24% Top 5 Accuracy: 93.91% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/resnest.md
# ResNeSt A **ResNeSt** is a variant on a [ResNet](https://paperswithcode.com/method/resnet), which instead stacks [Split-Attention blocks](https://paperswithcode.com/method/split-attention). The cardinal group representations are then concatenated along the channel dimension: $V = \text{Concat}${$V^{1},V^{2},\cdots{V}^{K}$}. As in standard residual blocks, the final output $Y$ of otheur Split-Attention block is produced using a shortcut connection: $Y=V+X$, if the input and output feature-map share the same shape. For blocks with a stride, an appropriate transformation $\mathcal{T}$ is applied to the shortcut connection to align the output shapes: $Y=V+\mathcal{T}(X)$. For example, $\mathcal{T}$ can be strided convolution or combined convolution-with-pooling. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnest101e', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnest101e`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnest101e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{zhang2020resnest, title={ResNeSt: Split-Attention Networks}, author={Hang Zhang and Chongruo Wu and Zhongyue Zhang and Yi Zhu and Haibin Lin and Zhi Zhang and Yue Sun and Tong He and Jonas Mueller and R. Manmatha and Mu Li and Alexander Smola}, year={2020}, eprint={2004.08955}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ResNeSt Paper: Title: 'ResNeSt: Split-Attention Networks' URL: https://paperswithcode.com/paper/resnest-split-attention-networks Models: - Name: resnest101e In Collection: ResNeSt Metadata: FLOPs: 17423183648 Parameters: 48280000 File Size: 193782911 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest101e LR: 0.1 Epochs: 270 Layers: 101 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '256' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L182 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.88% Top 5 Accuracy: 96.31% - Name: resnest14d In Collection: ResNeSt Metadata: FLOPs: 3548594464 Parameters: 10610000 File Size: 42562639 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest14d LR: 0.1 Epochs: 270 Layers: 14 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L148 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.51% Top 5 Accuracy: 92.52% - Name: resnest200e In Collection: ResNeSt Metadata: FLOPs: 45954387872 Parameters: 70200000 File Size: 193782911 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest200e LR: 0.1 Epochs: 270 Layers: 200 Dropout: 0.2 Crop Pct: '0.909' Momentum: 0.9 Batch Size: 2048 Image Size: '320' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L194 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.85% Top 5 Accuracy: 96.89% - Name: resnest269e In Collection: ResNeSt Metadata: FLOPs: 100830307104 Parameters: 110930000 File Size: 445402691 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest269e LR: 0.1 Epochs: 270 Layers: 269 Dropout: 0.2 Crop Pct: '0.928' Momentum: 0.9 Batch Size: 2048 Image Size: '416' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L206 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.53% Top 5 Accuracy: 96.99% - Name: resnest26d In Collection: ResNeSt Metadata: FLOPs: 4678918720 Parameters: 17070000 File Size: 68470242 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest26d LR: 0.1 Epochs: 270 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L159 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.48% Top 5 Accuracy: 94.3% - Name: resnest50d In Collection: ResNeSt Metadata: FLOPs: 6937106336 Parameters: 27480000 File Size: 110273258 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L170 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.96% Top 5 Accuracy: 95.38% - Name: resnest50d_1s4x24d In Collection: ResNeSt Metadata: FLOPs: 5686764544 Parameters: 25680000 File Size: 103045531 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d_1s4x24d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L229 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.0% Top 5 Accuracy: 95.33% - Name: resnest50d_4s2x40d In Collection: ResNeSt Metadata: FLOPs: 5657064720 Parameters: 30420000 File Size: 122133282 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Split Attention Tasks: - Image Classification Training Techniques: - AutoAugment - DropBlock - Label Smoothing - Mixup - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 64x NVIDIA V100 GPUs ID: resnest50d_4s2x40d LR: 0.1 Epochs: 270 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 8192 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnest.py#L218 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.11% Top 5 Accuracy: 95.55% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/resnet-d.md
# ResNet-D **ResNet-D** is a modification on the [ResNet](https://paperswithcode.com/method/resnet) architecture that utilises an [average pooling](https://paperswithcode.com/method/average-pooling) tweak for downsampling. The motivation is that in the unmodified ResNet, the [1×1 convolution](https://paperswithcode.com/method/1x1-convolution) for the downsampling block ignores 3/4 of input feature maps, so this is modified so no information will be ignored ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnet101d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet101d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnet101d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{he2018bag, title={Bag of Tricks for Image Classification with Convolutional Neural Networks}, author={Tong He and Zhi Zhang and Hang Zhang and Zhongyue Zhang and Junyuan Xie and Mu Li}, year={2018}, eprint={1812.01187}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: ResNet-D Paper: Title: Bag of Tricks for Image Classification with Convolutional Neural Networks URL: https://paperswithcode.com/paper/bag-of-tricks-for-image-classification-with Models: - Name: resnet101d In Collection: ResNet-D Metadata: FLOPs: 13805639680 Parameters: 44570000 File Size: 178791263 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet101d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L716 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet101d_ra2-2803ffab.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.31% Top 5 Accuracy: 96.06% - Name: resnet152d In Collection: ResNet-D Metadata: FLOPs: 20155275264 Parameters: 60210000 File Size: 241596837 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet152d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L724 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet152d_ra2-5cac0439.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.13% Top 5 Accuracy: 96.35% - Name: resnet18d In Collection: ResNet-D Metadata: FLOPs: 2645205760 Parameters: 11710000 File Size: 46893231 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L649 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet18d_ra2-48a79e06.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.27% Top 5 Accuracy: 90.69% - Name: resnet200d In Collection: ResNet-D Metadata: FLOPs: 26034378752 Parameters: 64690000 File Size: 259662933 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet200d Crop Pct: '0.94' Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L749 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet200d_ra2-bdba9bf9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.24% Top 5 Accuracy: 96.49% - Name: resnet26d In Collection: ResNet-D Metadata: FLOPs: 3335276032 Parameters: 16010000 File Size: 64209122 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L683 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26d-69e92c46.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.69% Top 5 Accuracy: 93.15% - Name: resnet34d In Collection: ResNet-D Metadata: FLOPs: 5026601728 Parameters: 21820000 File Size: 87369807 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L666 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34d_ra2-f8dcfcaf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.11% Top 5 Accuracy: 93.38% - Name: resnet50d In Collection: ResNet-D Metadata: FLOPs: 5591002624 Parameters: 25580000 File Size: 102567109 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L699 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.55% Top 5 Accuracy: 95.16% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/resnet.md
# ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnet18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/HeZRS15, author = {Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun}, title = {Deep Residual Learning for Image Recognition}, journal = {CoRR}, volume = {abs/1512.03385}, year = {2015}, url = {http://arxiv.org/abs/1512.03385}, archivePrefix = {arXiv}, eprint = {1512.03385}, timestamp = {Wed, 17 Apr 2019 17:23:45 +0200}, biburl = {https://dblp.org/rec/journals/corr/HeZRS15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNet Paper: Title: Deep Residual Learning for Image Recognition URL: https://paperswithcode.com/paper/deep-residual-learning-for-image-recognition Models: - Name: resnet18 In Collection: ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46827520 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet18 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L641 Weights: https://download.pytorch.org/models/resnet18-5c106cde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 69.74% Top 5 Accuracy: 89.09% - Name: resnet26 In Collection: ResNet Metadata: FLOPs: 3026804736 Parameters: 16000000 File Size: 64129972 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet26 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L675 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet26-9aa10e23.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.29% Top 5 Accuracy: 92.57% - Name: resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87290831 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet34 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L658 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet34-43635321.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.11% Top 5 Accuracy: 92.28% - Name: resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnet50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L691 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.04% Top 5 Accuracy: 94.39% - Name: resnetblur50 In Collection: ResNet Metadata: FLOPs: 6621606912 Parameters: 25560000 File Size: 102488165 Architecture: - 1x1 Convolution - Batch Normalization - Blur Pooling - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnetblur50 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/resnet.py#L1160 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.29% Top 5 Accuracy: 94.64% - Name: tv_resnet101 In Collection: ResNet Metadata: FLOPs: 10068547584 Parameters: 44550000 File Size: 178728960 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet101 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L761 Weights: https://download.pytorch.org/models/resnet101-5d3b4d8f.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.37% Top 5 Accuracy: 93.56% - Name: tv_resnet152 In Collection: ResNet Metadata: FLOPs: 14857660416 Parameters: 60190000 File Size: 241530880 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet152 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L769 Weights: https://download.pytorch.org/models/resnet152-b121ed2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.32% Top 5 Accuracy: 94.05% - Name: tv_resnet34 In Collection: ResNet Metadata: FLOPs: 4718469120 Parameters: 21800000 File Size: 87306240 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet34 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L745 Weights: https://download.pytorch.org/models/resnet34-333f7ec4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.3% Top 5 Accuracy: 91.42% - Name: tv_resnet50 In Collection: ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102502400 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnet50 LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L753 Weights: https://download.pytorch.org/models/resnet50-19c8e357.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.16% Top 5 Accuracy: 92.88% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/resnext.md
# ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('resnext101_32x8d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `resnext101_32x8d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('resnext101_32x8d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/XieGDTH16, author = {Saining Xie and Ross B. Girshick and Piotr Doll{\'{a}}r and Zhuowen Tu and Kaiming He}, title = {Aggregated Residual Transformations for Deep Neural Networks}, journal = {CoRR}, volume = {abs/1611.05431}, year = {2016}, url = {http://arxiv.org/abs/1611.05431}, archivePrefix = {arXiv}, eprint = {1611.05431}, timestamp = {Mon, 13 Aug 2018 16:45:58 +0200}, biburl = {https://dblp.org/rec/journals/corr/XieGDTH16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: ResNeXt Paper: Title: Aggregated Residual Transformations for Deep Neural Networks URL: https://paperswithcode.com/paper/aggregated-residual-transformations-for-deep Models: - Name: resnext101_32x8d In Collection: ResNeXt Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356082095 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext101_32x8d Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L877 Weights: https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.3% Top 5 Accuracy: 94.53% - Name: resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100435887 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L851 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50_32x4d_ra-d733960d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.79% Top 5 Accuracy: 94.61% - Name: resnext50d_32x4d In Collection: ResNeXt Metadata: FLOPs: 5781119488 Parameters: 25050000 File Size: 100515304 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: resnext50d_32x4d Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/resnet.py#L869 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnext50d_32x4d-103e99f8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.67% Top 5 Accuracy: 94.87% - Name: tv_resnext50_32x4d In Collection: ResNeXt Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100441675 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet ID: tv_resnext50_32x4d LR: 0.1 Epochs: 90 Crop Pct: '0.875' LR Gamma: 0.1 Momentum: 0.9 Batch Size: 32 Image Size: '224' LR Step Size: 30 Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L842 Weights: https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.61% Top 5 Accuracy: 93.68% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/rexnet.md
# RexNet **Rank Expansion Networks** (ReXNets) follow a set of new design principles for designing bottlenecks in image classification models. Authors refine each layer by 1) expanding the input channel size of the convolution layer and 2) replacing the [ReLU6s](https://www.paperswithcode.com/method/relu6). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('rexnet_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `rexnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('rexnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{han2020rexnet, title={ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network}, author={Dongyoon Han and Sangdoo Yun and Byeongho Heo and YoungJoon Yoo}, year={2020}, eprint={2007.00992}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: RexNet Paper: Title: 'ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network' URL: https://paperswithcode.com/paper/rexnet-diminishing-representational Models: - Name: rexnet_100 In Collection: RexNet Metadata: FLOPs: 509989377 Parameters: 4800000 File Size: 19417552 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_100 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L212 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.86% Top 5 Accuracy: 93.88% - Name: rexnet_130 In Collection: RexNet Metadata: FLOPs: 848364461 Parameters: 7560000 File Size: 30508197 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_130 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L218 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.49% Top 5 Accuracy: 94.67% - Name: rexnet_150 In Collection: RexNet Metadata: FLOPs: 1122374469 Parameters: 9730000 File Size: 39227315 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_150 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L224 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.31% Top 5 Accuracy: 95.16% - Name: rexnet_200 In Collection: RexNet Metadata: FLOPs: 1960224938 Parameters: 16370000 File Size: 65862221 Architecture: - Batch Normalization - Convolution - Dropout - ReLU6 - Residual Connection Tasks: - Image Classification Training Techniques: - Label Smoothing - Linear Warmup With Cosine Annealing - Nesterov Accelerated Gradient - Weight Decay Training Data: - ImageNet Training Resources: 4x NVIDIA V100 GPUs ID: rexnet_200 LR: 0.5 Epochs: 400 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic Label Smoothing: 0.1 Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/rexnet.py#L230 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.63% Top 5 Accuracy: 95.67% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/se-resnet.md
# SE-ResNet **SE ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('seresnet152d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `seresnet152d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('seresnet152d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SE ResNet Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: seresnet152d In Collection: SE ResNet Metadata: FLOPs: 20161904304 Parameters: 66840000 File Size: 268144497 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnet152d LR: 0.6 Epochs: 100 Layers: 152 Dropout: 0.2 Crop Pct: '0.94' Momentum: 0.9 Batch Size: 1024 Image Size: '256' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1206 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet152d_ra2-04464dd2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.74% Top 5 Accuracy: 96.77% - Name: seresnet50 In Collection: SE ResNet Metadata: FLOPs: 5285062320 Parameters: 28090000 File Size: 112621903 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnet50 LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1180 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnet50_ra_224-8efdb4bb.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.26% Top 5 Accuracy: 95.07% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/selecsls.md
# SelecSLS **SelecSLS** uses novel selective long and short range skip connections to improve the information flow allowing for a drastically faster network without compromising accuracy. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('selecsls42b', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `selecsls42b`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('selecsls42b', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{Mehta_2020, title={XNect}, volume={39}, ISSN={1557-7368}, url={http://dx.doi.org/10.1145/3386569.3392410}, DOI={10.1145/3386569.3392410}, number={4}, journal={ACM Transactions on Graphics}, publisher={Association for Computing Machinery (ACM)}, author={Mehta, Dushyant and Sotnychenko, Oleksandr and Mueller, Franziska and Xu, Weipeng and Elgharib, Mohamed and Fua, Pascal and Seidel, Hans-Peter and Rhodin, Helge and Pons-Moll, Gerard and Theobalt, Christian}, year={2020}, month={Jul} } ``` <!-- Type: model-index Collections: - Name: SelecSLS Paper: Title: 'XNect: Real-time Multi-Person 3D Motion Capture with a Single RGB Camera' URL: https://paperswithcode.com/paper/xnect-real-time-multi-person-3d-human-pose Models: - Name: selecsls42b In Collection: SelecSLS Metadata: FLOPs: 3824022528 Parameters: 32460000 File Size: 129948954 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls42b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L335 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls42b-8af30141.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.18% Top 5 Accuracy: 93.39% - Name: selecsls60 In Collection: SelecSLS Metadata: FLOPs: 4610472600 Parameters: 30670000 File Size: 122839714 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L342 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60-bbf87526.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.83% - Name: selecsls60b In Collection: SelecSLS Metadata: FLOPs: 4657653144 Parameters: 32770000 File Size: 131252898 Architecture: - Batch Normalization - Convolution - Dense Connections - Dropout - Global Average Pooling - ReLU - SelecSLS Block Tasks: - Image Classification Training Techniques: - Cosine Annealing - Random Erasing Training Data: - ImageNet ID: selecsls60b Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/b9843f954b0457af2db4f9dea41a8538f51f5d78/timm/models/selecsls.py#L349 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-selecsls/selecsls60b-94e619b5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.41% Top 5 Accuracy: 94.18% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/seresnext.md
# SE-ResNeXt **SE ResNeXt** is a variant of a [ResNext](https://www.paperswithcode.com/method/resneXt) that employs [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block) to enable the network to perform dynamic channel-wise feature recalibration. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('seresnext26d_32x4d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `seresnext26d_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('seresnext26d_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{hu2019squeezeandexcitation, title={Squeeze-and-Excitation Networks}, author={Jie Hu and Li Shen and Samuel Albanie and Gang Sun and Enhua Wu}, year={2019}, eprint={1709.01507}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SEResNeXt Paper: Title: Squeeze-and-Excitation Networks URL: https://paperswithcode.com/paper/squeeze-and-excitation-networks Models: - Name: seresnext26d_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3507053024 Parameters: 16810000 File Size: 67425193 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26d_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1234 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26d_32x4d-80fa48a3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.59% Top 5 Accuracy: 93.61% - Name: seresnext26t_32x4d In Collection: SEResNeXt Metadata: FLOPs: 3466436448 Parameters: 16820000 File Size: 67414838 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext26t_32x4d LR: 0.6 Epochs: 100 Layers: 26 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1246 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext26tn_32x4d-569cb627.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.99% Top 5 Accuracy: 93.73% - Name: seresnext50_32x4d In Collection: SEResNeXt Metadata: FLOPs: 5475179184 Parameters: 27560000 File Size: 110569859 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA Titan X GPUs ID: seresnext50_32x4d LR: 0.6 Epochs: 100 Layers: 50 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 1024 Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/resnet.py#L1267 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/seresnext50_32x4d_racm-a304a460.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.27% Top 5 Accuracy: 95.62% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/skresnet.md
# SK-ResNet **SK ResNet** is a variant of a [ResNet](https://www.paperswithcode.com/method/resnet) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNet are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('skresnet18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `skresnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('skresnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{li2019selective, title={Selective Kernel Networks}, author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, year={2019}, eprint={1903.06586}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SKResNet Paper: Title: Selective Kernel Networks URL: https://paperswithcode.com/paper/selective-kernel-networks Models: - Name: skresnet18 In Collection: SKResNet Metadata: FLOPs: 2333467136 Parameters: 11960000 File Size: 47923238 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet18 LR: 0.1 Epochs: 100 Layers: 18 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L148 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.03% Top 5 Accuracy: 91.17% - Name: skresnet34 In Collection: SKResNet Metadata: FLOPs: 4711849952 Parameters: 22280000 File Size: 89299314 Architecture: - Convolution - Dense Connections - Global Average Pooling - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnet34 LR: 0.1 Epochs: 100 Layers: 34 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L165 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.93% Top 5 Accuracy: 93.32% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/skresnext.md
# SK-ResNeXt **SK ResNeXt** is a variant of a [ResNeXt](https://www.paperswithcode.com/method/resnext) that employs a [Selective Kernel](https://paperswithcode.com/method/selective-kernel) unit. In general, all the large kernel convolutions in the original bottleneck blocks in ResNext are replaced by the proposed [SK convolutions](https://paperswithcode.com/method/selective-kernel-convolution), enabling the network to choose appropriate receptive field sizes in an adaptive manner. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('skresnext50_32x4d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `skresnext50_32x4d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('skresnext50_32x4d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{li2019selective, title={Selective Kernel Networks}, author={Xiang Li and Wenhai Wang and Xiaolin Hu and Jian Yang}, year={2019}, eprint={1903.06586}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: SKResNeXt Paper: Title: Selective Kernel Networks URL: https://paperswithcode.com/paper/selective-kernel-networks Models: - Name: skresnext50_32x4d In Collection: SKResNeXt Metadata: FLOPs: 5739845824 Parameters: 27480000 File Size: 110340975 Architecture: - Convolution - Dense Connections - Global Average Pooling - Grouped Convolution - Max Pooling - Residual Connection - Selective Kernel - Softmax Tasks: - Image Classification Training Data: - ImageNet Training Resources: 8x GPUs ID: skresnext50_32x4d LR: 0.1 Epochs: 100 Layers: 50 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 256 Image Size: '224' Weight Decay: 0.0001 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/a7f95818e44b281137503bcf4b3e3e94d8ffa52f/timm/models/sknet.py#L210 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.15% Top 5 Accuracy: 94.64% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/spnasnet.md
# SPNASNet **Single-Path NAS** is a novel differentiable NAS method for designing hardware-efficient ConvNets in less than 4 hours. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('spnasnet_100', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `spnasnet_100`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('spnasnet_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{stamoulis2019singlepath, title={Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours}, author={Dimitrios Stamoulis and Ruizhou Ding and Di Wang and Dimitrios Lymberopoulos and Bodhi Priyantha and Jie Liu and Diana Marculescu}, year={2019}, eprint={1904.02877}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: SPNASNet Paper: Title: 'Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours' URL: https://paperswithcode.com/paper/single-path-nas-designing-hardware-efficient Models: - Name: spnasnet_100 In Collection: SPNASNet Metadata: FLOPs: 442385600 Parameters: 4420000 File Size: 17902337 Architecture: - Average Pooling - Batch Normalization - Convolution - Depthwise Separable Convolution - Dropout - ReLU Tasks: - Image Classification Training Data: - ImageNet ID: spnasnet_100 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L995 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/spnasnet_100-048bc3f4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.08% Top 5 Accuracy: 91.82% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ssl-resnet.md
# SSL ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ssl_resnet18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ssl_resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ssl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SSL ResNet Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: ssl_resnet18 In Collection: SSL ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46811375 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnet18 LR: 0.0015 Epochs: 30 Layers: 18 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L894 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.62% Top 5 Accuracy: 91.42% - Name: ssl_resnet50 In Collection: SSL ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102480594 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnet50 LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L904 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.24% Top 5 Accuracy: 94.83% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/ssl-resnext.md
# SSL ResNeXT A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. The model in this collection utilises semi-supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('ssl_resnext101_32x16d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `ssl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('ssl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SSL ResNext Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: ssl_resnext101_32x16d In Collection: SSL ResNext Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x16d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L944 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.84% Top 5 Accuracy: 96.09% - Name: ssl_resnext101_32x4d In Collection: SSL ResNext Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177341913 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x4d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L924 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.91% Top 5 Accuracy: 95.73% - Name: ssl_resnext101_32x8d In Collection: SSL ResNext Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext101_32x8d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L934 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.61% Top 5 Accuracy: 96.04% - Name: ssl_resnext50_32x4d In Collection: SSL ResNext Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100428550 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - ImageNet - YFCC-100M Training Resources: 64x GPUs ID: ssl_resnext50_32x4d LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L914 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.3% Top 5 Accuracy: 95.41% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/swsl-resnet.md
# SWSL ResNet **Residual Networks**, or **ResNets**, learn residual functions with reference to the layer inputs, instead of learning unreferenced functions. Instead of hoping each few stacked layers directly fit a desired underlying mapping, residual nets let these layers fit a residual mapping. They stack [residual blocks](https://paperswithcode.com/method/residual-block) ontop of each other to form network: e.g. a ResNet-50 has fifty layers using these blocks. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('swsl_resnet18', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `swsl_resnet18`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('swsl_resnet18', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNet Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnet18 In Collection: SWSL ResNet Metadata: FLOPs: 2337073152 Parameters: 11690000 File Size: 46811375 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet18 LR: 0.0015 Epochs: 30 Layers: 18 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L954 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.28% Top 5 Accuracy: 91.76% - Name: swsl_resnet50 In Collection: SWSL ResNet Metadata: FLOPs: 5282531328 Parameters: 25560000 File Size: 102480594 Architecture: - 1x1 Convolution - Batch Normalization - Bottleneck Residual Block - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnet50 LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L965 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.14% Top 5 Accuracy: 95.97% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/swsl-resnext.md
# SWSL ResNeXt A **ResNeXt** repeats a [building block](https://paperswithcode.com/method/resnext-block) that aggregates a set of transformations with the same topology. Compared to a [ResNet](https://paperswithcode.com/method/resnet), it exposes a new dimension, *cardinality* (the size of the set of transformations) $C$, as an essential factor in addition to the dimensions of depth and width. The models in this collection utilise semi-weakly supervised learning to improve the performance of the model. The approach brings important gains to standard architectures for image, video and fine-grained classification. Please note the CC-BY-NC 4.0 license on theses weights, non-commercial use only. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('swsl_resnext101_32x16d', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `swsl_resnext101_32x16d`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('swsl_resnext101_32x16d', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-00546, author = {I. Zeki Yalniz and Herv{\'{e}} J{\'{e}}gou and Kan Chen and Manohar Paluri and Dhruv Mahajan}, title = {Billion-scale semi-supervised learning for image classification}, journal = {CoRR}, volume = {abs/1905.00546}, year = {2019}, url = {http://arxiv.org/abs/1905.00546}, archivePrefix = {arXiv}, eprint = {1905.00546}, timestamp = {Mon, 28 Sep 2020 08:19:37 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-00546.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: SWSL ResNext Paper: Title: Billion-scale semi-supervised learning for image classification URL: https://paperswithcode.com/paper/billion-scale-semi-supervised-learning-for Models: - Name: swsl_resnext101_32x16d In Collection: SWSL ResNext Metadata: FLOPs: 46623691776 Parameters: 194030000 File Size: 777518664 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x16d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L1009 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.34% Top 5 Accuracy: 96.84% - Name: swsl_resnext101_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 10298145792 Parameters: 44180000 File Size: 177341913 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x4d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L987 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.22% Top 5 Accuracy: 96.77% - Name: swsl_resnext101_32x8d In Collection: SWSL ResNext Metadata: FLOPs: 21180417024 Parameters: 88790000 File Size: 356056638 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext101_32x8d LR: 0.0015 Epochs: 30 Layers: 101 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L998 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.27% Top 5 Accuracy: 97.17% - Name: swsl_resnext50_32x4d In Collection: SWSL ResNext Metadata: FLOPs: 5472648192 Parameters: 25030000 File Size: 100428550 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Grouped Convolution - Max Pooling - ReLU - ResNeXt Block - Residual Connection - Softmax Tasks: - Image Classification Training Techniques: - SGD with Momentum - Weight Decay Training Data: - IG-1B-Targeted - ImageNet Training Resources: 64x GPUs ID: swsl_resnext50_32x4d LR: 0.0015 Epochs: 30 Layers: 50 Crop Pct: '0.875' Batch Size: 1536 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/resnet.py#L976 Weights: https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.17% Top 5 Accuracy: 96.23% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-efficientnet-condconv.md
# (Tensorflow) EfficientNet CondConv **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to squeeze-and-excitation blocks. This collection of models amends EfficientNet by adding [CondConv](https://paperswithcode.com/method/condconv) convolutions. The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_cc_b0_4e`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_efficientnet_cc_b0_4e', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1904-04971, author = {Brandon Yang and Gabriel Bender and Quoc V. Le and Jiquan Ngiam}, title = {Soft Conditional Computation}, journal = {CoRR}, volume = {abs/1904.04971}, year = {2019}, url = {http://arxiv.org/abs/1904.04971}, archivePrefix = {arXiv}, eprint = {1904.04971}, timestamp = {Thu, 25 Apr 2019 13:55:01 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-1904-04971.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet CondConv Paper: Title: 'CondConv: Conditionally Parameterized Convolutions for Efficient Inference' URL: https://paperswithcode.com/paper/soft-conditional-computation Models: - Name: tf_efficientnet_cc_b0_4e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224153788 Parameters: 13310000 File Size: 53490940 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_4e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1561 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_4e-4362b6b2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.32% Top 5 Accuracy: 93.32% - Name: tf_efficientnet_cc_b0_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 224158524 Parameters: 24010000 File Size: 96287616 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b0_8e LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1572 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b0_8e-66184a25.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.91% Top 5 Accuracy: 93.65% - Name: tf_efficientnet_cc_b1_8e In Collection: TF EfficientNet CondConv Metadata: FLOPs: 370427824 Parameters: 39720000 File Size: 159206198 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - CondConv - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_cc_b1_8e LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1584 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_cc_b1_8e-f7c79ae1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.33% Top 5 Accuracy: 94.37% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-efficientnet-lite.md
# (Tensorflow) EfficientNet Lite **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2). EfficientNet-Lite makes EfficientNet more suitable for mobile devices by introducing [ReLU6](https://paperswithcode.com/method/relu6) activation functions and removing [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_efficientnet_lite0', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_lite0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_efficientnet_lite0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet Lite Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: tf_efficientnet_lite0 In Collection: TF EfficientNet Lite Metadata: FLOPs: 488052032 Parameters: 4650000 File Size: 18820223 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite0 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1596 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite0-0aa007d2.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 74.83% Top 5 Accuracy: 92.17% - Name: tf_efficientnet_lite1 In Collection: TF EfficientNet Lite Metadata: FLOPs: 773639520 Parameters: 5420000 File Size: 21939331 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite1 Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1607 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite1-bde8b488.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.67% Top 5 Accuracy: 93.24% - Name: tf_efficientnet_lite2 In Collection: TF EfficientNet Lite Metadata: FLOPs: 1068494432 Parameters: 6090000 File Size: 24658687 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite2 Crop Pct: '0.89' Image Size: '260' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1618 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite2-dcccb7df.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.48% Top 5 Accuracy: 93.75% - Name: tf_efficientnet_lite3 In Collection: TF EfficientNet Lite Metadata: FLOPs: 2011534304 Parameters: 8199999 File Size: 33161413 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite3 Crop Pct: '0.904' Image Size: '300' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1629 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite3-b733e338.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.83% Top 5 Accuracy: 94.91% - Name: tf_efficientnet_lite4 In Collection: TF EfficientNet Lite Metadata: FLOPs: 5164802912 Parameters: 13010000 File Size: 52558819 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - RELU6 Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_lite4 Crop Pct: '0.92' Image Size: '380' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1640 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_lite4-741542c3.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.54% Top 5 Accuracy: 95.66% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-efficientnet.md
# (Tensorflow) EfficientNet **EfficientNet** is a convolutional neural network architecture and scaling method that uniformly scales all dimensions of depth/width/resolution using a *compound coefficient*. Unlike conventional practice that arbitrary scales these factors, the EfficientNet scaling method uniformly scales network width, depth, and resolution with a set of fixed scaling coefficients. For example, if we want to use $2^N$ times more computational resources, then we can simply increase the network depth by $\alpha ^ N$, width by $\beta ^ N$, and image size by $\gamma ^ N$, where $\alpha, \beta, \gamma$ are constant coefficients determined by a small grid search on the original small model. EfficientNet uses a compound coefficient $\phi$ to uniformly scales network width, depth, and resolution in a principled way. The compound scaling method is justified by the intuition that if the input image is bigger, then the network needs more layers to increase the receptive field and more channels to capture more fine-grained patterns on the bigger image. The base EfficientNet-B0 network is based on the inverted bottleneck residual blocks of [MobileNetV2](https://paperswithcode.com/method/mobilenetv2), in addition to [squeeze-and-excitation blocks](https://paperswithcode.com/method/squeeze-and-excitation-block). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_efficientnet_b0', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_efficientnet_b0', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2020efficientnet, title={EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks}, author={Mingxing Tan and Quoc V. Le}, year={2020}, eprint={1905.11946}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- Type: model-index Collections: - Name: TF EfficientNet Paper: Title: 'EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks' URL: https://paperswithcode.com/paper/efficientnet-rethinking-model-scaling-for Models: - Name: tf_efficientnet_b0 In Collection: TF EfficientNet Metadata: FLOPs: 488688572 Parameters: 5290000 File Size: 21383997 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_b0 LR: 0.256 Epochs: 350 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 2048 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1241 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_aa-827b6e33.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.85% Top 5 Accuracy: 93.23% - Name: tf_efficientnet_b1 In Collection: TF EfficientNet Metadata: FLOPs: 883633200 Parameters: 7790000 File Size: 31512534 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b1 LR: 0.256 Epochs: 350 Crop Pct: '0.882' Momentum: 0.9 Batch Size: 2048 Image Size: '240' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1251 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_aa-ea7a6ee0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.84% Top 5 Accuracy: 94.2% - Name: tf_efficientnet_b2 In Collection: TF EfficientNet Metadata: FLOPs: 1234321170 Parameters: 9110000 File Size: 36797929 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b2 LR: 0.256 Epochs: 350 Crop Pct: '0.89' Momentum: 0.9 Batch Size: 2048 Image Size: '260' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1261 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_aa-60c94f97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.07% Top 5 Accuracy: 94.9% - Name: tf_efficientnet_b3 In Collection: TF EfficientNet Metadata: FLOPs: 2275247568 Parameters: 12230000 File Size: 49381362 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b3 LR: 0.256 Epochs: 350 Crop Pct: '0.904' Momentum: 0.9 Batch Size: 2048 Image Size: '300' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1271 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_aa-84b4657e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.65% Top 5 Accuracy: 95.72% - Name: tf_efficientnet_b4 In Collection: TF EfficientNet Metadata: FLOPs: 5749638672 Parameters: 19340000 File Size: 77989689 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_b4 LR: 0.256 Epochs: 350 Crop Pct: '0.922' Momentum: 0.9 Batch Size: 2048 Image Size: '380' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1281 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_aa-818f208c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.03% Top 5 Accuracy: 96.3% - Name: tf_efficientnet_b5 In Collection: TF EfficientNet Metadata: FLOPs: 13176501888 Parameters: 30390000 File Size: 122403150 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b5 LR: 0.256 Epochs: 350 Crop Pct: '0.934' Momentum: 0.9 Batch Size: 2048 Image Size: '456' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1291 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ra-9a3e5369.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.81% Top 5 Accuracy: 96.75% - Name: tf_efficientnet_b6 In Collection: TF EfficientNet Metadata: FLOPs: 24180518488 Parameters: 43040000 File Size: 173232007 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b6 LR: 0.256 Epochs: 350 Crop Pct: '0.942' Momentum: 0.9 Batch Size: 2048 Image Size: '528' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1301 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_aa-80ba17e4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.11% Top 5 Accuracy: 96.89% - Name: tf_efficientnet_b7 In Collection: TF EfficientNet Metadata: FLOPs: 48205304880 Parameters: 66349999 File Size: 266850607 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b7 LR: 0.256 Epochs: 350 Crop Pct: '0.949' Momentum: 0.9 Batch Size: 2048 Image Size: '600' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1312 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ra-6c08e654.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.93% Top 5 Accuracy: 97.2% - Name: tf_efficientnet_b8 In Collection: TF EfficientNet Metadata: FLOPs: 80962956270 Parameters: 87410000 File Size: 351379853 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - Label Smoothing - RMSProp - Stochastic Depth - Weight Decay Training Data: - ImageNet ID: tf_efficientnet_b8 LR: 0.256 Epochs: 350 Crop Pct: '0.954' Momentum: 0.9 Batch Size: 2048 Image Size: '672' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1323 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ra-572d5dd9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.35% Top 5 Accuracy: 97.39% - Name: tf_efficientnet_el In Collection: TF EfficientNet Metadata: FLOPs: 9356616096 Parameters: 10590000 File Size: 42800271 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_el Crop Pct: '0.904' Image Size: '300' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1551 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_el-5143854e.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.45% Top 5 Accuracy: 95.17% - Name: tf_efficientnet_em In Collection: TF EfficientNet Metadata: FLOPs: 3636607040 Parameters: 6900000 File Size: 27933644 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_em Crop Pct: '0.882' Image Size: '240' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1541 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_em-e78cfe58.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.71% Top 5 Accuracy: 94.33% - Name: tf_efficientnet_es In Collection: TF EfficientNet Metadata: FLOPs: 2057577472 Parameters: 5440000 File Size: 22008479 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Data: - ImageNet ID: tf_efficientnet_es Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1531 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_es-ca1afbfe.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.28% Top 5 Accuracy: 93.6% - Name: tf_efficientnet_l2_ns_475 In Collection: TF EfficientNet Metadata: FLOPs: 217795669644 Parameters: 480310000 File Size: 1925950424 Architecture: - 1x1 Convolution - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inverted Residual Block - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - AutoAugment - FixRes - Label Smoothing - Noisy Student - RMSProp - RandAugment - Weight Decay Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 Cloud TPU ID: tf_efficientnet_l2_ns_475 LR: 0.128 Epochs: 350 Dropout: 0.5 Crop Pct: '0.936' Momentum: 0.9 Batch Size: 2048 Image Size: '475' Weight Decay: 1.0e-05 Interpolation: bicubic RMSProp Decay: 0.9 Label Smoothing: 0.1 BatchNorm Momentum: 0.99 Stochastic Depth Survival: 0.8 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1509 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_l2_ns_475-bebbd00a.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 88.24% Top 5 Accuracy: 98.55% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-inception-v3.md
# (Tensorflow) Inception v3 **Inception v3** is a convolutional neural network architecture from the Inception family that makes several improvements including using [Label Smoothing](https://paperswithcode.com/method/label-smoothing), Factorized 7 x 7 convolutions, and the use of an [auxiliary classifer](https://paperswithcode.com/method/auxiliary-classifier) to propagate label information lower down the network (along with the use of batch normalization for layers in the sidehead). The key building block is an [Inception Module](https://paperswithcode.com/method/inception-v3-module). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_inception_v3', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_inception_v3`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_inception_v3', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/SzegedyVISW15, author = {Christian Szegedy and Vincent Vanhoucke and Sergey Ioffe and Jonathon Shlens and Zbigniew Wojna}, title = {Rethinking the Inception Architecture for Computer Vision}, journal = {CoRR}, volume = {abs/1512.00567}, year = {2015}, url = {http://arxiv.org/abs/1512.00567}, archivePrefix = {arXiv}, eprint = {1512.00567}, timestamp = {Mon, 13 Aug 2018 16:49:07 +0200}, biburl = {https://dblp.org/rec/journals/corr/SzegedyVISW15.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF Inception v3 Paper: Title: Rethinking the Inception Architecture for Computer Vision URL: https://paperswithcode.com/paper/rethinking-the-inception-architecture-for Models: - Name: tf_inception_v3 In Collection: TF Inception v3 Metadata: FLOPs: 7352418880 Parameters: 23830000 File Size: 95549439 Architecture: - 1x1 Convolution - Auxiliary Classifier - Average Pooling - Average Pooling - Batch Normalization - Convolution - Dense Connections - Dropout - Inception-v3 Module - Max Pooling - ReLU - Softmax Tasks: - Image Classification Training Techniques: - Gradient Clipping - Label Smoothing - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 50x NVIDIA Kepler GPUs ID: tf_inception_v3 LR: 0.045 Dropout: 0.2 Crop Pct: '0.875' Momentum: 0.9 Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/inception_v3.py#L449 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_inception_v3-e0069de4.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.87% Top 5 Accuracy: 93.65% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-mixnet.md
# (Tensorflow) MixNet **MixNet** is a type of convolutional neural network discovered via AutoML that utilises [MixConvs](https://paperswithcode.com/method/mixconv) instead of regular [depthwise convolutions](https://paperswithcode.com/method/depthwise-convolution). The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_mixnet_l', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_mixnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_mixnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{tan2019mixconv, title={MixConv: Mixed Depthwise Convolutional Kernels}, author={Mingxing Tan and Quoc V. Le}, year={2019}, eprint={1907.09595}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TF MixNet Paper: Title: 'MixConv: Mixed Depthwise Convolutional Kernels' URL: https://paperswithcode.com/paper/mixnet-mixed-depthwise-convolutional-kernels Models: - Name: tf_mixnet_l In Collection: TF MixNet Metadata: FLOPs: 688674516 Parameters: 7330000 File Size: 29620756 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_l Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1720 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_l-6c92e0c8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.78% Top 5 Accuracy: 94.0% - Name: tf_mixnet_m In Collection: TF MixNet Metadata: FLOPs: 416633502 Parameters: 5010000 File Size: 20310871 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_m Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1709 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_m-0f4d8805.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 76.96% Top 5 Accuracy: 93.16% - Name: tf_mixnet_s In Collection: TF MixNet Metadata: FLOPs: 302587678 Parameters: 4130000 File Size: 16738218 Architecture: - Batch Normalization - Dense Connections - Dropout - Global Average Pooling - Grouped Convolution - MixConv - Squeeze-and-Excitation Block - Swish Tasks: - Image Classification Training Techniques: - MNAS Training Data: - ImageNet ID: tf_mixnet_s Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1698 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mixnet_s-89d3354b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.68% Top 5 Accuracy: 92.64% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tf-mobilenet-v3.md
# (Tensorflow) MobileNet v3 **MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tf_mobilenetv3_large_075`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/abs-1905-02244, author = {Andrew Howard and Mark Sandler and Grace Chu and Liang{-}Chieh Chen and Bo Chen and Mingxing Tan and Weijun Wang and Yukun Zhu and Ruoming Pang and Vijay Vasudevan and Quoc V. Le and Hartwig Adam}, title = {Searching for MobileNetV3}, journal = {CoRR}, volume = {abs/1905.02244}, year = {2019}, url = {http://arxiv.org/abs/1905.02244}, archivePrefix = {arXiv}, eprint = {1905.02244}, timestamp = {Tue, 12 Jan 2021 15:30:06 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: TF MobileNet V3 Paper: Title: Searching for MobileNetV3 URL: https://paperswithcode.com/paper/searching-for-mobilenetv3 Models: - Name: tf_mobilenetv3_large_075 In Collection: TF MobileNet V3 Metadata: FLOPs: 194323712 Parameters: 3990000 File Size: 16097377 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_075 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L394 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 73.45% Top 5 Accuracy: 91.34% - Name: tf_mobilenetv3_large_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 274535288 Parameters: 5480000 File Size: 22076649 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L403 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 75.51% Top 5 Accuracy: 92.61% - Name: tf_mobilenetv3_large_minimal_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 267216928 Parameters: 3920000 File Size: 15836368 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 4x4 TPU Pod ID: tf_mobilenetv3_large_minimal_100 LR: 0.1 Dropout: 0.8 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 1.0e-05 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L412 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 72.24% Top 5 Accuracy: 90.64% - Name: tf_mobilenetv3_small_075 In Collection: TF MobileNet V3 Metadata: FLOPs: 48457664 Parameters: 2040000 File Size: 8242701 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_075 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L421 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 65.72% Top 5 Accuracy: 86.13% - Name: tf_mobilenetv3_small_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 65450600 Parameters: 2540000 File Size: 10256398 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L430 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 67.92% Top 5 Accuracy: 87.68% - Name: tf_mobilenetv3_small_minimal_100 In Collection: TF MobileNet V3 Metadata: FLOPs: 60827936 Parameters: 2040000 File Size: 8258083 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Dense Connections - Depthwise Separable Convolution - Dropout - Global Average Pooling - Hard Swish - Inverted Residual Block - ReLU - Residual Connection - Softmax - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - RMSProp - Weight Decay Training Data: - ImageNet Training Resources: 16x GPUs ID: tf_mobilenetv3_small_minimal_100 LR: 0.045 Crop Pct: '0.875' Momentum: 0.9 Batch Size: 4096 Image Size: '224' Weight Decay: 4.0e-05 Interpolation: bilinear RMSProp Decay: 0.9 Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L439 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 62.91% Top 5 Accuracy: 84.24% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/tresnet.md
# TResNet A **TResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that aim to boost accuracy while maintaining GPU training and inference efficiency. They contain several design tricks including a SpaceToDepth stem, [Anti-Alias downsampling](https://paperswithcode.com/method/anti-alias-downsampling), In-Place Activated BatchNorm, Blocks selection and [squeeze-and-excitation layers](https://paperswithcode.com/method/squeeze-and-excitation-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('tresnet_l', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `tresnet_l`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('tresnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{ridnik2020tresnet, title={TResNet: High Performance GPU-Dedicated Architecture}, author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman}, year={2020}, eprint={2003.13630}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: TResNet Paper: Title: 'TResNet: High Performance GPU-Dedicated Architecture' URL: https://paperswithcode.com/paper/tresnet-high-performance-gpu-dedicated Models: - Name: tresnet_l In Collection: TResNet Metadata: FLOPs: 10873416792 Parameters: 53456696 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_l LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L267 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.49% Top 5 Accuracy: 95.62% - Name: tresnet_l_448 In Collection: TResNet Metadata: FLOPs: 43488238584 Parameters: 53456696 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_l_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L285 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.26% Top 5 Accuracy: 95.98% - Name: tresnet_m In Collection: TResNet Metadata: FLOPs: 5733048064 Parameters: 41282200 File Size: 125861314 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs Training Time: < 24 hours ID: tresnet_m LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L261 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_80_8-dbc13962.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 80.8% Top 5 Accuracy: 94.86% - Name: tresnet_m_448 In Collection: TResNet Metadata: FLOPs: 22929743104 Parameters: 29278464 File Size: 125861314 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_m_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L279 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.72% Top 5 Accuracy: 95.57% - Name: tresnet_xl In Collection: TResNet Metadata: FLOPs: 15162534034 Parameters: 75646610 File Size: 314378965 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_xl LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '224' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L273 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 82.05% Top 5 Accuracy: 95.93% - Name: tresnet_xl_448 In Collection: TResNet Metadata: FLOPs: 60641712730 Parameters: 75646610 File Size: 224440219 Architecture: - 1x1 Convolution - Anti-Alias Downsampling - Convolution - Global Average Pooling - InPlace-ABN - Leaky ReLU - ReLU - Residual Connection - Squeeze-and-Excitation Block Tasks: - Image Classification Training Techniques: - AutoAugment - Cutout - Label Smoothing - SGD with Momentum - Weight Decay Training Data: - ImageNet Training Resources: 8x NVIDIA 100 GPUs ID: tresnet_xl_448 LR: 0.01 Epochs: 300 Crop Pct: '0.875' Momentum: 0.9 Image Size: '448' Weight Decay: 0.0001 Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L291 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.06% Top 5 Accuracy: 96.19% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/vision-transformer.md
# Vision Transformer (ViT) The **Vision Transformer** is a model for image classification that employs a Transformer-like architecture over patches of the image. This includes the use of [Multi-Head Attention](https://paperswithcode.com/method/multi-head-attention), [Scaled Dot-Product Attention](https://paperswithcode.com/method/scaled) and other architectural features seen in the [Transformer](https://paperswithcode.com/method/transformer) architecture traditionally used for NLP. ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('vit_base_patch16_224', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `vit_base_patch16_224`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('vit_base_patch16_224', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @misc{dosovitskiy2020image, title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby}, year={2020}, eprint={2010.11929}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Vision Transformer Paper: Title: 'An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale' URL: https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1 Models: - Name: vit_base_patch16_224 In Collection: Vision Transformer Metadata: FLOPs: 67394605056 Parameters: 86570000 File Size: 346292833 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_base_patch16_224 LR: 0.0008 Epochs: 90 Dropout: 0.0 Crop Pct: '0.9' Batch Size: 4096 Image Size: '224' Warmup Steps: 10000 Weight Decay: 0.03 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L503 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.78% Top 5 Accuracy: 96.13% - Name: vit_base_patch16_384 In Collection: Vision Transformer Metadata: FLOPs: 49348245504 Parameters: 86860000 File Size: 347460194 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_base_patch16_384 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 512 Image Size: '384' Weight Decay: 0.0 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L522 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.2% Top 5 Accuracy: 97.22% - Name: vit_base_patch32_384 In Collection: Vision Transformer Metadata: FLOPs: 12656142336 Parameters: 88300000 File Size: 353210979 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_base_patch32_384 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 512 Image Size: '384' Weight Decay: 0.0 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L532 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.66% Top 5 Accuracy: 96.13% - Name: vit_base_resnet50_384 In Collection: Vision Transformer Metadata: FLOPs: 49461491712 Parameters: 98950000 File Size: 395854632 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_base_resnet50_384 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 512 Image Size: '384' Weight Decay: 0.0 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L653 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 84.99% Top 5 Accuracy: 97.3% - Name: vit_large_patch16_224 In Collection: Vision Transformer Metadata: FLOPs: 119294746624 Parameters: 304330000 File Size: 1217350532 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_large_patch16_224 Crop Pct: '0.9' Momentum: 0.9 Batch Size: 512 Image Size: '224' Weight Decay: 0.0 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L542 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 83.06% Top 5 Accuracy: 96.44% - Name: vit_large_patch16_384 In Collection: Vision Transformer Metadata: FLOPs: 174702764032 Parameters: 304720000 File Size: 1218907013 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_large_patch16_384 Crop Pct: '1.0' Momentum: 0.9 Batch Size: 512 Image Size: '384' Weight Decay: 0.0 Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L561 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 85.17% Top 5 Accuracy: 97.36% - Name: vit_small_patch16_224 In Collection: Vision Transformer Metadata: FLOPs: 28236450816 Parameters: 48750000 File Size: 195031454 Architecture: - Attention Dropout - Convolution - Dense Connections - Dropout - GELU - Layer Normalization - Multi-Head Attention - Scaled Dot-Product Attention - Tanh Activation Tasks: - Image Classification Training Techniques: - Cosine Annealing - Gradient Clipping - SGD with Momentum Training Data: - ImageNet - JFT-300M Training Resources: TPUv3 ID: vit_small_patch16_224 Crop Pct: '0.9' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/vision_transformer.py#L490 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 77.85% Top 5 Accuracy: 93.42% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/wide-resnet.md
# Wide ResNet **Wide Residual Networks** are a variant on [ResNets](https://paperswithcode.com/method/resnet) where we decrease depth and increase the width of residual networks. This is achieved through the use of [wide residual blocks](https://paperswithcode.com/method/wide-residual-block). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('wide_resnet101_2', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `wide_resnet101_2`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('wide_resnet101_2', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/ZagoruykoK16, author = {Sergey Zagoruyko and Nikos Komodakis}, title = {Wide Residual Networks}, journal = {CoRR}, volume = {abs/1605.07146}, year = {2016}, url = {http://arxiv.org/abs/1605.07146}, archivePrefix = {arXiv}, eprint = {1605.07146}, timestamp = {Mon, 13 Aug 2018 16:46:42 +0200}, biburl = {https://dblp.org/rec/journals/corr/ZagoruykoK16.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <!-- Type: model-index Collections: - Name: Wide ResNet Paper: Title: Wide Residual Networks URL: https://paperswithcode.com/paper/wide-residual-networks Models: - Name: wide_resnet101_2 In Collection: Wide ResNet Metadata: FLOPs: 29304929280 Parameters: 126890000 File Size: 254695146 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Wide Residual Block Tasks: - Image Classification Training Data: - ImageNet ID: wide_resnet101_2 Crop Pct: '0.875' Image Size: '224' Interpolation: bilinear Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L802 Weights: https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.85% Top 5 Accuracy: 94.28% - Name: wide_resnet50_2 In Collection: Wide ResNet Metadata: FLOPs: 14688058368 Parameters: 68880000 File Size: 275853271 Architecture: - 1x1 Convolution - Batch Normalization - Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax - Wide Residual Block Tasks: - Image Classification Training Data: - ImageNet ID: wide_resnet50_2 Crop Pct: '0.875' Image Size: '224' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/5f9aff395c224492e9e44248b15f44b5cc095d9c/timm/models/resnet.py#L790 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/wide_resnet50_racm-8234f177.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 81.45% Top 5 Accuracy: 95.52% -->
0
hf_public_repos/pytorch-image-models/docs
hf_public_repos/pytorch-image-models/docs/models/xception.md
# Xception **Xception** is a convolutional neural network architecture that relies solely on [depthwise separable convolution layers](https://paperswithcode.com/method/depthwise-separable-convolution). The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models). ## How do I use this model on an image? To load a pretrained model: ```python import timm model = timm.create_model('xception', pretrained=True) model.eval() ``` To load and preprocess the image: ```python import urllib from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform config = resolve_data_config({}, model=model) transform = create_transform(**config) url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") urllib.request.urlretrieve(url, filename) img = Image.open(filename).convert('RGB') tensor = transform(img).unsqueeze(0) # transform and add batch dimension ``` To get the model predictions: ```python import torch with torch.no_grad(): out = model(tensor) probabilities = torch.nn.functional.softmax(out[0], dim=0) print(probabilities.shape) # prints: torch.Size([1000]) ``` To get the top-5 predictions class names: ```python # Get imagenet class mappings url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt") urllib.request.urlretrieve(url, filename) with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Print top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) for i in range(top5_prob.size(0)): print(categories[top5_catid[i]], top5_prob[i].item()) # prints class names and probabilities like: # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)] ``` Replace the model name with the variant you want to use, e.g. `xception`. You can find the IDs in the model summaries at the top of this page. To extract image features with this model, follow the [timm feature extraction examples](https://rwightman.github.io/pytorch-image-models/feature_extraction/), just change the name of the model you want to use. ## How do I finetune this model? You can finetune any of the pre-trained models just by changing the classifier (the last layer). ```python model = timm.create_model('xception', pretrained=True, num_classes=NUM_FINETUNE_CLASSES) ``` To finetune on your own dataset, you have to write a training loop or adapt [timm's training script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset. ## How do I train this model? You can follow the [timm recipe scripts](https://rwightman.github.io/pytorch-image-models/scripts/) for training a new model afresh. ## Citation ```BibTeX @article{DBLP:journals/corr/ZagoruykoK16, @misc{chollet2017xception, title={Xception: Deep Learning with Depthwise Separable Convolutions}, author={François Chollet}, year={2017}, eprint={1610.02357}, archivePrefix={arXiv}, primaryClass={cs.CV} } ``` <!-- Type: model-index Collections: - Name: Xception Paper: Title: 'Xception: Deep Learning with Depthwise Separable Convolutions' URL: https://paperswithcode.com/paper/xception-deep-learning-with-depthwise Models: - Name: xception In Collection: Xception Metadata: FLOPs: 10600506792 Parameters: 22860000 File Size: 91675053 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception Crop Pct: '0.897' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception.py#L229 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-cadene/xception-43020ad28.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.05% Top 5 Accuracy: 94.4% - Name: xception41 In Collection: Xception Metadata: FLOPs: 11681983232 Parameters: 26970000 File Size: 108422028 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception41 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L181 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_41-e6439c97.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 78.54% Top 5 Accuracy: 94.28% - Name: xception65 In Collection: Xception Metadata: FLOPs: 17585702144 Parameters: 39920000 File Size: 160536780 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception65 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L200 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_65-c9ae96e8.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.55% Top 5 Accuracy: 94.66% - Name: xception71 In Collection: Xception Metadata: FLOPs: 22817346560 Parameters: 42340000 File Size: 170295556 Architecture: - 1x1 Convolution - Convolution - Dense Connections - Depthwise Separable Convolution - Global Average Pooling - Max Pooling - ReLU - Residual Connection - Softmax Tasks: - Image Classification Training Data: - ImageNet ID: xception71 Crop Pct: '0.903' Image Size: '299' Interpolation: bicubic Code: https://github.com/rwightman/pytorch-image-models/blob/d8e69206be253892b2956341fea09fdebfaae4e3/timm/models/xception_aligned.py#L219 Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_xception_71-8eec7df1.pth Results: - Task: Image Classification Dataset: ImageNet Metrics: Top 1 Accuracy: 79.88% Top 5 Accuracy: 94.93% -->
0