The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 12 new columns ({'right_sampler', 'domain', 'physics', 'frequency_samples', 'top_samples', 'top_sampler', 'right_samples', 'top_boundary', 'mesh', 'n_observations', 'right_boundary', 'frequency_sampler'}) and 12 missing columns ({'transport_0', 'rank', 'mkdir_mus', 'threads', 'meta_sort_merge_mus', 'minmax_mus', 'bytes', 'start', 'transport_1', 'buffering_mus', 'aggregation_mus', 'memcpy_mus'}).

This happened while the json dataset builder was generating data using

hf://datasets/JakobEWagner/helmholtz_pulsating_sphere_s4096_f400-500_Yre0-1_Yim-1-0/train/properties.json (at revision 87bd9acb3b41ac1cd447848a711de833ff02aa6a)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              domain: struct<box_lengths: list<item: double>, sphere_radius: double, ndim: int64>
                child 0, box_lengths: list<item: double>
                    child 0, item: double
                child 1, sphere_radius: double
                child 2, ndim: int64
              mesh: struct<elements_per_wavelengths: int64, elements_per_radians: double, excitation_boundary: int64, top_boundary: int64, right_boundary: int64>
                child 0, elements_per_wavelengths: int64
                child 1, elements_per_radians: double
                child 2, excitation_boundary: int64
                child 3, top_boundary: int64
                child 4, right_boundary: int64
              physics: struct<c: double, rho: double>
                child 0, c: double
                child 1, rho: double
              n_observations: int64
              frequency_sampler: struct<type: string, x_min: list<item: double>, x_max: list<item: double>>
                child 0, type: string
                child 1, x_min: list<item: double>
                    child 0, item: double
                child 2, x_max: list<item: double>
                    child 0, item: double
              top_boundary: string
              top_sampler: struct<type: string, x_min: list<item: double>, x_max: list<item: double>>
                child 0, type: string
                child 1, x_min: list<item: double>
                    child 0, item: double
                child 2, x_max: list<item: double>
                    child 0, item: double
              right_boundary: string
              right_sampler: struct<type: string, x_min: list<item: double>, x_max: list<item: double>>
                child 0, type: string
                child 1, x_min: list<item: double>
                    child 0, item: double
                child 2, x_max: list<item: double>
                    child 0, item: double
              frequency_samples: list<item: double>
                child 0, item: double
              top_samples: list<item: list<item: double>>
                child 0, item: list<item: double>
                    child 0, item: double
              right_samples: list<item: list<item: double>>
                child 0, item: list<item: double>
                    child 0, item: double
              to
              {'transport_0': {'close_mus': Value(dtype='int64', id=None), 'open_mus': Value(dtype='int64', id=None), 'type': Value(dtype='string', id=None), 'write_mus': Value(dtype='int64', id=None)}, 'rank': Value(dtype='int64', id=None), 'mkdir_mus': Value(dtype='int64', id=None), 'threads': Value(dtype='int64', id=None), 'meta_sort_merge_mus': Value(dtype='int64', id=None), 'minmax_mus': Value(dtype='int64', id=None), 'bytes': Value(dtype='int64', id=None), 'start': Value(dtype='string', id=None), 'transport_1': {'close_mus': Value(dtype='int64', id=None), 'open_mus': Value(dtype='int64', id=None), 'type': Value(dtype='string', id=None), 'write_mus': Value(dtype='int64', id=None)}, 'buffering_mus': Value(dtype='int64', id=None), 'aggregation_mus': Value(dtype='int64', id=None), 'memcpy_mus': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1577, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1191, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 12 new columns ({'right_sampler', 'domain', 'physics', 'frequency_samples', 'top_samples', 'top_sampler', 'right_samples', 'top_boundary', 'mesh', 'n_observations', 'right_boundary', 'frequency_sampler'}) and 12 missing columns ({'transport_0', 'rank', 'mkdir_mus', 'threads', 'meta_sort_merge_mus', 'minmax_mus', 'bytes', 'start', 'transport_1', 'buffering_mus', 'aggregation_mus', 'memcpy_mus'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/JakobEWagner/helmholtz_pulsating_sphere_s4096_f400-500_Yre0-1_Yim-1-0/train/properties.json (at revision 87bd9acb3b41ac1cd447848a711de833ff02aa6a)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

transport_0
dict
rank
int64
mkdir_mus
int64
threads
int64
meta_sort_merge_mus
int64
minmax_mus
int64
bytes
int64
start
string
transport_1
dict
buffering_mus
int64
aggregation_mus
int64
memcpy_mus
int64
domain
dict
mesh
dict
physics
dict
n_observations
int64
frequency_sampler
dict
top_boundary
string
top_sampler
dict
right_boundary
string
right_sampler
dict
frequency_samples
sequence
top_samples
sequence
right_samples
sequence
{ "close_mus": 10, "open_mus": 111, "type": "File_POSIX", "write_mus": 695151 }
0
100
1
163,071
225,509
762,404,487
Tue_Jul_09_12:07:07_2024
{ "close_mus": 0, "open_mus": 106, "type": "File_POSIX", "write_mus": 29679 }
549,520
0
45,455
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
{ "box_lengths": [ 1, 1 ], "sphere_radius": 0.2, "ndim": 2 }
{"elements_per_wavelengths":15,"elements_per_radians":30.0,"excitation_boundary":101,"top_boundary":(...TRUNCATED)
{ "c": 343.2, "rho": 1.2043 }
4,096
{ "type": "UniformSampler", "x_min": [ 400 ], "x_max": [ 500 ] }
lambda a: lambda x: np.ones(x[0].shape) * a[0] + 1j * a[1] * np.ones(x[0].shape)
{ "type": "UniformSampler", "x_min": [ 0, -1 ], "x_max": [ 1, 0 ] }
lambda a: lambda x: np.ones(x[1].shape) * a[0] + 1j * a[1] * np.ones(x[1].shape)
{ "type": "UniformSampler", "x_min": [ 0, -1 ], "x_max": [ 1, 0 ] }
[434.6165019391972,420.4460772608176,405.8112930826629,405.62020055309284,448.8348308228759,466.2431(...TRUNCATED)
[[0.8601686212786032,-0.2786319944558162],[0.791580906537889,-0.7637266205339663],[0.780039091103954(...TRUNCATED)
[[0.7649005505092011,-0.5652698979192223],[0.37385365784649094,-0.5976737086596499],[0.3398699743841(...TRUNCATED)