url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
51
51
id
int64
1.14B
2.92B
node_id
stringlengths
18
18
number
int64
3.75k
7.46k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
3
milestone
dict
comments
listlengths
0
30
created_at
timestamp[ms]
updated_at
timestamp[ms]
closed_at
timestamp[ms]
author_association
stringclasses
4 values
sub_issues_summary
dict
active_lock_reason
null
body
stringlengths
1
47.9k
closed_by
dict
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
draft
null
pull_request
null
is_pull_request
bool
1 class
https://api.github.com/repos/huggingface/datasets/issues/7456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7456/comments
https://api.github.com/repos/huggingface/datasets/issues/7456/events
https://github.com/huggingface/datasets/issues/7456
2,922,676,278
I_kwDODunzps6uNIA2
7,456
.add_faiss_index and .add_elasticsearch_index returns ImportError at Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/109490785?v=4", "events_url": "https://api.github.com/users/MapleBloom/events{/privacy}", "followers_url": "https://api.github.com/users/MapleBloom/followers", "following_url": "https://api.github.com/users/MapleBloom/following{/other_user}", "gists_url": "https://api.github.com/users/MapleBloom/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MapleBloom", "id": 109490785, "login": "MapleBloom", "node_id": "U_kgDOBoayYQ", "organizations_url": "https://api.github.com/users/MapleBloom/orgs", "received_events_url": "https://api.github.com/users/MapleBloom/received_events", "repos_url": "https://api.github.com/users/MapleBloom/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MapleBloom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MapleBloom/subscriptions", "type": "User", "url": "https://api.github.com/users/MapleBloom", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I can fix this.\nIt's mainly because faiss-gpu requires python<=3.10 but the default python version in colab is 3.11. We just have to downgrade the CPython version down to 3.10 and it should work fine.\n", "I think I just had no chance to meet with faiss-cpu.\nIt could be import problem? \n_has_faiss gets its value at the beginning of datasets/search.\nI tried to call object before import faiss, so _has_faiss took False. And never updated later. ", "Yes you can't meet the requirements because faiss-cpu runs only on\r\npython3.10 and lower but the default version for colab is python3.11 which\r\nresults in pip not being able to find wheels for faiss-cpu with python3.11.\r\n\r\nOn Mon, 17 Mar, 2025, 3:56 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>\r\n>\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> you can't meet the requirements\n\nIt is not the case (or I didn't reach this point) because the same code in notebook\n```importlib.util.find_spec(\"faiss\")```\nfinds faiss. I've mention it.\nI think the problem is in the very moment when _has_faiss takes its value and never try again. \n(or it couldn't find the path that was easily found when started from my code)", "When you run the first cell containing pip install faiss-cpu does it\r\ninstall it?\r\n\r\nOn Mon, 17 Mar, 2025, 8:01 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>\r\n>\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> When you run the first cell containing pip install faiss-cpu does it\n> install it?\n> […](#)\n\nYes. It was installed succesfully. \nMethods of datasets library that depends on _has_faiss constant didn't start to work." ]
2025-03-16T00:51:49
2025-03-16T08:34:40
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug At Google Colab ```!pip install faiss-cpu``` works ```import faiss``` no error but ```embeddings_dataset.add_faiss_index(column='embeddings')``` returns ``` [/usr/local/lib/python3.11/dist-packages/datasets/search.py](https://localhost:8080/#) in init(self, device, string_factory, metric_type, custom_index) 247 self.faiss_index = custom_index 248 if not _has_faiss: --> 249 raise ImportError( 250 "You must install Faiss to use FaissIndex. To do so you can run conda install -c pytorch faiss-cpu or conda install -c pytorch faiss-gpu. " 251 "A community supported package is also available on pypi: pip install faiss-cpu or pip install faiss-gpu. " ``` because ```_has_faiss = importlib.util.find_spec("faiss") is not None``` at the beginning of ```datasets/search.py``` returns ```False``` when the same code at colab notebook returns ```ModuleSpec(name='faiss', loader=<_frozen_importlib_external.SourceFileLoader object at 0x7b7851449f50>, origin='/usr/local/lib/python3.11/dist-packages/faiss/init.py', submodule_search_locations=['/usr/local/lib/python3.11/dist-packages/faiss'])``` But ``` import datasets datasets.search._has_faiss ``` at ```colab notebook``` also returns ```False``` The same story with ```_has_elasticsearch``` ### Steps to reproduce the bug 1. Follow https://huggingface.co/learn/nlp-course/chapter5/6?fw=pt at Google Colab 2. till ```embeddings_dataset.add_faiss_index(column='embeddings')``` 3. ```embeddings_dataset.add_elasticsearch_index(column='embeddings')``` 4. https://colab.research.google.com/drive/1h2cjuiClblqzbNQgrcoLYOC8zBqTLLcv#scrollTo=3ddzRp72auOF ### Expected behavior I've only started Tutorial and don't know exactly. But something tells me that ```embeddings_dataset.add_faiss_index(column='embeddings')``` should work without ```Import Error``` ### Environment info Google Colab notebook with default config
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7456/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7456/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7455/comments
https://api.github.com/repos/huggingface/datasets/issues/7455/events
https://github.com/huggingface/datasets/issues/7455
2,921,933,250
I_kwDODunzps6uKSnC
7,455
Problems with local dataset after upgrade from 3.3.2 to 3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/60151338?v=4", "events_url": "https://api.github.com/users/andjoer/events{/privacy}", "followers_url": "https://api.github.com/users/andjoer/followers", "following_url": "https://api.github.com/users/andjoer/following{/other_user}", "gists_url": "https://api.github.com/users/andjoer/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andjoer", "id": 60151338, "login": "andjoer", "node_id": "MDQ6VXNlcjYwMTUxMzM4", "organizations_url": "https://api.github.com/users/andjoer/orgs", "received_events_url": "https://api.github.com/users/andjoer/received_events", "repos_url": "https://api.github.com/users/andjoer/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andjoer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andjoer/subscriptions", "type": "User", "url": "https://api.github.com/users/andjoer", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! I just released 3.4.1 with a fix, let me know if it's working now !" ]
2025-03-15T09:22:50
2025-03-15T09:23:55
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I was not able to open a local saved dataset anymore that was created using an older datasets version after the upgrade yesterday from datasets 3.3.2 to 3.4.0 The traceback is ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 67, in _generate_tables batches = pa.ipc.open_stream(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 190, in open_stream return RecordBatchStreamReader(source, options=options, File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 52, in __init__ self._open(source, options=options, memory_pool=memory_pool) File "pyarrow/ipc.pxi", line 1006, in pyarrow.lib._RecordBatchStreamReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Expected to read 538970747 metadata bytes, but only read 2126 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1855, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 69, in _generate_tables reader = pa.ipc.open_file(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 234, in open_file return RecordBatchFileReader( File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 110, in __init__ self._open(source, footer_offset=footer_offset, File "pyarrow/ipc.pxi", line 1090, in pyarrow.lib._RecordBatchFileReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Not an Arrow file ``` ### Steps to reproduce the bug Load a dataset from a local folder with ``` dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) ``` as it is done for example in the training script for SD3 controlnet. This is the minimal script to test it: ``` from datasets import load_dataset def main(): dataset = load_dataset( "local_dataset", ) print(dataset) print("Sample data:", dataset["train"][0]) if __name__ == "__main__": main() ```` ### Expected behavior Work in 3.4.0 like in 3.3.2 ### Environment info - `datasets` version: 3.4.0 - Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7455/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7455/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7449/comments
https://api.github.com/repos/huggingface/datasets/issues/7449/events
https://github.com/huggingface/datasets/issues/7449
2,916,235,092
I_kwDODunzps6t0jdU
7,449
Cannot load data with different schemas from different parquet files
{ "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/li-plus", "id": 39846316, "login": "li-plus", "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "organizations_url": "https://api.github.com/users/li-plus/orgs", "received_events_url": "https://api.github.com/users/li-plus/received_events", "repos_url": "https://api.github.com/users/li-plus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "type": "User", "url": "https://api.github.com/users/li-plus", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! `load_dataset` expects all the data_files to have the same schema.\n\nMaybe you can try enforcing certain `features` using:\n\n```python\nfeatures = Features({\"conversations\": {'content': Value('string'), 'role': Value('string',)}})\nds = load_dataset(..., features=features)\n```", "Thanks! It works if I explicitly specify all nested fields of the data." ]
2025-03-13T08:14:49
2025-03-13T11:19:06
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Cannot load samples with optional fields from different files. The schema cannot be correctly derived. ### Steps to reproduce the bug When I place two samples with an optional field `some_extra_field` within a single parquet file, it can be loaded via `load_dataset`. ```python import pandas as pd from datasets import load_dataset data = [ {'conversations': {'role': 'user', 'content': 'hello'}}, {'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}} ] df = pd.DataFrame(data) df.to_parquet('data.parquet') dataset = load_dataset('parquet', data_files='data.parquet', split='train') print(dataset.features) ``` The schema can be derived. `some_extra_field` is set to None for the first row where it is absent. ``` {'conversations': {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None), 'some_extra_field': Value(dtype='string', id=None)}} ``` However, when I separate the samples into different files, it cannot be loaded. ```python import pandas as pd from datasets import load_dataset data1 = [{'conversations': {'role': 'user', 'content': 'hello'}}] pd.DataFrame(data1).to_parquet('data1.parquet') data2 = [{'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}}] pd.DataFrame(data2).to_parquet('data2.parquet') dataset = load_dataset('parquet', data_files=['data1.parquet', 'data2.parquet'], split='train') print(dataset.features) ``` Traceback: ``` Traceback (most recent call last): File "/home/tiger/.local/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single for _, table in generator: File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema arrays = [ File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp> cast_array_to_feature( File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2108, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<content: string, role: string, some_extra_field: string> to {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None)} ``` ### Expected behavior Correctly load data with optional fields from different parquet files. ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.10.135.bsk.4-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7449/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7449/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7448
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7448/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7448/comments
https://api.github.com/repos/huggingface/datasets/issues/7448/events
https://github.com/huggingface/datasets/issues/7448
2,916,025,762
I_kwDODunzps6tzwWi
7,448
`datasets.disable_caching` doesn't work
{ "avatar_url": "https://avatars.githubusercontent.com/u/35629974?v=4", "events_url": "https://api.github.com/users/UCC-team/events{/privacy}", "followers_url": "https://api.github.com/users/UCC-team/followers", "following_url": "https://api.github.com/users/UCC-team/following{/other_user}", "gists_url": "https://api.github.com/users/UCC-team/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/UCC-team", "id": 35629974, "login": "UCC-team", "node_id": "MDQ6VXNlcjM1NjI5OTc0", "organizations_url": "https://api.github.com/users/UCC-team/orgs", "received_events_url": "https://api.github.com/users/UCC-team/received_events", "repos_url": "https://api.github.com/users/UCC-team/repos", "site_admin": false, "starred_url": "https://api.github.com/users/UCC-team/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/UCC-team/subscriptions", "type": "User", "url": "https://api.github.com/users/UCC-team", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "cc" ]
2025-03-13T06:40:12
2025-03-13T06:40:12
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
When I use `Dataset.from_generator(my_gen)` to load my dataset, it simply skips my changes to the generator function. I tried `datasets.disable_caching`, but it doesn't work!
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7448/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7448/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7447/comments
https://api.github.com/repos/huggingface/datasets/issues/7447/events
https://github.com/huggingface/datasets/issues/7447
2,915,233,248
I_kwDODunzps6twu3g
7,447
Epochs shortened after resuming mid-epoch with Iterable dataset+StatefulDataloader(persistent_workers=True)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting ! Maybe we should store the epoch in the state_dict, and then when the dataset is iterated on again after setting a new epoch it should restart from scratch instead of resuming ? wdyt ?", "But why does this only happen when `persistent_workers=True`? I would expect it to work correctly even without storing the epoch number in the state_dict of the iterable dataset. ", "I think persistent_workers=False simply ignores the dataset state_dict when it starts a new epoch, that's why the issue doesn't appear in that case", "I opened https://github.com/huggingface/datasets/pull/7451 to fix the issue, let me know if it works for you", "I just released `datasets` 3.4 that includes the fix :)\n\nPS: in your script you probably want to set the epoch like this, otherwise it's still set to 0 after the first epoch:\n\n```diff\n if state_dict is None:\n- ds.set_epoch(epoch)\n epoch += 1\n+ ds.set_epoch(epoch)\n```" ]
2025-03-12T21:41:05
2025-03-14T17:26:59
2025-03-14T10:50:10
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When `torchdata.stateful_dataloader.StatefulDataloader(persistent_workers=True)` the epochs after resuming only iterate through the examples that were left in the epoch when the training was interrupted. For example, in the script below training is interrupted on step 124 (epoch 1) when 3 batches are left. Then after resuming, the rest of epochs (2 and 3) only iterate through these 3 batches. ### Steps to reproduce the bug Run the following script with and with PERSISTENT_WORKERS=true. ```python # !/usr/bin/env python3 # torch==2.5.1 # datasets==3.3.2 # torchdata>=0.9.0 import datasets import pprint from torchdata.stateful_dataloader import StatefulDataLoader import os PERSISTENT_WORKERS = ( os.environ.get("PERSISTENT_WORKERS", "False").lower() == "true" ) # PERSISTENT_WORKERS = True # Incorrect resume # ds = datasets.load_from_disk("dataset").to_iterable_dataset(num_shards=4) def generator(): for i in range(128): yield {"x": i} ds = datasets.Dataset.from_generator( generator, features=datasets.Features({"x": datasets.Value("int32")}) ).to_iterable_dataset(num_shards=4) dl = StatefulDataLoader( ds, batch_size=2, num_workers=2, persistent_workers=PERSISTENT_WORKERS ) global_step = 0 epoch = 0 ds_state_dict = None state_dict = None resumed = False while True: if epoch >= 3: break if state_dict is not None: dl.load_state_dict(state_dict) state_dict = None ds_state_dict = None resumed = True print("resumed") for i, batch in enumerate(dl): print(f"epoch: {epoch}, global_step: {global_step}, batch: {batch}") global_step += 1 # consume datapoint # simulate error if global_step == 124 and not resumed: ds_state_dict = ds.state_dict() state_dict = dl.state_dict() print("checkpoint") print("ds_state_dict") pprint.pprint(ds_state_dict) print("dl_state_dict") pprint.pprint(state_dict) break if state_dict is None: ds.set_epoch(epoch) epoch += 1 ``` The script checkpoints when there are three batches left in the second epoch. After resuming, only the last three batches are repeated in the rest of the epochs. If it helps, following are the two state_dicts for the dataloader save at the same step with the two settings. The left one is for `PERSISTENT_WORKERS=False` ![Image](https://github.com/user-attachments/assets/c97d6502-d7bd-4ef4-ae2d-66fe1a9732b1) ### Expected behavior All the elements in the dataset should be iterated through in the epochs following the one where we resumed. The expected behavior can be seen by setting `PERSISTENT_WORKERS=False`. ### Environment info torch==2.5.1 datasets==3.3.2 torchdata>=0.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7447/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7447/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7446/comments
https://api.github.com/repos/huggingface/datasets/issues/7446/events
https://github.com/huggingface/datasets/issues/7446
2,913,050,552
I_kwDODunzps6toZ-4
7,446
pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int'
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-12T07:48:37
2025-03-12T07:48:37
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug A dict with its keys are all str but get following error ```python test_data=[{'input_ids':[1,2,3],'labels':[[Counter({2:1})]]}] dataset = datasets.Dataset.from_list(test_data) ``` ```bash pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info datasets 3.3.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7446/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7446/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7444/comments
https://api.github.com/repos/huggingface/datasets/issues/7444/events
https://github.com/huggingface/datasets/issues/7444
2,911,202,445
I_kwDODunzps6thWyN
7,444
Excessive warnings when resuming an IterableDataset+buffered shuffle+DDP.
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-11T16:34:39
2025-03-11T16:36:01
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I have a large dataset that I shared into 1024 shards and save on the disk during pre-processing. During training, I load the dataset using load_from_disk() and convert it into an iterable dataset, shuffle it and split the shards to different DDP nodes using the recommended method. However, when the training is resumed mid-epoch, I get thousands of identical warning messages: ``` Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. ``` ### Steps to reproduce the bug 1. Run a multi-node training job using the following python script and interrupt the training after a few seconds to save a mid-epoch checkpoint. ```python #!/usr/bin/env python import os import time from typing import Dict, List import torch import lightning as pl from torch.utils.data import DataLoader from datasets import Dataset from datasets.distributed import split_dataset_by_node import datasets from transformers import AutoTokenizer from more_itertools import flatten, chunked from torchdata.stateful_dataloader import StatefulDataLoader from lightning.pytorch.callbacks.on_exception_checkpoint import ( OnExceptionCheckpoint, ) datasets.logging.set_verbosity_debug() def dummy_generator(): # Generate 60 examples: integers from $0$ to $59$ # 64 sequences of different lengths dataset = [ list(range(3, 10)), list(range(10, 15)), list(range(15, 21)), list(range(21, 27)), list(range(27, 31)), list(range(31, 36)), list(range(36, 45)), list(range(45, 50)), ] for i in range(8): for j, ids in enumerate(dataset): yield {"token_ids": [idx + i * 50 for idx in ids]} def group_texts( examples: Dict[str, List[List[int]]], block_size: int, eos_token_id: int, bos_token_id: int, pad_token_id: int, ) -> Dict[str, List[List[int]]]: real_block_size = block_size - 2 # make space for bos and eos # colapse the sequences into a single list of tokens and then create blocks of real_block_size input_ids = [] attention_mask = [] for block in chunked(flatten(examples["token_ids"]), real_block_size): s = [bos_token_id] + list(block) + [eos_token_id] ls = len(s) attn = [True] * ls s += [pad_token_id] * (block_size - ls) attn += [False] * (block_size - ls) input_ids.append(s) attention_mask.append(attn) return {"input_ids": input_ids, "attention_mask": attention_mask} def collate_fn(batch): return { "input_ids": torch.tensor( [item["input_ids"] for item in batch], dtype=torch.long ), "attention_mask": torch.tensor( [item["attention_mask"] for item in batch], dtype=torch.long ), } class DummyModule(pl.LightningModule): def __init__(self): super().__init__() # A dummy linear layer (not used for actual computation) self.layer = torch.nn.Linear(1, 1) self.ds = None self.prepare_data_per_node = False def on_train_start(self): # This hook is called once training begins on each process. print(f"[Rank {self.global_rank}] Training started.", flush=True) self.data_file = open(f"data_{self.global_rank}.txt", "w") def on_train_end(self): self.data_file.close() def training_step(self, batch, batch_idx): # Print batch information to verify data loading. time.sleep(5) # print("batch", batch, flush=True) print( f"\n[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}\n" ) # Compute a dummy loss (here, simply a constant tensor) loss = torch.tensor(0.0, requires_grad=True) return loss def on_train_epoch_start(self): epoch = self.trainer.current_epoch print( f"[Rank {self.global_rank}] Training epoch {epoch} started.", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training epoch {epoch} started.\n" ) def configure_optimizers(self): # Return a dummy optimizer. return torch.optim.SGD(self.parameters(), lr=0.001) class DM(pl.LightningDataModule): def __init__(self): super().__init__() self.ds = None self.prepare_data_per_node = False def set_epoch(self, epoch: int): self.ds.set_epoch(epoch) def prepare_data(self): # download the dataset dataset = Dataset.from_generator(dummy_generator) # save the dataset dataset.save_to_disk("dataset", num_shards=4) def setup(self, stage: str): # load the dataset ds = datasets.load_from_disk("dataset").to_iterable_dataset( num_shards=4 ) ds = ds.map( group_texts, batched=True, batch_size=5, fn_kwargs={ "block_size": 5, "eos_token_id": 1, "bos_token_id": 0, "pad_token_id": 2, }, remove_columns=["token_ids"], ).shuffle(seed=42, buffer_size=8) ds = split_dataset_by_node( ds, rank=self.trainer.global_rank, world_size=self.trainer.world_size, ) self.ds = ds def train_dataloader(self): print( f"[Rank {self.trainer.global_rank}] Preparing train_dataloader...", flush=True, ) rank = self.trainer.global_rank print( f"[Rank {rank}] Global rank: {self.trainer.global_rank}", flush=True, ) world_size = self.trainer.world_size print(f"[Rank {rank}] World size: {world_size}", flush=True) return StatefulDataLoader( self.ds, batch_size=2, num_workers=2, collate_fn=collate_fn, drop_last=True, persistent_workers=True, ) if __name__ == "__main__": print("Starting Lightning training", flush=True) # Optionally, print some SLURM environment info for debugging. print(f"SLURM_NNODES: {os.environ.get('SLURM_NNODES', '1')}", flush=True) # Determine the number of nodes from SLURM (defaulting to 1 if not set) num_nodes = int(os.environ.get("SLURM_NNODES", "1")) model = DummyModule() dm = DM() on_exception = OnExceptionCheckpoint( dirpath="checkpoints", filename="on_exception", ) # Configure the Trainer to use distributed data parallel (DDP). trainer = pl.Trainer( accelerator="gpu" if torch.cuda.is_available() else "cpu", devices=1, strategy=( "ddp" if num_nodes > 1 else "auto" ), # Use DDP strategy for multi-node training. num_nodes=num_nodes, max_epochs=2, logger=False, enable_checkpointing=True, num_sanity_val_steps=0, enable_progress_bar=False, callbacks=[on_exception], ) # resume (uncomment to resume) # trainer.fit(model, datamodule=dm, ckpt_path="checkpoints/on_exception.ckpt") # train trainer.fit(model, datamodule=dm) ``` ```bash #!/bin/bash #SBATCH --job-name=pl_ddp_test #SBATCH --nodes=2 # Adjust number of nodes as needed #SBATCH --ntasks-per-node=1 # One GPU (process) per node #SBATCH --cpus-per-task=3 # At least as many dataloader workers as required #SBATCH --gres=gpu:1 # Request one GPU per node #SBATCH --time=00:10:00 # Job runtime (adjust as needed) #SBATCH --partition=gpu-preempt # Partition or queue name #SBATCH -o script.out # Disable Python output buffering. export PYTHONUNBUFFERED=1 echo "SLURM job starting on $(date)" echo "Running on nodes: $SLURM_NODELIST" echo "Current directory: $(pwd)" ls -l # Launch the script using srun so that each process starts the Lightning module. srun script.py ``` 2. Uncomment the "resume" line (second to last) and comment the original `trainer.fit` call (last line). It will produce the following log. ``` [Rank 0] Preparing train_dataloader... [Rank 0] Global rank: 0 [Rank 0] World size: 2 [Rank 1] Preparing train_dataloader... [Rank 1] Global rank: 1 [Rank 1] World size: 2 Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. [Rank 0] Training started. [Rank 0] Training epoch 0 started. [Rank 0] Training epoch 1 started. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. `Trainer.fit` stopped: `max_epochs=2` reached. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. [Rank 1] Training started. [Rank 1] Training epoch 0 started. [Rank 1] Training epoch 1 started. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` I'm also attaching the relevant state_dict to make sure that the state is being checkpointed as expected. ``` {'_iterator_finished': True, '_snapshot': {'_last_yielded_worker_id': 1, '_main_snapshot': {'_IterableDataset_len_called': None, '_base_seed': 3992758080362545099, '_index_sampler_state': {'samples_yielded': 64}, '_num_workers': 2, '_sampler_iter_state': None, '_sampler_iter_yielded': 32, '_shared_seed': None}, '_snapshot_step': 32, '_worker_snapshots': {'worker_0': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 0}, 'worker_1': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 1}}}, '_steps_since_snapshot': 0} ``` ### Expected behavior Since I'm following all the recommended steps, I don't expect to see any warning when resuming. Am I doing something wrong? Also, can someone explain why I'm seeing 20 identical messages in the log in this reproduction setting? I'm trying to understand why I see thousands of these messages with the actual dataset. One more surprising thing I noticed in the logs is the change in a number of shards per worker. In the following messages, the denominator changes from 2 to 1. ``` node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. ... node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` ### Environment info python: 3.11.10 datasets: 3.3.2 lightning: 2.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7444/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7443/comments
https://api.github.com/repos/huggingface/datasets/issues/7443/events
https://github.com/huggingface/datasets/issues/7443
2,908,585,656
I_kwDODunzps6tXX64
7,443
index error when num_shards > len(dataset)
{ "avatar_url": "https://avatars.githubusercontent.com/u/17934496?v=4", "events_url": "https://api.github.com/users/eminorhan/events{/privacy}", "followers_url": "https://api.github.com/users/eminorhan/followers", "following_url": "https://api.github.com/users/eminorhan/following{/other_user}", "gists_url": "https://api.github.com/users/eminorhan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eminorhan", "id": 17934496, "login": "eminorhan", "node_id": "MDQ6VXNlcjE3OTM0NDk2", "organizations_url": "https://api.github.com/users/eminorhan/orgs", "received_events_url": "https://api.github.com/users/eminorhan/received_events", "repos_url": "https://api.github.com/users/eminorhan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eminorhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eminorhan/subscriptions", "type": "User", "url": "https://api.github.com/users/eminorhan", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Actually, looking at the code a bit more carefully, maybe an even better solution is to explicitly set `num_shards=len(self)` somewhere inside both `push_to_hub()` and `save_to_disk()` when these functions are invoked with `num_shards > len(dataset)`." ]
2025-03-10T22:40:59
2025-03-10T23:43:08
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7443/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7443/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7442/comments
https://api.github.com/repos/huggingface/datasets/issues/7442/events
https://github.com/huggingface/datasets/issues/7442
2,905,543,017
I_kwDODunzps6tLxFp
7,442
Flexible Loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/13894030?v=4", "events_url": "https://api.github.com/users/dipta007/events{/privacy}", "followers_url": "https://api.github.com/users/dipta007/followers", "following_url": "https://api.github.com/users/dipta007/following{/other_user}", "gists_url": "https://api.github.com/users/dipta007/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dipta007", "id": 13894030, "login": "dipta007", "node_id": "MDQ6VXNlcjEzODk0MDMw", "organizations_url": "https://api.github.com/users/dipta007/orgs", "received_events_url": "https://api.github.com/users/dipta007/received_events", "repos_url": "https://api.github.com/users/dipta007/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dipta007/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dipta007/subscriptions", "type": "User", "url": "https://api.github.com/users/dipta007", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?", "> Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?\n\nThat would be perfect if not at least a flexible loader." ]
2025-03-09T16:55:03
2025-03-13T11:15:02
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Can we have a utility function that will use `load_from_disk` when given the local path and `load_dataset` if given an HF dataset? It can be something as simple as this one: ``` def load_hf_dataset(path_or_name): if os.path.exists(path_or_name): return load_from_disk(path_or_name) else: return load_dataset(path_or_name) ``` ### Motivation This can be done inside the user codebase, too, but in my experience, it becomes repetitive code. ### Your contribution I can open a pull request.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7442/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7442/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7441
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7441/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7441/comments
https://api.github.com/repos/huggingface/datasets/issues/7441/events
https://github.com/huggingface/datasets/issues/7441
2,904,702,329
I_kwDODunzps6tIj15
7,441
`drop_last_batch` does not drop the last batch using IterableDataset + interleave_datasets + multi_worker
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi @memray, I’d like to help fix the issue with `drop_last_batch` not working when `num_workers > 1`. I’ll investigate and propose a solution. Thanks!\n", "Thank you very much for offering to help! I also noticed a problem related to a previous issue and left a comment [here](https://github.com/huggingface/datasets/issues/6565#issuecomment-2708169303) (the code checks the validity before certain columns removed). Can you take a look as well?" ]
2025-03-08T10:28:44
2025-03-09T21:27:33
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug See the script below `drop_last_batch=True` is defined using map() for each dataset. The last batch for each dataset is expected to be dropped, id 21-25. The code behaves as expected when num_workers=0 or 1. When using num_workers>1, 'a-11', 'b-11', 'a-12', 'b-12' are gone and instead 21 and 22 are sampled. ### Steps to reproduce the bug ``` from datasets import Dataset from datasets import interleave_datasets from torch.utils.data import DataLoader def convert_to_str(batch, dataset_name): batch['a'] = [f"{dataset_name}-{e}" for e in batch['a']] return batch def gen1(): for ii in range(1, 25): yield {"a": ii} def gen2(): for ii in range(1, 25): yield {"a": ii} # https://github.com/huggingface/datasets/issues/6565 if __name__ == '__main__': dataset1 = Dataset.from_generator(gen1).to_iterable_dataset(num_shards=2) dataset2 = Dataset.from_generator(gen2).to_iterable_dataset(num_shards=2) dataset1 = dataset1.map(lambda x: convert_to_str(x, dataset_name="a"), batched=True, batch_size=10, drop_last_batch=True) dataset2 = dataset2.map(lambda x: convert_to_str(x, dataset_name="b"), batched=True, batch_size=10, drop_last_batch=True) interleaved = interleave_datasets([dataset1, dataset2], stopping_strategy="all_exhausted") print(f"num_workers=0") loader = DataLoader(interleaved, batch_size=5, num_workers=0) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=1") loader = DataLoader(interleaved, batch_size=5, num_workers=1) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=2") loader = DataLoader(interleaved, batch_size=5, num_workers=2) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=3") loader = DataLoader(interleaved, batch_size=5, num_workers=3) i = 0 for b in loader: print(i, b['a']) i += 1 ``` output is: ``` num_workers=0 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=1 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=2 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=3 Too many dataloader workers: 3 (max is dataset.num_shards=2). Stopping 1 dataloader workers. 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] ``` ### Expected behavior `'a-21', 'b-21', 'a-22', 'b-22'` should be dropped ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-1056-aws-x86_64-with-glibc2.31 - Python version: 3.10.16 - `huggingface_hub` version: 0.28.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7441/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7441/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7440/comments
https://api.github.com/repos/huggingface/datasets/issues/7440/events
https://github.com/huggingface/datasets/issues/7440
2,903,740,662
I_kwDODunzps6tE5D2
7,440
IterableDataset raises FileNotFoundError instead of retrying
{ "avatar_url": "https://avatars.githubusercontent.com/u/145220868?v=4", "events_url": "https://api.github.com/users/bauwenst/events{/privacy}", "followers_url": "https://api.github.com/users/bauwenst/followers", "following_url": "https://api.github.com/users/bauwenst/following{/other_user}", "gists_url": "https://api.github.com/users/bauwenst/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bauwenst", "id": 145220868, "login": "bauwenst", "node_id": "U_kgDOCKflBA", "organizations_url": "https://api.github.com/users/bauwenst/orgs", "received_events_url": "https://api.github.com/users/bauwenst/received_events", "repos_url": "https://api.github.com/users/bauwenst/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bauwenst/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bauwenst/subscriptions", "type": "User", "url": "https://api.github.com/users/bauwenst", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I have since been training more models with identical architectures over the same dataset, and it is completely unstable. One has now failed at chunk9/1215, whilst others have gotten past that.\n```python\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\nBelow is the full training log, where you can clearly see the intermittent dataset issues. Note again that this model only got to epoch 0.11, whereas I have other models training on the exact same dataset right now that have gotten way beyond that. This is quickly turning into a highly expensive bug which I didn't have issues with in the past half year of using the same setup.\n<details>\n<summary>Training log of failed run</summary>\n\n```python\n 1%| | 64/8192 [56:27<87:25:33, 38.72s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n 1%| | 64/8192 [56:51<87:25:33, 38.72s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:14<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n 2%|▏ | 192/8192 [2:49:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n{'eval_loss': 10.482319831848145, 'eval_runtime': 902.7516, 'eval_samples_per_second': 18.149, 'eval_steps_per_second': 0.142, 'epoch': 0, 'num_input_tokens_seen': 0}\n{'loss': 10.4895, 'grad_norm': 2.9147818088531494, 'learning_rate': 3.90625e-06, 'epoch': 0.0, 'num_input_tokens_seen': 1048576}\n{'loss': 10.4832, 'grad_norm': 2.8206892013549805, 'learning_rate': 7.8125e-06, 'epoch': 0.0, 'num_input_tokens_seen': 2097152}\n{'loss': 10.4851, 'grad_norm': 2.910552978515625, 'learning_rate': 1.171875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 3145728}\n{'loss': 10.486, 'grad_norm': 2.8042073249816895, 'learning_rate': 1.5625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 4194304}\n{'loss': 10.4719, 'grad_norm': 2.83260440826416, 'learning_rate': 1.953125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 5242880}\n{'loss': 10.4482, 'grad_norm': 2.916527032852173, 'learning_rate': 2.34375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 6291456}\n{'loss': 10.4113, 'grad_norm': 2.911870241165161, 'learning_rate': 2.734375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 7340032}\n{'loss': 10.3863, 'grad_norm': 2.8873367309570312, 'learning_rate': 3.125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 8388608}\n{'loss': 10.3557, 'grad_norm': 2.7183432579040527, 'learning_rate': 3.5156250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 9437184}\n{'loss': 10.2795, 'grad_norm': 2.6743927001953125, 'learning_rate': 3.90625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 10485760}\n{'loss': 10.2148, 'grad_norm': 2.3173940181732178, 'learning_rate': 4.296875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 11534336}\n{'loss': 10.1482, 'grad_norm': 2.09787917137146, 'learning_rate': 4.6875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 12582912}\n{'loss': 10.1024, 'grad_norm': 1.889390468597412, 'learning_rate': 5.0781250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 13631488}\n{'loss': 10.0418, 'grad_norm': 1.8319090604782104, 'learning_rate': 5.46875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 14680064}\n{'loss': 10.0081, 'grad_norm': 1.7302652597427368, 'learning_rate': 5.859375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 15728640}\n{'loss': 9.9525, 'grad_norm': 1.767600417137146, 'learning_rate': 6.25e-05, 'epoch': 0.0, 'num_input_tokens_seen': 16777216}\n{'loss': 9.9326, 'grad_norm': 2.1608240604400635, 'learning_rate': 6.640625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 17825792}\n{'loss': 9.8478, 'grad_norm': 1.7399269342422485, 'learning_rate': 7.031250000000001e-05, 'epoch': 0.0, 'num_input_tokens_seen': 18874368}\n{'loss': 9.8215, 'grad_norm': 1.6564425230026245, 'learning_rate': 7.421875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 19922944}\n{'loss': 9.7732, 'grad_norm': 1.6452653408050537, 'learning_rate': 7.8125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 20971520}\n{'loss': 9.6896, 'grad_norm': 1.7053238153457642, 'learning_rate': 8.203125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 22020096}\n{'loss': 9.6356, 'grad_norm': 1.7050201892852783, 'learning_rate': 8.59375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 23068672}\n{'loss': 9.5781, 'grad_norm': 1.7155998945236206, 'learning_rate': 8.984375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 24117248}\n{'loss': 9.5355, 'grad_norm': 1.697864294052124, 'learning_rate': 9.375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 25165824}\n{'loss': 9.4718, 'grad_norm': 1.7598071098327637, 'learning_rate': 9.765625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 26214400}\n{'loss': 9.3972, 'grad_norm': 1.7407673597335815, 'learning_rate': 0.00010156250000000001, 'epoch': 0.0, 'num_input_tokens_seen': 27262976}\n{'loss': 9.3303, 'grad_norm': 1.7710134983062744, 'learning_rate': 0.00010546875, 'epoch': 0.0, 'num_input_tokens_seen': 28311552}\n{'loss': 9.2973, 'grad_norm': 1.716180682182312, 'learning_rate': 0.000109375, 'epoch': 0.0, 'num_input_tokens_seen': 29360128}\n{'loss': 9.2049, 'grad_norm': 1.7579947710037231, 'learning_rate': 0.00011328125, 'epoch': 0.0, 'num_input_tokens_seen': 30408704}\n{'loss': 9.1656, 'grad_norm': 1.6988558769226074, 'learning_rate': 0.0001171875, 'epoch': 0.0, 'num_input_tokens_seen': 31457280}\n{'loss': 9.0966, 'grad_norm': 1.7036350965499878, 'learning_rate': 0.00012109375, 'epoch': 0.0, 'num_input_tokens_seen': 32505856}\n{'loss': 9.0107, 'grad_norm': 1.752451777458191, 'learning_rate': 0.000125, 'epoch': 0.0, 'num_input_tokens_seen': 33554432}\n{'loss': 8.9788, 'grad_norm': 1.6769776344299316, 'learning_rate': 0.00012890625, 'epoch': 0.0, 'num_input_tokens_seen': 34603008}\n{'loss': 8.9155, 'grad_norm': 1.6497987508773804, 'learning_rate': 0.0001328125, 'epoch': 0.0, 'num_input_tokens_seen': 35651584}\n{'loss': 8.8008, 'grad_norm': 1.722798466682434, 'learning_rate': 0.00013671875, 'epoch': 0.0, 'num_input_tokens_seen': 36700160}\n{'loss': 8.7727, 'grad_norm': 1.6046854257583618, 'learning_rate': 0.00014062500000000002, 'epoch': 0.0, 'num_input_tokens_seen': 37748736}\n{'loss': 8.682, 'grad_norm': 1.6132164001464844, 'learning_rate': 0.00014453125, 'epoch': 0.0, 'num_input_tokens_seen': 38797312}\n{'loss': 8.6516, 'grad_norm': 1.558968424797058, 'learning_rate': 0.0001484375, 'epoch': 0.0, 'num_input_tokens_seen': 39845888}\n{'loss': 8.5935, 'grad_norm': 1.6083673238754272, 'learning_rate': 0.00015234375, 'epoch': 0.0, 'num_input_tokens_seen': 40894464}\n{'loss': 8.4852, 'grad_norm': 1.5469273328781128, 'learning_rate': 0.00015625, 'epoch': 0.0, 'num_input_tokens_seen': 41943040}\n{'loss': 8.4342, 'grad_norm': 1.46219801902771, 'learning_rate': 0.00016015625, 'epoch': 0.01, 'num_input_tokens_seen': 42991616}\n{'loss': 8.3213, 'grad_norm': 1.473191261291504, 'learning_rate': 0.0001640625, 'epoch': 0.01, 'num_input_tokens_seen': 44040192}\n{'loss': 8.3193, 'grad_norm': 1.4024137258529663, 'learning_rate': 0.00016796875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 45088768}\n{'loss': 8.1853, 'grad_norm': 1.3591463565826416, 'learning_rate': 0.000171875, 'epoch': 0.01, 'num_input_tokens_seen': 46137344}\n{'loss': 8.1109, 'grad_norm': 1.3547109365463257, 'learning_rate': 0.00017578125, 'epoch': 0.01, 'num_input_tokens_seen': 47185920}\n{'loss': 8.0741, 'grad_norm': 1.268977403640747, 'learning_rate': 0.0001796875, 'epoch': 0.01, 'num_input_tokens_seen': 48234496}\n{'loss': 8.0032, 'grad_norm': 1.222671389579773, 'learning_rate': 0.00018359375, 'epoch': 0.01, 'num_input_tokens_seen': 49283072}\n{'loss': 7.9346, 'grad_norm': 1.154278039932251, 'learning_rate': 0.0001875, 'epoch': 0.01, 'num_input_tokens_seen': 50331648}\n{'loss': 7.8823, 'grad_norm': 1.1396397352218628, 'learning_rate': 0.00019140625, 'epoch': 0.01, 'num_input_tokens_seen': 51380224}\n{'loss': 7.8444, 'grad_norm': 1.0608373880386353, 'learning_rate': 0.0001953125, 'epoch': 0.01, 'num_input_tokens_seen': 52428800}\n{'loss': 7.7794, 'grad_norm': 1.0165436267852783, 'learning_rate': 0.00019921875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 53477376}\n{'loss': 7.7567, 'grad_norm': 0.8742461204528809, 'learning_rate': 0.00020312500000000002, 'epoch': 0.01, 'num_input_tokens_seen': 54525952}\n{'loss': 7.6489, 'grad_norm': 0.8699902296066284, 'learning_rate': 0.00020703125, 'epoch': 0.01, 'num_input_tokens_seen': 55574528}\n{'loss': 7.6062, 'grad_norm': 0.809831440448761, 'learning_rate': 0.0002109375, 'epoch': 0.01, 'num_input_tokens_seen': 56623104}\n{'loss': 7.5511, 'grad_norm': 0.7423847317695618, 'learning_rate': 0.00021484375, 'epoch': 0.01, 'num_input_tokens_seen': 57671680}\n{'loss': 7.4435, 'grad_norm': 0.7614696025848389, 'learning_rate': 0.00021875, 'epoch': 0.01, 'num_input_tokens_seen': 58720256}\n{'loss': 7.564, 'grad_norm': 0.5147746801376343, 'learning_rate': 0.00022265625, 'epoch': 0.01, 'num_input_tokens_seen': 59768832}\n{'loss': 7.5278, 'grad_norm': 0.4705545902252197, 'learning_rate': 0.0002265625, 'epoch': 0.01, 'num_input_tokens_seen': 60817408}\n{'loss': 7.5479, 'grad_norm': 0.3745419979095459, 'learning_rate': 0.00023046875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 61865984}\n{'loss': 7.4759, 'grad_norm': 0.3893500566482544, 'learning_rate': 0.000234375, 'epoch': 0.01, 'num_input_tokens_seen': 62914560}\n{'loss': 7.5032, 'grad_norm': 0.31959569454193115, 'learning_rate': 0.00023828125, 'epoch': 0.01, 'num_input_tokens_seen': 63963136}\n{'loss': 7.421, 'grad_norm': 0.3203206956386566, 'learning_rate': 0.0002421875, 'epoch': 0.01, 'num_input_tokens_seen': 65011712}\n{'loss': 7.4998, 'grad_norm': 0.2730390429496765, 'learning_rate': 0.00024609375, 'epoch': 0.01, 'num_input_tokens_seen': 66060288}\n{'loss': 7.4157, 'grad_norm': 0.34872403740882874, 'learning_rate': 0.00025, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n[2025-03-10 16:17:04 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n[2025-03-10 16:17:04 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 7.471163749694824, 'eval_runtime': 651.4801, 'eval_samples_per_second': 25.149, 'eval_steps_per_second': 0.196, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n{'loss': 7.5083, 'grad_norm': 0.339502215385437, 'learning_rate': 0.00025390625, 'epoch': 0.01, 'num_input_tokens_seen': 68157440}\n{'loss': 7.7083, 'grad_norm': 0.6426190137863159, 'learning_rate': 0.0002578125, 'epoch': 0.01, 'num_input_tokens_seen': 69206016}\n{'loss': 7.446, 'grad_norm': 0.9138129353523254, 'learning_rate': 0.00026171875, 'epoch': 0.01, 'num_input_tokens_seen': 70254592}\n{'loss': 7.3747, 'grad_norm': 1.2179911136627197, 'learning_rate': 0.000265625, 'epoch': 0.01, 'num_input_tokens_seen': 71303168}\n{'loss': 7.367, 'grad_norm': 0.7108445167541504, 'learning_rate': 0.00026953125, 'epoch': 0.01, 'num_input_tokens_seen': 72351744}\n{'loss': 7.4751, 'grad_norm': 0.7580183744430542, 'learning_rate': 0.0002734375, 'epoch': 0.01, 'num_input_tokens_seen': 73400320}\n{'loss': 7.3405, 'grad_norm': 0.7545790076255798, 'learning_rate': 0.00027734375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 74448896}\n{'loss': 7.4194, 'grad_norm': 0.4764443039894104, 'learning_rate': 0.00028125000000000003, 'epoch': 0.01, 'num_input_tokens_seen': 75497472}\n{'loss': 7.2826, 'grad_norm': 0.5942808985710144, 'learning_rate': 0.00028515625, 'epoch': 0.01, 'num_input_tokens_seen': 76546048}\n{'loss': 7.3945, 'grad_norm': 0.5272891521453857, 'learning_rate': 0.0002890625, 'epoch': 0.01, 'num_input_tokens_seen': 77594624}\n{'loss': 7.3492, 'grad_norm': 0.465085506439209, 'learning_rate': 0.00029296875, 'epoch': 0.01, 'num_input_tokens_seen': 78643200}\n{'loss': 7.3658, 'grad_norm': 0.6932719349861145, 'learning_rate': 0.000296875, 'epoch': 0.01, 'num_input_tokens_seen': 79691776}\n{'loss': 7.3554, 'grad_norm': 0.49396172165870667, 'learning_rate': 0.00030078125, 'epoch': 0.01, 'num_input_tokens_seen': 80740352}\n{'loss': 7.2916, 'grad_norm': 0.3178255558013916, 'learning_rate': 0.0003046875, 'epoch': 0.01, 'num_input_tokens_seen': 81788928}\n{'loss': 7.2871, 'grad_norm': 0.5465154647827148, 'learning_rate': 0.00030859375, 'epoch': 0.01, 'num_input_tokens_seen': 82837504}\n{'loss': 7.262, 'grad_norm': 0.4718130826950073, 'learning_rate': 0.0003125, 'epoch': 0.01, 'num_input_tokens_seen': 83886080}\n{'loss': 7.2845, 'grad_norm': 0.5033366680145264, 'learning_rate': 0.00031640625, 'epoch': 0.01, 'num_input_tokens_seen': 84934656}\n{'loss': 7.2525, 'grad_norm': 0.5601146817207336, 'learning_rate': 0.0003203125, 'epoch': 0.01, 'num_input_tokens_seen': 85983232}\n{'loss': 7.1971, 'grad_norm': 0.5764456987380981, 'learning_rate': 0.00032421875, 'epoch': 0.01, 'num_input_tokens_seen': 87031808}\n{'loss': 7.1988, 'grad_norm': 0.6154745817184448, 'learning_rate': 0.000328125, 'epoch': 0.01, 'num_input_tokens_seen': 88080384}\n{'loss': 7.1987, 'grad_norm': 0.6701765656471252, 'learning_rate': 0.00033203125, 'epoch': 0.01, 'num_input_tokens_seen': 89128960}\n{'loss': 7.3324, 'grad_norm': 0.5648972988128662, 'learning_rate': 0.00033593750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 90177536}\n{'loss': 7.2233, 'grad_norm': 0.5782461166381836, 'learning_rate': 0.00033984375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 91226112}\n{'loss': 7.1995, 'grad_norm': 0.540762722492218, 'learning_rate': 0.00034375, 'epoch': 0.01, 'num_input_tokens_seen': 92274688}\n{'loss': 7.1214, 'grad_norm': 0.9524508118629456, 'learning_rate': 0.00034765625, 'epoch': 0.01, 'num_input_tokens_seen': 93323264}\n{'loss': 7.1603, 'grad_norm': 1.4820659160614014, 'learning_rate': 0.0003515625, 'epoch': 0.01, 'num_input_tokens_seen': 94371840}\n{'loss': 7.2364, 'grad_norm': 0.6124428510665894, 'learning_rate': 0.00035546875, 'epoch': 0.01, 'num_input_tokens_seen': 95420416}\n{'loss': 7.0258, 'grad_norm': 0.8897235989570618, 'learning_rate': 0.000359375, 'epoch': 0.01, 'num_input_tokens_seen': 96468992}\n{'loss': 7.1182, 'grad_norm': 0.9263321757316589, 'learning_rate': 0.00036328125, 'epoch': 0.01, 'num_input_tokens_seen': 97517568}\n{'loss': 7.109, 'grad_norm': 0.5800505876541138, 'learning_rate': 0.0003671875, 'epoch': 0.01, 'num_input_tokens_seen': 98566144}\n{'loss': 7.0449, 'grad_norm': 0.6776424050331116, 'learning_rate': 0.00037109375, 'epoch': 0.01, 'num_input_tokens_seen': 99614720}\n{'loss': 7.1272, 'grad_norm': 0.7616431713104248, 'learning_rate': 0.000375, 'epoch': 0.01, 'num_input_tokens_seen': 100663296}\n{'loss': 7.046, 'grad_norm': 0.5346249938011169, 'learning_rate': 0.00037890625, 'epoch': 0.01, 'num_input_tokens_seen': 101711872}\n{'loss': 7.0713, 'grad_norm': 0.6108944416046143, 'learning_rate': 0.0003828125, 'epoch': 0.01, 'num_input_tokens_seen': 102760448}\n{'loss': 7.1459, 'grad_norm': 0.4430749714374542, 'learning_rate': 0.00038671875, 'epoch': 0.01, 'num_input_tokens_seen': 103809024}\n{'loss': 7.0709, 'grad_norm': 0.6020255088806152, 'learning_rate': 0.000390625, 'epoch': 0.01, 'num_input_tokens_seen': 104857600}\n{'loss': 7.0144, 'grad_norm': 0.5525627732276917, 'learning_rate': 0.00039453125, 'epoch': 0.01, 'num_input_tokens_seen': 105906176}\n{'loss': 7.0926, 'grad_norm': 0.6909684538841248, 'learning_rate': 0.00039843750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 106954752}\n{'loss': 7.0289, 'grad_norm': 0.5576740503311157, 'learning_rate': 0.00040234375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 108003328}\n{'loss': 6.9173, 'grad_norm': 0.48874178528785706, 'learning_rate': 0.00040625000000000004, 'epoch': 0.01, 'num_input_tokens_seen': 109051904}\n{'loss': 6.9777, 'grad_norm': 0.3904782831668854, 'learning_rate': 0.00041015625, 'epoch': 0.01, 'num_input_tokens_seen': 110100480}\n{'loss': 6.9473, 'grad_norm': 0.3953755795955658, 'learning_rate': 0.0004140625, 'epoch': 0.01, 'num_input_tokens_seen': 111149056}\n{'loss': 6.9071, 'grad_norm': 0.43107134103775024, 'learning_rate': 0.00041796875, 'epoch': 0.01, 'num_input_tokens_seen': 112197632}\n{'loss': 6.9277, 'grad_norm': 0.33989447355270386, 'learning_rate': 0.000421875, 'epoch': 0.01, 'num_input_tokens_seen': 113246208}\n{'loss': 6.914, 'grad_norm': 0.3267095983028412, 'learning_rate': 0.00042578125, 'epoch': 0.01, 'num_input_tokens_seen': 114294784}\n{'loss': 6.6865, 'grad_norm': 0.4201946556568146, 'learning_rate': 0.0004296875, 'epoch': 0.01, 'num_input_tokens_seen': 115343360}\n{'loss': 6.8229, 'grad_norm': 0.345426082611084, 'learning_rate': 0.00043359375, 'epoch': 0.01, 'num_input_tokens_seen': 116391936}\n{'loss': 6.8599, 'grad_norm': 0.4104400873184204, 'learning_rate': 0.0004375, 'epoch': 0.01, 'num_input_tokens_seen': 117440512}\n{'loss': 6.7656, 'grad_norm': 0.6487549543380737, 'learning_rate': 0.00044140625, 'epoch': 0.01, 'num_input_tokens_seen': 118489088}\n{'loss': 6.8654, 'grad_norm': 1.5497283935546875, 'learning_rate': 0.0004453125, 'epoch': 0.01, 'num_input_tokens_seen': 119537664}\n{'loss': 6.8207, 'grad_norm': 1.9772824048995972, 'learning_rate': 0.00044921875, 'epoch': 0.01, 'num_input_tokens_seen': 120586240}\n{'loss': 6.7802, 'grad_norm': 0.9341455101966858, 'learning_rate': 0.000453125, 'epoch': 0.01, 'num_input_tokens_seen': 121634816}\n{'loss': 6.8017, 'grad_norm': 1.3528856039047241, 'learning_rate': 0.00045703125, 'epoch': 0.01, 'num_input_tokens_seen': 122683392}\n{'loss': 6.8344, 'grad_norm': 0.5852281451225281, 'learning_rate': 0.00046093750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 123731968}\n{'loss': 6.8259, 'grad_norm': 0.9776580929756165, 'learning_rate': 0.00046484375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 124780544}\n{'loss': 6.7581, 'grad_norm': 1.0398296117782593, 'learning_rate': 0.00046875, 'epoch': 0.01, 'num_input_tokens_seen': 125829120}\n{'loss': 6.7795, 'grad_norm': 1.1206268072128296, 'learning_rate': 0.00047265625, 'epoch': 0.01, 'num_input_tokens_seen': 126877696}\n{'loss': 6.5667, 'grad_norm': 0.6790318489074707, 'learning_rate': 0.0004765625, 'epoch': 0.01, 'num_input_tokens_seen': 127926272}\n{'loss': 6.7297, 'grad_norm': 1.2275055646896362, 'learning_rate': 0.00048046875, 'epoch': 0.02, 'num_input_tokens_seen': 128974848}\n{'loss': 6.7104, 'grad_norm': 1.1354466676712036, 'learning_rate': 0.000484375, 'epoch': 0.02, 'num_input_tokens_seen': 130023424}\n{'loss': 6.7025, 'grad_norm': 0.9035728573799133, 'learning_rate': 0.00048828125, 'epoch': 0.02, 'num_input_tokens_seen': 131072000}\n{'loss': 6.6391, 'grad_norm': 1.3942680358886719, 'learning_rate': 0.0004921875, 'epoch': 0.02, 'num_input_tokens_seen': 132120576}\n{'loss': 6.6011, 'grad_norm': 0.7435236573219299, 'learning_rate': 0.00049609375, 'epoch': 0.02, 'num_input_tokens_seen': 133169152}\n{'loss': 6.5135, 'grad_norm': 0.5970368385314941, 'learning_rate': 0.0005, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'eval_loss': 6.573822021484375, 'eval_runtime': 629.9441, 'eval_samples_per_second': 26.009, 'eval_steps_per_second': 0.203, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'loss': 6.5509, 'grad_norm': 0.7936264276504517, 'learning_rate': 0.00050390625, 'epoch': 0.02, 'num_input_tokens_seen': 135266304}\n{'loss': 6.6008, 'grad_norm': 0.6225885152816772, 'learning_rate': 0.0005078125, 'epoch': 0.02, 'num_input_tokens_seen': 136314880}\n{'loss': 6.4821, 'grad_norm': 0.5519376993179321, 'learning_rate': 0.00051171875, 'epoch': 0.02, 'num_input_tokens_seen': 137363456}\n{'loss': 6.3411, 'grad_norm': 0.5908603668212891, 'learning_rate': 0.000515625, 'epoch': 0.02, 'num_input_tokens_seen': 138412032}\n{'loss': 6.3464, 'grad_norm': 0.5101401209831238, 'learning_rate': 0.00051953125, 'epoch': 0.02, 'num_input_tokens_seen': 139460608}\n{'loss': 6.3638, 'grad_norm': 0.7352246046066284, 'learning_rate': 0.0005234375, 'epoch': 0.02, 'num_input_tokens_seen': 140509184}\n{'loss': 6.3429, 'grad_norm': 0.49651673436164856, 'learning_rate': 0.00052734375, 'epoch': 0.02, 'num_input_tokens_seen': 141557760}\n{'loss': 6.2987, 'grad_norm': 0.4835755527019501, 'learning_rate': 0.00053125, 'epoch': 0.02, 'num_input_tokens_seen': 142606336}\n{'loss': 6.2982, 'grad_norm': 0.5940163731575012, 'learning_rate': 0.00053515625, 'epoch': 0.02, 'num_input_tokens_seen': 143654912}\n{'loss': 6.267, 'grad_norm': 0.7658674120903015, 'learning_rate': 0.0005390625, 'epoch': 0.02, 'num_input_tokens_seen': 144703488}\n{'loss': 6.2102, 'grad_norm': 0.6704416275024414, 'learning_rate': 0.00054296875, 'epoch': 0.02, 'num_input_tokens_seen': 145752064}\n{'loss': 6.1956, 'grad_norm': 0.6615312099456787, 'learning_rate': 0.000546875, 'epoch': 0.02, 'num_input_tokens_seen': 146800640}\n{'loss': 6.286, 'grad_norm': 0.7957404255867004, 'learning_rate': 0.0005507812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 147849216}\n{'loss': 6.2483, 'grad_norm': 0.6477276682853699, 'learning_rate': 0.0005546875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 148897792}\n{'loss': 6.0944, 'grad_norm': 0.5753227472305298, 'learning_rate': 0.0005585937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 149946368}\n{'loss': 6.0995, 'grad_norm': 0.5871054530143738, 'learning_rate': 0.0005625000000000001, 'epoch': 0.02, 'num_input_tokens_seen': 150994944}\n{'loss': 6.112, 'grad_norm': 0.7046136856079102, 'learning_rate': 0.00056640625, 'epoch': 0.02, 'num_input_tokens_seen': 152043520}\n{'loss': 6.102, 'grad_norm': 0.9357424378395081, 'learning_rate': 0.0005703125, 'epoch': 0.02, 'num_input_tokens_seen': 153092096}\n{'loss': 6.1407, 'grad_norm': 1.0577837228775024, 'learning_rate': 0.00057421875, 'epoch': 0.02, 'num_input_tokens_seen': 154140672}\n{'loss': 5.9836, 'grad_norm': 0.7795257568359375, 'learning_rate': 0.000578125, 'epoch': 0.02, 'num_input_tokens_seen': 155189248}\n{'loss': 6.1041, 'grad_norm': 0.8117634057998657, 'learning_rate': 0.00058203125, 'epoch': 0.02, 'num_input_tokens_seen': 156237824}\n{'loss': 5.9474, 'grad_norm': 0.8311094045639038, 'learning_rate': 0.0005859375, 'epoch': 0.02, 'num_input_tokens_seen': 157286400}\n{'loss': 5.9365, 'grad_norm': 0.8269851803779602, 'learning_rate': 0.00058984375, 'epoch': 0.02, 'num_input_tokens_seen': 158334976}\n{'loss': 5.9668, 'grad_norm': 0.701510488986969, 'learning_rate': 0.00059375, 'epoch': 0.02, 'num_input_tokens_seen': 159383552}\n{'loss': 5.9874, 'grad_norm': 0.49938252568244934, 'learning_rate': 0.00059765625, 'epoch': 0.02, 'num_input_tokens_seen': 160432128}\n{'loss': 5.8505, 'grad_norm': 0.6981683969497681, 'learning_rate': 0.0006015625, 'epoch': 0.02, 'num_input_tokens_seen': 161480704}\n{'loss': 6.0156, 'grad_norm': 0.5023297071456909, 'learning_rate': 0.00060546875, 'epoch': 0.02, 'num_input_tokens_seen': 162529280}\n{'loss': 5.8299, 'grad_norm': 0.6075630187988281, 'learning_rate': 0.000609375, 'epoch': 0.02, 'num_input_tokens_seen': 163577856}\n{'loss': 5.8203, 'grad_norm': 0.6051607728004456, 'learning_rate': 0.00061328125, 'epoch': 0.02, 'num_input_tokens_seen': 164626432}\n{'loss': 5.7705, 'grad_norm': 0.6384783983230591, 'learning_rate': 0.0006171875, 'epoch': 0.02, 'num_input_tokens_seen': 165675008}\n{'loss': 5.791, 'grad_norm': 0.5084705948829651, 'learning_rate': 0.00062109375, 'epoch': 0.02, 'num_input_tokens_seen': 166723584}\n{'loss': 5.6743, 'grad_norm': 0.4278322160243988, 'learning_rate': 0.000625, 'epoch': 0.02, 'num_input_tokens_seen': 167772160}\n{'loss': 5.7112, 'grad_norm': 0.5151192545890808, 'learning_rate': 0.00062890625, 'epoch': 0.02, 'num_input_tokens_seen': 168820736}\n{'loss': 5.5128, 'grad_norm': 0.6542677283287048, 'learning_rate': 0.0006328125, 'epoch': 0.02, 'num_input_tokens_seen': 169869312}\n{'loss': 5.6735, 'grad_norm': 0.6016008257865906, 'learning_rate': 0.00063671875, 'epoch': 0.02, 'num_input_tokens_seen': 170917888}\n{'loss': 5.6525, 'grad_norm': 0.48695647716522217, 'learning_rate': 0.000640625, 'epoch': 0.02, 'num_input_tokens_seen': 171966464}\n{'loss': 5.6051, 'grad_norm': 0.5894989371299744, 'learning_rate': 0.00064453125, 'epoch': 0.02, 'num_input_tokens_seen': 173015040}\n{'loss': 5.6377, 'grad_norm': 0.7626883387565613, 'learning_rate': 0.0006484375, 'epoch': 0.02, 'num_input_tokens_seen': 174063616}\n{'loss': 5.6038, 'grad_norm': 0.745198130607605, 'learning_rate': 0.00065234375, 'epoch': 0.02, 'num_input_tokens_seen': 175112192}\n{'loss': 5.5465, 'grad_norm': 0.7876908779144287, 'learning_rate': 0.00065625, 'epoch': 0.02, 'num_input_tokens_seen': 176160768}\n{'loss': 5.5903, 'grad_norm': 0.7416785359382629, 'learning_rate': 0.00066015625, 'epoch': 0.02, 'num_input_tokens_seen': 177209344}\n{'loss': 5.4993, 'grad_norm': 0.4493878185749054, 'learning_rate': 0.0006640625, 'epoch': 0.02, 'num_input_tokens_seen': 178257920}\n{'loss': 5.5612, 'grad_norm': 0.5095419883728027, 'learning_rate': 0.00066796875, 'epoch': 0.02, 'num_input_tokens_seen': 179306496}\n{'loss': 5.378, 'grad_norm': 0.6330733895301819, 'learning_rate': 0.0006718750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 180355072}\n{'loss': 5.4875, 'grad_norm': 0.4710595905780792, 'learning_rate': 0.0006757812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 181403648}\n{'loss': 5.4221, 'grad_norm': 0.5276287198066711, 'learning_rate': 0.0006796875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 182452224}\n{'loss': 5.308, 'grad_norm': 0.6985499858856201, 'learning_rate': 0.0006835937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 183500800}\n{'loss': 5.4455, 'grad_norm': 0.4874110519886017, 'learning_rate': 0.0006875, 'epoch': 0.02, 'num_input_tokens_seen': 184549376}\n{'loss': 5.476, 'grad_norm': 0.5807638764381409, 'learning_rate': 0.00069140625, 'epoch': 0.02, 'num_input_tokens_seen': 185597952}\n{'loss': 5.2876, 'grad_norm': 0.5431288480758667, 'learning_rate': 0.0006953125, 'epoch': 0.02, 'num_input_tokens_seen': 186646528}\n{'loss': 5.3881, 'grad_norm': 0.7681945562362671, 'learning_rate': 0.00069921875, 'epoch': 0.02, 'num_input_tokens_seen': 187695104}\n{'loss': 5.4006, 'grad_norm': 0.7372023463249207, 'learning_rate': 0.000703125, 'epoch': 0.02, 'num_input_tokens_seen': 188743680}\n{'loss': 5.3813, 'grad_norm': 0.7354347109794617, 'learning_rate': 0.00070703125, 'epoch': 0.02, 'num_input_tokens_seen': 189792256}\n{'loss': 5.3393, 'grad_norm': 0.5908933281898499, 'learning_rate': 0.0007109375, 'epoch': 0.02, 'num_input_tokens_seen': 190840832}\n{'loss': 5.3024, 'grad_norm': 0.5665153861045837, 'learning_rate': 0.00071484375, 'epoch': 0.02, 'num_input_tokens_seen': 191889408}\n{'loss': 5.2782, 'grad_norm': 0.5930947661399841, 'learning_rate': 0.00071875, 'epoch': 0.02, 'num_input_tokens_seen': 192937984}\n{'loss': 5.3199, 'grad_norm': 0.5926457643508911, 'learning_rate': 0.00072265625, 'epoch': 0.02, 'num_input_tokens_seen': 193986560}\n{'loss': 5.2949, 'grad_norm': 0.548610270023346, 'learning_rate': 0.0007265625, 'epoch': 0.02, 'num_input_tokens_seen': 195035136}\n{'loss': 5.3143, 'grad_norm': 0.6023995280265808, 'learning_rate': 0.00073046875, 'epoch': 0.02, 'num_input_tokens_seen': 196083712}\n{'loss': 5.2982, 'grad_norm': 1.0335254669189453, 'learning_rate': 0.000734375, 'epoch': 0.02, 'num_input_tokens_seen': 197132288}\n{'loss': 5.2933, 'grad_norm': 1.2596269845962524, 'learning_rate': 0.00073828125, 'epoch': 0.02, 'num_input_tokens_seen': 198180864}\n{'loss': 5.2524, 'grad_norm': 0.6956535577774048, 'learning_rate': 0.0007421875, 'epoch': 0.02, 'num_input_tokens_seen': 199229440}\n{'loss': 5.3543, 'grad_norm': 0.946761429309845, 'learning_rate': 0.00074609375, 'epoch': 0.02, 'num_input_tokens_seen': 200278016}\n{'loss': 5.1616, 'grad_norm': 0.9568974375724792, 'learning_rate': 0.00075, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n[2025-03-10 18:01:06 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n[2025-03-10 18:01:06 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:30 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n[2025-03-10 18:02:30 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n[2025-03-10 18:02:44 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:04:45 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n[2025-03-10 18:04:45 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:05:26 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n[2025-03-10 18:05:26 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:06:39 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n[2025-03-10 18:06:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:07:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n[2025-03-10 18:07:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:23 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n[2025-03-10 18:09:23 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n[2025-03-10 18:09:44 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 5.276012420654297, 'eval_runtime': 754.8295, 'eval_samples_per_second': 21.706, 'eval_steps_per_second': 0.17, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n{'loss': 5.2363, 'grad_norm': 0.8435476422309875, 'learning_rate': 0.00075390625, 'epoch': 0.02, 'num_input_tokens_seen': 202375168}\n{'loss': 5.1035, 'grad_norm': 1.1267820596694946, 'learning_rate': 0.0007578125, 'epoch': 0.02, 'num_input_tokens_seen': 203423744}\n{'loss': 5.3017, 'grad_norm': 0.8555666208267212, 'learning_rate': 0.00076171875, 'epoch': 0.02, 'num_input_tokens_seen': 204472320}\n{'loss': 5.1679, 'grad_norm': 0.7608171105384827, 'learning_rate': 0.000765625, 'epoch': 0.02, 'num_input_tokens_seen': 205520896}\n{'loss': 5.2326, 'grad_norm': 0.6787221431732178, 'learning_rate': 0.00076953125, 'epoch': 0.02, 'num_input_tokens_seen': 206569472}\n{'loss': 5.144, 'grad_norm': 0.6404955983161926, 'learning_rate': 0.0007734375, 'epoch': 0.02, 'num_input_tokens_seen': 207618048}\n{'loss': 5.1933, 'grad_norm': 0.6099393367767334, 'learning_rate': 0.00077734375, 'epoch': 0.02, 'num_input_tokens_seen': 208666624}\n{'loss': 5.0498, 'grad_norm': 0.5971768498420715, 'learning_rate': 0.00078125, 'epoch': 0.02, 'num_input_tokens_seen': 209715200}\n{'loss': 5.1443, 'grad_norm': 0.642633318901062, 'learning_rate': 0.00078515625, 'epoch': 0.02, 'num_input_tokens_seen': 210763776}\n{'loss': 5.2125, 'grad_norm': 0.706398606300354, 'learning_rate': 0.0007890625, 'epoch': 0.02, 'num_input_tokens_seen': 211812352}\n{'loss': 5.1882, 'grad_norm': 0.817449688911438, 'learning_rate': 0.00079296875, 'epoch': 0.02, 'num_input_tokens_seen': 212860928}\n{'loss': 5.0905, 'grad_norm': 0.9392185807228088, 'learning_rate': 0.0007968750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 213909504}\n{'loss': 5.059, 'grad_norm': 0.5305852890014648, 'learning_rate': 0.0008007812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 214958080}\n{'loss': 5.0838, 'grad_norm': 0.7662672996520996, 'learning_rate': 0.0008046875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 216006656}\n{'loss': 5.0112, 'grad_norm': 0.5768160223960876, 'learning_rate': 0.0008085937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 217055232}\n{'loss': 4.9684, 'grad_norm': 0.5972586870193481, 'learning_rate': 0.0008125000000000001, 'epoch': 0.03, 'num_input_tokens_seen': 218103808}\n{'loss': 5.0764, 'grad_norm': 0.559498131275177, 'learning_rate': 0.00081640625, 'epoch': 0.03, 'num_input_tokens_seen': 219152384}\n{'loss': 5.0117, 'grad_norm': 0.555585503578186, 'learning_rate': 0.0008203125, 'epoch': 0.03, 'num_input_tokens_seen': 220200960}\n{'loss': 5.1955, 'grad_norm': 0.6180793046951294, 'learning_rate': 0.00082421875, 'epoch': 0.03, 'num_input_tokens_seen': 221249536}\n{'loss': 5.1265, 'grad_norm': 0.5784006118774414, 'learning_rate': 0.000828125, 'epoch': 0.03, 'num_input_tokens_seen': 222298112}\n{'loss': 5.03, 'grad_norm': 0.5200456380844116, 'learning_rate': 0.00083203125, 'epoch': 0.03, 'num_input_tokens_seen': 223346688}\n{'loss': 5.051, 'grad_norm': 0.5112505555152893, 'learning_rate': 0.0008359375, 'epoch': 0.03, 'num_input_tokens_seen': 224395264}\n{'loss': 5.0994, 'grad_norm': 0.44979697465896606, 'learning_rate': 0.00083984375, 'epoch': 0.03, 'num_input_tokens_seen': 225443840}\n{'loss': 4.94, 'grad_norm': 0.46642380952835083, 'learning_rate': 0.00084375, 'epoch': 0.03, 'num_input_tokens_seen': 226492416}\n{'loss': 5.0562, 'grad_norm': 0.49667519330978394, 'learning_rate': 0.00084765625, 'epoch': 0.03, 'num_input_tokens_seen': 227540992}\n{'loss': 4.9217, 'grad_norm': 0.4302496314048767, 'learning_rate': 0.0008515625, 'epoch': 0.03, 'num_input_tokens_seen': 228589568}\n{'loss': 4.8588, 'grad_norm': 0.5326887369155884, 'learning_rate': 0.00085546875, 'epoch': 0.03, 'num_input_tokens_seen': 229638144}\n{'loss': 4.8501, 'grad_norm': 0.45604026317596436, 'learning_rate': 0.000859375, 'epoch': 0.03, 'num_input_tokens_seen': 230686720}\n{'loss': 4.8774, 'grad_norm': 0.4497997462749481, 'learning_rate': 0.00086328125, 'epoch': 0.03, 'num_input_tokens_seen': 231735296}\n{'loss': 5.0143, 'grad_norm': 0.526670515537262, 'learning_rate': 0.0008671875, 'epoch': 0.03, 'num_input_tokens_seen': 232783872}\n{'loss': 4.9512, 'grad_norm': 0.5823948979377747, 'learning_rate': 0.00087109375, 'epoch': 0.03, 'num_input_tokens_seen': 233832448}\n{'loss': 4.915, 'grad_norm': 0.6516634821891785, 'learning_rate': 0.000875, 'epoch': 0.03, 'num_input_tokens_seen': 234881024}\n{'loss': 4.9318, 'grad_norm': 0.7564677596092224, 'learning_rate': 0.00087890625, 'epoch': 0.03, 'num_input_tokens_seen': 235929600}\n{'loss': 4.9041, 'grad_norm': 0.7170491814613342, 'learning_rate': 0.0008828125, 'epoch': 0.03, 'num_input_tokens_seen': 236978176}\n{'loss': 4.9727, 'grad_norm': 0.7671059966087341, 'learning_rate': 0.00088671875, 'epoch': 0.03, 'num_input_tokens_seen': 238026752}\n{'loss': 4.7895, 'grad_norm': 0.8752806782722473, 'learning_rate': 0.000890625, 'epoch': 0.03, 'num_input_tokens_seen': 239075328}\n{'loss': 4.8845, 'grad_norm': 0.8313667178153992, 'learning_rate': 0.00089453125, 'epoch': 0.03, 'num_input_tokens_seen': 240123904}\n{'loss': 4.8325, 'grad_norm': 0.9223323464393616, 'learning_rate': 0.0008984375, 'epoch': 0.03, 'num_input_tokens_seen': 241172480}\n{'loss': 4.8991, 'grad_norm': 0.7362072467803955, 'learning_rate': 0.00090234375, 'epoch': 0.03, 'num_input_tokens_seen': 242221056}\n{'loss': 4.7443, 'grad_norm': 0.6667400598526001, 'learning_rate': 0.00090625, 'epoch': 0.03, 'num_input_tokens_seen': 243269632}\n{'loss': 4.8913, 'grad_norm': 0.5431771874427795, 'learning_rate': 0.00091015625, 'epoch': 0.03, 'num_input_tokens_seen': 244318208}\n{'loss': 4.8997, 'grad_norm': 0.5542160272598267, 'learning_rate': 0.0009140625, 'epoch': 0.03, 'num_input_tokens_seen': 245366784}\n{'loss': 4.8448, 'grad_norm': 0.6110911965370178, 'learning_rate': 0.0009179687500000001, 'epoch': 0.03, 'num_input_tokens_seen': 246415360}\n{'loss': 4.7975, 'grad_norm': 0.5550041794776917, 'learning_rate': 0.0009218750000000001, 'epoch': 0.03, 'num_input_tokens_seen': 247463936}\n{'loss': 4.87, 'grad_norm': 0.4778221547603607, 'learning_rate': 0.0009257812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 248512512}\n{'loss': 4.7594, 'grad_norm': 0.35899603366851807, 'learning_rate': 0.0009296875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 249561088}\n{'loss': 4.8338, 'grad_norm': 0.494094580411911, 'learning_rate': 0.0009335937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 250609664}\n{'loss': 4.7424, 'grad_norm': 0.4671477675437927, 'learning_rate': 0.0009375, 'epoch': 0.03, 'num_input_tokens_seen': 251658240}\n{'loss': 4.7593, 'grad_norm': 0.4691649079322815, 'learning_rate': 0.00094140625, 'epoch': 0.03, 'num_input_tokens_seen': 252706816}\n{'loss': 4.7869, 'grad_norm': 0.6212939023971558, 'learning_rate': 0.0009453125, 'epoch': 0.03, 'num_input_tokens_seen': 253755392}\n{'loss': 4.7925, 'grad_norm': 0.621306300163269, 'learning_rate': 0.00094921875, 'epoch': 0.03, 'num_input_tokens_seen': 254803968}\n{'loss': 4.7714, 'grad_norm': 0.6991429328918457, 'learning_rate': 0.000953125, 'epoch': 0.03, 'num_input_tokens_seen': 255852544}\n{'loss': 5.2726, 'grad_norm': 1.016664743423462, 'learning_rate': 0.00095703125, 'epoch': 0.03, 'num_input_tokens_seen': 256901120}\n{'loss': 4.9125, 'grad_norm': 1.3091747760772705, 'learning_rate': 0.0009609375, 'epoch': 0.03, 'num_input_tokens_seen': 257949696}\n{'loss': 4.839, 'grad_norm': 1.2617076635360718, 'learning_rate': 0.00096484375, 'epoch': 0.03, 'num_input_tokens_seen': 258998272}\n{'loss': 4.8412, 'grad_norm': 0.9403041005134583, 'learning_rate': 0.00096875, 'epoch': 0.03, 'num_input_tokens_seen': 260046848}\n{'loss': 5.0193, 'grad_norm': 0.9802642464637756, 'learning_rate': 0.00097265625, 'epoch': 0.03, 'num_input_tokens_seen': 261095424}\n{'loss': 4.7372, 'grad_norm': 0.9636861085891724, 'learning_rate': 0.0009765625, 'epoch': 0.03, 'num_input_tokens_seen': 262144000}\n{'loss': 4.7878, 'grad_norm': 0.7803710699081421, 'learning_rate': 0.00098046875, 'epoch': 0.03, 'num_input_tokens_seen': 263192576}\n{'loss': 4.8126, 'grad_norm': 0.7087182402610779, 'learning_rate': 0.000984375, 'epoch': 0.03, 'num_input_tokens_seen': 264241152}\n{'loss': 4.7252, 'grad_norm': 0.7220279574394226, 'learning_rate': 0.00098828125, 'epoch': 0.03, 'num_input_tokens_seen': 265289728}\n{'loss': 4.7419, 'grad_norm': 0.6956494450569153, 'learning_rate': 0.0009921875, 'epoch': 0.03, 'num_input_tokens_seen': 266338304}\n{'loss': 4.8041, 'grad_norm': 0.8009976148605347, 'learning_rate': 0.00099609375, 'epoch': 0.03, 'num_input_tokens_seen': 267386880}\n{'loss': 4.7016, 'grad_norm': 0.6665300130844116, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'eval_loss': 4.753816604614258, 'eval_runtime': 661.8529, 'eval_samples_per_second': 24.755, 'eval_steps_per_second': 0.193, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'loss': 4.6762, 'grad_norm': 0.5311985611915588, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 269484032}\n{'loss': 4.6296, 'grad_norm': 0.5160760879516602, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 270532608}\n{'loss': 4.7422, 'grad_norm': 0.5964047312736511, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 271581184}\n{'loss': 4.7396, 'grad_norm': 0.4793979227542877, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 272629760}\n{'loss': 4.733, 'grad_norm': 0.5280688405036926, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 273678336}\n{'loss': 4.9591, 'grad_norm': 0.8669152855873108, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 274726912}\n{'loss': 4.7953, 'grad_norm': 0.8417720198631287, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 275775488}\n{'loss': 4.7972, 'grad_norm': 0.9349585175514221, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 276824064}\n{'loss': 4.7233, 'grad_norm': 0.8441230654716492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 277872640}\n{'loss': 4.8032, 'grad_norm': 0.7163352370262146, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 278921216}\n{'loss': 4.4369, 'grad_norm': 1.0364480018615723, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 279969792}\n{'loss': 4.557, 'grad_norm': 1.012042760848999, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 281018368}\n{'loss': 4.7696, 'grad_norm': 1.1818541288375854, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 282066944}\n{'loss': 4.7835, 'grad_norm': 0.8296499848365784, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 283115520}\n{'loss': 4.761, 'grad_norm': 0.6920194625854492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 284164096}\n{'loss': 4.6239, 'grad_norm': 0.8495435118675232, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 285212672}\n{'loss': 4.6914, 'grad_norm': 0.6536931991577148, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 286261248}\n{'loss': 4.776, 'grad_norm': 0.7161967754364014, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 287309824}\n{'loss': 4.7096, 'grad_norm': 0.5441194176673889, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 288358400}\n{'loss': 4.7278, 'grad_norm': 0.5437328219413757, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 289406976}\n{'loss': 4.6126, 'grad_norm': 0.49404028058052063, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 290455552}\n{'loss': 4.6594, 'grad_norm': 0.4274217188358307, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 291504128}\n{'loss': 4.6365, 'grad_norm': 0.48871853947639465, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 292552704}\n{'loss': 4.5999, 'grad_norm': 0.5101707577705383, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 293601280}\n{'loss': 4.5869, 'grad_norm': 0.4579870104789734, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 294649856}\n{'loss': 4.5993, 'grad_norm': 0.44694098830223083, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 295698432}\n{'loss': 4.6369, 'grad_norm': 0.42955130338668823, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 296747008}\n{'loss': 4.5973, 'grad_norm': 0.532283365726471, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 297795584}\n{'loss': 4.3953, 'grad_norm': 0.5553389191627502, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 298844160}\n{'loss': 4.5501, 'grad_norm': 0.4733176529407501, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 299892736}\n{'loss': 4.4896, 'grad_norm': 0.5510519742965698, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 300941312}\n{'loss': 4.348, 'grad_norm': 0.5312983393669128, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 301989888}\n{'loss': 4.4, 'grad_norm': 0.4173823297023773, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 303038464}\n{'loss': 4.4971, 'grad_norm': 0.4799824357032776, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 304087040}\n{'loss': 4.5507, 'grad_norm': 0.4494017958641052, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 305135616}\n{'loss': 4.5655, 'grad_norm': 0.36501485109329224, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 306184192}\n{'loss': 4.5189, 'grad_norm': 0.4833853840827942, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 307232768}\n{'loss': 4.5387, 'grad_norm': 0.5214531421661377, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 308281344}\n{'loss': 4.5509, 'grad_norm': 0.5383253693580627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 309329920}\n{'loss': 4.4112, 'grad_norm': 0.5364778637886047, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 310378496}\n{'loss': 4.568, 'grad_norm': 0.3624066114425659, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 311427072}\n{'loss': 4.5289, 'grad_norm': 0.5469081401824951, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 312475648}\n{'loss': 4.4953, 'grad_norm': 0.5212593674659729, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 313524224}\n{'loss': 4.4614, 'grad_norm': 0.36742305755615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 314572800}\n{'loss': 4.4757, 'grad_norm': 0.43591663241386414, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 315621376}\n{'loss': 4.5321, 'grad_norm': 0.483548104763031, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 316669952}\n{'loss': 4.449, 'grad_norm': 0.3971082866191864, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 317718528}\n{'loss': 4.4539, 'grad_norm': 0.3416251540184021, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 318767104}\n{'loss': 4.3456, 'grad_norm': 0.45731472969055176, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 319815680}\n{'loss': 4.4179, 'grad_norm': 0.4462226331233978, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 320864256}\n{'loss': 4.3691, 'grad_norm': 0.3393065631389618, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 321912832}\n{'loss': 4.4361, 'grad_norm': 0.39659640192985535, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 322961408}\n{'loss': 4.4166, 'grad_norm': 0.42212849855422974, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 324009984}\n{'loss': 4.3931, 'grad_norm': 0.3403238356113434, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 325058560}\n{'loss': 4.3003, 'grad_norm': 0.3405858278274536, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 326107136}\n{'loss': 4.4339, 'grad_norm': 0.42516669631004333, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 327155712}\n{'loss': 4.4258, 'grad_norm': 0.4387160539627075, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 328204288}\n{'loss': 4.3774, 'grad_norm': 0.3546140193939209, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 329252864}\n{'loss': 4.3261, 'grad_norm': 0.3842155933380127, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 330301440}\n{'loss': 4.2843, 'grad_norm': 0.32807183265686035, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 331350016}\n{'loss': 4.3627, 'grad_norm': 0.3635430932044983, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 332398592}\n{'loss': 4.3304, 'grad_norm': 0.32113364338874817, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 333447168}\n{'loss': 4.258, 'grad_norm': 0.3261938989162445, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 334495744}\n{'loss': 4.392, 'grad_norm': 0.35287028551101685, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'eval_loss': 4.340233325958252, 'eval_runtime': 641.4064, 'eval_samples_per_second': 25.544, 'eval_steps_per_second': 0.2, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'loss': 4.4095, 'grad_norm': 0.30875736474990845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 336592896}\n{'loss': 3.8896, 'grad_norm': 0.6334038972854614, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 337641472}\n{'loss': 4.449, 'grad_norm': 0.5519331693649292, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 338690048}\n{'loss': 4.4388, 'grad_norm': 0.4262654185295105, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 339738624}\n{'loss': 4.3918, 'grad_norm': 0.4348645508289337, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 340787200}\n{'loss': 4.3677, 'grad_norm': 0.3858915865421295, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 341835776}\n{'loss': 4.3343, 'grad_norm': 0.4542510509490967, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 342884352}\n{'loss': 4.3196, 'grad_norm': 0.4413583278656006, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 343932928}\n{'loss': 4.322, 'grad_norm': 0.5200892686843872, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 344981504}\n{'loss': 4.2409, 'grad_norm': 0.4969848692417145, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 346030080}\n{'loss': 4.2263, 'grad_norm': 0.43436068296432495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 347078656}\n{'loss': 4.2271, 'grad_norm': 0.4760046899318695, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 348127232}\n{'loss': 4.3567, 'grad_norm': 0.43881112337112427, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 349175808}\n{'loss': 4.2606, 'grad_norm': 0.5361112952232361, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 350224384}\n{'loss': 4.3831, 'grad_norm': 0.5959597229957581, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 351272960}\n{'loss': 4.2899, 'grad_norm': 0.6709368824958801, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 352321536}\n{'loss': 4.2263, 'grad_norm': 0.6585149168968201, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 353370112}\n{'loss': 4.3428, 'grad_norm': 0.5447191596031189, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 354418688}\n{'loss': 4.3642, 'grad_norm': 0.576545238494873, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 355467264}\n{'loss': 4.025, 'grad_norm': 0.7567218542098999, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 356515840}\n{'loss': 4.2593, 'grad_norm': 0.6053742170333862, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 357564416}\n{'loss': 4.2864, 'grad_norm': 0.54949551820755, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 358612992}\n{'loss': 4.3183, 'grad_norm': 0.4792100489139557, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 359661568}\n{'loss': 4.2957, 'grad_norm': 0.4366244077682495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 360710144}\n{'loss': 4.3502, 'grad_norm': 0.5610309839248657, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 361758720}\n{'loss': 4.2673, 'grad_norm': 0.42132946848869324, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 362807296}\n{'loss': 4.2565, 'grad_norm': 0.45927727222442627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 363855872}\n{'loss': 4.3009, 'grad_norm': 0.40793168544769287, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 364904448}\n{'loss': 4.2584, 'grad_norm': 0.3818293511867523, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 365953024}\n{'loss': 4.3187, 'grad_norm': 0.4942944645881653, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 367001600}\n{'loss': 4.2056, 'grad_norm': 0.5316190719604492, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 368050176}\n{'loss': 4.2403, 'grad_norm': 0.4738222658634186, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 369098752}\n{'loss': 4.244, 'grad_norm': 0.41153445839881897, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 370147328}\n{'loss': 4.2876, 'grad_norm': 0.35864201188087463, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 371195904}\n{'loss': 4.2457, 'grad_norm': 0.4317127466201782, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 372244480}\n{'loss': 4.2138, 'grad_norm': 0.4922076165676117, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 373293056}\n{'loss': 4.1875, 'grad_norm': 0.5150508880615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 374341632}\n{'loss': 4.1485, 'grad_norm': 0.40701162815093994, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 375390208}\n{'loss': 4.1062, 'grad_norm': 0.40378910303115845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 376438784}\n{'loss': 4.226, 'grad_norm': 0.4435281753540039, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 377487360}\n{'loss': 4.2034, 'grad_norm': 0.37908127903938293, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 378535936}\n{'loss': 4.1502, 'grad_norm': 0.408202588558197, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 379584512}\n{'loss': 4.1623, 'grad_norm': 0.4542413651943207, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 380633088}\n{'loss': 4.206, 'grad_norm': 0.5084658861160278, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 381681664}\n{'loss': 4.1867, 'grad_norm': 0.432908833026886, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 382730240}\n{'loss': 4.2377, 'grad_norm': 0.38273656368255615, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 383778816}\n{'loss': 4.1443, 'grad_norm': 0.39886555075645447, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 384827392}\n{'loss': 4.16, 'grad_norm': 0.4073260724544525, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 385875968}\n{'loss': 4.0871, 'grad_norm': 0.46062660217285156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 386924544}\n{'loss': 4.1655, 'grad_norm': 0.3555128574371338, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 387973120}\n{'loss': 4.1993, 'grad_norm': 0.35318323969841003, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 389021696}\n{'loss': 4.0745, 'grad_norm': 0.3469637632369995, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 390070272}\n{'loss': 4.1844, 'grad_norm': 0.3650517761707306, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 391118848}\n{'loss': 4.1744, 'grad_norm': 0.4310692846775055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 392167424}\n{'loss': 4.1896, 'grad_norm': 0.465585857629776, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 393216000}\n{'loss': 4.0568, 'grad_norm': 0.5539769530296326, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 394264576}\n{'loss': 4.2642, 'grad_norm': 0.5437971949577332, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 395313152}\n{'loss': 4.1705, 'grad_norm': 0.6534202694892883, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 396361728}\n{'loss': 3.9844, 'grad_norm': 0.7271204590797424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 397410304}\n{'loss': 4.105, 'grad_norm': 0.7395262122154236, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 398458880}\n{'loss': 4.2332, 'grad_norm': 0.9734097719192505, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 399507456}\n{'loss': 4.1501, 'grad_norm': 1.1519765853881836, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 400556032}\n{'loss': 4.0756, 'grad_norm': 0.7837873697280884, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 401604608}\n{'loss': 4.013, 'grad_norm': 0.8097010850906372, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'eval_loss': 4.120734214782715, 'eval_runtime': 626.8806, 'eval_samples_per_second': 26.136, 'eval_steps_per_second': 0.204, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'loss': 4.0955, 'grad_norm': 0.6811020970344543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 403701760}\n{'loss': 4.0917, 'grad_norm': 0.5382081270217896, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 404750336}\n{'loss': 4.0414, 'grad_norm': 0.4250117242336273, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 405798912}\n{'loss': 4.1051, 'grad_norm': 0.4233124256134033, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 406847488}\n{'loss': 4.1475, 'grad_norm': 0.41960859298706055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 407896064}\n{'loss': 4.0322, 'grad_norm': 0.4991297423839569, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 408944640}\n{'loss': 4.0664, 'grad_norm': 0.43890711665153503, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 409993216}\n{'loss': 4.1126, 'grad_norm': 0.38538315892219543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 411041792}\n{'loss': 4.0591, 'grad_norm': 0.41170960664749146, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 412090368}\n{'loss': 4.1145, 'grad_norm': 0.42465972900390625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 413138944}\n{'loss': 4.0393, 'grad_norm': 0.4215935468673706, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 414187520}\n{'loss': 3.9509, 'grad_norm': 0.5031537413597107, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 415236096}\n{'loss': 3.9314, 'grad_norm': 0.5212794542312622, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 416284672}\n{'loss': 4.062, 'grad_norm': 0.5779813528060913, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 417333248}\n{'loss': 4.0264, 'grad_norm': 0.5523960590362549, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 418381824}\n{'loss': 4.0366, 'grad_norm': 0.501869797706604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 419430400}\n{'loss': 4.016, 'grad_norm': 0.390077143907547, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 420478976}\n{'loss': 3.9438, 'grad_norm': 0.39393457770347595, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 421527552}\n{'loss': 3.9882, 'grad_norm': 0.3395244777202606, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 422576128}\n{'loss': 3.95, 'grad_norm': 0.3985426425933838, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 423624704}\n{'loss': 3.9708, 'grad_norm': 0.4353885352611542, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 424673280}\n{'loss': 3.9959, 'grad_norm': 0.39546582102775574, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 425721856}\n{'loss': 3.9475, 'grad_norm': 0.3725046217441559, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 426770432}\n{'loss': 3.8599, 'grad_norm': 0.5391167998313904, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 427819008}\n{'loss': 3.9765, 'grad_norm': 0.5383077263832092, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 428867584}\n{'loss': 3.8999, 'grad_norm': 0.4455236494541168, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 429916160}\n{'loss': 4.0357, 'grad_norm': 0.4489726722240448, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 430964736}\n{'loss': 3.992, 'grad_norm': 0.45914894342422485, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 432013312}\n{'loss': 3.9556, 'grad_norm': 0.5718650817871094, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 433061888}\n{'loss': 3.9797, 'grad_norm': 0.5529163479804993, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 434110464}\n{'loss': 3.9479, 'grad_norm': 0.4689369201660156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 435159040}\n{'loss': 3.9358, 'grad_norm': 0.448303759098053, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 436207616}\n{'loss': 3.9699, 'grad_norm': 0.4203392565250397, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 437256192}\n{'loss': 3.8173, 'grad_norm': 0.4046834707260132, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 438304768}\n{'loss': 3.8183, 'grad_norm': 0.3998134136199951, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 439353344}\n{'loss': 3.8477, 'grad_norm': 0.4120945632457733, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 440401920}\n{'loss': 3.8486, 'grad_norm': 0.39726078510284424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 441450496}\n{'loss': 3.942, 'grad_norm': 0.399142861366272, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 442499072}\n{'loss': 3.9038, 'grad_norm': 0.41262856125831604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 443547648}\n{'loss': 3.8447, 'grad_norm': 0.4645870327949524, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 444596224}\n{'loss': 3.9215, 'grad_norm': 0.49330976605415344, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 445644800}\n{'loss': 4.5329, 'grad_norm': 4.813076972961426, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 446693376}\n{'loss': 3.763, 'grad_norm': 1.0100675821304321, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 447741952}\n{'loss': 3.9888, 'grad_norm': 1.2422761917114258, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 448790528}\n{'loss': 3.9209, 'grad_norm': 1.1251254081726074, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 449839104}\n{'loss': 4.1438, 'grad_norm': 1.926529049873352, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 450887680}\n{'loss': 4.0952, 'grad_norm': 1.2948275804519653, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 451936256}\n{'loss': 3.9411, 'grad_norm': 1.1000643968582153, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 452984832}\n{'loss': 3.988, 'grad_norm': 1.3160468339920044, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 454033408}\n{'loss': 4.0241, 'grad_norm': 1.0201517343521118, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 455081984}\n{'loss': 3.9875, 'grad_norm': 0.9689710140228271, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 456130560}\n{'loss': 3.8684, 'grad_norm': 1.045577049255371, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 457179136}\n{'loss': 3.865, 'grad_norm': 0.931566059589386, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 458227712}\n{'loss': 3.728, 'grad_norm': 0.945274293422699, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 459276288}\n{'loss': 3.955, 'grad_norm': 0.7679930925369263, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 460324864}\n{'loss': 4.4113, 'grad_norm': 0.889451801776886, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 461373440}\n{'loss': 3.8928, 'grad_norm': 0.9069199562072754, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 462422016}\n{'loss': 3.9624, 'grad_norm': 0.8945743441581726, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 463470592}\n{'loss': 3.9698, 'grad_norm': 0.7373656630516052, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 464519168}\n{'loss': 3.921, 'grad_norm': 0.6688440442085266, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 465567744}\n{'loss': 3.8908, 'grad_norm': 0.5442579984664917, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 466616320}\n{'loss': 3.9138, 'grad_norm': 0.5583804845809937, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 467664896}\n{'loss': 3.8731, 'grad_norm': 0.504666268825531, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 468713472}\n{'loss': 3.7961, 'grad_norm': 0.4965992867946625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'eval_loss': 3.7728981971740723, 'eval_runtime': 616.374, 'eval_samples_per_second': 26.581, 'eval_steps_per_second': 0.208, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'loss': 3.8829, 'grad_norm': 0.44414225220680237, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 470810624}\n{'loss': 3.6939, 'grad_norm': 0.5276159644126892, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 471859200}\n{'loss': 3.8173, 'grad_norm': 0.4666613042354584, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 472907776}\n{'loss': 3.6884, 'grad_norm': 0.4581243097782135, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 473956352}\n{'loss': 3.789, 'grad_norm': 0.4697781205177307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 475004928}\n{'loss': 3.8791, 'grad_norm': 0.5336131453514099, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 476053504}\n{'loss': 3.8077, 'grad_norm': 0.5709654092788696, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 477102080}\n{'loss': 3.8421, 'grad_norm': 0.5592761039733887, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 478150656}\n{'loss': 3.8135, 'grad_norm': 0.4490680694580078, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 479199232}\n{'loss': 3.7535, 'grad_norm': 0.3931736648082733, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 480247808}\n{'loss': 3.7885, 'grad_norm': 0.41578060388565063, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 481296384}\n{'loss': 3.6255, 'grad_norm': 0.429817795753479, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 482344960}\n{'loss': 3.7202, 'grad_norm': 0.49616578221321106, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 483393536}\n 9%|▊ | 704/8192 [9:33:48<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n 9%|▊ | 704/8192 [9:44:58<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:28:20<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n 10%|█ | 832/8192 [11:41:00<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:24:54<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n 11%|█ | 896/8192 [12:33:14<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█▏ | 922/8192 [12:52:49<76:09:46, 37.71s/it]'(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n 11%|█▏ | 922/8192 [12:52:59<76:09:46, 37.71s/it]Retrying in 1s [Retry 1/5].\n 12%|█▏ | 943/8192 [13:06:07<76:15:57, 37.88s/it]\n{'loss': 3.7796, 'grad_norm': 0.4774172008037567, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 484442112}\n{'loss': 3.7779, 'grad_norm': 0.45830512046813965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 485490688}\n{'loss': 3.6516, 'grad_norm': 0.4130597710609436, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 486539264}\n{'loss': 3.7018, 'grad_norm': 0.3804127275943756, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 487587840}\n{'loss': 3.6893, 'grad_norm': 0.36560356616973877, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 488636416}\n{'loss': 3.6362, 'grad_norm': 0.3827981948852539, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 489684992}\n{'loss': 3.5987, 'grad_norm': 0.37492236495018005, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 490733568}\n{'loss': 3.7165, 'grad_norm': 0.46995237469673157, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 491782144}\n{'loss': 3.6097, 'grad_norm': 0.4908960461616516, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 492830720}\n{'loss': 3.6035, 'grad_norm': 0.5318525433540344, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 493879296}\n{'loss': 3.6643, 'grad_norm': 0.4848596453666687, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 494927872}\n{'loss': 3.6586, 'grad_norm': 0.4421922266483307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 495976448}\n{'loss': 3.5902, 'grad_norm': 0.4107126295566559, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 497025024}\n{'loss': 3.6937, 'grad_norm': 0.3975088894367218, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 498073600}\n{'loss': 3.6496, 'grad_norm': 0.4559416174888611, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 499122176}\n{'loss': 3.66, 'grad_norm': 0.41401296854019165, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 500170752}\n{'loss': 3.5551, 'grad_norm': 0.45235902070999146, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 501219328}\n{'loss': 3.4794, 'grad_norm': 0.427593857049942, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 502267904}\n{'loss': 3.5345, 'grad_norm': 0.4024144411087036, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 503316480}\n{'loss': 3.5784, 'grad_norm': 0.410284161567688, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 504365056}\n{'loss': 3.6177, 'grad_norm': 0.37683290243148804, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 505413632}\n{'loss': 3.5883, 'grad_norm': 0.417323499917984, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 506462208}\n{'loss': 3.5888, 'grad_norm': 0.4327872693538666, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 507510784}\n{'loss': 3.5891, 'grad_norm': 0.5366392731666565, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 508559360}\n{'loss': 3.3725, 'grad_norm': 0.45735156536102295, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 509607936}\n{'loss': 3.5674, 'grad_norm': 0.4255360960960388, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 510656512}\n{'loss': 3.3523, 'grad_norm': 0.6517689824104309, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 511705088}\n{'loss': 3.5901, 'grad_norm': 0.5713740587234497, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 512753664}\n{'loss': 3.542, 'grad_norm': 0.5570502281188965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 513802240}\n{'loss': 3.4246, 'grad_norm': 0.6477808356285095, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 514850816}\n{'loss': 3.4954, 'grad_norm': 0.5195346474647522, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 515899392}\n{'loss': 3.6516, 'grad_norm': 0.5446246862411499, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 516947968}\n{'loss': 3.5955, 'grad_norm': 0.5475099086761475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 517996544}\n{'loss': 3.5516, 'grad_norm': 0.4719395041465759, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 519045120}\n{'loss': 3.5439, 'grad_norm': 0.43647533655166626, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 520093696}\n{'loss': 3.579, 'grad_norm': 0.5048384070396423, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 521142272}\n{'loss': 3.4742, 'grad_norm': 0.4902295172214508, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 522190848}\n{'loss': 3.4363, 'grad_norm': 0.525496244430542, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 523239424}\n{'loss': 3.3658, 'grad_norm': 0.5224571824073792, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 524288000}\n{'loss': 3.4816, 'grad_norm': 0.45781856775283813, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 525336576}\n{'loss': 3.4612, 'grad_norm': 0.3764704763889313, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 526385152}\n{'loss': 3.5172, 'grad_norm': 0.3994409143924713, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 527433728}\n{'loss': 3.5462, 'grad_norm': 0.45144984126091003, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 528482304}\n{'loss': 3.5079, 'grad_norm': 0.4901409149169922, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 529530880}\n{'loss': 3.5187, 'grad_norm': 0.45689818263053894, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 530579456}\n{'loss': 3.4408, 'grad_norm': 0.4650699198246002, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 531628032}\n{'loss': 3.4019, 'grad_norm': 0.40419647097587585, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 532676608}\n{'loss': 3.5255, 'grad_norm': 0.3895981013774872, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 533725184}\n{'loss': 3.312, 'grad_norm': 0.46533191204071045, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 534773760}\n{'loss': 3.4233, 'grad_norm': 0.5021492838859558, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 535822336}\n{'loss': 3.4211, 'grad_norm': 0.6763796806335449, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'eval_loss': 3.38647198677063, 'eval_runtime': 681.5531, 'eval_samples_per_second': 24.039, 'eval_steps_per_second': 0.188, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'loss': 3.2825, 'grad_norm': 0.75739586353302, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 537919488}\n{'loss': 3.4758, 'grad_norm': 0.49962809681892395, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 538968064}\n{'loss': 3.4105, 'grad_norm': 0.47640085220336914, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 540016640}\n{'loss': 3.4393, 'grad_norm': 0.4722411632537842, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 541065216}\n{'loss': 3.4254, 'grad_norm': 0.4715781807899475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 542113792}\n{'loss': 3.3992, 'grad_norm': 0.474001407623291, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 543162368}\n{'loss': 3.4274, 'grad_norm': 0.48976385593414307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 544210944}\n{'loss': 3.3255, 'grad_norm': 0.4819697141647339, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 545259520}\n{'loss': 3.3679, 'grad_norm': 0.37490880489349365, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 546308096}\n{'loss': 3.377, 'grad_norm': 0.4356544315814972, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 547356672}\n{'loss': 3.4294, 'grad_norm': 0.3786229193210602, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 548405248}\n{'loss': 3.2323, 'grad_norm': 0.4364008605480194, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 549453824}\n{'loss': 3.4615, 'grad_norm': 0.39242950081825256, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 550502400}\n{'loss': 3.3589, 'grad_norm': 0.4270903766155243, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 551550976}\n{'loss': 3.4366, 'grad_norm': 0.4204763174057007, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 552599552}\n{'loss': 3.3859, 'grad_norm': 0.554025411605835, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 553648128}\n{'loss': 3.2353, 'grad_norm': 0.5719075798988342, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 554696704}\n{'loss': 3.3798, 'grad_norm': 0.4803822338581085, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 555745280}\n{'loss': 3.1191, 'grad_norm': 0.5494056344032288, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 556793856}\n{'loss': 3.424, 'grad_norm': 0.4569101333618164, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 557842432}\n{'loss': 3.4299, 'grad_norm': 0.48103874921798706, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 558891008}\n{'loss': 3.3483, 'grad_norm': 0.44187718629837036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 559939584}\n{'loss': 3.3196, 'grad_norm': 0.4359618127346039, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 560988160}\n{'loss': 3.4479, 'grad_norm': 0.37653473019599915, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 562036736}\n{'loss': 3.2509, 'grad_norm': 0.4397211968898773, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 563085312}\n{'loss': 3.4193, 'grad_norm': 0.5013746619224548, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 564133888}\n{'loss': 3.3391, 'grad_norm': 0.5044407844543457, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 565182464}\n{'loss': 3.3223, 'grad_norm': 0.45118412375450134, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 566231040}\n{'loss': 3.3041, 'grad_norm': 0.5617747902870178, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 567279616}\n{'loss': 3.3436, 'grad_norm': 0.5154598355293274, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 568328192}\n{'loss': 3.3739, 'grad_norm': 0.4647876024246216, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 569376768}\n{'loss': 3.3366, 'grad_norm': 0.3766598701477051, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 570425344}\n{'loss': 3.3098, 'grad_norm': 0.40857356786727905, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 571473920}\n{'loss': 3.0331, 'grad_norm': 0.4163903594017029, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 572522496}\n{'loss': 3.3184, 'grad_norm': 0.38519713282585144, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 573571072}\n{'loss': 3.3886, 'grad_norm': 0.38155344128608704, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 574619648}\n{'loss': 3.2855, 'grad_norm': 0.3684964179992676, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 575668224}\n{'loss': 3.0484, 'grad_norm': 0.3504279553890228, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 576716800}\n{'loss': 3.2702, 'grad_norm': 0.42653048038482666, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 577765376}\n{'loss': 3.312, 'grad_norm': 0.4263192415237427, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 578813952}\n{'loss': 3.3355, 'grad_norm': 0.4272316098213196, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 579862528}\n{'loss': 3.2806, 'grad_norm': 0.40996676683425903, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 580911104}\n{'loss': 3.2504, 'grad_norm': 0.403242826461792, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 581959680}\n{'loss': 3.2924, 'grad_norm': 0.46690869331359863, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 583008256}\n{'loss': 3.1466, 'grad_norm': 0.515250027179718, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 584056832}\n{'loss': 3.2898, 'grad_norm': 0.4872475266456604, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 585105408}\n{'loss': 3.3699, 'grad_norm': 0.43510228395462036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 586153984}\n{'loss': 3.1568, 'grad_norm': 0.4732394814491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 587202560}\n{'loss': 3.2145, 'grad_norm': 0.49767330288887024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 588251136}\n{'loss': 3.2966, 'grad_norm': 0.4968816936016083, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 589299712}\n{'loss': 3.2249, 'grad_norm': 0.4123048782348633, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 590348288}\n{'loss': 3.3819, 'grad_norm': 0.4349605143070221, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 591396864}\n{'loss': 3.3477, 'grad_norm': 0.47485488653182983, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 592445440}\n{'loss': 3.3202, 'grad_norm': 0.46784669160842896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 593494016}\n{'loss': 3.2231, 'grad_norm': 0.42318931221961975, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 594542592}\n{'loss': 3.2901, 'grad_norm': 0.40393564105033875, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 595591168}\n{'loss': 3.2065, 'grad_norm': 0.4144214391708374, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 596639744}\n{'loss': 2.8698, 'grad_norm': 0.40921372175216675, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 597688320}\n{'loss': 3.2242, 'grad_norm': 0.35226207971572876, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 598736896}\n{'loss': 3.2125, 'grad_norm': 0.43364742398262024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 599785472}\n{'loss': 3.2296, 'grad_norm': 0.4272080361843109, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 600834048}\n{'loss': 2.9346, 'grad_norm': 0.4155097007751465, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 601882624}\n{'loss': 3.2706, 'grad_norm': 0.4263918697834015, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 602931200}\n{'loss': 3.3124, 'grad_norm': 0.43336594104766846, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'eval_loss': 3.1686322689056396, 'eval_runtime': 664.0006, 'eval_samples_per_second': 24.675, 'eval_steps_per_second': 0.193, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'loss': 3.349, 'grad_norm': 0.4504219889640808, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 605028352}\n{'loss': 3.3015, 'grad_norm': 0.5899333953857422, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 606076928}\n{'loss': 3.2036, 'grad_norm': 0.5814825892448425, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 607125504}\n{'loss': 3.2786, 'grad_norm': 0.3971703350543976, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 608174080}\n{'loss': 3.0979, 'grad_norm': 0.5669280290603638, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 609222656}\n{'loss': 3.0683, 'grad_norm': 0.4786263406276703, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 610271232}\n{'loss': 3.1731, 'grad_norm': 0.46415817737579346, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 611319808}\n{'loss': 3.2282, 'grad_norm': 0.4295870363712311, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 612368384}\n{'loss': 3.2196, 'grad_norm': 0.4184265732765198, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 613416960}\n{'loss': 3.2445, 'grad_norm': 0.4624122381210327, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 614465536}\n{'loss': 3.1135, 'grad_norm': 0.3681364059448242, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 615514112}\n{'loss': 3.1877, 'grad_norm': 0.3612712621688843, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 616562688}\n{'loss': 3.308, 'grad_norm': 0.34696292877197266, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 617611264}\n{'loss': 3.4995, 'grad_norm': 0.5025363564491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 618659840}\n{'loss': 3.1853, 'grad_norm': 0.6652331352233887, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 619708416}\n{'loss': 3.1844, 'grad_norm': 0.7156277894973755, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 620756992}\n{'loss': 3.2325, 'grad_norm': 0.5241081118583679, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 621805568}\n{'loss': 2.972, 'grad_norm': 0.5001779198646545, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 622854144}\n{'loss': 3.1742, 'grad_norm': 0.4062795341014862, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 623902720}\n{'loss': 3.2539, 'grad_norm': 0.4671201705932617, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 624951296}\n{'loss': 3.1948, 'grad_norm': 0.3894169330596924, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 625999872}\n{'loss': 3.2469, 'grad_norm': 0.4665684998035431, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 627048448}\n{'loss': 3.2742, 'grad_norm': 0.43211206793785095, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 628097024}\n{'loss': 3.1195, 'grad_norm': 0.4476025700569153, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 629145600}\n{'loss': 3.2127, 'grad_norm': 0.3596750795841217, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 630194176}\n{'loss': 3.1741, 'grad_norm': 0.40869519114494324, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 631242752}\n{'loss': 3.1708, 'grad_norm': 0.36658936738967896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 632291328}\n{'loss': 3.0925, 'grad_norm': 0.35227081179618835, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 633339904}\n{'loss': 3.171, 'grad_norm': 0.3942136764526367, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 634388480}\n{'loss': 3.1729, 'grad_norm': 0.3163004219532013, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 635437056}\n{'loss': 3.1683, 'grad_norm': 0.35835322737693787, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 636485632}\n{'loss': 3.1118, 'grad_norm': 0.3395129144191742, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 637534208}\n{'loss': 3.2123, 'grad_norm': 0.38003110885620117, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 638582784}\n{'loss': 3.167, 'grad_norm': 0.4000258445739746, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 639631360}\n{'loss': 3.0668, 'grad_norm': 0.38393035531044006, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 640679936}\n{'loss': 2.9125, 'grad_norm': 0.38961607217788696, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 641728512}\n{'loss': 3.1024, 'grad_norm': 0.3406165540218353, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 642777088}\n{'loss': 3.1262, 'grad_norm': 0.4859096109867096, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 643825664}\n{'loss': 3.1155, 'grad_norm': 0.5454179048538208, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 644874240}\n{'loss': 3.1594, 'grad_norm': 0.46631914377212524, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 645922816}\n{'loss': 3.1164, 'grad_norm': 0.4049534797668457, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 646971392}\n{'loss': 2.9272, 'grad_norm': 0.32954707741737366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 648019968}\n{'loss': 3.0888, 'grad_norm': 0.409853458404541, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 649068544}\n{'loss': 3.2185, 'grad_norm': 0.43080267310142517, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 650117120}\n{'loss': 3.1871, 'grad_norm': 0.4323279857635498, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 651165696}\n{'loss': 2.9759, 'grad_norm': 0.3696155846118927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 652214272}\n{'loss': 3.1058, 'grad_norm': 0.3963398337364197, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 653262848}\n{'loss': 3.1214, 'grad_norm': 0.4020082652568817, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 654311424}\n{'loss': 3.0678, 'grad_norm': 0.4210987091064453, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 655360000}\n{'loss': 2.9177, 'grad_norm': 0.44535601139068604, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 656408576}\n{'loss': 3.1005, 'grad_norm': 0.363700807094574, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 657457152}\n{'loss': 3.0285, 'grad_norm': 0.393673837184906, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 658505728}\n{'loss': 3.031, 'grad_norm': 0.3472498059272766, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 659554304}\n{'loss': 3.1837, 'grad_norm': 0.45663976669311523, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 660602880}\n{'loss': 3.1636, 'grad_norm': 0.44765880703926086, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 661651456}\n{'loss': 3.0421, 'grad_norm': 0.5289708375930786, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 662700032}\n{'loss': 2.9394, 'grad_norm': 0.5272406339645386, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 663748608}\n{'loss': 3.2419, 'grad_norm': 0.5471237301826477, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 664797184}\n{'loss': 3.1506, 'grad_norm': 0.5762659311294556, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 665845760}\n{'loss': 3.1258, 'grad_norm': 0.5486758351325989, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 666894336}\n{'loss': 3.1686, 'grad_norm': 0.4877275228500366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 667942912}\n{'loss': 3.1062, 'grad_norm': 0.35992035269737244, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 668991488}\n{'loss': 3.1655, 'grad_norm': 0.39184319972991943, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 670040064}\n{'loss': 3.1455, 'grad_norm': 0.46003854274749756, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'eval_loss': 3.036459445953369, 'eval_runtime': 676.6057, 'eval_samples_per_second': 24.215, 'eval_steps_per_second': 0.189, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'loss': 3.1058, 'grad_norm': 0.45958808064460754, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 672137216}\n{'loss': 3.0861, 'grad_norm': 0.41562288999557495, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 673185792}\n{'loss': 3.1135, 'grad_norm': 0.38576263189315796, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 674234368}\n{'loss': 2.9998, 'grad_norm': 0.3936232924461365, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 675282944}\n{'loss': 3.1349, 'grad_norm': 0.3888678252696991, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 676331520}\n{'loss': 2.9192, 'grad_norm': 0.31759846210479736, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 677380096}\n{'loss': 3.1324, 'grad_norm': 0.3801535964012146, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 678428672}\n{'loss': 3.1064, 'grad_norm': 0.36299699544906616, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 679477248}\n{'loss': 3.2258, 'grad_norm': 0.36732324957847595, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 680525824}\n{'loss': 3.2162, 'grad_norm': 0.42108356952667236, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 681574400}\n{'loss': 3.2189, 'grad_norm': 0.4113474190235138, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 682622976}\n{'loss': 3.0585, 'grad_norm': 0.39936116337776184, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 683671552}\n{'loss': 3.0693, 'grad_norm': 0.35424771904945374, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 684720128}\n{'loss': 3.1134, 'grad_norm': 0.3333597183227539, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 685768704}\n{'loss': 3.0536, 'grad_norm': 0.37569180130958557, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 686817280}\n{'loss': 3.1396, 'grad_norm': 0.33836638927459717, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 687865856}\n{'loss': 3.1353, 'grad_norm': 0.31407052278518677, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 688914432}\n{'loss': 2.9977, 'grad_norm': 0.34316036105155945, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 689963008}\n{'loss': 3.1683, 'grad_norm': 0.3779186010360718, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 691011584}\n{'loss': 2.9567, 'grad_norm': 0.3414095342159271, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 692060160}\n{'loss': 3.0806, 'grad_norm': 0.31614938378334045, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 693108736}\n{'loss': 3.0975, 'grad_norm': 0.35552725195884705, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 694157312}\n{'loss': 3.0241, 'grad_norm': 0.38724133372306824, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 695205888}\n{'loss': 3.0701, 'grad_norm': 0.3581823408603668, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 696254464}\n{'loss': 3.0222, 'grad_norm': 0.3632317781448364, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 697303040}\n{'loss': 3.0188, 'grad_norm': 0.40560677647590637, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 698351616}\n{'loss': 3.106, 'grad_norm': 0.3953804075717926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 699400192}\n{'loss': 3.1552, 'grad_norm': 0.40652376413345337, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 700448768}\n{'loss': 2.8893, 'grad_norm': 0.3625616133213043, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 701497344}\n{'loss': 2.9183, 'grad_norm': 0.3450768291950226, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 702545920}\n{'loss': 2.9828, 'grad_norm': 0.36742398142814636, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 703594496}\n{'loss': 3.0327, 'grad_norm': 0.3611394762992859, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 704643072}\n{'loss': 3.1466, 'grad_norm': 0.3593210279941559, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 705691648}\n{'loss': 3.0163, 'grad_norm': 0.3994838297367096, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 706740224}\n{'loss': 3.0563, 'grad_norm': 0.41202738881111145, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 707788800}\n{'loss': 3.0912, 'grad_norm': 0.3404449224472046, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 708837376}\n{'loss': 3.0108, 'grad_norm': 0.3745224177837372, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 709885952}\n{'loss': 3.0864, 'grad_norm': 0.4320204555988312, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 710934528}\n{'loss': 3.0387, 'grad_norm': 0.34649956226348877, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 711983104}\n{'loss': 3.013, 'grad_norm': 0.34744057059288025, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 713031680}\n{'loss': 3.0985, 'grad_norm': 0.3638330101966858, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 714080256}\n{'loss': 3.1498, 'grad_norm': 0.43823716044425964, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 715128832}\n{'loss': 3.0366, 'grad_norm': 0.6364668011665344, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 716177408}\n{'loss': 2.9614, 'grad_norm': 0.6294976472854614, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 717225984}\n{'loss': 3.0619, 'grad_norm': 0.5871465802192688, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 718274560}\n{'loss': 3.1489, 'grad_norm': 0.7779986262321472, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 719323136}\n{'loss': 3.1331, 'grad_norm': 1.102079153060913, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 720371712}\n{'loss': 3.1423, 'grad_norm': 0.6352481245994568, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 721420288}\n{'loss': 3.1509, 'grad_norm': 0.5698557496070862, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 722468864}\n{'loss': 2.6683, 'grad_norm': 0.501290500164032, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 723517440}\n{'loss': 3.0334, 'grad_norm': 0.4512772560119629, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 724566016}\n{'loss': 3.0485, 'grad_norm': 0.4409146308898926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 725614592}\n{'loss': 3.0154, 'grad_norm': 0.3902524411678314, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 726663168}\n{'loss': 3.0742, 'grad_norm': 0.3692473769187927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 727711744}\n{'loss': 2.8306, 'grad_norm': 0.385005384683609, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 728760320}\n{'loss': 2.9258, 'grad_norm': 0.37514418363571167, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 729808896}\n{'loss': 3.0061, 'grad_norm': 0.42038342356681824, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 730857472}\n{'loss': 3.0588, 'grad_norm': 0.40415653586387634, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 731906048}\n{'loss': 2.9542, 'grad_norm': 0.38514354825019836, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 732954624}\n{'loss': 2.9252, 'grad_norm': 0.3861909806728363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 734003200}\n{'loss': 2.8432, 'grad_norm': 0.40519189834594727, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 735051776}\n{'loss': 2.9779, 'grad_norm': 0.37011685967445374, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 736100352}\n{'loss': 2.9908, 'grad_norm': 0.34850460290908813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 737148928}\n{'loss': 2.9589, 'grad_norm': 0.371500700712204, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n[2025-03-11 00:58:41 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n[2025-03-11 00:58:41 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 01:05:12 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n[2025-03-11 01:05:12 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.9496541023254395, 'eval_runtime': 714.5105, 'eval_samples_per_second': 22.93, 'eval_steps_per_second': 0.179, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n{'loss': 2.9029, 'grad_norm': 0.3044391870498657, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 739246080}\n{'loss': 2.8536, 'grad_norm': 0.34875407814979553, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 740294656}\n{'loss': 2.8478, 'grad_norm': 0.4568244516849518, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 741343232}\n{'loss': 3.1164, 'grad_norm': 0.44005003571510315, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 742391808}\n{'loss': 2.8584, 'grad_norm': 0.39490336179733276, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 743440384}\n{'loss': 3.0681, 'grad_norm': 0.4427798092365265, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 744488960}\n{'loss': 3.0315, 'grad_norm': 0.4771106243133545, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 745537536}\n{'loss': 2.8794, 'grad_norm': 0.4624035656452179, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 746586112}\n{'loss': 2.9624, 'grad_norm': 0.4244724214076996, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 747634688}\n{'loss': 2.9925, 'grad_norm': 0.39176708459854126, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 748683264}\n{'loss': 2.9753, 'grad_norm': 0.43686383962631226, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 749731840}\n{'loss': 3.0718, 'grad_norm': 0.4536241590976715, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 750780416}\n{'loss': 3.0065, 'grad_norm': 0.3421417772769928, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 751828992}\n{'loss': 2.8965, 'grad_norm': 0.30937010049819946, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 752877568}\n{'loss': 3.0347, 'grad_norm': 0.33371758460998535, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 753926144}\n{'loss': 3.0133, 'grad_norm': 0.3285418450832367, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 754974720}\n{'loss': 3.1219, 'grad_norm': 0.33177846670150757, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 756023296}\n{'loss': 2.9354, 'grad_norm': 0.36487525701522827, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 757071872}\n{'loss': 3.133, 'grad_norm': 0.35576146841049194, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 758120448}\n{'loss': 2.9771, 'grad_norm': 0.4217855930328369, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 759169024}\n{'loss': 2.9906, 'grad_norm': 0.4007001519203186, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 760217600}\n{'loss': 3.0219, 'grad_norm': 0.36323100328445435, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 761266176}\n{'loss': 2.89, 'grad_norm': 0.323297381401062, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 762314752}\n{'loss': 2.8566, 'grad_norm': 0.3450233042240143, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 763363328}\n{'loss': 3.0536, 'grad_norm': 0.36228489875793457, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 764411904}\n{'loss': 2.9259, 'grad_norm': 0.3553276062011719, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 765460480}\n{'loss': 2.8431, 'grad_norm': 0.37074941396713257, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 766509056}\n{'loss': 3.0549, 'grad_norm': 0.4105451703071594, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 767557632}\n{'loss': 2.8431, 'grad_norm': 0.4433744549751282, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 768606208}\n{'loss': 2.9545, 'grad_norm': 0.4024113416671753, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 769654784}\n{'loss': 2.9237, 'grad_norm': 0.3534025549888611, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 770703360}\n{'loss': 2.9306, 'grad_norm': 0.3788505792617798, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 771751936}\n{'loss': 2.9218, 'grad_norm': 0.3302527666091919, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 772800512}\n{'loss': 3.0647, 'grad_norm': 0.36651748418807983, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 773849088}\n{'loss': 3.0289, 'grad_norm': 0.35838624835014343, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 774897664}\n{'loss': 2.9157, 'grad_norm': 0.34652525186538696, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 775946240}\n{'loss': 2.9358, 'grad_norm': 0.37369009852409363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 776994816}\n{'loss': 3.0725, 'grad_norm': 0.37748783826828003, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 778043392}\n{'loss': 2.8444, 'grad_norm': 0.339287132024765, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 779091968}\n{'loss': 2.859, 'grad_norm': 0.3415367305278778, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 780140544}\n{'loss': 2.9334, 'grad_norm': 0.3661401569843292, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 781189120}\n{'loss': 3.0287, 'grad_norm': 0.3512025773525238, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 782237696}\n{'loss': 2.8093, 'grad_norm': 0.3412944972515106, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 783286272}\n{'loss': 2.9112, 'grad_norm': 0.35280412435531616, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 784334848}\n{'loss': 2.8939, 'grad_norm': 0.3652521073818207, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 785383424}\n{'loss': 2.961, 'grad_norm': 0.3336659371852875, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 786432000}\n{'loss': 2.9547, 'grad_norm': 0.3242711126804352, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 787480576}\n{'loss': 2.8035, 'grad_norm': 0.3276830017566681, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 788529152}\n{'loss': 2.9639, 'grad_norm': 0.32558611035346985, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 789577728}\n{'loss': 2.9981, 'grad_norm': 0.32141759991645813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 790626304}\n{'loss': 2.8053, 'grad_norm': 0.33697575330734253, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 791674880}\n{'loss': 2.9265, 'grad_norm': 0.3305177092552185, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 792723456}\n{'loss': 2.9357, 'grad_norm': 0.3303467035293579, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 793772032}\n{'loss': 2.9209, 'grad_norm': 0.33826348185539246, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 794820608}\n{'loss': 3.0134, 'grad_norm': 0.3682444393634796, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 795869184}\n{'loss': 2.8786, 'grad_norm': 0.364545613527298, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 796917760}\n{'loss': 3.0202, 'grad_norm': 0.4031524360179901, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 797966336}\n{'loss': 2.4912, 'grad_norm': 0.40752920508384705, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 799014912}\n{'loss': 2.9311, 'grad_norm': 0.36912065744400024, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 800063488}\n{'loss': 2.8768, 'grad_norm': 0.3906254172325134, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 801112064}\n{'loss': 2.8677, 'grad_norm': 0.3680756092071533, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 802160640}\n{'loss': 2.967, 'grad_norm': 0.42479801177978516, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 803209216}\n{'loss': 3.0138, 'grad_norm': 0.4966808259487152, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 804257792}\n{'loss': 2.9186, 'grad_norm': 0.413562536239624, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'eval_loss': 2.8718671798706055, 'eval_runtime': 1149.5487, 'eval_samples_per_second': 14.253, 'eval_steps_per_second': 0.111, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'loss': 2.8717, 'grad_norm': 0.3343268632888794, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 806354944}\n{'loss': 3.0123, 'grad_norm': 0.42326104640960693, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 807403520}\n{'loss': 2.9691, 'grad_norm': 0.35408785939216614, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 808452096}\n{'loss': 2.8862, 'grad_norm': 0.35168665647506714, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 809500672}\n{'loss': 2.9754, 'grad_norm': 0.3385300934314728, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 810549248}\n{'loss': 2.751, 'grad_norm': 0.36974239349365234, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 811597824}\n{'loss': 2.8481, 'grad_norm': 0.3535187244415283, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 812646400}\n{'loss': 2.9605, 'grad_norm': 0.39851564168930054, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 813694976}\n{'loss': 2.9251, 'grad_norm': 0.35983574390411377, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 814743552}\n{'loss': 2.8766, 'grad_norm': 0.34153202176094055, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 815792128}\n{'loss': 2.9205, 'grad_norm': 0.3700859546661377, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 816840704}\n{'loss': 2.7621, 'grad_norm': 0.3954067528247833, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 817889280}\n{'loss': 2.886, 'grad_norm': 0.4191531538963318, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 818937856}\n{'loss': 2.9203, 'grad_norm': 0.3315434157848358, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 819986432}\n{'loss': 2.9563, 'grad_norm': 0.3308311700820923, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 821035008}\n{'loss': 2.9391, 'grad_norm': 0.3073643445968628, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 822083584}\n{'loss': 2.7197, 'grad_norm': 0.3343094289302826, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 823132160}\n{'loss': 2.909, 'grad_norm': 0.31464704871177673, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 824180736}\n{'loss': 2.8581, 'grad_norm': 0.40213140845298767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 825229312}\n{'loss': 2.9224, 'grad_norm': 0.36158621311187744, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 826277888}\n{'loss': 2.985, 'grad_norm': 0.3831183910369873, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 827326464}\n{'loss': 2.8964, 'grad_norm': 0.3219353258609772, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 828375040}\n{'loss': 3.0832, 'grad_norm': 0.31743234395980835, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 829423616}\n{'loss': 2.9602, 'grad_norm': 0.3629371225833893, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 830472192}\n{'loss': 2.8327, 'grad_norm': 0.3800980746746063, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 831520768}\n{'loss': 2.8298, 'grad_norm': 0.3349006772041321, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 832569344}\n{'loss': 2.9633, 'grad_norm': 0.3282972276210785, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 833617920}\n{'loss': 2.9234, 'grad_norm': 0.3283899128437042, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 834666496}\n{'loss': 2.9754, 'grad_norm': 0.33885031938552856, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 835715072}\n{'loss': 2.8825, 'grad_norm': 0.3113347589969635, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 836763648}\n{'loss': 2.9483, 'grad_norm': 0.3759271204471588, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 837812224}\n{'loss': 2.8577, 'grad_norm': 0.38608986139297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 838860800}\n{'loss': 2.6639, 'grad_norm': 0.3253604471683502, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 839909376}\n{'loss': 2.8295, 'grad_norm': 0.31234994530677795, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 840957952}\n{'loss': 2.9323, 'grad_norm': 0.37187162041664124, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 842006528}\n{'loss': 3.2357, 'grad_norm': 0.5417175889015198, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 843055104}\n{'loss': 2.8982, 'grad_norm': 0.6133915781974792, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 844103680}\n{'loss': 2.928, 'grad_norm': 0.7637872099876404, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 845152256}\n{'loss': 2.9283, 'grad_norm': 0.7322977781295776, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 846200832}\n{'loss': 2.8209, 'grad_norm': 0.5112255215644836, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 847249408}\n{'loss': 2.8696, 'grad_norm': 0.49990609288215637, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 848297984}\n{'loss': 2.9193, 'grad_norm': 0.4511178135871887, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 849346560}\n{'loss': 2.9658, 'grad_norm': 0.4653412997722626, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 850395136}\n{'loss': 2.889, 'grad_norm': 0.3913695812225342, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 851443712}\n{'loss': 2.9534, 'grad_norm': 0.39285045862197876, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 852492288}\n{'loss': 2.8341, 'grad_norm': 0.5052099227905273, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 853540864}\n{'loss': 3.0436, 'grad_norm': 0.5978823900222778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 854589440}\n{'loss': 2.9484, 'grad_norm': 0.4584784507751465, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 855638016}\n{'loss': 2.8786, 'grad_norm': 0.40823692083358765, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 856686592}\n{'loss': 2.942, 'grad_norm': 0.4448293447494507, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 857735168}\n{'loss': 2.9347, 'grad_norm': 0.4112764596939087, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 858783744}\n{'loss': 2.8359, 'grad_norm': 0.3826068341732025, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 859832320}\n{'loss': 2.9277, 'grad_norm': 0.37165558338165283, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 860880896}\n{'loss': 2.6527, 'grad_norm': 0.4285834729671478, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 861929472}\n{'loss': 2.8451, 'grad_norm': 0.36497727036476135, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 862978048}\n{'loss': 2.9039, 'grad_norm': 0.35966625809669495, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 864026624}\n{'loss': 2.9268, 'grad_norm': 0.3529391586780548, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 865075200}\n{'loss': 2.9953, 'grad_norm': 0.3455546498298645, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 866123776}\n{'loss': 2.9307, 'grad_norm': 0.3788530230522156, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 867172352}\n{'loss': 2.9448, 'grad_norm': 0.35837656259536743, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 868220928}\n{'loss': 2.9937, 'grad_norm': 0.3842633366584778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 869269504}\n{'loss': 2.8324, 'grad_norm': 0.32774215936660767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 870318080}\n{'loss': 2.8613, 'grad_norm': 0.327158659696579, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 871366656}\n{'loss': 2.7653, 'grad_norm': 0.3515920639038086, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n[2025-03-11 02:50:38 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n[2025-03-11 02:50:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 02:58:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n[2025-03-11 02:58:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:00:11 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n[2025-03-11 03:00:11 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:01:14 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n[2025-03-11 03:01:14 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.816462278366089, 'eval_runtime': 954.8041, 'eval_samples_per_second': 17.16, 'eval_steps_per_second': 0.134, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n{'loss': 2.867, 'grad_norm': 0.3173666000366211, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 873463808}\n{'loss': 2.8701, 'grad_norm': 0.3399354815483093, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 874512384}\n{'loss': 2.8575, 'grad_norm': 0.36704689264297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 875560960}\n{'loss': 2.9582, 'grad_norm': 0.33231136202812195, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 876609536}\n{'loss': 2.7719, 'grad_norm': 0.34316956996917725, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 877658112}\n{'loss': 2.8915, 'grad_norm': 0.3483976423740387, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 878706688}\n{'loss': 2.7566, 'grad_norm': 0.3104913532733917, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 879755264}\n{'loss': 3.0013, 'grad_norm': 0.38844239711761475, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 880803840}\n{'loss': 2.5568, 'grad_norm': 0.40875244140625, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 881852416}\n{'loss': 2.8336, 'grad_norm': 0.3538399934768677, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 882900992}\n{'loss': 2.9391, 'grad_norm': 0.3494492471218109, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 883949568}\n{'loss': 2.8535, 'grad_norm': 0.3472343981266022, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 884998144}\n{'loss': 2.9836, 'grad_norm': 0.34867390990257263, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 886046720}\n{'loss': 2.8416, 'grad_norm': 0.3527415096759796, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 887095296}\n{'loss': 2.8756, 'grad_norm': 0.3338777422904968, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 888143872}\n{'loss': 2.8428, 'grad_norm': 0.3345812261104584, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 889192448}\n{'loss': 2.8977, 'grad_norm': 0.31487980484962463, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 890241024}\n{'loss': 2.9543, 'grad_norm': 0.3655254542827606, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 891289600}\n{'loss': 2.9423, 'grad_norm': 0.33075806498527527, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 892338176}\n{'loss': 2.9001, 'grad_norm': 0.34644609689712524, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 893386752}\n{'loss': 2.9029, 'grad_norm': 0.39070528745651245, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 894435328}\n{'loss': 2.9101, 'grad_norm': 0.39556533098220825, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 895483904}\n{'loss': 2.8119, 'grad_norm': 0.39002978801727295, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 896532480}\n{'loss': 3.0102, 'grad_norm': 0.37797507643699646, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 897581056}\n{'loss': 2.666, 'grad_norm': 0.4306756258010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 898629632}\n{'loss': 2.9257, 'grad_norm': 0.4526049494743347, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 899678208}\n{'loss': 2.8196, 'grad_norm': 0.3978416621685028, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 900726784}\n{'loss': 2.9057, 'grad_norm': 0.3925896883010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 901775360}\n{'loss': 3.0017, 'grad_norm': 0.45828214287757874, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 902823936}\n{'loss': 2.89, 'grad_norm': 0.4745008647441864, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 903872512}\n{'loss': 2.7335, 'grad_norm': 0.4270082116127014, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 904921088}\n{'loss': 2.8234, 'grad_norm': 0.38832950592041016, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 905969664}\n{'loss': 2.8618, 'grad_norm': 0.3907729387283325, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 907018240}\n{'loss': 2.8703, 'grad_norm': 0.368655264377594, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 908066816}\n{'loss': 2.8321, 'grad_norm': 0.41538506746292114, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 909115392}\n{'loss': 2.886, 'grad_norm': 0.41877180337905884, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 910163968}\n{'loss': 2.6224, 'grad_norm': 0.33238673210144043, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 911212544}\n{'loss': 2.8617, 'grad_norm': 0.4095931351184845, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 912261120}\n{'loss': 2.8172, 'grad_norm': 0.41708603501319885, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 913309696}\n{'loss': 2.7658, 'grad_norm': 0.37449270486831665, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 914358272}\n{'loss': 2.9042, 'grad_norm': 0.3935737609863281, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 915406848}\n{'loss': 2.7612, 'grad_norm': 0.3586251735687256, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 916455424}\n{'loss': 2.8785, 'grad_norm': 0.3712047338485718, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 917504000}\n{'loss': 2.739, 'grad_norm': 0.37707045674324036, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 918552576}\n{'loss': 2.8372, 'grad_norm': 0.3432702422142029, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 919601152}\n{'loss': 2.5638, 'grad_norm': 0.3493041396141052, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 920649728}\n{'loss': 2.8759, 'grad_norm': 0.3401539623737335, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 921698304}\n{'loss': 3.0048, 'grad_norm': 0.4632040858268738, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 922746880}\n{'loss': 2.9394, 'grad_norm': 0.4968065023422241, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 923795456}\n{'loss': 2.8441, 'grad_norm': 0.5426673889160156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 924844032}\n{'loss': 2.9975, 'grad_norm': 0.4630672037601471, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 925892608}\n{'loss': 2.9584, 'grad_norm': 0.38806748390197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 926941184}\n{'loss': 2.8904, 'grad_norm': 0.39797642827033997, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 927989760}\n{'loss': 2.5774, 'grad_norm': 0.4063512980937958, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 929038336}\n{'loss': 2.812, 'grad_norm': 0.3161136209964752, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 930086912}\n{'loss': 2.7483, 'grad_norm': 0.3628361225128174, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 931135488}\n{'loss': 2.7916, 'grad_norm': 0.37376269698143005, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 932184064}\n{'loss': 2.7985, 'grad_norm': 0.3399117887020111, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 933232640}\n{'loss': 2.7107, 'grad_norm': 0.3453179597854614, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 934281216}\n{'loss': 2.9254, 'grad_norm': 0.39461833238601685, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 935329792}\n{'loss': 2.8487, 'grad_norm': 0.3668413460254669, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 936378368}\n{'loss': 2.7928, 'grad_norm': 0.28304487466812134, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 937426944}\n{'loss': 2.8503, 'grad_norm': 0.35816267132759094, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 938475520}\n{'loss': 3.0328, 'grad_norm': 0.3540339469909668, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n[2025-03-11 03:46:08 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n[2025-03-11 03:46:08 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:53:27 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n[2025-03-11 03:53:27 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.7651162147521973, 'eval_runtime': 687.962, 'eval_samples_per_second': 23.815, 'eval_steps_per_second': 0.186, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n{'loss': 2.9368, 'grad_norm': 0.34962671995162964, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 940572672}\n{'loss': 2.3627, 'grad_norm': 0.37516310811042786, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 941621248}\n{'loss': 2.8854, 'grad_norm': 0.3487492501735687, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 942669824}\n{'loss': 2.7892, 'grad_norm': 0.37180987000465393, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 943718400}\n{'loss': 2.8067, 'grad_norm': 0.3387952744960785, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 944766976}\n{'loss': 2.841, 'grad_norm': 0.32076528668403625, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 945815552}\n{'loss': 2.7965, 'grad_norm': 0.3348572552204132, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 946864128}\n{'loss': 2.6788, 'grad_norm': 0.3531329929828644, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 947912704}\n{'loss': 2.7276, 'grad_norm': 0.300353467464447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 948961280}\n{'loss': 2.8189, 'grad_norm': 0.3258875012397766, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 950009856}\n{'loss': 2.8388, 'grad_norm': 0.3434987962245941, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 951058432}\n{'loss': 2.856, 'grad_norm': 0.33045029640197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 952107008}\n{'loss': 2.658, 'grad_norm': 0.34896957874298096, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 953155584}\n{'loss': 2.8484, 'grad_norm': 0.3819083273410797, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 954204160}\n{'loss': 2.8402, 'grad_norm': 0.39541998505592346, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 955252736}\n{'loss': 2.8281, 'grad_norm': 0.3843367397785187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 956301312}\n{'loss': 2.8339, 'grad_norm': 0.4067714214324951, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 957349888}\n{'loss': 2.8693, 'grad_norm': 0.3071018159389496, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 958398464}\n{'loss': 2.6747, 'grad_norm': 0.3676702380180359, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 959447040}\n{'loss': 2.6961, 'grad_norm': 0.357799232006073, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 960495616}\n{'loss': 2.7944, 'grad_norm': 0.318391352891922, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 961544192}\n{'loss': 2.8084, 'grad_norm': 0.32000190019607544, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 962592768}\n{'loss': 2.8024, 'grad_norm': 0.3250137269496918, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 963641344}\n{'loss': 2.7951, 'grad_norm': 0.33021438121795654, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 964689920}\n{'loss': 2.8069, 'grad_norm': 0.3257495164871216, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 965738496}\n{'loss': 2.8148, 'grad_norm': 0.3608018159866333, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 966787072}\n[2025-03-11 04:13:12 WARNING] '(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n[2025-03-11 04:13:12 WARNING] Retrying in 1s [Retry 1/5].\n{'loss': 2.8089, 'grad_norm': 0.3657573163509369, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 967835648}\n{'loss': 2.8243, 'grad_norm': 0.3791966736316681, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 968884224}\n{'loss': 2.6837, 'grad_norm': 0.4036826193332672, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 969932800}\n{'loss': 2.6694, 'grad_norm': 0.34643635153770447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 970981376}\n{'loss': 2.8455, 'grad_norm': 0.35321497917175293, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 972029952}\n{'loss': 2.5156, 'grad_norm': 0.3488744795322418, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 973078528}\n{'loss': 2.7185, 'grad_norm': 0.33396172523498535, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 974127104}\n{'loss': 2.856, 'grad_norm': 0.36425134539604187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 975175680}\n{'loss': 2.7639, 'grad_norm': 0.34361588954925537, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 976224256}\n{'loss': 2.7777, 'grad_norm': 0.45501893758773804, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 977272832}\n{'loss': 2.8692, 'grad_norm': 0.4391760230064392, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 978321408}\n{'loss': 2.7885, 'grad_norm': 0.385729044675827, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 979369984}\n{'loss': 2.8622, 'grad_norm': 0.4122815728187561, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 980418560}\n{'loss': 2.674, 'grad_norm': 0.3223947584629059, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 981467136}\n{'loss': 2.7148, 'grad_norm': 0.39820024371147156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 982515712}\n{'loss': 2.6975, 'grad_norm': 0.38311144709587097, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 983564288}\n{'loss': 2.8515, 'grad_norm': 0.4324709177017212, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 984612864}\n{'loss': 2.5684, 'grad_norm': 0.3579341471195221, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 985661440}\n{'loss': 2.9478, 'grad_norm': 0.4081536531448364, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 986710016}\n{'loss': 2.7375, 'grad_norm': 0.4332145154476166, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 987758592}\n{'loss': 2.7773, 'grad_norm': 0.43510711193084717, 'learning_rate': 0.001, 'epoch': 0.12, 'num_input_tokens_seen': 988807168}\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1378, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\n\n</details>", "Two more today:\n```python\nFileNotFoundError: zstd://example_holdout_5012.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5012.jsonl.zst\n```\nand\n```python\nFileNotFoundError: zstd://example_holdout_3073.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk2/example_holdout_3073.jsonl.zst\n```\nboth of which exist on the hub ([here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk4/example_holdout_5012.jsonl.zst) and [here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk2/example_holdout_3073.jsonl.zst)).", "I also observe the same thing when using streaming with DCLM dataset with 64 GPUs. I have tried ```export HF_DATASETS_STREAMING_PARALLELISM=1``` but doesn't help.", "Another error today, this time a 504 gateway timeout `HfHubHTTPError`. I have no idea if this is related, but I suspect that it is considering the setup is identical. Notably though, the two errors I posted yesterday were for evaluation (hence the `holdout` in the URLs) whereas today there was no problem doing that first evaluation, but now the `train` split failed.\n```python\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2226, in __iter__\n for key, example in ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1499, in __iter__\n for x in self.ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1067, in __iter__\n yield from self._iter()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1231, in _iter\n for key, transformed_example in iter_outputs():\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1207, in iter_outputs\n for i, key_example in inputs_iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1111, in iter_inputs\n for key, example in iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 371, in __iter__\n for key, pa_table in self.generate_tables_fn(**gen_kwags):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 114, in _generate_tables\n with open(file, \"rb\") as f:\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/streaming.py\", line 75, in wrapper\n return function(*args, download_config=download_config, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 948, in xopen\n file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/filesystems/compression.py\", line 85, in _open\n return self._open_with_fsspec().open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 234, in _open\n return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 691, in __init__\n self.details = fs.info(self.resolved_path.unresolve(), expand_info=False)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 524, in info\n self.ls(parent_path, expand_info=False)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 284, in ls\n out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 375, in _ls_tree\n for path_info in tree:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_api.py\", line 3080, in list_repo_tree\n for path_info in paginate(path=tree_url, headers=headers, params={\"recursive\": recursive, \"expand\": expand}):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_pagination.py\", line 46, in paginate\n hf_raise_for_status(r)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_http.py\", line 477, in hf_raise_for_status\n raise _format(HfHubHTTPError, str(e), response) from e\nhuggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train%2Fchunk8?recursive=False&expand=False&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBjbUZwYmk5amFIVnVhemd2WlhoaGJYQnNaVjkwY21GcGJsOHpOams0TG1wemIyNXNMbnB6ZENKOTozMDAw\n```" ]
2025-03-07T19:14:18
2025-03-13T15:00:47
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug In https://github.com/huggingface/datasets/issues/6843 it was noted that the streaming feature of `datasets` is highly susceptible to outages and doesn't back off for long (or even *at all*). I was training a model while streaming SlimPajama and training crashed with a `FileNotFoundError`. I can only assume that this was due to a momentary outage considering the file in question, `train/chunk9/example_train_3889.jsonl.zst`, [exists like all other files in SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/train/chunk9/example_train_3889.jsonl.zst). ```python ... File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 2226, in __iter__ for key, example in ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1499, in __iter__ for x in self.ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1067, in __iter__ yield from self._iter() File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1231, in _iter for key, transformed_example in iter_outputs(): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1207, in iter_outputs for i, key_example in inputs_iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1111, in iter_inputs for key, example in iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 371, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py", line 99, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py", line 50, in __iter__ for x in self.generator(*self.args): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py", line 1378, in _iter_from_urlpaths raise FileNotFoundError(urlpath) FileNotFoundError: zstd://example_train_3889.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_3889.jsonl.zst ``` That final `raise` is at the bottom of the following snippet: https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/utils/file_utils.py#L1354-L1379 So clearly, something choked up in `xisfile`. ### Steps to reproduce the bug This happens when streaming a dataset and iterating over it. In my case, that iteration is done in Trainer's `inner_training_loop`, but this is not relevant to the iterator. ```python File "/miniconda3/envs/draft/lib/python3.11/site-packages/accelerate/data_loader.py", line 835, in __iter__ next_batch, next_batch_info = self._fetch_batches(main_iterator) ``` ### Expected behavior This bug and the linked issue have one thing in common: *when streaming fails to retrieve an example, the entire program gives up and crashes*. As users, we cannot even protect ourselves from this: when we are iterating over a dataset, we can't make `datasets` skip over a bad example or wait a little longer to retry the iteration, because when a Python generator/iterator raises an error, it loses all its context. In other words: if you have something that looks like `for b in a: for c in b: for d in c:`, errors in the innermost loop can only be caught by a `try ... except` in `c.__iter__()`. There should be such exception handling in `datasets` and it should have a **configurable exponential back-off**: first wait and retry after 1 minute, then 2 minutes, then 4 minutes, then 8 minutes, ... and after a given amount of retries, **skip the bad example**, and **only after** skipping a given amount of examples, give up and crash. This was requested in https://github.com/huggingface/datasets/issues/6843 too, since currently there is only linear backoff *and* it is clearly not applied to `xisfile`. ### Environment info - `datasets` version: 3.3.2 *(the latest version)* - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.7 - `huggingface_hub` version: 0.26.5 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2024.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7440/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7440/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7433/comments
https://api.github.com/repos/huggingface/datasets/issues/7433/events
https://github.com/huggingface/datasets/issues/7433
2,890,240,400
I_kwDODunzps6sRZGQ
7,433
`Dataset.map` ignores existing caches and remaps when ran with different `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "This feels related: https://github.com/huggingface/datasets/issues/3044", "@lhoestq This comment specifically, I agree:\n\n* https://github.com/huggingface/datasets/issues/3044#issuecomment-1239877570\n\n> Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\n> \n> Is there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch.\n\n" ]
2025-03-03T05:51:26
2025-03-04T05:55:08
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug If you `map` a dataset and save it to a specific `cache_file_name` with a specific `num_proc`, and then call map again with that same existing `cache_file_name` but a different `num_proc`, the dataset will be re-mapped. ### Steps to reproduce the bug 1. Download a dataset ```python import datasets dataset = datasets.load_dataset("ylecun/mnist") ``` ``` Generating train split: 100%|██████████| 60000/60000 [00:00<00:00, 116429.85 examples/s] Generating test split: 100%|██████████| 10000/10000 [00:00<00:00, 103310.27 examples/s] ``` 2. `map` and cache it with a specific `num_proc` ```python cache_file_name="./cache/train.map" dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=2) ``` ``` Map (num_proc=2): 100%|██████████| 60000/60000 [00:01<00:00, 53764.03 examples/s] ``` 3. `map` it with a different `num_proc` and the same `cache_file_name` as before ```python dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=3) ``` ``` Map (num_proc=3): 100%|██████████| 60000/60000 [00:00<00:00, 65377.12 examples/s] ``` ### Expected behavior If I specify an existing `cache_file_name`, I don't expect using a different `num_proc` than the one that was used to generate it to cause the dataset to have be be re-mapped. ### Environment info ```console $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7433/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7433/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7431
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7431/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7431/comments
https://api.github.com/repos/huggingface/datasets/issues/7431/events
https://github.com/huggingface/datasets/issues/7431
2,887,244,074
I_kwDODunzps6sF9kq
7,431
Issues with large Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/106806889?v=4", "events_url": "https://api.github.com/users/nikitabelooussovbtis/events{/privacy}", "followers_url": "https://api.github.com/users/nikitabelooussovbtis/followers", "following_url": "https://api.github.com/users/nikitabelooussovbtis/following{/other_user}", "gists_url": "https://api.github.com/users/nikitabelooussovbtis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikitabelooussovbtis", "id": 106806889, "login": "nikitabelooussovbtis", "node_id": "U_kgDOBl2-aQ", "organizations_url": "https://api.github.com/users/nikitabelooussovbtis/orgs", "received_events_url": "https://api.github.com/users/nikitabelooussovbtis/received_events", "repos_url": "https://api.github.com/users/nikitabelooussovbtis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikitabelooussovbtis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikitabelooussovbtis/subscriptions", "type": "User", "url": "https://api.github.com/users/nikitabelooussovbtis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "what's the error message ?", "This was the final error message that it was giving pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0", "Here is the list of errors:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 160, in _generate_tables\n df = pandas_read_json(f)\n ^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 38, in pandas_read_json\n return pd.read_json(path_or_buf, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 815, in read_json\n return json_reader.read()\n ^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1025, in read\n obj = self._get_object_parser(self.data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1051, in _get_object_parser\n obj = FrameParser(json, **kwargs).parse()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1187, in parse\n self._parse()\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1402, in _parse\n self.obj = DataFrame(\n ^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/frame.py\", line 778, in __init__\n mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 503, in dict_to_mgr\n return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 114, in arrays_to_mgr\n index = _extract_index(arrays)\n ^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 677, in _extract_index\n raise ValueError(\"All arrays must be of the same length\")\nValueError: All arrays must be of the same length\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1854, in _prepare_split_single\n for _, table in generator:\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 163, in _generate_tables\n raise e\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 137, in _generate_tables\n pa_table = paj.read_json(\n ^^^^^^^^^^^^^^\n File \"pyarrow/_json.pyx\", line 308, in pyarrow._json.read_json\n File \"pyarrow/error.pxi\", line 155, in pyarrow.lib.pyarrow_internal_check_status\n File \"pyarrow/error.pxi\", line 92, in pyarrow.lib.check_status\npyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to number in row 0\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"run_object_detection.py\", line 582, in <module>\n main()\n File \"run_object_detection.py\", line 407, in main\n dataset = load_dataset(\n ^^^^^^^^^^^^^\n File \"venv/lib/python3.12/site-packages/datasets/load.py\", line 2151, in load_dataset\n builder_instance.download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 924, in download_and_prepare\n self._download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1000, in _download_and_prepare\n self._prepare_split(split_generator, **prepare_split_kwargs)\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1741, in _prepare_split\n for job_id, done, content in self._prepare_split_single(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1897, in _prepare_split_single\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset", "`datasets` is based on Arrow which expects all the lists inside the data to be of fixed type. Arrow can't load lists that contain a mix of integers and strings for example. In your case it looks like one of the lists contains numbers and JSON objects.\n\nI'd suggest you to reformat the data to end up with list of fixed types, otherwise you won't be able to load the data in `datasets`" ]
2025-02-28T14:05:22
2025-03-04T15:02:26
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug If the coco annotation file is too large the dataset will not be able to load it, not entirely sure were the issue is but I am guessing it is due to the code trying to load it all as one line into a dataframe. This was for object detections. My current work around is the following code but would be nice to be able to do it without worrying about it also probably there is a better way of doing it: ` dataset_dict = json.load(open("./local_data/annotations/train.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) train=Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/validation.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) val = Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/test.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) test = Dataset.from_pandas(df) dataset = DatasetDict({'train': train, 'validation': val, 'test': test}) ` ### Steps to reproduce the bug 1) step up directory in and have the json files in coco format -local_data |-images |---1.jpg |---2.jpg |---.... |---n.jpg |-annotations |---test.json |---train.json |---validation.json 2) try to load local_data into a dataset if the file is larger than about 300kb it will cause an error. ### Expected behavior That it loads the jsons preferably in the same format as it has done with a smaller size. ### Environment info - `datasets` version: 3.3.3.dev0 - Platform: Linux-6.11.0-17-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.29.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7431/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7431/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7430/comments
https://api.github.com/repos/huggingface/datasets/issues/7430/events
https://github.com/huggingface/datasets/issues/7430
2,886,922,573
I_kwDODunzps6sEvFN
7,430
Error in code "Time to slice and dice" from course "NLP Course"
{ "avatar_url": "https://avatars.githubusercontent.com/u/122965300?v=4", "events_url": "https://api.github.com/users/Yurkmez/events{/privacy}", "followers_url": "https://api.github.com/users/Yurkmez/followers", "following_url": "https://api.github.com/users/Yurkmez/following{/other_user}", "gists_url": "https://api.github.com/users/Yurkmez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Yurkmez", "id": 122965300, "login": "Yurkmez", "node_id": "U_kgDOB1RNNA", "organizations_url": "https://api.github.com/users/Yurkmez/orgs", "received_events_url": "https://api.github.com/users/Yurkmez/received_events", "repos_url": "https://api.github.com/users/Yurkmez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Yurkmez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yurkmez/subscriptions", "type": "User", "url": "https://api.github.com/users/Yurkmez", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You should open an issue in the NLP course website / github page. I'm closing this issue if you don't mind", "ok, i don't mind, i'll mark the error there" ]
2025-02-28T11:36:10
2025-03-05T11:32:47
2025-03-03T17:52:15
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When we execute code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` answer should be like this condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 but he is different frequency | count birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 this is not correct, correct code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "count": "frequency"}) ) ```` ### Steps to reproduce the bug ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` ### Expected behavior condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 ### Environment info Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7430/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7430/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7427/comments
https://api.github.com/repos/huggingface/datasets/issues/7427/events
https://github.com/huggingface/datasets/issues/7427
2,886,032,571
I_kwDODunzps6sBVy7
7,427
Error splitting the input into NAL units.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47114466?v=4", "events_url": "https://api.github.com/users/MengHao666/events{/privacy}", "followers_url": "https://api.github.com/users/MengHao666/followers", "following_url": "https://api.github.com/users/MengHao666/following{/other_user}", "gists_url": "https://api.github.com/users/MengHao666/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MengHao666", "id": 47114466, "login": "MengHao666", "node_id": "MDQ6VXNlcjQ3MTE0NDY2", "organizations_url": "https://api.github.com/users/MengHao666/orgs", "received_events_url": "https://api.github.com/users/MengHao666/received_events", "repos_url": "https://api.github.com/users/MengHao666/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MengHao666/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MengHao666/subscriptions", "type": "User", "url": "https://api.github.com/users/MengHao666", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`", "> First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`\n\nany recommendation for `multiprocess` and `dill`" ]
2025-02-28T02:30:15
2025-03-04T01:40:28
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I am trying to finetune qwen2.5-vl on 16 * 80G GPUS, and I use `LLaMA-Factory` and set `preprocessing_num_workers=16`. However, I met the following error and the program seem to got crush. It seems that the error come from `datasets` library The error logging is like following: ```text Converting format of dataset (num_proc=16): 100%|█████████▉| 19265/19267 [11:44<00:00, 5.88 examples/s] Converting format of dataset (num_proc=16): 100%|█████████▉| 19266/19267 [11:44<00:00, 5.02 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 5.44 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 27.34 examples/s] Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [00:00<?, ? examples/s] Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. ``` ### Others _No response_ ### Steps to reproduce the bug None ### Expected behavior excpect to run successfully ### Environment info ``` transformers==4.49.0 datasets==3.2.0 accelerate==1.2.1 peft==0.12.0 trl==0.9.6 tokenizers==0.21.0 gradio>=4.38.0,<=5.18.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0 av librosa tyro<0.9.0 openlm-hub qwen-vl-utils ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7427/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7425
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7425/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7425/comments
https://api.github.com/repos/huggingface/datasets/issues/7425/events
https://github.com/huggingface/datasets/issues/7425
2,883,684,686
I_kwDODunzps6r4YlO
7,425
load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") TypeError: 'NoneType' object is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/42167236?v=4", "events_url": "https://api.github.com/users/dshwei/events{/privacy}", "followers_url": "https://api.github.com/users/dshwei/followers", "following_url": "https://api.github.com/users/dshwei/following{/other_user}", "gists_url": "https://api.github.com/users/dshwei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dshwei", "id": 42167236, "login": "dshwei", "node_id": "MDQ6VXNlcjQyMTY3MjM2", "organizations_url": "https://api.github.com/users/dshwei/orgs", "received_events_url": "https://api.github.com/users/dshwei/received_events", "repos_url": "https://api.github.com/users/dshwei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dshwei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dshwei/subscriptions", "type": "User", "url": "https://api.github.com/users/dshwei", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "> datasets\n\nHi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n\n![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)", "Hey guys,\nI tried to reproduce the issue and it works fine. I used google colab as enviroment.\n\n![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)", "> Hey guys, I tried to reproduce the issue and it works fine. I used google colab as enviroment.\n> \n> ![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)\n\nThanks for your kind reply! I wonder which Python version do you use? My Python version is 3.11.11 and datasets version is 3.3.2 but I still met this bug.\n\n<img width=\"1121\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/7c2c5007-ee55-4030-94b9-01fcdea0bf4a\" />", "@zwxandy It's Python 3.11.11", "@Serzhanov @zwxandy I have met the same problem, have this problem be solved?", "> [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n\nI try to downgrade datasets version to 2.20.0,and it works for me @Serzhanov @dshwei , hope this work for you too :)" ]
2025-02-27T07:36:02
2025-03-10T07:49:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug from datasets import load_dataset lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") or configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) both error: Traceback (most recent call last): File "", line 1, in File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 2131, in load_dataset builder_instance = load_dataset_builder( File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 1888, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( TypeError: 'NoneType' object is not callable ### Steps to reproduce the bug from datasets import get_dataset_config_names configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) OR lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") ### Expected behavior load datasets livecodebench/code_generation_lite ### Environment info import datasets version '3.3.2'
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7425/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7425/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7423/comments
https://api.github.com/repos/huggingface/datasets/issues/7423/events
https://github.com/huggingface/datasets/issues/7423
2,879,271,409
I_kwDODunzps6rnjHx
7,423
Row indexing a dataset with numpy integers
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Would be cool to be consistent when it comes to indexing with numpy objects, if we do accept numpy arrays we should indeed accept numpy integers. Your idea sounds reasonable, I'd also be in favor of adding a simple test as well" ]
2025-02-25T18:44:45
2025-03-03T17:55:24
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Allow indexing datasets with a scalar numpy integer type. ### Motivation Indexing a dataset with a scalar numpy.int* object raises a TypeError. This is due to the test in `datasets/formatting/formatting.py:key_to_query_type` ``` python def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` In the row case, it checks if key is an int, which returns false when key is integer like but not a builtin python integer type. This is counterintuitive because a numpy array of np.int64s can be used for the batch case. For example: ``` python import numpy as np import datasets dataset = datasets.Dataset.from_dict({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}) # Regular indexing dataset[0] dataset[:2] # Indexing with numpy data types (expect same results) idx = np.asarray([0, 1]) dataset[idx] # Succeeds when using an array of np.int64 values dataset[idx[0]] # Fails with TypeError when using scalar np.int64 ``` For the user, this can be solved by wrapping `idx[0]` in `int` but the test could also be changed in `key_to_query_type` to accept a less strict definition of int. ``` diff +import numbers + def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: + if isinstance(key, numbers.Integral): - if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` Looking at how others do it, pandas has an `is_integer` definition that it checks which uses `is_integer_object` defined in `pandas/_libs/utils.pxd`: ``` cython cdef inline bint is_integer_object(object obj) noexcept: """ Cython equivalent of `isinstance(val, (int, np.integer)) and not isinstance(val, (bool, np.timedelta64))` Parameters ---------- val : object Returns ------- is_integer : bool Notes ----- This counts np.timedelta64 objects as integers. """ return (not PyBool_Check(obj) and isinstance(obj, (int, cnp.integer)) and not is_timedelta64_object(obj)) ``` This would be less flexible as it explicitly checks for numpy integer, but worth noting that they had the need to ensure the key is not a bool. ### Your contribution I can submit a pull request with the above changes after checking that indexing succeeds with the numpy integer type. Or if there is a different integer check that would be preferred I could add that. If there is a reason not to want this behavior that is fine too.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7423/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7423/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7421/comments
https://api.github.com/repos/huggingface/datasets/issues/7421/events
https://github.com/huggingface/datasets/issues/7421
2,878,369,052
I_kwDODunzps6rkG0c
7,421
DVC integration broken
{ "avatar_url": "https://avatars.githubusercontent.com/u/34747372?v=4", "events_url": "https://api.github.com/users/maxstrobel/events{/privacy}", "followers_url": "https://api.github.com/users/maxstrobel/followers", "following_url": "https://api.github.com/users/maxstrobel/following{/other_user}", "gists_url": "https://api.github.com/users/maxstrobel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maxstrobel", "id": 34747372, "login": "maxstrobel", "node_id": "MDQ6VXNlcjM0NzQ3Mzcy", "organizations_url": "https://api.github.com/users/maxstrobel/orgs", "received_events_url": "https://api.github.com/users/maxstrobel/received_events", "repos_url": "https://api.github.com/users/maxstrobel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maxstrobel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxstrobel/subscriptions", "type": "User", "url": "https://api.github.com/users/maxstrobel", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Unfortunately `url` is a reserved argument in `fsspec.url_to_fs`, so ideally file system implementations like DVC should use another argument name to avoid this kind of errors" ]
2025-02-25T13:14:31
2025-03-03T17:42:02
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug The DVC integration seems to be broken. Followed this guide: https://dvc.org/doc/user-guide/integrations/huggingface ### Steps to reproduce the bug #### Script to reproduce ~~~python from datasets import load_dataset dataset = load_dataset( "csv", data_files="dvc://workshop/satellite-data/jan_train.csv", storage_options={"url": "https://github.com/iterative/dataset-registry.git"}, ) print(dataset) ~~~ #### Error log ~~~ Traceback (most recent call last): File "C:\tmp\test\load.py", line 3, in <module> dataset = load_dataset( ^^^^^^^^^^^^^ File "C:\tmp\test\.venv\Lib\site-packages\datasets\load.py", line 2151, in load_dataset builder_instance.download_and_prepare( File "C:\tmp\test\.venv\Lib\site-packages\datasets\builder.py", line 808, in download_and_prepare fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: url_to_fs() got multiple values for argument 'url' ~~~ ### Expected behavior Integration would work and the indicated file is downloaded and opened. ### Environment info #### Python version ~~~ python --version Python 3.11.10 ~~~ #### Venv (pip install datasets dvc): ~~~ Package Version ---------------------- ----------- aiohappyeyeballs 2.4.6 aiohttp 3.11.13 aiohttp-retry 2.9.1 aiosignal 1.3.2 amqp 5.3.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 appdirs 1.4.4 asyncssh 2.20.0 atpublic 5.1 attrs 25.1.0 billiard 4.2.1 celery 5.4.0 certifi 2025.1.31 cffi 1.17.1 charset-normalizer 3.4.1 click 8.1.8 click-didyoumean 0.3.1 click-plugins 1.1.1 click-repl 0.3.0 colorama 0.4.6 configobj 5.0.9 cryptography 44.0.1 datasets 3.3.2 dictdiffer 0.9.0 dill 0.3.8 diskcache 5.6.3 distro 1.9.0 dpath 2.2.0 dulwich 0.22.7 dvc 3.59.1 dvc-data 3.16.9 dvc-http 2.32.0 dvc-objects 5.1.0 dvc-render 1.0.2 dvc-studio-client 0.21.0 dvc-task 0.40.2 entrypoints 0.4 filelock 3.17.0 flatten-dict 0.4.2 flufl-lock 8.1.0 frozenlist 1.5.0 fsspec 2024.12.0 funcy 2.0 gitdb 4.0.12 gitpython 3.1.44 grandalf 0.8 gto 1.7.2 huggingface-hub 0.29.1 hydra-core 1.3.2 idna 3.10 iterative-telemetry 0.0.10 kombu 5.4.2 markdown-it-py 3.0.0 mdurl 0.1.2 multidict 6.1.0 multiprocess 0.70.16 networkx 3.4.2 numpy 2.2.3 omegaconf 2.3.0 orjson 3.10.15 packaging 24.2 pandas 2.2.3 pathspec 0.12.1 platformdirs 4.3.6 prompt-toolkit 3.0.50 propcache 0.3.0 psutil 7.0.0 pyarrow 19.0.1 pycparser 2.22 pydantic 2.10.6 pydantic-core 2.27.2 pydot 3.0.4 pygit2 1.17.0 pygments 2.19.1 pygtrie 2.5.0 pyparsing 3.2.1 python-dateutil 2.9.0.post0 pytz 2025.1 pywin32 308 pyyaml 6.0.2 requests 2.32.3 rich 13.9.4 ruamel-yaml 0.18.10 ruamel-yaml-clib 0.2.12 scmrepo 3.3.10 semver 3.0.4 setuptools 75.8.0 shellingham 1.5.4 shortuuid 1.0.13 shtab 1.7.1 six 1.17.0 smmap 5.0.2 sqltrie 0.11.2 tabulate 0.9.0 tomlkit 0.13.2 tqdm 4.67.1 typer 0.15.1 typing-extensions 4.12.2 tzdata 2025.1 urllib3 2.3.0 vine 5.1.0 voluptuous 0.15.2 wcwidth 0.2.13 xxhash 3.5.0 yarl 1.18.3 zc-lockfile 3.0.post1 ~~~
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7421/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7421/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7420/comments
https://api.github.com/repos/huggingface/datasets/issues/7420/events
https://github.com/huggingface/datasets/issues/7420
2,876,281,928
I_kwDODunzps6rcJRI
7,420
better correspondence between cached and saved datasets created using from_generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/12157034?v=4", "events_url": "https://api.github.com/users/vttrifonov/events{/privacy}", "followers_url": "https://api.github.com/users/vttrifonov/followers", "following_url": "https://api.github.com/users/vttrifonov/following{/other_user}", "gists_url": "https://api.github.com/users/vttrifonov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vttrifonov", "id": 12157034, "login": "vttrifonov", "node_id": "MDQ6VXNlcjEyMTU3MDM0", "organizations_url": "https://api.github.com/users/vttrifonov/orgs", "received_events_url": "https://api.github.com/users/vttrifonov/received_events", "repos_url": "https://api.github.com/users/vttrifonov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vttrifonov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vttrifonov/subscriptions", "type": "User", "url": "https://api.github.com/users/vttrifonov", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-02-24T22:14:37
2025-02-26T03:10:22
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request At the moment `.from_generator` can only create a dataset that lives in the cache. The cached dataset cannot be loaded with `load_from_disk` because the cache folder is missing `state.json`. So the only way to convert this cached dataset to a regular is to use `save_to_disk` which needs to create a copy of the cached dataset. For large datasets this can end up wasting a lot of space. In my case the saving operation failed so I am stuck with a large cached dataset and no clear way to convert to a `Dataset` that I can use. The requested feature is to provide a way to be able to load a cached dataset using `.load_from_disk`. Alternatively `.from_generator` can create the dataset at a specified location so that it can be loaded from there with `.load_from_disk`. ### Motivation I have the following workflow which has exposed some awkwardness about the Datasets saving/caching. 1. I created a cached dataset using `.from_generator` which was cached in a folder. This dataset is rather large (~600GB) with many shards. 2. I tried to save this dataset using `.save_to_disk` to another location so that I can use later as a `Dataset`. This essentially creates another copy (for a total of 1.2TB!) of what is already in the cache... In my case the saving operation keeps dying for some reason and I am stuck with a cached dataset and no copy. 3. Now I am trying to "save" the existing cached dataset but it is not clear how to access the cached files after `.from_generator` has finished e.g. from a different process. I should not be even looking at the cache but I really do not want to waste another 2hr to generate the set so that if fails agains (I already did this couple of times). - I tried `.load_from_disk` but it does not work with cached files and complains that this is not a `Dataset` (!). - I looked at `.from_file` which takes one file but the cached file has many (shards) so I am not sure how to make this work. - I tried `.load_dataset` but this seems to either try to "download" a copy (of a file which is already in the local file system!) which I will then need to save or I need to use `streaming=False` to create an `IterableDataset `which then I need to convert (using the cache) to `Dataset` so that I can save it. With both options I will end up with 3 copies of the same dataset for a total of ~2TB! I am hoping here is another way to do this... Maybe I am missing something here: I looked at docs and forums but no luck. I have a bunch of arrow files cached by `Dataset.from_generator` and no clean way to make them into a `Dataset` that I can use. This all could be so much easer if `load_from_disk` can recognize the cached files and produce a `Dataset`: after the cache is created I would not have to "save" it again and I can just load it when I need. At the moment `load_from_disk` needs `state.json` which is lacking in the cache folder. So perhaps `.from_generator` could be made to "finalize" (e.g. create `state.json`) the dataset once it is done so that it can be loaded easily. Or provide `.from_generator` with a `save_to_dir` parameter in addition to `cache_dir` which can be used for the whole process including creating the `state.json` at the end. As a proof of concept I just created `state.json` by hand and `load_from_disk` worked using the cache! So it seems to be the missing piece here. ### Your contribution Time permitting I can look into `.from_generator` to see if adding `state.json` is feasible.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7420/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7419/comments
https://api.github.com/repos/huggingface/datasets/issues/7419/events
https://github.com/huggingface/datasets/issues/7419
2,875,635,320
I_kwDODunzps6rZrZ4
7,419
Import order crashes script execution
{ "avatar_url": "https://avatars.githubusercontent.com/u/23298479?v=4", "events_url": "https://api.github.com/users/DamienMatias/events{/privacy}", "followers_url": "https://api.github.com/users/DamienMatias/followers", "following_url": "https://api.github.com/users/DamienMatias/following{/other_user}", "gists_url": "https://api.github.com/users/DamienMatias/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DamienMatias", "id": 23298479, "login": "DamienMatias", "node_id": "MDQ6VXNlcjIzMjk4NDc5", "organizations_url": "https://api.github.com/users/DamienMatias/orgs", "received_events_url": "https://api.github.com/users/DamienMatias/received_events", "repos_url": "https://api.github.com/users/DamienMatias/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DamienMatias/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DamienMatias/subscriptions", "type": "User", "url": "https://api.github.com/users/DamienMatias", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-24T17:03:43
2025-02-24T17:03:43
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Hello, I'm trying to convert an HF dataset into a TFRecord so I'm importing `tensorflow` and `datasets` to do so. Depending in what order I'm importing those librairies, my code hangs forever and is unkillable (CTRL+C doesn't work, I need to kill my shell entirely). Thank you for your help 🙏 ### Steps to reproduce the bug If you run the following script, this will hang forever : ```python import tensorflow as tf import datasets dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` however running the following will work fine (I just changed the order of the imports) : ```python import datasets import tensorflow as tf dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` ### Expected behavior I'm expecting the script to reach the end and my case print the content of the first item in the dataset ``` {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=408x500 at 0x70C646A03110>, 'label': 91} ``` ### Environment info ``` $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-6.8.0-1017-aws-x86_64-with-glibc2.35 - Python version: 3.11.7 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ``` I'm also using `tensorflow==2.18.0`.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7419/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7419/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7418/comments
https://api.github.com/repos/huggingface/datasets/issues/7418/events
https://github.com/huggingface/datasets/issues/7418
2,868,701,471
I_kwDODunzps6q_Okf
7,418
pyarrow.lib.arrowinvalid: cannot mix list and non-list, non-null values with map function
{ "avatar_url": "https://avatars.githubusercontent.com/u/15705569?v=4", "events_url": "https://api.github.com/users/alexxchen/events{/privacy}", "followers_url": "https://api.github.com/users/alexxchen/followers", "following_url": "https://api.github.com/users/alexxchen/following{/other_user}", "gists_url": "https://api.github.com/users/alexxchen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alexxchen", "id": 15705569, "login": "alexxchen", "node_id": "MDQ6VXNlcjE1NzA1NTY5", "organizations_url": "https://api.github.com/users/alexxchen/orgs", "received_events_url": "https://api.github.com/users/alexxchen/received_events", "repos_url": "https://api.github.com/users/alexxchen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alexxchen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexxchen/subscriptions", "type": "User", "url": "https://api.github.com/users/alexxchen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq ", "Can you try passing text: None for the image object ? Pyarrow expects all the objects to have the exact same type, in particular the dicttionaries in \"content\" should all have the keys \"type\" and \"text\"", "The following modification on system prompt works, but it is different from the usual way to use it.\n```\ndef make_conversation(example):\n prompt = []\n\n prompt.append({\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": system_prompt}]})\n prompt.append(\n {\n \"role\": \"user\", \n \"content\": [\n {\"type\": \"image\"},\n {\"type\": \"text\", \"text\": example[\"problem\"]},\n ]\n }\n )\n return {\"prompt\": prompt}\n```", "Good to know ! But yes Arrow / Parquet have this typing limitation (which is great to ensure data integrity, but constraining at the same time). It's is really blocking you, feel free to ping the arrow team / community if they plan to have a Union type or a JSON type" ]
2025-02-21T10:58:06
2025-02-25T15:26:46
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Encounter pyarrow.lib.arrowinvalid error with map function in some example when loading the dataset ### Steps to reproduce the bug ``` from datasets import load_dataset from PIL import Image, PngImagePlugin dataset = load_dataset("leonardPKU/GEOQA_R1V_Train_8K") system_prompt="You are a helpful AI Assistant" def make_conversation(example): prompt = [] prompt.append({"role": "system", "content": system_prompt}) prompt.append( { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": example["problem"]}, ] } ) return {"prompt": prompt} def check_data_types(example): for key, value in example.items(): if key == 'image': if not isinstance(value, PngImagePlugin.PngImageFile): print(value) if key == "problem" or key == "solution": if not isinstance(value, str): print(value) return example dataset = dataset.map(check_data_types) dataset = dataset.map(make_conversation) ``` ### Expected behavior Successfully process the dataset with map ### Environment info datasets==3.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7418/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7418/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7415
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7415/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7415/comments
https://api.github.com/repos/huggingface/datasets/issues/7415/events
https://github.com/huggingface/datasets/issues/7415
2,865,774,546
I_kwDODunzps6q0D_S
7,415
Shard Dataset at specific indices
{ "avatar_url": "https://avatars.githubusercontent.com/u/11044035?v=4", "events_url": "https://api.github.com/users/nikonikolov/events{/privacy}", "followers_url": "https://api.github.com/users/nikonikolov/followers", "following_url": "https://api.github.com/users/nikonikolov/following{/other_user}", "gists_url": "https://api.github.com/users/nikonikolov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikonikolov", "id": 11044035, "login": "nikonikolov", "node_id": "MDQ6VXNlcjExMDQ0MDM1", "organizations_url": "https://api.github.com/users/nikonikolov/orgs", "received_events_url": "https://api.github.com/users/nikonikolov/received_events", "repos_url": "https://api.github.com/users/nikonikolov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikonikolov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikonikolov/subscriptions", "type": "User", "url": "https://api.github.com/users/nikonikolov", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! if it's an option I'd suggest to have one sequence per row instead.\n\nOtherwise you'd have to make your own save/load mechanism", "Saving one sequence per row is very difficult and heavy and makes all the optimizations pointless. How would a custom save/load mechanism look like?", "You can use `pyarrow` for example to save/load individual arrow or parquet files and control what they contain" ]
2025-02-20T10:43:10
2025-02-24T11:06:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
I have a dataset of sequences, where each example in the sequence is a separate row in the dataset (similar to LeRobotDataset). When running `Dataset.save_to_disk` how can I provide indices where it's possible to shard the dataset such that no episode spans more than 1 shard. Consequently, when I run `Dataset.load_from_disk`, how can I load just a subset of the shards to save memory and time on different ranks? I guess an alternative to this would be, given a loaded `Dataset`, how can I run `Dataset.shard` such that sharding doesn't split any episode across shards?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7415/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7415/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7413/comments
https://api.github.com/repos/huggingface/datasets/issues/7413/events
https://github.com/huggingface/datasets/issues/7413
2,860,947,582
I_kwDODunzps6qhph-
7,413
Documentation on multiple media files of the same type with WebDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DCNemesis", "id": 3616964, "login": "DCNemesis", "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "repos_url": "https://api.github.com/users/DCNemesis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "type": "User", "url": "https://api.github.com/users/DCNemesis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Yes this is correct and it works with huggingface datasets as well ! Feel free to include an example here: https://github.com/huggingface/datasets/blob/main/docs/source/video_dataset.mdx" ]
2025-02-18T16:13:20
2025-02-20T14:17:54
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
The [current documentation](https://huggingface.co/docs/datasets/en/video_dataset) on a creating a video dataset includes only examples with one media file and one json. It would be useful to have examples where multiple files of the same type are included. For example, in a sign language dataset, you may have a base video and a video annotation of the extracted pose. According to the WebDataset documentation, this should be able to be done with period separated filenames. For example: ```e39871fd9fd74f55.base.mp4 e39871fd9fd74f55.pose.mp4 e39871fd9fd74f55.json f18b91585c4d3f3e.base.mp4 f18b91585c4d3f3e.pose.mp4 f18b91585c4d3f3e.json ... ``` If you can confirm that this method of including multiple media files works with huggingface datasets and include an example in the documentation, I'd appreciate it.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7413/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7413/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7412/comments
https://api.github.com/repos/huggingface/datasets/issues/7412/events
https://github.com/huggingface/datasets/issues/7412
2,859,433,710
I_kwDODunzps6qb37u
7,412
Index Error Invalid Ket is out of bounds for size 0 for code-search-net/code_search_net dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/56113657?v=4", "events_url": "https://api.github.com/users/harshakhmk/events{/privacy}", "followers_url": "https://api.github.com/users/harshakhmk/followers", "following_url": "https://api.github.com/users/harshakhmk/following{/other_user}", "gists_url": "https://api.github.com/users/harshakhmk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harshakhmk", "id": 56113657, "login": "harshakhmk", "node_id": "MDQ6VXNlcjU2MTEzNjU3", "organizations_url": "https://api.github.com/users/harshakhmk/orgs", "received_events_url": "https://api.github.com/users/harshakhmk/received_events", "repos_url": "https://api.github.com/users/harshakhmk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harshakhmk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harshakhmk/subscriptions", "type": "User", "url": "https://api.github.com/users/harshakhmk", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-18T05:58:33
2025-02-18T06:42:07
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I am trying to do model pruning on sentence-transformers/all-mini-L6-v2 for the code-search-net/code_search_net dataset using INCTrainer class However I am getting below error ``` raise IndexError(f"Invalid Key: {key is our of bounds for size {size}") IndexError: Invalid key: 1840208 is out of bounds for size 0 ``` ### Steps to reproduce the bug Model pruning on the above dataset using the below guide https://huggingface.co/docs/optimum/en/intel/neural_compressor/optimization#pruning ### Expected behavior The modsl should be successfully pruned ### Environment info Torch version: 2.4.1 Python version: 3.8.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7412/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7412/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7406
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7406/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7406/comments
https://api.github.com/repos/huggingface/datasets/issues/7406/events
https://github.com/huggingface/datasets/issues/7406
2,856,441,206
I_kwDODunzps6qQdV2
7,406
Adding Core Maintainer List to CONTRIBUTING.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "@lhoestq", "there is no per-module maintainer and the list is me alone nowadays ^^'", "@lhoestq \nOh... I feel for you. \nWhat are your criteria for choosing a core maintainer? \nIt seems like it's too much work for you to manage all this code by yourself.\n\nAlso, if you don't mind, can you check this PR for me?\n#7368 I'd like this to be added as soon as possible because I need it." ]
2025-02-17T00:32:40
2025-02-19T01:28:38
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request I propose adding a core maintainer list to the `CONTRIBUTING.md` file. ### Motivation The Transformers and Liger-Kernel projects maintain lists of core maintainers for each module. However, the Datasets project doesn't have such a list. ### Your contribution I have nothing to add here.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7406/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7406/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7405/comments
https://api.github.com/repos/huggingface/datasets/issues/7405/events
https://github.com/huggingface/datasets/issues/7405
2,856,372,814
I_kwDODunzps6qQMpO
7,405
Lazy loading of environment variables
{ "avatar_url": "https://avatars.githubusercontent.com/u/7225987?v=4", "events_url": "https://api.github.com/users/nikvaessen/events{/privacy}", "followers_url": "https://api.github.com/users/nikvaessen/followers", "following_url": "https://api.github.com/users/nikvaessen/following{/other_user}", "gists_url": "https://api.github.com/users/nikvaessen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikvaessen", "id": 7225987, "login": "nikvaessen", "node_id": "MDQ6VXNlcjcyMjU5ODc=", "organizations_url": "https://api.github.com/users/nikvaessen/orgs", "received_events_url": "https://api.github.com/users/nikvaessen/received_events", "repos_url": "https://api.github.com/users/nikvaessen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikvaessen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikvaessen/subscriptions", "type": "User", "url": "https://api.github.com/users/nikvaessen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Many python packages out there, including `huggingface_hub`, do load the environment variables on import.\nYou should `load_dotenv()` before importing the libraries.\n\nFor example you can move all you imports inside your `main()` function" ]
2025-02-16T22:31:41
2025-02-17T15:17:18
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Loading a `.env` file after an `import datasets` call does not correctly use the environment variables. This is due the fact that environment variables are read at import time: https://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/config.py#L155C1-L155C80 ### Steps to reproduce the bug ```bash # make tmp dir mkdir -p /tmp/debug-env # make .env file echo HF_HOME=/tmp/debug-env/data > /tmp/debug-env/.env # first load dotenv, downloads to /tmp/debug-env/data uv run --with datasets,python-dotenv python3 -c \ 'import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); import datasets; datasets.load_dataset("Anthropic/hh-rlhf")' # first import datasets, downloads to `~/.cache/huggingface` uv run --with datasets,python-dotenv python3 -c \ 'import datasets; import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); datasets.load_dataset("Anthropic/hh-rlhf")' ``` ### Expected behavior I expect that setting environment variables with something like this: ```python3 if __name__ == "__main__": load_dotenv() main() ``` works correctly. ### Environment info "datasets>=3.3.0",
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7405/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7405/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7404
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7404/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7404/comments
https://api.github.com/repos/huggingface/datasets/issues/7404/events
https://github.com/huggingface/datasets/issues/7404
2,856,366,207
I_kwDODunzps6qQLB_
7,404
Performance regression in `dataset.filter`
{ "avatar_url": "https://avatars.githubusercontent.com/u/82200?v=4", "events_url": "https://api.github.com/users/ttim/events{/privacy}", "followers_url": "https://api.github.com/users/ttim/followers", "following_url": "https://api.github.com/users/ttim/following{/other_user}", "gists_url": "https://api.github.com/users/ttim/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ttim", "id": 82200, "login": "ttim", "node_id": "MDQ6VXNlcjgyMjAw", "organizations_url": "https://api.github.com/users/ttim/orgs", "received_events_url": "https://api.github.com/users/ttim/received_events", "repos_url": "https://api.github.com/users/ttim/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ttim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ttim/subscriptions", "type": "User", "url": "https://api.github.com/users/ttim", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Thanks for reporting, I'll fix the regression today", "I just released `datasets` 3.3.1 with a fix, let me know if it's good now :)", "@lhoestq it fixed the issue.\n\nThis was (very) fast, thank you very much!" ]
2025-02-16T22:19:14
2025-02-17T17:46:06
2025-02-17T14:28:48
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug We're filtering dataset of ~1M (small-ish) records. At some point in the code we do `dataset.filter`, before (including 3.2.0) it was taking couple of seconds, and now it takes 4 hours. We use 16 threads/workers, and stack trace at them look as follows: ``` Traceback (most recent call last): File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/python/lib/python3.12/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) ^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 678, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3511, in _map_single for i, batch in iter_outputs(shard_iterable): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3461, in iter_outputs yield i, apply_function(example, i, offset=offset) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3390, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 6416, in get_indices_from_mask_function indices_array = indices_mapping.column(0).take(indices_array) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 1079, in pyarrow.lib.ChunkedArray.take File "/python/lib/python3.12/site-packages/pyarrow/compute.py", line 458, in take def take(data, indices, *, boundscheck=True, memory_pool=None): ``` ### Steps to reproduce the bug 1. Save dataset of 1M records in arrow 2. Filter it with 16 threads 3. Watch it take too long ### Expected behavior Filtering done fast ### Environment info datasets 3.3.0, python 3.12
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7404/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7404/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7399/comments
https://api.github.com/repos/huggingface/datasets/issues/7399/events
https://github.com/huggingface/datasets/issues/7399
2,853,098,442
I_kwDODunzps6qDtPK
7,399
Synchronize parameters for various datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/7976840?v=4", "events_url": "https://api.github.com/users/grofte/events{/privacy}", "followers_url": "https://api.github.com/users/grofte/followers", "following_url": "https://api.github.com/users/grofte/following{/other_user}", "gists_url": "https://api.github.com/users/grofte/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/grofte", "id": 7976840, "login": "grofte", "node_id": "MDQ6VXNlcjc5NzY4NDA=", "organizations_url": "https://api.github.com/users/grofte/orgs", "received_events_url": "https://api.github.com/users/grofte/received_events", "repos_url": "https://api.github.com/users/grofte/repos", "site_admin": false, "starred_url": "https://api.github.com/users/grofte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grofte/subscriptions", "type": "User", "url": "https://api.github.com/users/grofte", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the `desc` parameter is only available for Dataset / DatasetDict for the progress bar of `map()``\n\nSince IterableDataset only runs the map functions when you iterate over the dataset, there is no progress bar and `desc` is useless. We could still add the argument for parity but it wouldn't be used for anything", "I think you should add it. It doesn't hurt. The reason I ran into it was because I re-wrote a pipeline to use either a stream or a fully loaded dataset. Of course I can simply remove it but it is nice to have on the memory loaded dataset. " ]
2025-02-14T09:15:11
2025-02-19T11:50:29
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug [IterableDatasetDict](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.IterableDatasetDict.map) map function is missing the `desc` parameter. You can see the equivalent map function for [Dataset here](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.Dataset.map). There might be other parameters missing - I haven't checked. ### Steps to reproduce the bug from datasets import Dataset, IterableDataset, IterableDatasetDict ds = IterableDatasetDict({"train": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3), "validate": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)}) for d in ds["train"]: print(d) ds = ds.map(lambda x: {k: v+1 for k, v in x.items()}, desc="increment") for d in ds["train"]: print(d) ### Expected behavior The description parameter should be available for all datasets (or none). ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7399/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7399/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7400/comments
https://api.github.com/repos/huggingface/datasets/issues/7400/events
https://github.com/huggingface/datasets/issues/7400
2,853,201,277
I_kwDODunzps6qEGV9
7,400
504 Gateway Timeout when uploading large dataset to Hugging Face Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/3500?v=4", "events_url": "https://api.github.com/users/hotchpotch/events{/privacy}", "followers_url": "https://api.github.com/users/hotchpotch/followers", "following_url": "https://api.github.com/users/hotchpotch/following{/other_user}", "gists_url": "https://api.github.com/users/hotchpotch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hotchpotch", "id": 3500, "login": "hotchpotch", "node_id": "MDQ6VXNlcjM1MDA=", "organizations_url": "https://api.github.com/users/hotchpotch/orgs", "received_events_url": "https://api.github.com/users/hotchpotch/received_events", "repos_url": "https://api.github.com/users/hotchpotch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hotchpotch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hotchpotch/subscriptions", "type": "User", "url": "https://api.github.com/users/hotchpotch", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I transferred to the `datasets` repository. Is there any retry mechanism in `datasets` @lhoestq ?\n\nAnother solution @hotchpotch if you want to get your dataset pushed to the Hub in a robust way is to save it to a local folder first and then use `huggingface-cli upload-large-folder` (see https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-large-folder). It has better retry mechanism in case of failure.", "There is no retry mechanism for `api.preupload_lfs_files` in `push_to_hub()` but we can definitely add one here\n\nhttps://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/arrow_dataset.py#L5372", "@Wauplin \n\nThank you! I believe that to use load_dataset() to read data from Hugging Face, we need to first save the markdown metadata and parquet files in our local filesystem, then upload them using upload-large-folder. If you know how to do this, could you please let me know?\n\n", "@lhoestq \n\nI see, so adding a retry mechanism there would solve it. If I continue to have issues, I'll consider implementing that kind of solution." ]
2025-02-14T02:18:35
2025-02-14T23:48:36
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Description I encountered consistent 504 Gateway Timeout errors while attempting to upload a large dataset (approximately 500GB) to the Hugging Face Hub. The upload fails during the process with a Gateway Timeout error. I will continue trying to upload. While it might succeed in future attempts, I wanted to report this issue in the meantime. ### Reproduction - I attempted the upload 3 times - Each attempt resulted in the same 504 error during the upload process (not at the start, but in the middle of the upload) - Using `dataset.push_to_hub()` method ### Environment Information ``` - huggingface_hub version: 0.28.0 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.39 - Python version: 3.11.10 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Running in Google Colab Enterprise ?: No - Token path ?: /home/hotchpotch/.cache/huggingface/token - Has saved token ?: True - Who am I ?: hotchpotch - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.5.1 - Jinja2: 3.1.5 - Graphviz: N/A - keras: N/A - Pydot: N/A - Pillow: 10.4.0 - hf_transfer: N/A - gradio: N/A - tensorboard: N/A - numpy: 1.26.4 - pydantic: 2.10.6 - aiohttp: 3.11.11 - ENDPOINT: https://huggingface.co - HF_HUB_CACHE: /home/hotchpotch/.cache/huggingface/hub - HF_ASSETS_CACHE: /home/hotchpotch/.cache/huggingface/assets - HF_TOKEN_PATH: /home/hotchpotch/.cache/huggingface/token - HF_STORED_TOKENS_PATH: /home/hotchpotch/.cache/huggingface/stored_tokens - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False - HF_HUB_ETAG_TIMEOUT: 10 - HF_HUB_DOWNLOAD_TIMEOUT: 10 ``` ### Full Error Traceback ```python Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/create_edu_japanese_ds/upload_edu_japanese_ds.py", line 12, in <module> ds.push_to_hub("hotchpotch/fineweb-2-edu-japanese", private=True) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/dataset_dict.py", line 1665, in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 5301, in _push_parquet_shards_to_hub api.preupload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/hf_api.py", line 4215, in preupload_lfs_files _upload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/_commit_api.py", line 395, in _upload_lfs_files batch_actions_chunk, batch_errors_chunk = post_lfs_batch_info( ^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/lfs.py", line 168, in post_lfs_batch_info hf_raise_for_status(resp) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7400/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7394/comments
https://api.github.com/repos/huggingface/datasets/issues/7394/events
https://github.com/huggingface/datasets/issues/7394
2,847,172,115
I_kwDODunzps6ptGYT
7,394
Using load_dataset with data_files and split arguments yields an error
{ "avatar_url": "https://avatars.githubusercontent.com/u/61103399?v=4", "events_url": "https://api.github.com/users/devon-research/events{/privacy}", "followers_url": "https://api.github.com/users/devon-research/followers", "following_url": "https://api.github.com/users/devon-research/following{/other_user}", "gists_url": "https://api.github.com/users/devon-research/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/devon-research", "id": 61103399, "login": "devon-research", "node_id": "MDQ6VXNlcjYxMTAzMzk5", "organizations_url": "https://api.github.com/users/devon-research/orgs", "received_events_url": "https://api.github.com/users/devon-research/received_events", "repos_url": "https://api.github.com/users/devon-research/repos", "site_admin": false, "starred_url": "https://api.github.com/users/devon-research/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/devon-research/subscriptions", "type": "User", "url": "https://api.github.com/users/devon-research", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-12T04:50:11
2025-02-12T04:50:11
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug It seems the list of valid splits recorded by the package becomes incorrectly overwritten when using the `data_files` argument. If I run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` then I get the error ``` ValueError: Unknown split "all_examples". Should be one of ['train']. ``` However, if I run ```python from datasets import load_dataset load_dataset("allenai/super", split="train", name="Expert") ``` then I get ``` ValueError: Unknown split "train". Should be one of ['all_examples']. ``` ### Steps to reproduce the bug Run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` ### Expected behavior No error. ### Environment info Python = 3.12 datasets = 3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7394/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7394/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7392/comments
https://api.github.com/repos/huggingface/datasets/issues/7392/events
https://github.com/huggingface/datasets/issues/7392
2,846,095,043
I_kwDODunzps6po_bD
7,392
push_to_hub payload too large error when using large ClassLabel feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "See also <https://discuss.huggingface.co/t/datasetdict-push-to-hub-failing-with-payload-to-large/140083/8>\n" ]
2025-02-11T17:51:34
2025-02-11T18:01:31
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When using `datasets.DatasetDict.push_to_hub` an `HfHubHTTPError: 413 Client Error: Payload Too Large for url` is raised if the dataset contains a large `ClassLabel` feature. Even if the total size of the dataset is small. ### Steps to reproduce the bug ``` python import random import sys import datasets random.seed(42) def random_str(sz): return "".join(chr(random.randint(ord("a"), ord("z"))) for _ in range(sz)) data = datasets.DatasetDict( { str(i): datasets.Dataset.from_dict( { "label": [list(range(3)) for _ in range(10)], "abstract": [random_str(10_000) for _ in range(10)], }, ) for i in range(3) } ) features = data["1"].features.copy() features["label"] = datasets.Sequence( datasets.ClassLabel(names=[str(i) for i in range(50_000)]) ) data = data.map(lambda examples: {}, features=features) feat_size = sys.getsizeof(data["1"].features["label"].feature.names) print(f"Size of ClassLabel names: {feat_size}") # Size of ClassLabel names: 444376 data.push_to_hub("dconnell/pubtator3_test") ``` Note that this succeeds if `ClassLabel` has fewer names or if `ClassLabel` is replaced with `Value("int64")` ### Expected behavior Should push the dataset to hub. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 - Python version: 3.12.8 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7392/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7391/comments
https://api.github.com/repos/huggingface/datasets/issues/7391/events
https://github.com/huggingface/datasets/issues/7391
2,845,184,764
I_kwDODunzps6plhL8
7,391
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/25193686?v=4", "events_url": "https://api.github.com/users/LinXin04/events{/privacy}", "followers_url": "https://api.github.com/users/LinXin04/followers", "following_url": "https://api.github.com/users/LinXin04/following{/other_user}", "gists_url": "https://api.github.com/users/LinXin04/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LinXin04", "id": 25193686, "login": "LinXin04", "node_id": "MDQ6VXNlcjI1MTkzNjg2", "organizations_url": "https://api.github.com/users/LinXin04/orgs", "received_events_url": "https://api.github.com/users/LinXin04/received_events", "repos_url": "https://api.github.com/users/LinXin04/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LinXin04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LinXin04/subscriptions", "type": "User", "url": "https://api.github.com/users/LinXin04", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-11T12:02:26
2025-02-11T12:02:26
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
pyarrow 尝试了若干个版本都不可以
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7391/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7391/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7390/comments
https://api.github.com/repos/huggingface/datasets/issues/7390/events
https://github.com/huggingface/datasets/issues/7390
2,843,813,365
I_kwDODunzps6pgSX1
7,390
Re-add py.typed
{ "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NeilGirdhar", "id": 730137, "login": "NeilGirdhar", "node_id": "MDQ6VXNlcjczMDEzNw==", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "type": "User", "url": "https://api.github.com/users/NeilGirdhar", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-02-10T22:12:52
2025-02-10T22:12:52
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request The motivation for removing py.typed no longer seems to apply. Would a solution like [this one](https://github.com/huggingface/huggingface_hub/pull/2752) work here? ### Motivation MyPy support is broken. As more type checkers come out, such as RedKnot, these may also be broken. It would be good to be PEP 561 compliant as long as it's not too onerous. ### Your contribution I can re-add py.typed, but I don't know how to make sur all of the `__all__` files are provided (although you may not need to with modern PyRight).
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7390/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7390/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7389
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7389/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7389/comments
https://api.github.com/repos/huggingface/datasets/issues/7389/events
https://github.com/huggingface/datasets/issues/7389
2,843,592,606
I_kwDODunzps6pfcee
7,389
Getting statistics about filtered examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can actually track a running sum in map() or filter() :)\n\n```python\nnum_filtered = 0\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered += 1\n return condition\n\nds = ds.filter(f)\nprint(num_filtered)\n```\n\nand if you want to use multiprocessing, make sure to use a variable that is shared across processes\n\n\n```python\nfrom multiprocess import Manager\n\nmanager = Manager()\nnum_filtered = manager.Value('i', 0)\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered.value += 1\n return condition\n\nds = ds.filter(f, num_proc=4)\nprint(num_filtered.value)\n```\n\nPS: `datasets` uses `multiprocess` instead of the `multiprocessing` package to support lambda functions in map() and filter()", "Oh that's great to know!\n\nI guess this value would not be exactly synced with the batch in cases of pre-fetch and shuffle buffers and so on, but that's probably fine. Thanks!" ]
2025-02-10T20:48:29
2025-02-11T20:44:15
2025-02-11T20:44:13
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
@lhoestq wondering if the team has thought about this and if there are any recommendations? Currently when processing datasets some examples are bound to get filtered out, whether it's due to bad format, or length is too long, or any other custom filters that might be getting applied. Let's just focus on the filter by length for now, since that would be something that gets applied dynamically for each training run. Say we want to show a graph in W&B with the running total of the number of filtered examples so far. What would be a good way to go about hooking this up? Because the map/filter operations happen before the DataLoader batches are created, at training time if we're just grabbing batches from the DataLoader then we won't know how many things have been filtered already. But there's not really a good way to include a 'num_filtered' key into the dataset itself either because dataset map/filter process examples independently and don't have a way to track a running sum. The only approach I can kind of think of is having a 'is_filtered' key in the dataset, and then creating a custom batcher/collator that reads that and tracks the metric?
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7389/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7389/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7388/comments
https://api.github.com/repos/huggingface/datasets/issues/7388/events
https://github.com/huggingface/datasets/issues/7388
2,843,188,499
I_kwDODunzps6pd50T
7,388
OSError: [Errno 22] Invalid argument forbidden character
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can probably copy the dataset in your HF account and rename the files (without having to download them to your disk). Or alternatively feel free to open a Pull Request to this dataset with the renamed file", "Thank you, that will help me work around this problem" ]
2025-02-10T17:46:31
2025-02-11T13:42:32
2025-02-11T13:42:30
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I'm on Windows and i'm trying to load a datasets but i'm having title error because files in the repository are named with charactere like < >which can't be in a name file. Could it be possible to load this datasets but removing those charactere ? ### Steps to reproduce the bug load_dataset("CATMuS/medieval") on Windows ### Expected behavior Making the function to erase the forbidden character to allow loading the datasets who have those characters. ### Environment info - `datasets` version: 3.2.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.12.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7388/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7388/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7387/comments
https://api.github.com/repos/huggingface/datasets/issues/7387/events
https://github.com/huggingface/datasets/issues/7387
2,841,228,048
I_kwDODunzps6pWbMQ
7,387
Dynamic adjusting dataloader sampling weight
{ "avatar_url": "https://avatars.githubusercontent.com/u/72799643?v=4", "events_url": "https://api.github.com/users/whc688/events{/privacy}", "followers_url": "https://api.github.com/users/whc688/followers", "following_url": "https://api.github.com/users/whc688/following{/other_user}", "gists_url": "https://api.github.com/users/whc688/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/whc688", "id": 72799643, "login": "whc688", "node_id": "MDQ6VXNlcjcyNzk5NjQz", "organizations_url": "https://api.github.com/users/whc688/orgs", "received_events_url": "https://api.github.com/users/whc688/received_events", "repos_url": "https://api.github.com/users/whc688/repos", "site_admin": false, "starred_url": "https://api.github.com/users/whc688/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/whc688/subscriptions", "type": "User", "url": "https://api.github.com/users/whc688", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You mean based on a condition that has to be checked on-the-fly during training ? Otherwise if you know in advance after how many samples you need to change the sampling you can simply concatenate the two mixes", "Yes, like during training, if one data sample's prediction is consistently wrong, its sampling weight gets higher and higher, and if one data sample's prediction is already correct, then we rarely sample it", "it's not possible to use `interleave_datasets()` and modify the probabilities while iterating on the dataset at the moment, so you'd have to implement your own torch `Sampler` or your own`IterableDataset` to implement this logic" ]
2025-02-10T03:18:47
2025-03-07T14:06:54
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
Hi, Thanks for your wonderful work! I'm wondering is there a way to dynamically adjust the sampling weight of each data in the dataset during training? Looking forward to your reply, thanks again.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7387/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7386
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7386/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7386/comments
https://api.github.com/repos/huggingface/datasets/issues/7386/events
https://github.com/huggingface/datasets/issues/7386
2,840,032,524
I_kwDODunzps6pR3UM
7,386
Add bookfolder Dataset Builder for Digital Book Formats
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "On second thought, probably not a good idea." ]
2025-02-08T14:27:55
2025-02-08T14:30:10
2025-02-08T14:30:09
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request This feature proposes adding a new dataset builder called bookfolder to the datasets library. This builder would allow users to easily load datasets consisting of various digital book formats, including: AZW, AZW3, CB7, CBR, CBT, CBZ, EPUB, MOBI, and PDF. ### Motivation Currently, loading datasets of these digital book files requires manual effort. This would also lower the barrier to entry for working with these formats, enabling more diverse and interesting datasets to be used within the Hugging Face ecosystem. ### Your contribution This feature is rather simple as it will be based on the folder-based builder, similar to imagefolder. I'm willing to contribute to this feature by submitting a PR
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7386/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7386/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7381/comments
https://api.github.com/repos/huggingface/datasets/issues/7381/events
https://github.com/huggingface/datasets/issues/7381
2,815,649,092
I_kwDODunzps6n02VE
7,381
Iterating over values of a column in the IterableDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I'd be in favor of that ! I saw many people implementing their own iterables that wrap a dataset just to iterate on a single column, that would make things more practical.\n\nKinda related: https://github.com/huggingface/datasets/issues/5847", "(For anyone's information, I'm going on vacation for the next 3 weeks, so the work is postponed. If anyone can implement this feature within the next 4 weeks, go ahead :) )" ]
2025-01-28T13:17:36
2025-02-18T17:15:51
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request I would like to be able to iterate (and re-iterate if needed) over a column of an `IterableDataset` instance. The following example shows the supposed API: ``` def gen(): yield {"text": "Good", "label": 0} yield {"text": "Bad", "label": 1} ds = IterableDataset.from_generator(gen) texts = ds["text"] for v in texts: print(v) # Prints "Good" and "Bad" for v in texts: print(v) # Prints "Good" and "Bad" again ``` ### Motivation In the real world problems, huge NNs like Transformer are not always the best option, so there is a need to conduct experiments with different methods. While 🤗Datasets is perfectly adapted to 🤗Transformers, it may be inconvenient when being used with other libraries. The ability to retrieve a particular column is the case (e.g., gensim's FastText [requires](https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText.train) only lists of strings, not dictionaries). While there are ways to achieve the desired functionality, they are not good ([forum](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649)). It would be great if there was a built-in solution. ### Your contribution Theoretically, I can submit a PR, but I have very little knowledge of the internal structure of 🤗Datasets, so some help may be needed. Moreover, I can only work on weekends, since I have a full-time job. However, the feature does not seem to be popular, so there is no need to implement it as fast as possible.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7381/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7381/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7378/comments
https://api.github.com/repos/huggingface/datasets/issues/7378/events
https://github.com/huggingface/datasets/issues/7378
2,802,957,388
I_kwDODunzps6nEbxM
7,378
Allow pushing config version to hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/129072?v=4", "events_url": "https://api.github.com/users/momeara/events{/privacy}", "followers_url": "https://api.github.com/users/momeara/followers", "following_url": "https://api.github.com/users/momeara/following{/other_user}", "gists_url": "https://api.github.com/users/momeara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/momeara", "id": 129072, "login": "momeara", "node_id": "MDQ6VXNlcjEyOTA3Mg==", "organizations_url": "https://api.github.com/users/momeara/orgs", "received_events_url": "https://api.github.com/users/momeara/received_events", "repos_url": "https://api.github.com/users/momeara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/momeara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/momeara/subscriptions", "type": "User", "url": "https://api.github.com/users/momeara", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! This sounds reasonable to me, feel free to open a PR :)" ]
2025-01-21T22:35:07
2025-01-30T13:56:56
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Currently, when datasets are created, they can be versioned by passing the `version` argument to `load_dataset(...)`. For example creating `outcomes.csv` on the command line ``` echo "id,value\n1,0\n2,0\n3,1\n4,1\n" > outcomes.csv ``` and creating it ``` import datasets dataset = datasets.load_dataset( "csv", data_files ="outcomes.csv", keep_in_memory = True, version = '1.0.0') ``` The version info is stored in the `info` and can be accessed e.g. by `next(iter(dataset.values())).info.version` This dataset can be uploaded to the hub with `dataset.push_to_hub(repo_id = "maomlab/example_dataset")`. This will create a dataset on the hub with the following in the `README.md`, but it doesn't upload the version information: ``` --- dataset_info: features: - name: id dtype: int64 - name: value dtype: int64 splits: - name: train num_bytes: 64 num_examples: 4 download_size: 1332 dataset_size: 64 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` However, when I download from the hub, the version information is missing: ``` dataset_from_hub_no_version = datasets.load_dataset("maomlab/example_dataset") next(iter(dataset.values())).info.version ``` I can add the version information manually to the hub, by appending it to the end of config section: ``` ... configs: - config_name: default data_files: - split: train path: data/train-* version: 1.0.0 --- ``` And then when I download it, the version information is correct. ### Motivation ### Why adding version information for each config makes sense 1. The version information is already recorded in the dataset config info data structure and is able to parse it correctly, so it makes sense to sync it with `push_to_hub`. 2. Keeping the version info in at the config level is different from version info at the branch level. As the former relates to the version of the specific dataset the config refers to rather than the version of the dataset curation itself. ## A explanation for the current behavior: In [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 ), the `_INCLUDED_INFO_IN_YAML` variable doesn't include `"version"`. If my reading of the code is right, adding `"version"` to `_INCLUDED_INFO_IN_YAML`, would allow the version information to be uploaded to the hub. ### Your contribution Request: add `"version"` to `_INCLUDE_INFO_IN_YAML` in [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 )
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7378/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7377/comments
https://api.github.com/repos/huggingface/datasets/issues/7377/events
https://github.com/huggingface/datasets/issues/7377
2,802,723,285
I_kwDODunzps6nDinV
7,377
Support for sparse arrays with the Arrow Sparse Tensor format?
{ "avatar_url": "https://avatars.githubusercontent.com/u/3231217?v=4", "events_url": "https://api.github.com/users/JulesGM/events{/privacy}", "followers_url": "https://api.github.com/users/JulesGM/followers", "following_url": "https://api.github.com/users/JulesGM/following{/other_user}", "gists_url": "https://api.github.com/users/JulesGM/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JulesGM", "id": 3231217, "login": "JulesGM", "node_id": "MDQ6VXNlcjMyMzEyMTc=", "organizations_url": "https://api.github.com/users/JulesGM/orgs", "received_events_url": "https://api.github.com/users/JulesGM/received_events", "repos_url": "https://api.github.com/users/JulesGM/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JulesGM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JulesGM/subscriptions", "type": "User", "url": "https://api.github.com/users/JulesGM", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! Unfortunately the Sparse Tensor structure in Arrow is not part of the Arrow format (yes it's confusing...), so it's not possible to use it in `datasets`. It's a separate structure that doesn't correspond to any type or extension type in Arrow.\n\nThe Arrow community recently added an extension type for fixed shape tensors at https://arrow.apache.org/docs/format/CanonicalExtensions.html#fixed-shape-tensor, it should be possible to contribute an extension type for sparse tensors as well." ]
2025-01-21T20:14:35
2025-01-30T14:06:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request AI in biology is becoming a big thing. One thing that would be a huge benefit to the field that Huggingface Datasets doesn't currently have is native support for **sparse arrays**. Arrow has support for sparse tensors. https://arrow.apache.org/docs/format/Other.html#sparse-tensor It would be a big deal if Hugging Face Datasets supported sparse tensors as a feature type, natively. ### Motivation This is important for example in the field of transcriptomics (modeling and understanding gene expression), because a large fraction of the genes are not expressed (zero). More generally, in science, sparse arrays are very common, so adding support for them would be very benefitial, it would make just using Hugging Face Dataset objects a lot more straightforward and clean. ### Your contribution We can discuss this further once the team comments of what they think about the feature, and if there were previous attempts at making it work, and understanding their evaluation of how hard it would be. My intuition is that it should be fairly straightforward, as the Arrow backend already supports it.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/7377/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7377/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7375
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7375/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7375/comments
https://api.github.com/repos/huggingface/datasets/issues/7375/events
https://github.com/huggingface/datasets/issues/7375
2,800,609,218
I_kwDODunzps6m7efC
7,375
vllm批量推理报错
{ "avatar_url": "https://avatars.githubusercontent.com/u/51228154?v=4", "events_url": "https://api.github.com/users/YuShengzuishuai/events{/privacy}", "followers_url": "https://api.github.com/users/YuShengzuishuai/followers", "following_url": "https://api.github.com/users/YuShengzuishuai/following{/other_user}", "gists_url": "https://api.github.com/users/YuShengzuishuai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/YuShengzuishuai", "id": 51228154, "login": "YuShengzuishuai", "node_id": "MDQ6VXNlcjUxMjI4MTU0", "organizations_url": "https://api.github.com/users/YuShengzuishuai/orgs", "received_events_url": "https://api.github.com/users/YuShengzuishuai/received_events", "repos_url": "https://api.github.com/users/YuShengzuishuai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/YuShengzuishuai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/YuShengzuishuai/subscriptions", "type": "User", "url": "https://api.github.com/users/YuShengzuishuai", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Make sure you have installed a recent version of `soundfile`" ]
2025-01-21T03:22:23
2025-01-30T14:02:40
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug ![Image](https://github.com/user-attachments/assets/3d958e43-28dc-4467-9333-5990c7af3b3f) ### Steps to reproduce the bug ![Image](https://github.com/user-attachments/assets/3067eeca-a54d-4956-b0fd-3fc5ea93dabb) ### Expected behavior ![Image](https://github.com/user-attachments/assets/77d32936-488f-4572-9365-bfb4170e555b) ### Environment info ![Image](https://github.com/user-attachments/assets/230335c4-825f-4db1-b07d-4776ef63ead8)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7375/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7375/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7373/comments
https://api.github.com/repos/huggingface/datasets/issues/7373/events
https://github.com/huggingface/datasets/issues/7373
2,793,237,139
I_kwDODunzps6mfWqT
7,373
Excessive RAM Usage After Dataset Concatenation concatenate_datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/40773225?v=4", "events_url": "https://api.github.com/users/sam-hey/events{/privacy}", "followers_url": "https://api.github.com/users/sam-hey/followers", "following_url": "https://api.github.com/users/sam-hey/following{/other_user}", "gists_url": "https://api.github.com/users/sam-hey/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sam-hey", "id": 40773225, "login": "sam-hey", "node_id": "MDQ6VXNlcjQwNzczMjI1", "organizations_url": "https://api.github.com/users/sam-hey/orgs", "received_events_url": "https://api.github.com/users/sam-hey/received_events", "repos_url": "https://api.github.com/users/sam-hey/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sam-hey/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sam-hey/subscriptions", "type": "User", "url": "https://api.github.com/users/sam-hey", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "![Image](https://github.com/user-attachments/assets/b6f8bcbd-44af-413e-bc06-65380eb0f746)\n\n![Image](https://github.com/user-attachments/assets/a241fcd8-4b62-495c-926c-685f82015dfb)\n\nAdding a img from memray\nhttps://gist.github.com/sam-hey/00c958f13fb0f7b54d17197fe353002f" ]
2025-01-16T16:33:10
2025-01-17T08:05:22
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When loading a dataset from disk, concatenating it, and starting the training process, the RAM usage progressively increases until the kernel terminates the process due to excessive memory consumption. https://github.com/huggingface/datasets/issues/2276 ### Steps to reproduce the bug ``` rom datasets import DatasetDict, concatenate_datasets dataset = DatasetDict.load_from_disk("data") ... ... combined_dataset = concatenate_datasets( [dataset[split] for split in dataset] ) #start SentenceTransformer training ``` ### Expected behavior I would not expect RAM utilization to increase after concatenation. Removing the concatenation step resolves the issue ### Environment info sentence-transformers==3.1.1 datasets==3.2.0 python3.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7373/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7373/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7372/comments
https://api.github.com/repos/huggingface/datasets/issues/7372/events
https://github.com/huggingface/datasets/issues/7372
2,791,760,968
I_kwDODunzps6mZuRI
7,372
Inconsistent Behavior Between `load_dataset` and `load_from_disk` When Loading Sharded Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/38203359?v=4", "events_url": "https://api.github.com/users/gaohongkui/events{/privacy}", "followers_url": "https://api.github.com/users/gaohongkui/followers", "following_url": "https://api.github.com/users/gaohongkui/following{/other_user}", "gists_url": "https://api.github.com/users/gaohongkui/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gaohongkui", "id": 38203359, "login": "gaohongkui", "node_id": "MDQ6VXNlcjM4MjAzMzU5", "organizations_url": "https://api.github.com/users/gaohongkui/orgs", "received_events_url": "https://api.github.com/users/gaohongkui/received_events", "repos_url": "https://api.github.com/users/gaohongkui/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gaohongkui/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaohongkui/subscriptions", "type": "User", "url": "https://api.github.com/users/gaohongkui", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-16T05:47:20
2025-01-16T05:47:20
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Description I encountered an inconsistency in behavior between `load_dataset` and `load_from_disk` when loading sharded datasets. Here is a minimal example to reproduce the issue: #### Code 1: Using `load_dataset` ```python from datasets import Dataset, load_dataset # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_dataset("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 1350 samples. - `test` has 150 samples. #### Code 2: Using `load_from_disk` ```python from datasets import Dataset, load_from_disk # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_from_disk("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 450 samples. - `test` has 50 samples. ### Expected Behavior I expected both `load_dataset` and `load_from_disk` to load the same dataset, as they are pointing to the same directory. However, the results differ significantly: - `load_dataset` seems to merge all shards, resulting in a combined dataset. - `load_from_disk` only loads the last saved dataset, ignoring previous shards. ### Questions 1. Is this behavior intentional? If so, could you clarify the difference between `load_dataset` and `load_from_disk` in the documentation? 2. If this is not intentional, could this be considered a bug? 3. What is the recommended way to handle cases where multiple datasets are saved to the same directory? Thank you for your time and effort in maintaining this great library! I look forward to your feedback.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7372/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7372/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7371/comments
https://api.github.com/repos/huggingface/datasets/issues/7371/events
https://github.com/huggingface/datasets/issues/7371
2,790,549,889
I_kwDODunzps6mVGmB
7,371
500 Server error with pushing a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7677814?v=4", "events_url": "https://api.github.com/users/martinmatak/events{/privacy}", "followers_url": "https://api.github.com/users/martinmatak/followers", "following_url": "https://api.github.com/users/martinmatak/following{/other_user}", "gists_url": "https://api.github.com/users/martinmatak/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/martinmatak", "id": 7677814, "login": "martinmatak", "node_id": "MDQ6VXNlcjc2Nzc4MTQ=", "organizations_url": "https://api.github.com/users/martinmatak/orgs", "received_events_url": "https://api.github.com/users/martinmatak/received_events", "repos_url": "https://api.github.com/users/martinmatak/repos", "site_admin": false, "starred_url": "https://api.github.com/users/martinmatak/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/martinmatak/subscriptions", "type": "User", "url": "https://api.github.com/users/martinmatak", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "EDIT: seems to be all good now. I'll add a comment if the error happens again within the next 48 hours. If it doesn't, I'll just close the topic." ]
2025-01-15T18:23:02
2025-01-15T20:06:05
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Suddenly, I started getting this error message saying it was an internal error. `Error creating/pushing dataset: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible! Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/u1295595/grasp_dataset_converter/src/grasp_dataset_converter/main.py", line 142, in main subset_train.push_to_hub(dataset_name, split='train') File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5624, in push_to_hub commit_info = api.create_commit( File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 1518, in _inner return fn(self, *args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 4087, in create_commit hf_raise_for_status(commit_resp, endpoint_name="commit") File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible!` ### Steps to reproduce the bug I am pushing a Dataset in a loop via push_to_hub API ### Expected behavior It worked fine until it stopped working suddenly. Expected behavior: It should start working again ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.0 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7371/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7371/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7369
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7369/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7369/comments
https://api.github.com/repos/huggingface/datasets/issues/7369/events
https://github.com/huggingface/datasets/issues/7369
2,787,193,238
I_kwDODunzps6mITGW
7,369
Importing dataset gives unhelpful error message when filenames in metadata.csv are not found in the directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/38278139?v=4", "events_url": "https://api.github.com/users/svencornetsdegroot/events{/privacy}", "followers_url": "https://api.github.com/users/svencornetsdegroot/followers", "following_url": "https://api.github.com/users/svencornetsdegroot/following{/other_user}", "gists_url": "https://api.github.com/users/svencornetsdegroot/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/svencornetsdegroot", "id": 38278139, "login": "svencornetsdegroot", "node_id": "MDQ6VXNlcjM4Mjc4MTM5", "organizations_url": "https://api.github.com/users/svencornetsdegroot/orgs", "received_events_url": "https://api.github.com/users/svencornetsdegroot/received_events", "repos_url": "https://api.github.com/users/svencornetsdegroot/repos", "site_admin": false, "starred_url": "https://api.github.com/users/svencornetsdegroot/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/svencornetsdegroot/subscriptions", "type": "User", "url": "https://api.github.com/users/svencornetsdegroot", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I'd prefer even more verbose errors; like `\"file123.mp3\" is referenced in metadata.csv, but not found in the data directory '/path/to/audiofolder' ! (and 100+ more missing files)` Or something along those lines." ]
2025-01-14T13:53:21
2025-01-14T15:05:51
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug While importing an audiofolder dataset, where the names of the audiofiles don't correspond to the filenames in the metadata.csv, we get an unclear error message that is not helpful for the debugging, i.e. ``` ValueError: Instruction "train" corresponds to no data! ``` ### Steps to reproduce the bug Assume an audiofolder with audiofiles, filename1.mp3, filename2.mp3 etc and a file metadata.csv which contains the columns file_name and sentence. The file_names are formatted like filename1.mp3, filename2.mp3 etc. Load the audio ``` from datasets import load_dataset load_dataset("audiofolder", data_dir='/path/to/audiofolder') ``` When the file_names in the csv are not in sync with the filenames in the audiofolder, then we get an Error message: ``` File /opt/conda/lib/python3.12/site-packages/datasets/arrow_reader.py:251, in BaseReader.read(self, name, instructions, split_infos, in_memory) 249 if not files: 250 msg = f'Instruction "{instructions}" corresponds to no data!' --> 251 raise ValueError(msg) 252 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ValueError: Instruction "train" corresponds to no data! ``` load_dataset has a default value for the argument split = 'train'. ### Expected behavior It would be better to get an error report something like: ``` The metadata.csv file has different filenames than the files in the datadirectory. ``` It would have saved me 4 hours of debugging. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.14.0-427.40.1.el9_4.x86_64-x86_64-with-glibc2.39 - Python version: 3.12.8 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7369/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7369/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7366
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7366/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7366/comments
https://api.github.com/repos/huggingface/datasets/issues/7366/events
https://github.com/huggingface/datasets/issues/7366
2,781,522,894
I_kwDODunzps6lyqvO
7,366
Dataset.from_dict() can't handle large dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/164967134?v=4", "events_url": "https://api.github.com/users/CSU-OSS/events{/privacy}", "followers_url": "https://api.github.com/users/CSU-OSS/followers", "following_url": "https://api.github.com/users/CSU-OSS/following{/other_user}", "gists_url": "https://api.github.com/users/CSU-OSS/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/CSU-OSS", "id": 164967134, "login": "CSU-OSS", "node_id": "U_kgDOCdUy3g", "organizations_url": "https://api.github.com/users/CSU-OSS/orgs", "received_events_url": "https://api.github.com/users/CSU-OSS/received_events", "repos_url": "https://api.github.com/users/CSU-OSS/repos", "site_admin": false, "starred_url": "https://api.github.com/users/CSU-OSS/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/CSU-OSS/subscriptions", "type": "User", "url": "https://api.github.com/users/CSU-OSS", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-11T02:05:21
2025-01-11T02:05:21
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I have 26,000,000 3-tuples. When I use Dataset.from_dict() to load, neither. py nor Jupiter notebook can run successfully. This is my code: ``` # len(example_data) is 26,000,000, 'diff' is a text diff1_list = [example_data[i].texts[0] for i in range(len(example_data))] diff2_list = [example_data[i].texts[1] for i in range(len(example_data))] label_list = [example_data[i].label for i in range(len(example_data))] embedding_dataset = Dataset.from_dict({ "diff1": diff1_list, "diff2": diff2_list, "label": label_list }) ``` ### Steps to reproduce the bug 1. Initialize a large 3-tuple, e.g. 26,000,000 2. Use Dataset.from_dict() to load ### Expected behavior Dataset.from_dict() run successfully ### Environment info sentence-transformers 3.3.1
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7366/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7366/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7365
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7365/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7365/comments
https://api.github.com/repos/huggingface/datasets/issues/7365/events
https://github.com/huggingface/datasets/issues/7365
2,780,216,199
I_kwDODunzps6ltruH
7,365
A parameter is specified but not used in datasets.arrow_dataset.Dataset.from_pandas()
{ "avatar_url": "https://avatars.githubusercontent.com/u/69003192?v=4", "events_url": "https://api.github.com/users/NourOM02/events{/privacy}", "followers_url": "https://api.github.com/users/NourOM02/followers", "following_url": "https://api.github.com/users/NourOM02/following{/other_user}", "gists_url": "https://api.github.com/users/NourOM02/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NourOM02", "id": 69003192, "login": "NourOM02", "node_id": "MDQ6VXNlcjY5MDAzMTky", "organizations_url": "https://api.github.com/users/NourOM02/orgs", "received_events_url": "https://api.github.com/users/NourOM02/received_events", "repos_url": "https://api.github.com/users/NourOM02/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NourOM02/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NourOM02/subscriptions", "type": "User", "url": "https://api.github.com/users/NourOM02", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-10T13:39:33
2025-01-10T13:39:33
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I am interested in creating train, test and eval splits from a pandas Dataframe, therefore I was looking at the possibilities I can follow. I noticed the split parameter and was hopeful to use it in order to generate the 3 at once, however, while trying to understand the code, i noticed that it has no added value (correct me if I am wrong or misunderstood the code). from_pandas function code : ```python if info is not None and features is not None and info.features != features: raise ValueError( f"Features specified in `features` and `info.features` can't be different:\n{features}\n{info.features}" ) features = features if features is not None else info.features if info is not None else None if info is None: info = DatasetInfo() info.features = features table = InMemoryTable.from_pandas( df=df, preserve_index=preserve_index, ) if features is not None: # more expensive cast than InMemoryTable.from_pandas(..., schema=features.arrow_schema) # needed to support the str to Audio conversion for instance table = table.cast(features.arrow_schema) return cls(table, info=info, split=split) ``` ### Steps to reproduce the bug ```python from datasets import Dataset # Filling the split parameter with whatever causes no harm at all data = Dataset.from_pandas(self.raw_data, split='egiojegoierjgoiejgrefiergiuorenvuirgurthgi') ``` ### Expected behavior Would be great if there is no split parameter (if it isn't working), or to add a concrete example of how it can be used. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-127-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7365/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7365/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7364
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7364/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7364/comments
https://api.github.com/repos/huggingface/datasets/issues/7364/events
https://github.com/huggingface/datasets/issues/7364
2,776,929,268
I_kwDODunzps6lhJP0
7,364
API endpoints for gated dataset access requests
{ "avatar_url": "https://avatars.githubusercontent.com/u/6140840?v=4", "events_url": "https://api.github.com/users/jerome-white/events{/privacy}", "followers_url": "https://api.github.com/users/jerome-white/followers", "following_url": "https://api.github.com/users/jerome-white/following{/other_user}", "gists_url": "https://api.github.com/users/jerome-white/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jerome-white", "id": 6140840, "login": "jerome-white", "node_id": "MDQ6VXNlcjYxNDA4NDA=", "organizations_url": "https://api.github.com/users/jerome-white/orgs", "received_events_url": "https://api.github.com/users/jerome-white/received_events", "repos_url": "https://api.github.com/users/jerome-white/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jerome-white/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jerome-white/subscriptions", "type": "User", "url": "https://api.github.com/users/jerome-white", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "Looks like a [similar feature request](https://github.com/huggingface/huggingface_hub/issues/1198) was made to the HF Hub team. Is handling this at the Hub level more appropriate?\r\n\r\n(As an aside, I've gotten the [HTTP-based solution](https://github.com/huggingface/huggingface_hub/issues/1198#issuecomment-1905774983) proposed in that forum to work for simple cases.)", "yes it's more for https://github.com/huggingface/huggingface_hub cc @hanouticelina ", "yes i think @Wauplin's comment on that thread is still what we recommend" ]
2025-01-09T06:21:20
2025-01-09T11:17:40
2025-01-09T11:17:20
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request I would like a programatic way of requesting access to gated datasets. The current solution to gain access forces me to visit a website and physically click an "agreement" button (as per the [documentation](https://huggingface.co/docs/hub/en/datasets-gated#access-gated-datasets-as-a-user)). An ideal approach would be HF API download methods that negotiate access on my behalf based on information from my CLI login and/or token. I realise that may be naive given the various types of access semantics available to dataset authors (automatic versus manual approval, for example) and complexities it might add to existing methods, but something along those lines would be nice. Perhaps using the `*_access_request` methods available to dataset authors can be a precedent; see [`reject_access_request`](https://huggingface.co/docs/huggingface_hub/main/en/package_reference/hf_api#huggingface_hub.HfApi.reject_access_request) for example. ### Motivation When trying to download files from a gated dataset, I'm met with a `GatedRepoError` and instructed to visit the repository's website to gain access: ``` Cannot access gated repo for url https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details/resolve/main/meta-llama__Meta-Llama-3.1-70B-Instruct/samples_leaderboard_math_precalculus_hard_2024-07-19T18-47-29.522341.jsonl. Access to dataset open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details is restricted and you are not in the authorized list. Visit https://huggingface.co/datasets/open-llm-leaderboard/meta-llama__Meta-Llama-3.1-70B-Instruct-details to ask for access. ``` This makes task automation extremely difficult. For example, I'm interested in studying sample-level responses of models on the LLM leaderboard -- how they answered particular questions on a given evaluation framework. As I come across more and more participants that gate their data, it's becoming unwieldy to continue my work (there over 2,000 participants, so in the worst case that's the number of website visits I'd need to manually undertake). One approach is use Selenium to react to the `GatedRepoError`, but that seems like overkill; and a potential violation HF terms of service (?). As mentioned in the previous section, there seems to be an [API for gated dataset owners](https://huggingface.co/docs/hub/en/datasets-gated#via-the-api) to managed access requests, and thus some appetite for allowing automated management of gating. This feature request is to extend that to dataset users. ### Your contribution Whether I can help depends on a few things; one being the complexity of the underlying gated access design. If this feature request is accepted I am open to being involved in discussions and testing, and even development under the right time-outcome tradeoff.
{ "avatar_url": "https://avatars.githubusercontent.com/u/6140840?v=4", "events_url": "https://api.github.com/users/jerome-white/events{/privacy}", "followers_url": "https://api.github.com/users/jerome-white/followers", "following_url": "https://api.github.com/users/jerome-white/following{/other_user}", "gists_url": "https://api.github.com/users/jerome-white/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jerome-white", "id": 6140840, "login": "jerome-white", "node_id": "MDQ6VXNlcjYxNDA4NDA=", "organizations_url": "https://api.github.com/users/jerome-white/orgs", "received_events_url": "https://api.github.com/users/jerome-white/received_events", "repos_url": "https://api.github.com/users/jerome-white/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jerome-white/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jerome-white/subscriptions", "type": "User", "url": "https://api.github.com/users/jerome-white", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7364/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7364/timeline
null
not_planned
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7363
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7363/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7363/comments
https://api.github.com/repos/huggingface/datasets/issues/7363/events
https://github.com/huggingface/datasets/issues/7363
2,774,090,012
I_kwDODunzps6lWUEc
7,363
ImportError: To support decoding images, please install 'Pillow'.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "what's your `pip show Pillow` output", "same issue.. my pip show Pillow output as below:\n\n```\nName: pillow\nVersion: 11.1.0\nSummary: Python Imaging Library (Fork)\nHome-page: https://python-pillow.github.io/\nAuthor: \nAuthor-email: \"Jeffrey A. Clark\" <aclark@aclark.net>\nLicense: MIT-CMU\nLocation: [/opt/homebrew/lib/python3.10/site-packages](https://file+.vscode-resource.vscode-cdn.net/opt/homebrew/lib/python3.10/site-packages)\nRequires: \nRequired-by:\n```", "I encountered the same problem on Ubuntu system, my pip show Pillow output as below:\n\n```\nName: pillow\nVersion: 10.4.0\nSummary: Python Imaging Library (Fork)\nHome-page: https://python-pillow.org/\nAuthor: \nAuthor-email: \"Jeffrey A. Clark\" <[aclark@aclark.net](mailto:aclark@aclark.net)>\nLicense: HPND\nLocation: /home/shunying/.local/lib/python3.8/site-packages\nRequires: \nRequired-by: \n```\n\nWell, solved this by specifying the pip version to my conda virtual environment :)" ]
2025-01-08T02:22:57
2025-02-07T07:30:33
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Following this tutorial locally using a macboko and VSCode: https://huggingface.co/docs/diffusers/en/tutorials/basic_training This line of code: for i, image in enumerate(dataset[:4]["image"]): throws: ImportError: To support decoding images, please install 'Pillow'. Pillow is installed. ### Steps to reproduce the bug Run the tutorial ### Expected behavior Images should be rendered ### Environment info MacBook, VSCode
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7363/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7363/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7362
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7362/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7362/comments
https://api.github.com/repos/huggingface/datasets/issues/7362/events
https://github.com/huggingface/datasets/issues/7362
2,773,731,829
I_kwDODunzps6lU8n1
7,362
HuggingFace CLI dataset download raises error
{ "avatar_url": "https://avatars.githubusercontent.com/u/3870355?v=4", "events_url": "https://api.github.com/users/ajayvohra2005/events{/privacy}", "followers_url": "https://api.github.com/users/ajayvohra2005/followers", "following_url": "https://api.github.com/users/ajayvohra2005/following{/other_user}", "gists_url": "https://api.github.com/users/ajayvohra2005/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ajayvohra2005", "id": 3870355, "login": "ajayvohra2005", "node_id": "MDQ6VXNlcjM4NzAzNTU=", "organizations_url": "https://api.github.com/users/ajayvohra2005/orgs", "received_events_url": "https://api.github.com/users/ajayvohra2005/received_events", "repos_url": "https://api.github.com/users/ajayvohra2005/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ajayvohra2005/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ajayvohra2005/subscriptions", "type": "User", "url": "https://api.github.com/users/ajayvohra2005", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "I got the same error and was able to resolve it by upgrading from 2.15.0 to 3.2.0.", "> I got the same error and was able to resolve it by upgrading from 2.15.0 to 3.2.0.\r\n\r\nWhat is needed is upgrading `huggingface-hub==0.27.1`. `datasets` does not appear to have anything to do with the error. The upgrade is a workaround, if the workaround works for your use case. Otherwise, this issue breaks all existing Python clients not using some minimum version of `huggingface-hub`. ", "Correct, this has to do with `huggingface_hub`, not `datasets`. Some old versions of `huggingface_hub` are unfortunately not robust to recent changes on HF. Updating `huggingface_hub` fixes the issue :)\r\n\r\nClosing this issue since it's not directly related to `datasets`" ]
2025-01-07T21:03:30
2025-01-08T15:00:37
2025-01-08T14:35:52
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Trying to download Hugging Face datasets using Hugging Face CLI raises error. This error only started after December 27th, 2024. For example: ``` huggingface-cli download --repo-type dataset gboleda/wikicorpus Traceback (most recent call last): File "/home/ubuntu/test_venv/bin/huggingface-cli", line 8, in <module> sys.exit(main()) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/huggingface_cli.py", line 51, in main service.run() File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 146, in run print(self._download()) # Print path to downloaded files File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/commands/download.py", line 180, in _download return snapshot_download( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/_snapshot_download.py", line 164, in snapshot_download repo_info = api.repo_info(repo_id=repo_id, repo_type=repo_type, revision=revision, token=token) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2491, in repo_info return method( File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2366, in dataset_info return DatasetInfo(**data) File "/home/ubuntu/test_venv/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 799, in __init__ self.tags = kwargs.pop("tags") KeyError: 'tags' ``` ### Steps to reproduce the bug ``` 1. huggingface-cli download --repo-type dataset gboleda/wikicorpus ``` ### Expected behavior There should be no error. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.8.0-1015-aws-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.5 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.3.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 3, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 3, "url": "https://api.github.com/repos/huggingface/datasets/issues/7362/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7362/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7360
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7360/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7360/comments
https://api.github.com/repos/huggingface/datasets/issues/7360/events
https://github.com/huggingface/datasets/issues/7360
2,771,751,406
I_kwDODunzps6lNZHu
7,360
error when loading dataset in Hugging Face: NoneType error is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/189343338?v=4", "events_url": "https://api.github.com/users/nanu23333/events{/privacy}", "followers_url": "https://api.github.com/users/nanu23333/followers", "following_url": "https://api.github.com/users/nanu23333/following{/other_user}", "gists_url": "https://api.github.com/users/nanu23333/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nanu23333", "id": 189343338, "login": "nanu23333", "node_id": "U_kgDOC0kmag", "organizations_url": "https://api.github.com/users/nanu23333/orgs", "received_events_url": "https://api.github.com/users/nanu23333/received_events", "repos_url": "https://api.github.com/users/nanu23333/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nanu23333/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nanu23333/subscriptions", "type": "User", "url": "https://api.github.com/users/nanu23333", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! I couldn't reproduce on my side, can you try deleting your cache at `~/.cache/huggingface/modules/datasets_modules/datasets/InstaDeepAI--nucleotide_transformer_downstream_tasks_revised` and try again ? For some reason `datasets` wasn't able to find the DatasetBuilder class in the python script of this dataset", "I've met the same problem when importing [LongBench-v1](https://github.com/THUDM/LongBench/blob/main/LongBench/README.md). the debugger reports `dataset_module.builder_configs_parameters.builder_configs` as `None` so that no `builder_cls` gets created:\n\n<img width=\"711\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/b62bdea7-442b-47dc-b892-87f4d235e324\" />\n\ndoes this mean that I need to downgrade `datasets`?", "I tried downgrading `datasets` to v2.20.0 and it works fine now...\n\nI think there might be some compatibility issues during code updates between `v2.20.0` and `v3.0.0` 🤔 \n\nalso I suggest @nanu23333 to see if downgrading works.", "Found the same problem. When I tried to downgrade the datasets to version below v3.0.0, another problem was raised: `UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb5 in position 1: invalid start byte`", "\nwhen I use the pip install datasets==3.3, I come across the error。Then I \n```\npip uninstall datasets\npip install datasets==2.21.0\n```\nIt is OK now" ]
2025-01-07T02:11:36
2025-02-24T13:32:52
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I met an error when running a notebook provide by Hugging Face, and met the error. ``` --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[2], line 5 3 # Load the enhancers dataset from the InstaDeep Hugging Face ressources 4 dataset_name = "enhancers_types" ----> 5 train_dataset_enhancers = load_dataset( 6 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 7 dataset_name, 8 split="train", 9 streaming= False, 10 ) 11 test_dataset_enhancers = load_dataset( 12 "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", 13 dataset_name, 14 split="test", 15 streaming= False, 16 ) File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File /public/home/hhl/miniconda3/envs/transformer/lib/python3.9/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance TypeError: 'NoneType' object is not callable ``` I have checked my internet, it worked well. And the dataset name was just copied from the Hugging Face. Totally no idea what is wrong! ### Steps to reproduce the bug To reproduce the bug you may run ``` from datasets import load_dataset, Dataset # Load the enhancers dataset from the InstaDeep Hugging Face ressources dataset_name = "enhancers_types" train_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="train", streaming= False, ) test_dataset_enhancers = load_dataset( "InstaDeepAI/nucleotide_transformer_downstream_tasks_revised", dataset_name, split="test", streaming= False, ) ``` ### Expected behavior 1. what may be the reasons of the error 2. how can I fine which reason lead to the error 3. how can I save the problem ### Environment info ``` - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.31 - Python version: 3.9.21 - `huggingface_hub` version: 0.27.0 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7360/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7360/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7359
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7359/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7359/comments
https://api.github.com/repos/huggingface/datasets/issues/7359/events
https://github.com/huggingface/datasets/issues/7359
2,771,137,842
I_kwDODunzps6lLDUy
7,359
There are multiple 'mteb/arguana' configurations in the cache: default, corpus, queries with HF_HUB_OFFLINE=1
{ "avatar_url": "https://avatars.githubusercontent.com/u/723146?v=4", "events_url": "https://api.github.com/users/Bhavya6187/events{/privacy}", "followers_url": "https://api.github.com/users/Bhavya6187/followers", "following_url": "https://api.github.com/users/Bhavya6187/following{/other_user}", "gists_url": "https://api.github.com/users/Bhavya6187/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Bhavya6187", "id": 723146, "login": "Bhavya6187", "node_id": "MDQ6VXNlcjcyMzE0Ng==", "organizations_url": "https://api.github.com/users/Bhavya6187/orgs", "received_events_url": "https://api.github.com/users/Bhavya6187/received_events", "repos_url": "https://api.github.com/users/Bhavya6187/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Bhavya6187/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Bhavya6187/subscriptions", "type": "User", "url": "https://api.github.com/users/Bhavya6187", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Related to https://github.com/embeddings-benchmark/mteb/issues/1714" ]
2025-01-06T17:42:49
2025-01-06T17:43:31
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Hey folks, I am trying to run this code - ```python from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") ``` with HF_HUB_OFFLINE=1 But I get the following error - ```python Using the latest cached version of the dataset since mteb/arguana couldn't be found on the Hugging Face Hub (offline mode is enabled). --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 1 ----> 1 ds = load_dataset("mteb/arguana") File ~/env/lib/python3.10/site-packages/datasets/load.py:2129, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, keep_in_memory, save_infos, revision, token, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2124 verification_mode = VerificationMode( 2125 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2126 ) 2128 # Create a dataset builder -> 2129 builder_instance = load_dataset_builder( 2130 path=path, 2131 name=name, 2132 data_dir=data_dir, 2133 data_files=data_files, 2134 cache_dir=cache_dir, 2135 features=features, 2136 download_config=download_config, 2137 download_mode=download_mode, 2138 revision=revision, 2139 token=token, 2140 storage_options=storage_options, 2141 trust_remote_code=trust_remote_code, 2142 _require_default_config_name=name is None, 2143 **config_kwargs, 2144 ) 2146 # Return iterable dataset in case of streaming 2147 if streaming: File ~/env/lib/python3.10/site-packages/datasets/load.py:1886, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 1884 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name) 1885 # Instantiate the dataset builder -> 1886 builder_instance: DatasetBuilder = builder_cls( 1887 cache_dir=cache_dir, 1888 dataset_name=dataset_name, 1889 config_name=config_name, 1890 data_dir=data_dir, 1891 data_files=data_files, 1892 hash=dataset_module.hash, 1893 info=info, 1894 features=features, 1895 token=token, 1896 storage_options=storage_options, 1897 **builder_kwargs, 1898 **config_kwargs, 1899 ) 1900 builder_instance._use_legacy_cache_dir_if_possible(dataset_module) 1902 return builder_instance File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:124, in Cache.__init__(self, cache_dir, dataset_name, config_name, version, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs) 122 config_kwargs["data_dir"] = data_dir 123 if hash == "auto" and version == "auto": --> 124 config_name, version, hash = _find_hash_in_cache( 125 dataset_name=repo_id or dataset_name, 126 config_name=config_name, 127 cache_dir=cache_dir, 128 config_kwargs=config_kwargs, 129 custom_features=features, 130 ) 131 elif hash == "auto" or version == "auto": 132 raise NotImplementedError("Pass both hash='auto' and version='auto' instead") File ~/env/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py:84, in _find_hash_in_cache(dataset_name, config_name, cache_dir, config_kwargs, custom_features) 72 other_configs = [ 73 Path(_cached_directory_path).parts[-3] 74 for _cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", version, hash)) (...) 81 ) 82 ] 83 if not config_id and len(other_configs) > 1: ---> 84 raise ValueError( 85 f"There are multiple '{dataset_name}' configurations in the cache: {', '.join(other_configs)}" 86 f"\nPlease specify which configuration to reload from the cache, e.g." 87 f"\n\tload_dataset('{dataset_name}', '{other_configs[0]}')" 88 ) 89 config_name = cached_directory_path.parts[-3] 90 warning_msg = ( 91 f"Found the latest cached dataset configuration '{config_name}' at {cached_directory_path} " 92 f"(last modified on {time.ctime(_get_modification_time(cached_directory_path))})." 93 ) ValueError: There are multiple 'mteb/arguana' configurations in the cache: queries, corpus, default Please specify which configuration to reload from the cache, e.g. load_dataset('mteb/arguana', 'queries') ``` It works when I run the same code with HF_HUB_OFFLINE=0, but after the data is downloaded, I turn off the HF hub cache with HF_HUB_OFFLINE=1, and then this error appears. Are there some files I am missing with hub disabled? ### Steps to reproduce the bug from datasets import load_dataset, get_dataset_config_names ds = load_dataset("mteb/arguana") with HF_HUB_OFFLINE=1 (after already running it with HF_HUB_OFFLINE=0 and populating the datasets cache) ### Expected behavior Dataset loaded successfully as it does with HF_HUB_OFFLINE=1 ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.148.2-2.cm2-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.27.0 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7359/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7359/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7357
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7357/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7357/comments
https://api.github.com/repos/huggingface/datasets/issues/7357/events
https://github.com/huggingface/datasets/issues/7357
2,770,456,127
I_kwDODunzps6lIc4_
7,357
Python process aborded with GIL issue when using image dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/25342812?v=4", "events_url": "https://api.github.com/users/AlexKoff88/events{/privacy}", "followers_url": "https://api.github.com/users/AlexKoff88/followers", "following_url": "https://api.github.com/users/AlexKoff88/following{/other_user}", "gists_url": "https://api.github.com/users/AlexKoff88/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AlexKoff88", "id": 25342812, "login": "AlexKoff88", "node_id": "MDQ6VXNlcjI1MzQyODEy", "organizations_url": "https://api.github.com/users/AlexKoff88/orgs", "received_events_url": "https://api.github.com/users/AlexKoff88/received_events", "repos_url": "https://api.github.com/users/AlexKoff88/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AlexKoff88/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AlexKoff88/subscriptions", "type": "User", "url": "https://api.github.com/users/AlexKoff88", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "The issue seems to come from `pyarrow`, I opened an issue on their side at https://github.com/apache/arrow/issues/45214" ]
2025-01-06T11:29:30
2025-03-08T15:59:36
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug The issue is visible only with the latest `datasets==3.2.0`. When using image dataset the Python process gets aborted right before the exit with the following error: ``` Fatal Python error: PyGILState_Release: thread state 0x7fa1f409ade0 must be current when releasing Python runtime state: finalizing (tstate=0x0000000000ad2958) Thread 0x00007fa33d157740 (most recent call first): <no Python frame> Extension modules: numpy.core._multiarray_umath, numpy.core._multiarray_tests, numpy.linalg._umath_linalg, numpy.fft._pocketfft_internal, numpy.random._common, numpy.random.bit_generator, numpy.random._boun ded_integers, numpy.random._mt19937, numpy.random.mtrand, numpy.random._philox, numpy.random._pcg64, numpy.random._sfc64, numpy.random._generator, pyarrow.lib, pandas._libs.tslibs.ccalendar, pandas._libs.ts libs.np_datetime, pandas._libs.tslibs.dtypes, pandas._libs.tslibs.base, pandas._libs.tslibs.nattype, pandas._libs.tslibs.timezones, pandas._libs.tslibs.fields, pandas._libs.tslibs.timedeltas, pandas._libs.t slibs.tzconversion, pandas._libs.tslibs.timestamps, pandas._libs.properties, pandas._libs.tslibs.offsets, pandas._libs.tslibs.strptime, pandas._libs.tslibs.parsing, pandas._libs.tslibs.conversion, pandas._l ibs.tslibs.period, pandas._libs.tslibs.vectorized, pandas._libs.ops_dispatch, pandas._libs.missing, pandas._libs.hashtable, pandas._libs.algos, pandas._libs.interval, pandas._libs.lib, pyarrow._compute, pan das._libs.ops, pandas._libs.hashing, pandas._libs.arrays, pandas._libs.tslib, pandas._libs.sparse, pandas._libs.internals, pandas._libs.indexing, pandas._libs.index, pandas._libs.writers, pandas._libs.join, pandas._libs.window.aggregations, pandas._libs.window.indexers, pandas._libs.reshape, pandas._libs.groupby, pandas._libs.json, pandas._libs.parsers, pandas._libs.testing, charset_normalizer.md, requests.pa ckages.charset_normalizer.md, requests.packages.chardet.md, yaml._yaml, markupsafe._speedups, PIL._imaging, torch._C, torch._C._dynamo.autograd_compiler, torch._C._dynamo.eval_frame, torch._C._dynamo.guards , torch._C._dynamo.utils, torch._C._fft, torch._C._linalg, torch._C._nested, torch._C._nn, torch._C._sparse, torch._C._special, sentencepiece._sentencepiece, sklearn.__check_build._check_build, psutil._psut il_linux, psutil._psutil_posix, scipy._lib._ccallback_c, scipy.sparse._sparsetools, _csparsetools, scipy.sparse._csparsetools, scipy.linalg._fblas, scipy.linalg._flapack, scipy.linalg.cython_lapack, scipy.l inalg._cythonized_array_utils, scipy.linalg._solve_toeplitz, scipy.linalg._decomp_lu_cython, scipy.linalg._matfuncs_sqrtm_triu, scipy.linalg.cython_blas, scipy.linalg._matfuncs_expm, scipy.linalg._decomp_up date, scipy.sparse.linalg._dsolve._superlu, scipy.sparse.linalg._eigen.arpack._arpack, scipy.sparse.linalg._propack._spropack, scipy.sparse.linalg._propack._dpropack, scipy.sparse.linalg._propack._cpropack, scipy.sparse.linalg._propack._zpropack, scipy.sparse.csgraph._tools, scipy.sparse.csgraph._shortest_path, scipy.sparse.csgraph._traversal, scipy.sparse.csgraph._min_spanning_tree, scipy.sparse.csgraph._flo w, scipy.sparse.csgraph._matching, scipy.sparse.csgraph._reordering, scipy.special._ufuncs_cxx, scipy.special._ufuncs, scipy.special._specfun, scipy.special._comb, scipy.special._ellip_harm_2, scipy.spatial ._ckdtree, scipy._lib.messagestream, scipy.spatial._qhull, scipy.spatial._voronoi, scipy.spatial._distance_wrap, scipy.spatial._hausdorff, scipy.spatial.transform._rotation, scipy.optimize._group_columns, s cipy.optimize._trlib._trlib, scipy.optimize._lbfgsb, _moduleTNC, scipy.optimize._moduleTNC, scipy.optimize._cobyla, scipy.optimize._slsqp, scipy.optimize._minpack, scipy.optimize._lsq.givens_elimination, sc ipy.optimize._zeros, scipy.optimize._highs.cython.src._highs_wrapper, scipy.optimize._highs._highs_wrapper, scipy.optimize._highs.cython.src._highs_constants, scipy.optimize._highs._highs_constants, scipy.l inalg._interpolative, scipy.optimize._bglu_dense, scipy.optimize._lsap, scipy.optimize._direct, scipy.integrate._odepack, scipy.integrate._quadpack, scipy.integrate._vode, scipy.integrate._dop, scipy.integr ate._lsoda, scipy.interpolate._fitpack, scipy.interpolate._dfitpack, scipy.interpolate._bspl, scipy.interpolate._ppoly, scipy.interpolate.interpnd, scipy.interpolate._rbfinterp_pythran, scipy.interpolate._r gi_cython, scipy.special.cython_special, scipy.stats._stats, scipy.stats._biasedurn, scipy.stats._levy_stable.levyst, scipy.stats._stats_pythran, scipy._lib._uarray._uarray, scipy.stats._ansari_swilk_statis tics, scipy.stats._sobol, scipy.stats._qmc_cy, scipy.stats._mvn, scipy.stats._rcont.rcont, scipy.stats._unuran.unuran_wrapper, scipy.ndimage._nd_image, _ni_label, scipy.ndimage._ni_label, sklearn.utils._isf inite, sklearn.utils.sparsefuncs_fast, sklearn.utils.murmurhash, sklearn.utils._openmp_helpers, sklearn.metrics.cluster._expected_mutual_info_fast, sklearn.preprocessing._csr_polynomial_expansion, sklearn.p reprocessing._target_encoder_fast, sklearn.metrics._dist_metrics, sklearn.metrics._pairwise_distances_reduction._datasets_pair, sklearn.utils._cython_blas, sklearn.metrics._pairwise_distances_reduction._bas e, sklearn.metrics._pairwise_distances_reduction._middle_term_computer, sklearn.utils._heap, sklearn.utils._sorting, sklearn.metrics._pairwise_distances_reduction._argkmin, sklearn.metrics._pairwise_distanc es_reduction._argkmin_classmode, sklearn.utils._vector_sentinel, sklearn.metrics._pairwise_distances_reduction._radius_neighbors, sklearn.metrics._pairwise_distances_reduction._radius_neighbors_classmode, s klearn.metrics._pairwise_fast, PIL._imagingft, google._upb._message, h5py._errors, h5py.defs, h5py._objects, h5py.h5, h5py.utils, h5py.h5t, h5py.h5s, h5py.h5ac, h5py.h5p, h5py.h5r, h5py._proxy, h5py._conv, h5py.h5z, h5py.h5a, h5py.h5d, h5py.h5ds, h5py.h5g, h5py.h5i, h5py.h5o, h5py.h5f, h5py.h5fd, h5py.h5pl, h5py.h5l, h5py._selector, _cffi_backend, pyarrow._parquet, pyarrow._fs, pyarrow._azurefs, pyarrow._hdfs , pyarrow._gcsfs, pyarrow._s3fs, multidict._multidict, propcache._helpers_c, yarl._quoting_c, aiohttp._helpers, aiohttp._http_writer, aiohttp._http_parser, aiohttp._websocket, frozenlist._frozenlist, xxhash ._xxhash, pyarrow._json, pyarrow._acero, pyarrow._csv, pyarrow._dataset, pyarrow._dataset_orc, pyarrow._parquet_encryption, pyarrow._dataset_parquet_encryption, pyarrow._dataset_parquet, regex._regex, scipy .io.matlab._mio_utils, scipy.io.matlab._streams, scipy.io.matlab._mio5_utils, PIL._imagingmath, PIL._webp (total: 236) Aborted (core dumped) ```an ### Steps to reproduce the bug Install `datasets==3.2.0` Run the following script: ```python import datasets DATASET_NAME = "phiyodr/InpaintCOCO" NUM_SAMPLES = 10 def preprocess_fn(example): return { "prompts": example["inpaint_caption"], "images": example["coco_image"], "masks": example["mask"], } default_dataset = datasets.load_dataset( DATASET_NAME, split="test", streaming=True ).filter(lambda example: example["inpaint_caption"] != "").take(NUM_SAMPLES) test_data = default_dataset.map( lambda x: preprocess_fn(x), remove_columns=default_dataset.column_names ) for data in test_data: print(data["prompts"]) `` ### Expected behavior The script should not hang or crash. ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-50-generic-x86_64-with-glibc2.31 - Python version: 3.11.0 - `huggingface_hub` version: 0.25.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.2.0
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/7357/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7357/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7356
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7356/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7356/comments
https://api.github.com/repos/huggingface/datasets/issues/7356/events
https://github.com/huggingface/datasets/issues/7356
2,770,095,103
I_kwDODunzps6lHEv_
7,356
How about adding a feature to pass the key when performing map on DatasetDict?
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "@lhoestq \r\nIf it's okay with you, can I work on this?", "Hi ! Can you give an example of what it would look like to use this new feature ?\r\n\r\nNote that currently you can already do\r\n\r\n```python\r\nds[\"train\"] = ds[\"train\"].map(process_train)\r\nds[\"test\"] = ds[\"test\"].map(process_test)\r\n```", "@lhoestq \nThanks for the response! \nLet me clarify what I'm looking for with an example:\n\nCurrently, we need to write separate processing functions or call .map() separately:\n```python\n# Current approach\ndef process_train(example):\n # Training-specific processing\n return example\n\ndef process_valid(example):\n # Validation-specific processing\n return example\n\nds[\"train\"] = ds[\"train\"].map(process_train)\nds[\"valid\"] = ds[\"valid\"].map(process_valid)\n```\n\nWhat I'm proposing is to have a single processing function that knows which split it's processing:\n\n```python\n# Proposed feature\ndef process(example, split_key):\n if split_key == \"train\":\n # Training-specific processing\n elif split_key == \"valid\":\n # Validation-specific processing\n return example\n\n# Using with_key=True to pass the split information\nds = ds.map(process, with_key=True)\n```\n\nThis becomes particularly useful when:\n1. The processing logic is heavily shared between splits but needs minor adjustments\n2. You want to maintain the processing logic in one place for better maintainability\n3. The processing function is complex and you want to avoid duplicating code\n\nSo I wanted to request this feature to achieve this kind of functionality. \nI've created a draft PR implementing this: https://github.com/huggingface/datasets/pull/7240/files\n", "I see ! I think it makes sense, and it's more readable than doing something like this:\r\n```python\r\nfrom functools import partial\r\nds = DatasetDict({key: ds[key].map(partial(process, split_key=key)) for key in ds})\r\n```\r\n\r\nPS: you named the argument `with_key` in your example, but it might be even clearer with it's named `with_split` maybe no ?", "@lhoestq I agree. \nIt seems better to use `with_split`.\nSo can I open a PR with this change?", "Sure !" ]
2025-01-06T08:13:52
2025-01-13T14:30:48
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Add a feature to pass the key of the DatasetDict when performing map ### Motivation I often preprocess using map on DatasetDict. Sometimes, I need to preprocess train and valid data differently depending on the task. So, I thought it would be nice to pass the key (like train, valid) when performing map on DatasetDict. What do you think? ### Your contribution I can submit a pull request to add the feature to pass the key of the DatasetDict when performing map.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7356/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7356/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7355
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7355/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7355/comments
https://api.github.com/repos/huggingface/datasets/issues/7355/events
https://github.com/huggingface/datasets/issues/7355
2,768,958,211
I_kwDODunzps6lCvMD
7,355
Not available datasets[audio] on python 3.13
{ "avatar_url": "https://avatars.githubusercontent.com/u/70306948?v=4", "events_url": "https://api.github.com/users/sergiosinlimites/events{/privacy}", "followers_url": "https://api.github.com/users/sergiosinlimites/followers", "following_url": "https://api.github.com/users/sergiosinlimites/following{/other_user}", "gists_url": "https://api.github.com/users/sergiosinlimites/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sergiosinlimites", "id": 70306948, "login": "sergiosinlimites", "node_id": "MDQ6VXNlcjcwMzA2OTQ4", "organizations_url": "https://api.github.com/users/sergiosinlimites/orgs", "received_events_url": "https://api.github.com/users/sergiosinlimites/received_events", "repos_url": "https://api.github.com/users/sergiosinlimites/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sergiosinlimites/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sergiosinlimites/subscriptions", "type": "User", "url": "https://api.github.com/users/sergiosinlimites", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "It looks like an issue with `numba` which can't be installed on 3.13 ? `numba` is a dependency of `librosa`, used to decode audio files" ]
2025-01-04T18:37:08
2025-01-10T10:46:00
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug This is the error I got, it seems numba package does not support python 3.13 PS C:\Users\sergi\Documents> pip install datasets[audio] Defaulting to user installation because normal site-packages is not writeable Collecting datasets[audio] Using cached datasets-3.2.0-py3-none-any.whl.metadata (20 kB) ... (OTHER PACKAGES) Collecting numba>=0.51.0 (from librosa->datasets[audio]) Downloading numba-0.60.0.tar.gz (2.7 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2.7/2.7 MB 44.1 MB/s eta 0:00:00 Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> [24 lines of output] Traceback (most recent call last): File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 353, in <module> main() ~~~~^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 335, in main json_out['return_val'] = hook(**hook_input['kwargs']) ~~~~^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Program Files\WindowsApps\PythonSoftwareFoundation.Python.3.13_3.13.496.0_x64__qbz5n2kfra8p0\Lib\site-packages\pip\_vendor\pyproject_hooks\_in_process\_in_process.py", line 118, in get_requires_for_build_wheel return hook(config_settings) File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 334, in get_requires_for_build_wheel return self._get_build_requires(config_settings, requirements=[]) ~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\sergi\AppData\Local\Temp\pip-build-env-yauns_qh\overlay\Lib\site-packages\setuptools\build_meta.py", line 304, in _get_build_requires self.run_setup() ~~~~~~~~~~~~~~^^ RuntimeError: Cannot install on Python version 3.13.1; only versions >=3.9,<3.13 are supported. [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: subprocess-exited-with-error × Getting requirements to build wheel did not run successfully. │ exit code: 1 ╰─> See above for output. ### Steps to reproduce the bug 1. install python >=3.13 2. !pip install datasets[audio] ### Expected behavior I needed datasets[audio] in the python 3.13 ### Environment info python 3.13.1
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7355/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7355/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7354
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7354/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7354/comments
https://api.github.com/repos/huggingface/datasets/issues/7354/events
https://github.com/huggingface/datasets/issues/7354
2,768,955,917
I_kwDODunzps6lCuoN
7,354
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "recreated .venv and run this: pip install diffusers[training]==0.11.1" ]
2025-01-04T18:30:17
2025-01-08T02:20:58
2025-01-08T02:20:58
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Following this tutorial: https://huggingface.co/docs/diffusers/en/tutorials/basic_training and running it locally using VSCode on my MacBook. The first line in the tutorial fails: from datasets import load_dataset dataset = load_dataset('huggan/smithsonian_butterflies_subset', split="train"). with this error: A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. and ImportError: numpy.core.multiarray failed to import. Does from datasets import load_dataset really use NumPy 1.x? ### Steps to reproduce the bug Open VSCode. create a new venv. Create a new ipynb file. Import pip install diffusers[training] try to run this line of code: from datasets import load_dataset ### Expected behavior data is loaded ### Environment info ran this: datasets-cli env and got A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1394644?v=4", "events_url": "https://api.github.com/users/jamessdixon/events{/privacy}", "followers_url": "https://api.github.com/users/jamessdixon/followers", "following_url": "https://api.github.com/users/jamessdixon/following{/other_user}", "gists_url": "https://api.github.com/users/jamessdixon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jamessdixon", "id": 1394644, "login": "jamessdixon", "node_id": "MDQ6VXNlcjEzOTQ2NDQ=", "organizations_url": "https://api.github.com/users/jamessdixon/orgs", "received_events_url": "https://api.github.com/users/jamessdixon/received_events", "repos_url": "https://api.github.com/users/jamessdixon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jamessdixon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jamessdixon/subscriptions", "type": "User", "url": "https://api.github.com/users/jamessdixon", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7354/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7354/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7456
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7456/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7456/comments
https://api.github.com/repos/huggingface/datasets/issues/7456/events
https://github.com/huggingface/datasets/issues/7456
2,922,676,278
I_kwDODunzps6uNIA2
7,456
.add_faiss_index and .add_elasticsearch_index returns ImportError at Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/109490785?v=4", "events_url": "https://api.github.com/users/MapleBloom/events{/privacy}", "followers_url": "https://api.github.com/users/MapleBloom/followers", "following_url": "https://api.github.com/users/MapleBloom/following{/other_user}", "gists_url": "https://api.github.com/users/MapleBloom/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MapleBloom", "id": 109490785, "login": "MapleBloom", "node_id": "U_kgDOBoayYQ", "organizations_url": "https://api.github.com/users/MapleBloom/orgs", "received_events_url": "https://api.github.com/users/MapleBloom/received_events", "repos_url": "https://api.github.com/users/MapleBloom/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MapleBloom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MapleBloom/subscriptions", "type": "User", "url": "https://api.github.com/users/MapleBloom", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I can fix this.\nIt's mainly because faiss-gpu requires python<=3.10 but the default python version in colab is 3.11. We just have to downgrade the CPython version down to 3.10 and it should work fine.\n", "I think I just had no chance to meet with faiss-cpu.\nIt could be import problem? \n_has_faiss gets its value at the beginning of datasets/search.\nI tried to call object before import faiss, so _has_faiss took False. And never updated later. ", "Yes you can't meet the requirements because faiss-cpu runs only on\r\npython3.10 and lower but the default version for colab is python3.11 which\r\nresults in pip not being able to find wheels for faiss-cpu with python3.11.\r\n\r\nOn Mon, 17 Mar, 2025, 3:56 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>\r\n>\r\n> I think I just had no chance to meet with faiss-cpu.\r\n> It could be import problem?\r\n> _has_faiss gets its value at the beginning of datasets/search.\r\n> I tried to call object before import faiss, so _has_faiss took False. And\r\n> never updated later.\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2728975672>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMBVD7LEDDUGALOTVN32U2PMBAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRYHE3TKNRXGI>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> you can't meet the requirements\n\nIt is not the case (or I didn't reach this point) because the same code in notebook\n```importlib.util.find_spec(\"faiss\")```\nfinds faiss. I've mention it.\nI think the problem is in the very moment when _has_faiss takes its value and never try again. \n(or it couldn't find the path that was easily found when started from my code)", "When you run the first cell containing pip install faiss-cpu does it\r\ninstall it?\r\n\r\nOn Mon, 17 Mar, 2025, 8:01 pm MapleBloom, ***@***.***> wrote:\r\n\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n> [image: MapleBloom]*MapleBloom* left a comment (huggingface/datasets#7456)\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>\r\n>\r\n> you can't meet the requirements\r\n>\r\n> It is not the case (or I didn't reach this point) because the same code in\r\n> notebook\r\n> importlib.util.find_spec(\"faiss\")\r\n> finds faiss. I've mention it.\r\n> I think the problem is in the very moment when _has_faiss takes its value\r\n> and never try again.\r\n> (or it couldn't find the path that was easily found when started from my\r\n> code)\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/7456#issuecomment-2729737414>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVUSZMCCE6BPZCOVAWXKIY32U3MFVAVCNFSM6AAAAABZDBA426VHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDOMRZG4ZTONBRGQ>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "> When you run the first cell containing pip install faiss-cpu does it\n> install it?\n> […](#)\n\nYes. It was installed succesfully. \nMethods of datasets library that depends on _has_faiss constant didn't start to work." ]
2025-03-16T00:51:49
2025-03-16T08:34:40
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug At Google Colab ```!pip install faiss-cpu``` works ```import faiss``` no error but ```embeddings_dataset.add_faiss_index(column='embeddings')``` returns ``` [/usr/local/lib/python3.11/dist-packages/datasets/search.py](https://localhost:8080/#) in init(self, device, string_factory, metric_type, custom_index) 247 self.faiss_index = custom_index 248 if not _has_faiss: --> 249 raise ImportError( 250 "You must install Faiss to use FaissIndex. To do so you can run conda install -c pytorch faiss-cpu or conda install -c pytorch faiss-gpu. " 251 "A community supported package is also available on pypi: pip install faiss-cpu or pip install faiss-gpu. " ``` because ```_has_faiss = importlib.util.find_spec("faiss") is not None``` at the beginning of ```datasets/search.py``` returns ```False``` when the same code at colab notebook returns ```ModuleSpec(name='faiss', loader=<_frozen_importlib_external.SourceFileLoader object at 0x7b7851449f50>, origin='/usr/local/lib/python3.11/dist-packages/faiss/init.py', submodule_search_locations=['/usr/local/lib/python3.11/dist-packages/faiss'])``` But ``` import datasets datasets.search._has_faiss ``` at ```colab notebook``` also returns ```False``` The same story with ```_has_elasticsearch``` ### Steps to reproduce the bug 1. Follow https://huggingface.co/learn/nlp-course/chapter5/6?fw=pt at Google Colab 2. till ```embeddings_dataset.add_faiss_index(column='embeddings')``` 3. ```embeddings_dataset.add_elasticsearch_index(column='embeddings')``` 4. https://colab.research.google.com/drive/1h2cjuiClblqzbNQgrcoLYOC8zBqTLLcv#scrollTo=3ddzRp72auOF ### Expected behavior I've only started Tutorial and don't know exactly. But something tells me that ```embeddings_dataset.add_faiss_index(column='embeddings')``` should work without ```Import Error``` ### Environment info Google Colab notebook with default config
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7456/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7456/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7455
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7455/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7455/comments
https://api.github.com/repos/huggingface/datasets/issues/7455/events
https://github.com/huggingface/datasets/issues/7455
2,921,933,250
I_kwDODunzps6uKSnC
7,455
Problems with local dataset after upgrade from 3.3.2 to 3.4.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/60151338?v=4", "events_url": "https://api.github.com/users/andjoer/events{/privacy}", "followers_url": "https://api.github.com/users/andjoer/followers", "following_url": "https://api.github.com/users/andjoer/following{/other_user}", "gists_url": "https://api.github.com/users/andjoer/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/andjoer", "id": 60151338, "login": "andjoer", "node_id": "MDQ6VXNlcjYwMTUxMzM4", "organizations_url": "https://api.github.com/users/andjoer/orgs", "received_events_url": "https://api.github.com/users/andjoer/received_events", "repos_url": "https://api.github.com/users/andjoer/repos", "site_admin": false, "starred_url": "https://api.github.com/users/andjoer/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/andjoer/subscriptions", "type": "User", "url": "https://api.github.com/users/andjoer", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! I just released 3.4.1 with a fix, let me know if it's working now !" ]
2025-03-15T09:22:50
2025-03-15T09:23:55
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I was not able to open a local saved dataset anymore that was created using an older datasets version after the upgrade yesterday from datasets 3.3.2 to 3.4.0 The traceback is ``` Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 67, in _generate_tables batches = pa.ipc.open_stream(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 190, in open_stream return RecordBatchStreamReader(source, options=options, File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 52, in __init__ self._open(source, options=options, memory_pool=memory_pool) File "pyarrow/ipc.pxi", line 1006, in pyarrow.lib._RecordBatchStreamReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Expected to read 538970747 metadata bytes, but only read 2126 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1855, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/arrow/arrow.py", line 69, in _generate_tables reader = pa.ipc.open_file(f) File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 234, in open_file return RecordBatchFileReader( File "/usr/local/lib/python3.10/dist-packages/pyarrow/ipc.py", line 110, in __init__ self._open(source, footer_offset=footer_offset, File "pyarrow/ipc.pxi", line 1090, in pyarrow.lib._RecordBatchFileReader._open File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Not an Arrow file ``` ### Steps to reproduce the bug Load a dataset from a local folder with ``` dataset = load_dataset( args.train_data_dir, cache_dir=args.cache_dir, ) ``` as it is done for example in the training script for SD3 controlnet. This is the minimal script to test it: ``` from datasets import load_dataset def main(): dataset = load_dataset( "local_dataset", ) print(dataset) print("Sample data:", dataset["train"][0]) if __name__ == "__main__": main() ```` ### Expected behavior Work in 3.4.0 like in 3.3.2 ### Environment info - `datasets` version: 3.4.0 - Platform: Linux-5.15.0-75-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.29.3 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7455/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7455/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7449
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7449/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7449/comments
https://api.github.com/repos/huggingface/datasets/issues/7449/events
https://github.com/huggingface/datasets/issues/7449
2,916,235,092
I_kwDODunzps6t0jdU
7,449
Cannot load data with different schemas from different parquet files
{ "avatar_url": "https://avatars.githubusercontent.com/u/39846316?v=4", "events_url": "https://api.github.com/users/li-plus/events{/privacy}", "followers_url": "https://api.github.com/users/li-plus/followers", "following_url": "https://api.github.com/users/li-plus/following{/other_user}", "gists_url": "https://api.github.com/users/li-plus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/li-plus", "id": 39846316, "login": "li-plus", "node_id": "MDQ6VXNlcjM5ODQ2MzE2", "organizations_url": "https://api.github.com/users/li-plus/orgs", "received_events_url": "https://api.github.com/users/li-plus/received_events", "repos_url": "https://api.github.com/users/li-plus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/li-plus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/li-plus/subscriptions", "type": "User", "url": "https://api.github.com/users/li-plus", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! `load_dataset` expects all the data_files to have the same schema.\n\nMaybe you can try enforcing certain `features` using:\n\n```python\nfeatures = Features({\"conversations\": {'content': Value('string'), 'role': Value('string',)}})\nds = load_dataset(..., features=features)\n```", "Thanks! It works if I explicitly specify all nested fields of the data." ]
2025-03-13T08:14:49
2025-03-13T11:19:06
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Cannot load samples with optional fields from different files. The schema cannot be correctly derived. ### Steps to reproduce the bug When I place two samples with an optional field `some_extra_field` within a single parquet file, it can be loaded via `load_dataset`. ```python import pandas as pd from datasets import load_dataset data = [ {'conversations': {'role': 'user', 'content': 'hello'}}, {'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}} ] df = pd.DataFrame(data) df.to_parquet('data.parquet') dataset = load_dataset('parquet', data_files='data.parquet', split='train') print(dataset.features) ``` The schema can be derived. `some_extra_field` is set to None for the first row where it is absent. ``` {'conversations': {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None), 'some_extra_field': Value(dtype='string', id=None)}} ``` However, when I separate the samples into different files, it cannot be loaded. ```python import pandas as pd from datasets import load_dataset data1 = [{'conversations': {'role': 'user', 'content': 'hello'}}] pd.DataFrame(data1).to_parquet('data1.parquet') data2 = [{'conversations': {'role': 'user', 'content': 'hi', 'some_extra_field': 'some_value'}}] pd.DataFrame(data2).to_parquet('data2.parquet') dataset = load_dataset('parquet', data_files=['data1.parquet', 'data2.parquet'], split='train') print(dataset.features) ``` Traceback: ``` Traceback (most recent call last): File "/home/tiger/.local/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single for _, table in generator: File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema arrays = [ File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp> cast_array_to_feature( File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/tiger/.local/lib/python3.9/site-packages/datasets/table.py", line 2108, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<content: string, role: string, some_extra_field: string> to {'content': Value(dtype='string', id=None), 'role': Value(dtype='string', id=None)} ``` ### Expected behavior Correctly load data with optional fields from different parquet files. ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.10.135.bsk.4-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7449/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7449/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7448
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7448/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7448/comments
https://api.github.com/repos/huggingface/datasets/issues/7448/events
https://github.com/huggingface/datasets/issues/7448
2,916,025,762
I_kwDODunzps6tzwWi
7,448
`datasets.disable_caching` doesn't work
{ "avatar_url": "https://avatars.githubusercontent.com/u/35629974?v=4", "events_url": "https://api.github.com/users/UCC-team/events{/privacy}", "followers_url": "https://api.github.com/users/UCC-team/followers", "following_url": "https://api.github.com/users/UCC-team/following{/other_user}", "gists_url": "https://api.github.com/users/UCC-team/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/UCC-team", "id": 35629974, "login": "UCC-team", "node_id": "MDQ6VXNlcjM1NjI5OTc0", "organizations_url": "https://api.github.com/users/UCC-team/orgs", "received_events_url": "https://api.github.com/users/UCC-team/received_events", "repos_url": "https://api.github.com/users/UCC-team/repos", "site_admin": false, "starred_url": "https://api.github.com/users/UCC-team/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/UCC-team/subscriptions", "type": "User", "url": "https://api.github.com/users/UCC-team", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "cc" ]
2025-03-13T06:40:12
2025-03-13T06:40:12
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
When I use `Dataset.from_generator(my_gen)` to load my dataset, it simply skips my changes to the generator function. I tried `datasets.disable_caching`, but it doesn't work!
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7448/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7448/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7447
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7447/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7447/comments
https://api.github.com/repos/huggingface/datasets/issues/7447/events
https://github.com/huggingface/datasets/issues/7447
2,915,233,248
I_kwDODunzps6twu3g
7,447
Epochs shortened after resuming mid-epoch with Iterable dataset+StatefulDataloader(persistent_workers=True)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "Thanks for reporting ! Maybe we should store the epoch in the state_dict, and then when the dataset is iterated on again after setting a new epoch it should restart from scratch instead of resuming ? wdyt ?", "But why does this only happen when `persistent_workers=True`? I would expect it to work correctly even without storing the epoch number in the state_dict of the iterable dataset. ", "I think persistent_workers=False simply ignores the dataset state_dict when it starts a new epoch, that's why the issue doesn't appear in that case", "I opened https://github.com/huggingface/datasets/pull/7451 to fix the issue, let me know if it works for you", "I just released `datasets` 3.4 that includes the fix :)\n\nPS: in your script you probably want to set the epoch like this, otherwise it's still set to 0 after the first epoch:\n\n```diff\n if state_dict is None:\n- ds.set_epoch(epoch)\n epoch += 1\n+ ds.set_epoch(epoch)\n```" ]
2025-03-12T21:41:05
2025-03-14T17:26:59
2025-03-14T10:50:10
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When `torchdata.stateful_dataloader.StatefulDataloader(persistent_workers=True)` the epochs after resuming only iterate through the examples that were left in the epoch when the training was interrupted. For example, in the script below training is interrupted on step 124 (epoch 1) when 3 batches are left. Then after resuming, the rest of epochs (2 and 3) only iterate through these 3 batches. ### Steps to reproduce the bug Run the following script with and with PERSISTENT_WORKERS=true. ```python # !/usr/bin/env python3 # torch==2.5.1 # datasets==3.3.2 # torchdata>=0.9.0 import datasets import pprint from torchdata.stateful_dataloader import StatefulDataLoader import os PERSISTENT_WORKERS = ( os.environ.get("PERSISTENT_WORKERS", "False").lower() == "true" ) # PERSISTENT_WORKERS = True # Incorrect resume # ds = datasets.load_from_disk("dataset").to_iterable_dataset(num_shards=4) def generator(): for i in range(128): yield {"x": i} ds = datasets.Dataset.from_generator( generator, features=datasets.Features({"x": datasets.Value("int32")}) ).to_iterable_dataset(num_shards=4) dl = StatefulDataLoader( ds, batch_size=2, num_workers=2, persistent_workers=PERSISTENT_WORKERS ) global_step = 0 epoch = 0 ds_state_dict = None state_dict = None resumed = False while True: if epoch >= 3: break if state_dict is not None: dl.load_state_dict(state_dict) state_dict = None ds_state_dict = None resumed = True print("resumed") for i, batch in enumerate(dl): print(f"epoch: {epoch}, global_step: {global_step}, batch: {batch}") global_step += 1 # consume datapoint # simulate error if global_step == 124 and not resumed: ds_state_dict = ds.state_dict() state_dict = dl.state_dict() print("checkpoint") print("ds_state_dict") pprint.pprint(ds_state_dict) print("dl_state_dict") pprint.pprint(state_dict) break if state_dict is None: ds.set_epoch(epoch) epoch += 1 ``` The script checkpoints when there are three batches left in the second epoch. After resuming, only the last three batches are repeated in the rest of the epochs. If it helps, following are the two state_dicts for the dataloader save at the same step with the two settings. The left one is for `PERSISTENT_WORKERS=False` ![Image](https://github.com/user-attachments/assets/c97d6502-d7bd-4ef4-ae2d-66fe1a9732b1) ### Expected behavior All the elements in the dataset should be iterated through in the epochs following the one where we resumed. The expected behavior can be seen by setting `PERSISTENT_WORKERS=False`. ### Environment info torch==2.5.1 datasets==3.3.2 torchdata>=0.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7447/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7447/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7446
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7446/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7446/comments
https://api.github.com/repos/huggingface/datasets/issues/7446/events
https://github.com/huggingface/datasets/issues/7446
2,913,050,552
I_kwDODunzps6toZ-4
7,446
pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int'
{ "avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4", "events_url": "https://api.github.com/users/rangehow/events{/privacy}", "followers_url": "https://api.github.com/users/rangehow/followers", "following_url": "https://api.github.com/users/rangehow/following{/other_user}", "gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rangehow", "id": 88258534, "login": "rangehow", "node_id": "MDQ6VXNlcjg4MjU4NTM0", "organizations_url": "https://api.github.com/users/rangehow/orgs", "received_events_url": "https://api.github.com/users/rangehow/received_events", "repos_url": "https://api.github.com/users/rangehow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rangehow/subscriptions", "type": "User", "url": "https://api.github.com/users/rangehow", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-12T07:48:37
2025-03-12T07:48:37
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug A dict with its keys are all str but get following error ```python test_data=[{'input_ids':[1,2,3],'labels':[[Counter({2:1})]]}] dataset = datasets.Dataset.from_list(test_data) ``` ```bash pyarrow.lib.ArrowTypeError: Expected dict key of type str or bytes, got 'int' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info datasets 3.3.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7446/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7446/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7444
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7444/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7444/comments
https://api.github.com/repos/huggingface/datasets/issues/7444/events
https://github.com/huggingface/datasets/issues/7444
2,911,202,445
I_kwDODunzps6thWyN
7,444
Excessive warnings when resuming an IterableDataset+buffered shuffle+DDP.
{ "avatar_url": "https://avatars.githubusercontent.com/u/4356534?v=4", "events_url": "https://api.github.com/users/dhruvdcoder/events{/privacy}", "followers_url": "https://api.github.com/users/dhruvdcoder/followers", "following_url": "https://api.github.com/users/dhruvdcoder/following{/other_user}", "gists_url": "https://api.github.com/users/dhruvdcoder/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dhruvdcoder", "id": 4356534, "login": "dhruvdcoder", "node_id": "MDQ6VXNlcjQzNTY1MzQ=", "organizations_url": "https://api.github.com/users/dhruvdcoder/orgs", "received_events_url": "https://api.github.com/users/dhruvdcoder/received_events", "repos_url": "https://api.github.com/users/dhruvdcoder/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dhruvdcoder/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dhruvdcoder/subscriptions", "type": "User", "url": "https://api.github.com/users/dhruvdcoder", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-03-11T16:34:39
2025-03-11T16:36:01
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I have a large dataset that I shared into 1024 shards and save on the disk during pre-processing. During training, I load the dataset using load_from_disk() and convert it into an iterable dataset, shuffle it and split the shards to different DDP nodes using the recommended method. However, when the training is resumed mid-epoch, I get thousands of identical warning messages: ``` Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. ``` ### Steps to reproduce the bug 1. Run a multi-node training job using the following python script and interrupt the training after a few seconds to save a mid-epoch checkpoint. ```python #!/usr/bin/env python import os import time from typing import Dict, List import torch import lightning as pl from torch.utils.data import DataLoader from datasets import Dataset from datasets.distributed import split_dataset_by_node import datasets from transformers import AutoTokenizer from more_itertools import flatten, chunked from torchdata.stateful_dataloader import StatefulDataLoader from lightning.pytorch.callbacks.on_exception_checkpoint import ( OnExceptionCheckpoint, ) datasets.logging.set_verbosity_debug() def dummy_generator(): # Generate 60 examples: integers from $0$ to $59$ # 64 sequences of different lengths dataset = [ list(range(3, 10)), list(range(10, 15)), list(range(15, 21)), list(range(21, 27)), list(range(27, 31)), list(range(31, 36)), list(range(36, 45)), list(range(45, 50)), ] for i in range(8): for j, ids in enumerate(dataset): yield {"token_ids": [idx + i * 50 for idx in ids]} def group_texts( examples: Dict[str, List[List[int]]], block_size: int, eos_token_id: int, bos_token_id: int, pad_token_id: int, ) -> Dict[str, List[List[int]]]: real_block_size = block_size - 2 # make space for bos and eos # colapse the sequences into a single list of tokens and then create blocks of real_block_size input_ids = [] attention_mask = [] for block in chunked(flatten(examples["token_ids"]), real_block_size): s = [bos_token_id] + list(block) + [eos_token_id] ls = len(s) attn = [True] * ls s += [pad_token_id] * (block_size - ls) attn += [False] * (block_size - ls) input_ids.append(s) attention_mask.append(attn) return {"input_ids": input_ids, "attention_mask": attention_mask} def collate_fn(batch): return { "input_ids": torch.tensor( [item["input_ids"] for item in batch], dtype=torch.long ), "attention_mask": torch.tensor( [item["attention_mask"] for item in batch], dtype=torch.long ), } class DummyModule(pl.LightningModule): def __init__(self): super().__init__() # A dummy linear layer (not used for actual computation) self.layer = torch.nn.Linear(1, 1) self.ds = None self.prepare_data_per_node = False def on_train_start(self): # This hook is called once training begins on each process. print(f"[Rank {self.global_rank}] Training started.", flush=True) self.data_file = open(f"data_{self.global_rank}.txt", "w") def on_train_end(self): self.data_file.close() def training_step(self, batch, batch_idx): # Print batch information to verify data loading. time.sleep(5) # print("batch", batch, flush=True) print( f"\n[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training step, epoch {self.trainer.current_epoch}, batch {batch_idx}: {batch['input_ids']}\n" ) # Compute a dummy loss (here, simply a constant tensor) loss = torch.tensor(0.0, requires_grad=True) return loss def on_train_epoch_start(self): epoch = self.trainer.current_epoch print( f"[Rank {self.global_rank}] Training epoch {epoch} started.", flush=True, ) self.data_file.write( f"[Rank {self.global_rank}] Training epoch {epoch} started.\n" ) def configure_optimizers(self): # Return a dummy optimizer. return torch.optim.SGD(self.parameters(), lr=0.001) class DM(pl.LightningDataModule): def __init__(self): super().__init__() self.ds = None self.prepare_data_per_node = False def set_epoch(self, epoch: int): self.ds.set_epoch(epoch) def prepare_data(self): # download the dataset dataset = Dataset.from_generator(dummy_generator) # save the dataset dataset.save_to_disk("dataset", num_shards=4) def setup(self, stage: str): # load the dataset ds = datasets.load_from_disk("dataset").to_iterable_dataset( num_shards=4 ) ds = ds.map( group_texts, batched=True, batch_size=5, fn_kwargs={ "block_size": 5, "eos_token_id": 1, "bos_token_id": 0, "pad_token_id": 2, }, remove_columns=["token_ids"], ).shuffle(seed=42, buffer_size=8) ds = split_dataset_by_node( ds, rank=self.trainer.global_rank, world_size=self.trainer.world_size, ) self.ds = ds def train_dataloader(self): print( f"[Rank {self.trainer.global_rank}] Preparing train_dataloader...", flush=True, ) rank = self.trainer.global_rank print( f"[Rank {rank}] Global rank: {self.trainer.global_rank}", flush=True, ) world_size = self.trainer.world_size print(f"[Rank {rank}] World size: {world_size}", flush=True) return StatefulDataLoader( self.ds, batch_size=2, num_workers=2, collate_fn=collate_fn, drop_last=True, persistent_workers=True, ) if __name__ == "__main__": print("Starting Lightning training", flush=True) # Optionally, print some SLURM environment info for debugging. print(f"SLURM_NNODES: {os.environ.get('SLURM_NNODES', '1')}", flush=True) # Determine the number of nodes from SLURM (defaulting to 1 if not set) num_nodes = int(os.environ.get("SLURM_NNODES", "1")) model = DummyModule() dm = DM() on_exception = OnExceptionCheckpoint( dirpath="checkpoints", filename="on_exception", ) # Configure the Trainer to use distributed data parallel (DDP). trainer = pl.Trainer( accelerator="gpu" if torch.cuda.is_available() else "cpu", devices=1, strategy=( "ddp" if num_nodes > 1 else "auto" ), # Use DDP strategy for multi-node training. num_nodes=num_nodes, max_epochs=2, logger=False, enable_checkpointing=True, num_sanity_val_steps=0, enable_progress_bar=False, callbacks=[on_exception], ) # resume (uncomment to resume) # trainer.fit(model, datamodule=dm, ckpt_path="checkpoints/on_exception.ckpt") # train trainer.fit(model, datamodule=dm) ``` ```bash #!/bin/bash #SBATCH --job-name=pl_ddp_test #SBATCH --nodes=2 # Adjust number of nodes as needed #SBATCH --ntasks-per-node=1 # One GPU (process) per node #SBATCH --cpus-per-task=3 # At least as many dataloader workers as required #SBATCH --gres=gpu:1 # Request one GPU per node #SBATCH --time=00:10:00 # Job runtime (adjust as needed) #SBATCH --partition=gpu-preempt # Partition or queue name #SBATCH -o script.out # Disable Python output buffering. export PYTHONUNBUFFERED=1 echo "SLURM job starting on $(date)" echo "Running on nodes: $SLURM_NODELIST" echo "Current directory: $(pwd)" ls -l # Launch the script using srun so that each process starts the Lightning module. srun script.py ``` 2. Uncomment the "resume" line (second to last) and comment the original `trainer.fit` call (last line). It will produce the following log. ``` [Rank 0] Preparing train_dataloader... [Rank 0] Global rank: 0 [Rank 0] World size: 2 [Rank 1] Preparing train_dataloader... [Rank 1] Global rank: 1 [Rank 1] World size: 2 Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. [Rank 0] Training started. [Rank 0] Training epoch 0 started. [Rank 0] Training epoch 1 started. Assigning 2 shards (or data sources) of the dataset to each node. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#0 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#0 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#0 dataloader worker#1, ': Finished iterating over 1/1 shards. node#0 dataloader worker#0, ': Finished iterating over 1/1 shards. `Trainer.fit` stopped: `max_epochs=2` reached. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. [Rank 1] Training started. [Rank 1] Training epoch 0 started. [Rank 1] Training epoch 1 started. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. node#1 dataloader worker#0, ': Starting to iterate over 1/2 shards. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Loading a state dict of a shuffle buffer of a dataset without the buffer content.The shuffle buffer will be refilled before starting to yield new examples. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. Set __getitem__(key) output type to arrow for no columns (when key is int or slice) and don't output other (un-formatted) columns. node#1 dataloader worker#0, ': Finished iterating over 1/1 shards. node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` I'm also attaching the relevant state_dict to make sure that the state is being checkpointed as expected. ``` {'_iterator_finished': True, '_snapshot': {'_last_yielded_worker_id': 1, '_main_snapshot': {'_IterableDataset_len_called': None, '_base_seed': 3992758080362545099, '_index_sampler_state': {'samples_yielded': 64}, '_num_workers': 2, '_sampler_iter_state': None, '_sampler_iter_yielded': 32, '_shared_seed': None}, '_snapshot_step': 32, '_worker_snapshots': {'worker_0': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 0}, 'worker_1': {'dataset_state': {'ex_iterable': {'shard_example_idx': 0, 'shard_idx': 1}, 'num_examples_since_previous_state': 0, 'previous_state': {'shard_example_idx': 0, 'shard_idx': 1}, 'previous_state_example_idx': 33}, 'fetcher_state': {'dataset_iter_state': None, 'fetcher_ended': False}, 'worker_id': 1}}}, '_steps_since_snapshot': 0} ``` ### Expected behavior Since I'm following all the recommended steps, I don't expect to see any warning when resuming. Am I doing something wrong? Also, can someone explain why I'm seeing 20 identical messages in the log in this reproduction setting? I'm trying to understand why I see thousands of these messages with the actual dataset. One more surprising thing I noticed in the logs is the change in a number of shards per worker. In the following messages, the denominator changes from 2 to 1. ``` node#1 dataloader worker#1, ': Starting to iterate over 1/2 shards. ... node#1 dataloader worker#1, ': Finished iterating over 1/1 shards. ``` ### Environment info python: 3.11.10 datasets: 3.3.2 lightning: 2.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7444/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7444/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7443
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7443/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7443/comments
https://api.github.com/repos/huggingface/datasets/issues/7443/events
https://github.com/huggingface/datasets/issues/7443
2,908,585,656
I_kwDODunzps6tXX64
7,443
index error when num_shards > len(dataset)
{ "avatar_url": "https://avatars.githubusercontent.com/u/17934496?v=4", "events_url": "https://api.github.com/users/eminorhan/events{/privacy}", "followers_url": "https://api.github.com/users/eminorhan/followers", "following_url": "https://api.github.com/users/eminorhan/following{/other_user}", "gists_url": "https://api.github.com/users/eminorhan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eminorhan", "id": 17934496, "login": "eminorhan", "node_id": "MDQ6VXNlcjE3OTM0NDk2", "organizations_url": "https://api.github.com/users/eminorhan/orgs", "received_events_url": "https://api.github.com/users/eminorhan/received_events", "repos_url": "https://api.github.com/users/eminorhan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eminorhan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eminorhan/subscriptions", "type": "User", "url": "https://api.github.com/users/eminorhan", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Actually, looking at the code a bit more carefully, maybe an even better solution is to explicitly set `num_shards=len(self)` somewhere inside both `push_to_hub()` and `save_to_disk()` when these functions are invoked with `num_shards > len(dataset)`." ]
2025-03-10T22:40:59
2025-03-10T23:43:08
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
In `ds.push_to_hub()` and `ds.save_to_disk()`, `num_shards` must be smaller than or equal to the number of rows in the dataset, but currently this is not checked anywhere inside these functions. Attempting to invoke these functions with `num_shards > len(dataset)` should raise an informative `ValueError`. I frequently work with datasets with a small number of rows where each row is pretty large, so I often encounter this issue, where the function runs until the shard index in `ds.shard(num_shards, indx)` goes out of bounds. Ideally, a `ValueError` should be raised before reaching this point (i.e. as soon as `ds.push_to_hub()` or `ds.save_to_disk()` is invoked with `num_shards > len(dataset)`). It seems that adding something like: ```python if len(self) < num_shards: raise ValueError(f"num_shards ({num_shards}) must be smaller than or equal to the number of rows in the dataset ({len(self)}). Please either reduce num_shards or increase max_shard_size to make sure num_shards <= len(dataset).") ``` to the beginning of the definition of the `ds.shard()` function [here](https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/arrow_dataset.py#L4728) would deal with this issue for both `ds.push_to_hub()` and `ds.save_to_disk()`, but I'm not exactly sure if this is the best place to raise the `ValueError` (it seems that a more correct way to do it would be to write separate checks for `ds.push_to_hub()` and `ds.save_to_disk()`). I'd be happy to submit a PR if you think something along these lines would be acceptable.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7443/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7443/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7442
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7442/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7442/comments
https://api.github.com/repos/huggingface/datasets/issues/7442/events
https://github.com/huggingface/datasets/issues/7442
2,905,543,017
I_kwDODunzps6tLxFp
7,442
Flexible Loader
{ "avatar_url": "https://avatars.githubusercontent.com/u/13894030?v=4", "events_url": "https://api.github.com/users/dipta007/events{/privacy}", "followers_url": "https://api.github.com/users/dipta007/followers", "following_url": "https://api.github.com/users/dipta007/following{/other_user}", "gists_url": "https://api.github.com/users/dipta007/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dipta007", "id": 13894030, "login": "dipta007", "node_id": "MDQ6VXNlcjEzODk0MDMw", "organizations_url": "https://api.github.com/users/dipta007/orgs", "received_events_url": "https://api.github.com/users/dipta007/received_events", "repos_url": "https://api.github.com/users/dipta007/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dipta007/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dipta007/subscriptions", "type": "User", "url": "https://api.github.com/users/dipta007", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?", "> Ideally `save_to_disk` should save in a format compatible with load_dataset, wdyt ?\n\nThat would be perfect if not at least a flexible loader." ]
2025-03-09T16:55:03
2025-03-13T11:15:02
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Can we have a utility function that will use `load_from_disk` when given the local path and `load_dataset` if given an HF dataset? It can be something as simple as this one: ``` def load_hf_dataset(path_or_name): if os.path.exists(path_or_name): return load_from_disk(path_or_name) else: return load_dataset(path_or_name) ``` ### Motivation This can be done inside the user codebase, too, but in my experience, it becomes repetitive code. ### Your contribution I can open a pull request.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7442/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7442/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7441
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7441/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7441/comments
https://api.github.com/repos/huggingface/datasets/issues/7441/events
https://github.com/huggingface/datasets/issues/7441
2,904,702,329
I_kwDODunzps6tIj15
7,441
`drop_last_batch` does not drop the last batch using IterableDataset + interleave_datasets + multi_worker
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi @memray, I’d like to help fix the issue with `drop_last_batch` not working when `num_workers > 1`. I’ll investigate and propose a solution. Thanks!\n", "Thank you very much for offering to help! I also noticed a problem related to a previous issue and left a comment [here](https://github.com/huggingface/datasets/issues/6565#issuecomment-2708169303) (the code checks the validity before certain columns removed). Can you take a look as well?" ]
2025-03-08T10:28:44
2025-03-09T21:27:33
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug See the script below `drop_last_batch=True` is defined using map() for each dataset. The last batch for each dataset is expected to be dropped, id 21-25. The code behaves as expected when num_workers=0 or 1. When using num_workers>1, 'a-11', 'b-11', 'a-12', 'b-12' are gone and instead 21 and 22 are sampled. ### Steps to reproduce the bug ``` from datasets import Dataset from datasets import interleave_datasets from torch.utils.data import DataLoader def convert_to_str(batch, dataset_name): batch['a'] = [f"{dataset_name}-{e}" for e in batch['a']] return batch def gen1(): for ii in range(1, 25): yield {"a": ii} def gen2(): for ii in range(1, 25): yield {"a": ii} # https://github.com/huggingface/datasets/issues/6565 if __name__ == '__main__': dataset1 = Dataset.from_generator(gen1).to_iterable_dataset(num_shards=2) dataset2 = Dataset.from_generator(gen2).to_iterable_dataset(num_shards=2) dataset1 = dataset1.map(lambda x: convert_to_str(x, dataset_name="a"), batched=True, batch_size=10, drop_last_batch=True) dataset2 = dataset2.map(lambda x: convert_to_str(x, dataset_name="b"), batched=True, batch_size=10, drop_last_batch=True) interleaved = interleave_datasets([dataset1, dataset2], stopping_strategy="all_exhausted") print(f"num_workers=0") loader = DataLoader(interleaved, batch_size=5, num_workers=0) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=1") loader = DataLoader(interleaved, batch_size=5, num_workers=1) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=2") loader = DataLoader(interleaved, batch_size=5, num_workers=2) i = 0 for b in loader: print(i, b['a']) i += 1 print('=-' * 20) print(f"num_workers=3") loader = DataLoader(interleaved, batch_size=5, num_workers=3) i = 0 for b in loader: print(i, b['a']) i += 1 ``` output is: ``` num_workers=0 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=1 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 2 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 3 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 4 ['a-11', 'b-11', 'a-12', 'b-12', 'a-13'] 5 ['b-13', 'a-14', 'b-14', 'a-15', 'b-15'] 6 ['a-16', 'b-16', 'a-17', 'b-17', 'a-18'] 7 ['b-18', 'a-19', 'b-19', 'a-20', 'b-20'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=2 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- num_workers=3 Too many dataloader workers: 3 (max is dataset.num_shards=2). Stopping 1 dataloader workers. 0 ['a-1', 'b-1', 'a-2', 'b-2', 'a-3'] 1 ['a-13', 'b-13', 'a-14', 'b-14', 'a-15'] 2 ['b-3', 'a-4', 'b-4', 'a-5', 'b-5'] 3 ['b-15', 'a-16', 'b-16', 'a-17', 'b-17'] 4 ['a-6', 'b-6', 'a-7', 'b-7', 'a-8'] 5 ['a-18', 'b-18', 'a-19', 'b-19', 'a-20'] 6 ['b-8', 'a-9', 'b-9', 'a-10', 'b-10'] 7 ['b-20', 'a-21', 'b-21', 'a-22', 'b-22'] ``` ### Expected behavior `'a-21', 'b-21', 'a-22', 'b-22'` should be dropped ### Environment info - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-1056-aws-x86_64-with-glibc2.31 - Python version: 3.10.16 - `huggingface_hub` version: 0.28.0 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.6.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7441/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7441/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7440
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7440/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7440/comments
https://api.github.com/repos/huggingface/datasets/issues/7440/events
https://github.com/huggingface/datasets/issues/7440
2,903,740,662
I_kwDODunzps6tE5D2
7,440
IterableDataset raises FileNotFoundError instead of retrying
{ "avatar_url": "https://avatars.githubusercontent.com/u/145220868?v=4", "events_url": "https://api.github.com/users/bauwenst/events{/privacy}", "followers_url": "https://api.github.com/users/bauwenst/followers", "following_url": "https://api.github.com/users/bauwenst/following{/other_user}", "gists_url": "https://api.github.com/users/bauwenst/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bauwenst", "id": 145220868, "login": "bauwenst", "node_id": "U_kgDOCKflBA", "organizations_url": "https://api.github.com/users/bauwenst/orgs", "received_events_url": "https://api.github.com/users/bauwenst/received_events", "repos_url": "https://api.github.com/users/bauwenst/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bauwenst/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bauwenst/subscriptions", "type": "User", "url": "https://api.github.com/users/bauwenst", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I have since been training more models with identical architectures over the same dataset, and it is completely unstable. One has now failed at chunk9/1215, whilst others have gotten past that.\n```python\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\nBelow is the full training log, where you can clearly see the intermittent dataset issues. Note again that this model only got to epoch 0.11, whereas I have other models training on the exact same dataset right now that have gotten way beyond that. This is quickly turning into a highly expensive bug which I didn't have issues with in the past half year of using the same setup.\n<details>\n<summary>Training log of failed run</summary>\n\n```python\n 1%| | 64/8192 [56:27<87:25:33, 38.72s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n 1%| | 64/8192 [56:51<87:25:33, 38.72s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:14<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:40:53<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:16<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:42:30<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:44:31<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:45:13<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:46:26<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:47:24<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n 2%|▏ | 192/8192 [2:49:10<85:29:44, 38.47s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n 2%|▏ | 192/8192 [2:49:30<85:29:44, 38.47s/it]Retrying in 1s [Retry 1/5].\n{'eval_loss': 10.482319831848145, 'eval_runtime': 902.7516, 'eval_samples_per_second': 18.149, 'eval_steps_per_second': 0.142, 'epoch': 0, 'num_input_tokens_seen': 0}\n{'loss': 10.4895, 'grad_norm': 2.9147818088531494, 'learning_rate': 3.90625e-06, 'epoch': 0.0, 'num_input_tokens_seen': 1048576}\n{'loss': 10.4832, 'grad_norm': 2.8206892013549805, 'learning_rate': 7.8125e-06, 'epoch': 0.0, 'num_input_tokens_seen': 2097152}\n{'loss': 10.4851, 'grad_norm': 2.910552978515625, 'learning_rate': 1.171875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 3145728}\n{'loss': 10.486, 'grad_norm': 2.8042073249816895, 'learning_rate': 1.5625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 4194304}\n{'loss': 10.4719, 'grad_norm': 2.83260440826416, 'learning_rate': 1.953125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 5242880}\n{'loss': 10.4482, 'grad_norm': 2.916527032852173, 'learning_rate': 2.34375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 6291456}\n{'loss': 10.4113, 'grad_norm': 2.911870241165161, 'learning_rate': 2.734375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 7340032}\n{'loss': 10.3863, 'grad_norm': 2.8873367309570312, 'learning_rate': 3.125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 8388608}\n{'loss': 10.3557, 'grad_norm': 2.7183432579040527, 'learning_rate': 3.5156250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 9437184}\n{'loss': 10.2795, 'grad_norm': 2.6743927001953125, 'learning_rate': 3.90625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 10485760}\n{'loss': 10.2148, 'grad_norm': 2.3173940181732178, 'learning_rate': 4.296875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 11534336}\n{'loss': 10.1482, 'grad_norm': 2.09787917137146, 'learning_rate': 4.6875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 12582912}\n{'loss': 10.1024, 'grad_norm': 1.889390468597412, 'learning_rate': 5.0781250000000004e-05, 'epoch': 0.0, 'num_input_tokens_seen': 13631488}\n{'loss': 10.0418, 'grad_norm': 1.8319090604782104, 'learning_rate': 5.46875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 14680064}\n{'loss': 10.0081, 'grad_norm': 1.7302652597427368, 'learning_rate': 5.859375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 15728640}\n{'loss': 9.9525, 'grad_norm': 1.767600417137146, 'learning_rate': 6.25e-05, 'epoch': 0.0, 'num_input_tokens_seen': 16777216}\n{'loss': 9.9326, 'grad_norm': 2.1608240604400635, 'learning_rate': 6.640625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 17825792}\n{'loss': 9.8478, 'grad_norm': 1.7399269342422485, 'learning_rate': 7.031250000000001e-05, 'epoch': 0.0, 'num_input_tokens_seen': 18874368}\n{'loss': 9.8215, 'grad_norm': 1.6564425230026245, 'learning_rate': 7.421875e-05, 'epoch': 0.0, 'num_input_tokens_seen': 19922944}\n{'loss': 9.7732, 'grad_norm': 1.6452653408050537, 'learning_rate': 7.8125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 20971520}\n{'loss': 9.6896, 'grad_norm': 1.7053238153457642, 'learning_rate': 8.203125e-05, 'epoch': 0.0, 'num_input_tokens_seen': 22020096}\n{'loss': 9.6356, 'grad_norm': 1.7050201892852783, 'learning_rate': 8.59375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 23068672}\n{'loss': 9.5781, 'grad_norm': 1.7155998945236206, 'learning_rate': 8.984375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 24117248}\n{'loss': 9.5355, 'grad_norm': 1.697864294052124, 'learning_rate': 9.375e-05, 'epoch': 0.0, 'num_input_tokens_seen': 25165824}\n{'loss': 9.4718, 'grad_norm': 1.7598071098327637, 'learning_rate': 9.765625e-05, 'epoch': 0.0, 'num_input_tokens_seen': 26214400}\n{'loss': 9.3972, 'grad_norm': 1.7407673597335815, 'learning_rate': 0.00010156250000000001, 'epoch': 0.0, 'num_input_tokens_seen': 27262976}\n{'loss': 9.3303, 'grad_norm': 1.7710134983062744, 'learning_rate': 0.00010546875, 'epoch': 0.0, 'num_input_tokens_seen': 28311552}\n{'loss': 9.2973, 'grad_norm': 1.716180682182312, 'learning_rate': 0.000109375, 'epoch': 0.0, 'num_input_tokens_seen': 29360128}\n{'loss': 9.2049, 'grad_norm': 1.7579947710037231, 'learning_rate': 0.00011328125, 'epoch': 0.0, 'num_input_tokens_seen': 30408704}\n{'loss': 9.1656, 'grad_norm': 1.6988558769226074, 'learning_rate': 0.0001171875, 'epoch': 0.0, 'num_input_tokens_seen': 31457280}\n{'loss': 9.0966, 'grad_norm': 1.7036350965499878, 'learning_rate': 0.00012109375, 'epoch': 0.0, 'num_input_tokens_seen': 32505856}\n{'loss': 9.0107, 'grad_norm': 1.752451777458191, 'learning_rate': 0.000125, 'epoch': 0.0, 'num_input_tokens_seen': 33554432}\n{'loss': 8.9788, 'grad_norm': 1.6769776344299316, 'learning_rate': 0.00012890625, 'epoch': 0.0, 'num_input_tokens_seen': 34603008}\n{'loss': 8.9155, 'grad_norm': 1.6497987508773804, 'learning_rate': 0.0001328125, 'epoch': 0.0, 'num_input_tokens_seen': 35651584}\n{'loss': 8.8008, 'grad_norm': 1.722798466682434, 'learning_rate': 0.00013671875, 'epoch': 0.0, 'num_input_tokens_seen': 36700160}\n{'loss': 8.7727, 'grad_norm': 1.6046854257583618, 'learning_rate': 0.00014062500000000002, 'epoch': 0.0, 'num_input_tokens_seen': 37748736}\n{'loss': 8.682, 'grad_norm': 1.6132164001464844, 'learning_rate': 0.00014453125, 'epoch': 0.0, 'num_input_tokens_seen': 38797312}\n{'loss': 8.6516, 'grad_norm': 1.558968424797058, 'learning_rate': 0.0001484375, 'epoch': 0.0, 'num_input_tokens_seen': 39845888}\n{'loss': 8.5935, 'grad_norm': 1.6083673238754272, 'learning_rate': 0.00015234375, 'epoch': 0.0, 'num_input_tokens_seen': 40894464}\n{'loss': 8.4852, 'grad_norm': 1.5469273328781128, 'learning_rate': 0.00015625, 'epoch': 0.0, 'num_input_tokens_seen': 41943040}\n{'loss': 8.4342, 'grad_norm': 1.46219801902771, 'learning_rate': 0.00016015625, 'epoch': 0.01, 'num_input_tokens_seen': 42991616}\n{'loss': 8.3213, 'grad_norm': 1.473191261291504, 'learning_rate': 0.0001640625, 'epoch': 0.01, 'num_input_tokens_seen': 44040192}\n{'loss': 8.3193, 'grad_norm': 1.4024137258529663, 'learning_rate': 0.00016796875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 45088768}\n{'loss': 8.1853, 'grad_norm': 1.3591463565826416, 'learning_rate': 0.000171875, 'epoch': 0.01, 'num_input_tokens_seen': 46137344}\n{'loss': 8.1109, 'grad_norm': 1.3547109365463257, 'learning_rate': 0.00017578125, 'epoch': 0.01, 'num_input_tokens_seen': 47185920}\n{'loss': 8.0741, 'grad_norm': 1.268977403640747, 'learning_rate': 0.0001796875, 'epoch': 0.01, 'num_input_tokens_seen': 48234496}\n{'loss': 8.0032, 'grad_norm': 1.222671389579773, 'learning_rate': 0.00018359375, 'epoch': 0.01, 'num_input_tokens_seen': 49283072}\n{'loss': 7.9346, 'grad_norm': 1.154278039932251, 'learning_rate': 0.0001875, 'epoch': 0.01, 'num_input_tokens_seen': 50331648}\n{'loss': 7.8823, 'grad_norm': 1.1396397352218628, 'learning_rate': 0.00019140625, 'epoch': 0.01, 'num_input_tokens_seen': 51380224}\n{'loss': 7.8444, 'grad_norm': 1.0608373880386353, 'learning_rate': 0.0001953125, 'epoch': 0.01, 'num_input_tokens_seen': 52428800}\n{'loss': 7.7794, 'grad_norm': 1.0165436267852783, 'learning_rate': 0.00019921875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 53477376}\n{'loss': 7.7567, 'grad_norm': 0.8742461204528809, 'learning_rate': 0.00020312500000000002, 'epoch': 0.01, 'num_input_tokens_seen': 54525952}\n{'loss': 7.6489, 'grad_norm': 0.8699902296066284, 'learning_rate': 0.00020703125, 'epoch': 0.01, 'num_input_tokens_seen': 55574528}\n{'loss': 7.6062, 'grad_norm': 0.809831440448761, 'learning_rate': 0.0002109375, 'epoch': 0.01, 'num_input_tokens_seen': 56623104}\n{'loss': 7.5511, 'grad_norm': 0.7423847317695618, 'learning_rate': 0.00021484375, 'epoch': 0.01, 'num_input_tokens_seen': 57671680}\n{'loss': 7.4435, 'grad_norm': 0.7614696025848389, 'learning_rate': 0.00021875, 'epoch': 0.01, 'num_input_tokens_seen': 58720256}\n{'loss': 7.564, 'grad_norm': 0.5147746801376343, 'learning_rate': 0.00022265625, 'epoch': 0.01, 'num_input_tokens_seen': 59768832}\n{'loss': 7.5278, 'grad_norm': 0.4705545902252197, 'learning_rate': 0.0002265625, 'epoch': 0.01, 'num_input_tokens_seen': 60817408}\n{'loss': 7.5479, 'grad_norm': 0.3745419979095459, 'learning_rate': 0.00023046875000000001, 'epoch': 0.01, 'num_input_tokens_seen': 61865984}\n{'loss': 7.4759, 'grad_norm': 0.3893500566482544, 'learning_rate': 0.000234375, 'epoch': 0.01, 'num_input_tokens_seen': 62914560}\n{'loss': 7.5032, 'grad_norm': 0.31959569454193115, 'learning_rate': 0.00023828125, 'epoch': 0.01, 'num_input_tokens_seen': 63963136}\n{'loss': 7.421, 'grad_norm': 0.3203206956386566, 'learning_rate': 0.0002421875, 'epoch': 0.01, 'num_input_tokens_seen': 65011712}\n{'loss': 7.4998, 'grad_norm': 0.2730390429496765, 'learning_rate': 0.00024609375, 'epoch': 0.01, 'num_input_tokens_seen': 66060288}\n{'loss': 7.4157, 'grad_norm': 0.34872403740882874, 'learning_rate': 0.00025, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n[2025-03-10 16:17:04 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 5ef28452-e903-4bd8-946d-f0c77f558a2a)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4799.jsonl.zst\n[2025-03-10 16:17:04 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 7.471163749694824, 'eval_runtime': 651.4801, 'eval_samples_per_second': 25.149, 'eval_steps_per_second': 0.196, 'epoch': 0.01, 'num_input_tokens_seen': 67108864}\n{'loss': 7.5083, 'grad_norm': 0.339502215385437, 'learning_rate': 0.00025390625, 'epoch': 0.01, 'num_input_tokens_seen': 68157440}\n{'loss': 7.7083, 'grad_norm': 0.6426190137863159, 'learning_rate': 0.0002578125, 'epoch': 0.01, 'num_input_tokens_seen': 69206016}\n{'loss': 7.446, 'grad_norm': 0.9138129353523254, 'learning_rate': 0.00026171875, 'epoch': 0.01, 'num_input_tokens_seen': 70254592}\n{'loss': 7.3747, 'grad_norm': 1.2179911136627197, 'learning_rate': 0.000265625, 'epoch': 0.01, 'num_input_tokens_seen': 71303168}\n{'loss': 7.367, 'grad_norm': 0.7108445167541504, 'learning_rate': 0.00026953125, 'epoch': 0.01, 'num_input_tokens_seen': 72351744}\n{'loss': 7.4751, 'grad_norm': 0.7580183744430542, 'learning_rate': 0.0002734375, 'epoch': 0.01, 'num_input_tokens_seen': 73400320}\n{'loss': 7.3405, 'grad_norm': 0.7545790076255798, 'learning_rate': 0.00027734375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 74448896}\n{'loss': 7.4194, 'grad_norm': 0.4764443039894104, 'learning_rate': 0.00028125000000000003, 'epoch': 0.01, 'num_input_tokens_seen': 75497472}\n{'loss': 7.2826, 'grad_norm': 0.5942808985710144, 'learning_rate': 0.00028515625, 'epoch': 0.01, 'num_input_tokens_seen': 76546048}\n{'loss': 7.3945, 'grad_norm': 0.5272891521453857, 'learning_rate': 0.0002890625, 'epoch': 0.01, 'num_input_tokens_seen': 77594624}\n{'loss': 7.3492, 'grad_norm': 0.465085506439209, 'learning_rate': 0.00029296875, 'epoch': 0.01, 'num_input_tokens_seen': 78643200}\n{'loss': 7.3658, 'grad_norm': 0.6932719349861145, 'learning_rate': 0.000296875, 'epoch': 0.01, 'num_input_tokens_seen': 79691776}\n{'loss': 7.3554, 'grad_norm': 0.49396172165870667, 'learning_rate': 0.00030078125, 'epoch': 0.01, 'num_input_tokens_seen': 80740352}\n{'loss': 7.2916, 'grad_norm': 0.3178255558013916, 'learning_rate': 0.0003046875, 'epoch': 0.01, 'num_input_tokens_seen': 81788928}\n{'loss': 7.2871, 'grad_norm': 0.5465154647827148, 'learning_rate': 0.00030859375, 'epoch': 0.01, 'num_input_tokens_seen': 82837504}\n{'loss': 7.262, 'grad_norm': 0.4718130826950073, 'learning_rate': 0.0003125, 'epoch': 0.01, 'num_input_tokens_seen': 83886080}\n{'loss': 7.2845, 'grad_norm': 0.5033366680145264, 'learning_rate': 0.00031640625, 'epoch': 0.01, 'num_input_tokens_seen': 84934656}\n{'loss': 7.2525, 'grad_norm': 0.5601146817207336, 'learning_rate': 0.0003203125, 'epoch': 0.01, 'num_input_tokens_seen': 85983232}\n{'loss': 7.1971, 'grad_norm': 0.5764456987380981, 'learning_rate': 0.00032421875, 'epoch': 0.01, 'num_input_tokens_seen': 87031808}\n{'loss': 7.1988, 'grad_norm': 0.6154745817184448, 'learning_rate': 0.000328125, 'epoch': 0.01, 'num_input_tokens_seen': 88080384}\n{'loss': 7.1987, 'grad_norm': 0.6701765656471252, 'learning_rate': 0.00033203125, 'epoch': 0.01, 'num_input_tokens_seen': 89128960}\n{'loss': 7.3324, 'grad_norm': 0.5648972988128662, 'learning_rate': 0.00033593750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 90177536}\n{'loss': 7.2233, 'grad_norm': 0.5782461166381836, 'learning_rate': 0.00033984375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 91226112}\n{'loss': 7.1995, 'grad_norm': 0.540762722492218, 'learning_rate': 0.00034375, 'epoch': 0.01, 'num_input_tokens_seen': 92274688}\n{'loss': 7.1214, 'grad_norm': 0.9524508118629456, 'learning_rate': 0.00034765625, 'epoch': 0.01, 'num_input_tokens_seen': 93323264}\n{'loss': 7.1603, 'grad_norm': 1.4820659160614014, 'learning_rate': 0.0003515625, 'epoch': 0.01, 'num_input_tokens_seen': 94371840}\n{'loss': 7.2364, 'grad_norm': 0.6124428510665894, 'learning_rate': 0.00035546875, 'epoch': 0.01, 'num_input_tokens_seen': 95420416}\n{'loss': 7.0258, 'grad_norm': 0.8897235989570618, 'learning_rate': 0.000359375, 'epoch': 0.01, 'num_input_tokens_seen': 96468992}\n{'loss': 7.1182, 'grad_norm': 0.9263321757316589, 'learning_rate': 0.00036328125, 'epoch': 0.01, 'num_input_tokens_seen': 97517568}\n{'loss': 7.109, 'grad_norm': 0.5800505876541138, 'learning_rate': 0.0003671875, 'epoch': 0.01, 'num_input_tokens_seen': 98566144}\n{'loss': 7.0449, 'grad_norm': 0.6776424050331116, 'learning_rate': 0.00037109375, 'epoch': 0.01, 'num_input_tokens_seen': 99614720}\n{'loss': 7.1272, 'grad_norm': 0.7616431713104248, 'learning_rate': 0.000375, 'epoch': 0.01, 'num_input_tokens_seen': 100663296}\n{'loss': 7.046, 'grad_norm': 0.5346249938011169, 'learning_rate': 0.00037890625, 'epoch': 0.01, 'num_input_tokens_seen': 101711872}\n{'loss': 7.0713, 'grad_norm': 0.6108944416046143, 'learning_rate': 0.0003828125, 'epoch': 0.01, 'num_input_tokens_seen': 102760448}\n{'loss': 7.1459, 'grad_norm': 0.4430749714374542, 'learning_rate': 0.00038671875, 'epoch': 0.01, 'num_input_tokens_seen': 103809024}\n{'loss': 7.0709, 'grad_norm': 0.6020255088806152, 'learning_rate': 0.000390625, 'epoch': 0.01, 'num_input_tokens_seen': 104857600}\n{'loss': 7.0144, 'grad_norm': 0.5525627732276917, 'learning_rate': 0.00039453125, 'epoch': 0.01, 'num_input_tokens_seen': 105906176}\n{'loss': 7.0926, 'grad_norm': 0.6909684538841248, 'learning_rate': 0.00039843750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 106954752}\n{'loss': 7.0289, 'grad_norm': 0.5576740503311157, 'learning_rate': 0.00040234375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 108003328}\n{'loss': 6.9173, 'grad_norm': 0.48874178528785706, 'learning_rate': 0.00040625000000000004, 'epoch': 0.01, 'num_input_tokens_seen': 109051904}\n{'loss': 6.9777, 'grad_norm': 0.3904782831668854, 'learning_rate': 0.00041015625, 'epoch': 0.01, 'num_input_tokens_seen': 110100480}\n{'loss': 6.9473, 'grad_norm': 0.3953755795955658, 'learning_rate': 0.0004140625, 'epoch': 0.01, 'num_input_tokens_seen': 111149056}\n{'loss': 6.9071, 'grad_norm': 0.43107134103775024, 'learning_rate': 0.00041796875, 'epoch': 0.01, 'num_input_tokens_seen': 112197632}\n{'loss': 6.9277, 'grad_norm': 0.33989447355270386, 'learning_rate': 0.000421875, 'epoch': 0.01, 'num_input_tokens_seen': 113246208}\n{'loss': 6.914, 'grad_norm': 0.3267095983028412, 'learning_rate': 0.00042578125, 'epoch': 0.01, 'num_input_tokens_seen': 114294784}\n{'loss': 6.6865, 'grad_norm': 0.4201946556568146, 'learning_rate': 0.0004296875, 'epoch': 0.01, 'num_input_tokens_seen': 115343360}\n{'loss': 6.8229, 'grad_norm': 0.345426082611084, 'learning_rate': 0.00043359375, 'epoch': 0.01, 'num_input_tokens_seen': 116391936}\n{'loss': 6.8599, 'grad_norm': 0.4104400873184204, 'learning_rate': 0.0004375, 'epoch': 0.01, 'num_input_tokens_seen': 117440512}\n{'loss': 6.7656, 'grad_norm': 0.6487549543380737, 'learning_rate': 0.00044140625, 'epoch': 0.01, 'num_input_tokens_seen': 118489088}\n{'loss': 6.8654, 'grad_norm': 1.5497283935546875, 'learning_rate': 0.0004453125, 'epoch': 0.01, 'num_input_tokens_seen': 119537664}\n{'loss': 6.8207, 'grad_norm': 1.9772824048995972, 'learning_rate': 0.00044921875, 'epoch': 0.01, 'num_input_tokens_seen': 120586240}\n{'loss': 6.7802, 'grad_norm': 0.9341455101966858, 'learning_rate': 0.000453125, 'epoch': 0.01, 'num_input_tokens_seen': 121634816}\n{'loss': 6.8017, 'grad_norm': 1.3528856039047241, 'learning_rate': 0.00045703125, 'epoch': 0.01, 'num_input_tokens_seen': 122683392}\n{'loss': 6.8344, 'grad_norm': 0.5852281451225281, 'learning_rate': 0.00046093750000000003, 'epoch': 0.01, 'num_input_tokens_seen': 123731968}\n{'loss': 6.8259, 'grad_norm': 0.9776580929756165, 'learning_rate': 0.00046484375000000003, 'epoch': 0.01, 'num_input_tokens_seen': 124780544}\n{'loss': 6.7581, 'grad_norm': 1.0398296117782593, 'learning_rate': 0.00046875, 'epoch': 0.01, 'num_input_tokens_seen': 125829120}\n{'loss': 6.7795, 'grad_norm': 1.1206268072128296, 'learning_rate': 0.00047265625, 'epoch': 0.01, 'num_input_tokens_seen': 126877696}\n{'loss': 6.5667, 'grad_norm': 0.6790318489074707, 'learning_rate': 0.0004765625, 'epoch': 0.01, 'num_input_tokens_seen': 127926272}\n{'loss': 6.7297, 'grad_norm': 1.2275055646896362, 'learning_rate': 0.00048046875, 'epoch': 0.02, 'num_input_tokens_seen': 128974848}\n{'loss': 6.7104, 'grad_norm': 1.1354466676712036, 'learning_rate': 0.000484375, 'epoch': 0.02, 'num_input_tokens_seen': 130023424}\n{'loss': 6.7025, 'grad_norm': 0.9035728573799133, 'learning_rate': 0.00048828125, 'epoch': 0.02, 'num_input_tokens_seen': 131072000}\n{'loss': 6.6391, 'grad_norm': 1.3942680358886719, 'learning_rate': 0.0004921875, 'epoch': 0.02, 'num_input_tokens_seen': 132120576}\n{'loss': 6.6011, 'grad_norm': 0.7435236573219299, 'learning_rate': 0.00049609375, 'epoch': 0.02, 'num_input_tokens_seen': 133169152}\n{'loss': 6.5135, 'grad_norm': 0.5970368385314941, 'learning_rate': 0.0005, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'eval_loss': 6.573822021484375, 'eval_runtime': 629.9441, 'eval_samples_per_second': 26.009, 'eval_steps_per_second': 0.203, 'epoch': 0.02, 'num_input_tokens_seen': 134217728}\n{'loss': 6.5509, 'grad_norm': 0.7936264276504517, 'learning_rate': 0.00050390625, 'epoch': 0.02, 'num_input_tokens_seen': 135266304}\n{'loss': 6.6008, 'grad_norm': 0.6225885152816772, 'learning_rate': 0.0005078125, 'epoch': 0.02, 'num_input_tokens_seen': 136314880}\n{'loss': 6.4821, 'grad_norm': 0.5519376993179321, 'learning_rate': 0.00051171875, 'epoch': 0.02, 'num_input_tokens_seen': 137363456}\n{'loss': 6.3411, 'grad_norm': 0.5908603668212891, 'learning_rate': 0.000515625, 'epoch': 0.02, 'num_input_tokens_seen': 138412032}\n{'loss': 6.3464, 'grad_norm': 0.5101401209831238, 'learning_rate': 0.00051953125, 'epoch': 0.02, 'num_input_tokens_seen': 139460608}\n{'loss': 6.3638, 'grad_norm': 0.7352246046066284, 'learning_rate': 0.0005234375, 'epoch': 0.02, 'num_input_tokens_seen': 140509184}\n{'loss': 6.3429, 'grad_norm': 0.49651673436164856, 'learning_rate': 0.00052734375, 'epoch': 0.02, 'num_input_tokens_seen': 141557760}\n{'loss': 6.2987, 'grad_norm': 0.4835755527019501, 'learning_rate': 0.00053125, 'epoch': 0.02, 'num_input_tokens_seen': 142606336}\n{'loss': 6.2982, 'grad_norm': 0.5940163731575012, 'learning_rate': 0.00053515625, 'epoch': 0.02, 'num_input_tokens_seen': 143654912}\n{'loss': 6.267, 'grad_norm': 0.7658674120903015, 'learning_rate': 0.0005390625, 'epoch': 0.02, 'num_input_tokens_seen': 144703488}\n{'loss': 6.2102, 'grad_norm': 0.6704416275024414, 'learning_rate': 0.00054296875, 'epoch': 0.02, 'num_input_tokens_seen': 145752064}\n{'loss': 6.1956, 'grad_norm': 0.6615312099456787, 'learning_rate': 0.000546875, 'epoch': 0.02, 'num_input_tokens_seen': 146800640}\n{'loss': 6.286, 'grad_norm': 0.7957404255867004, 'learning_rate': 0.0005507812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 147849216}\n{'loss': 6.2483, 'grad_norm': 0.6477276682853699, 'learning_rate': 0.0005546875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 148897792}\n{'loss': 6.0944, 'grad_norm': 0.5753227472305298, 'learning_rate': 0.0005585937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 149946368}\n{'loss': 6.0995, 'grad_norm': 0.5871054530143738, 'learning_rate': 0.0005625000000000001, 'epoch': 0.02, 'num_input_tokens_seen': 150994944}\n{'loss': 6.112, 'grad_norm': 0.7046136856079102, 'learning_rate': 0.00056640625, 'epoch': 0.02, 'num_input_tokens_seen': 152043520}\n{'loss': 6.102, 'grad_norm': 0.9357424378395081, 'learning_rate': 0.0005703125, 'epoch': 0.02, 'num_input_tokens_seen': 153092096}\n{'loss': 6.1407, 'grad_norm': 1.0577837228775024, 'learning_rate': 0.00057421875, 'epoch': 0.02, 'num_input_tokens_seen': 154140672}\n{'loss': 5.9836, 'grad_norm': 0.7795257568359375, 'learning_rate': 0.000578125, 'epoch': 0.02, 'num_input_tokens_seen': 155189248}\n{'loss': 6.1041, 'grad_norm': 0.8117634057998657, 'learning_rate': 0.00058203125, 'epoch': 0.02, 'num_input_tokens_seen': 156237824}\n{'loss': 5.9474, 'grad_norm': 0.8311094045639038, 'learning_rate': 0.0005859375, 'epoch': 0.02, 'num_input_tokens_seen': 157286400}\n{'loss': 5.9365, 'grad_norm': 0.8269851803779602, 'learning_rate': 0.00058984375, 'epoch': 0.02, 'num_input_tokens_seen': 158334976}\n{'loss': 5.9668, 'grad_norm': 0.701510488986969, 'learning_rate': 0.00059375, 'epoch': 0.02, 'num_input_tokens_seen': 159383552}\n{'loss': 5.9874, 'grad_norm': 0.49938252568244934, 'learning_rate': 0.00059765625, 'epoch': 0.02, 'num_input_tokens_seen': 160432128}\n{'loss': 5.8505, 'grad_norm': 0.6981683969497681, 'learning_rate': 0.0006015625, 'epoch': 0.02, 'num_input_tokens_seen': 161480704}\n{'loss': 6.0156, 'grad_norm': 0.5023297071456909, 'learning_rate': 0.00060546875, 'epoch': 0.02, 'num_input_tokens_seen': 162529280}\n{'loss': 5.8299, 'grad_norm': 0.6075630187988281, 'learning_rate': 0.000609375, 'epoch': 0.02, 'num_input_tokens_seen': 163577856}\n{'loss': 5.8203, 'grad_norm': 0.6051607728004456, 'learning_rate': 0.00061328125, 'epoch': 0.02, 'num_input_tokens_seen': 164626432}\n{'loss': 5.7705, 'grad_norm': 0.6384783983230591, 'learning_rate': 0.0006171875, 'epoch': 0.02, 'num_input_tokens_seen': 165675008}\n{'loss': 5.791, 'grad_norm': 0.5084705948829651, 'learning_rate': 0.00062109375, 'epoch': 0.02, 'num_input_tokens_seen': 166723584}\n{'loss': 5.6743, 'grad_norm': 0.4278322160243988, 'learning_rate': 0.000625, 'epoch': 0.02, 'num_input_tokens_seen': 167772160}\n{'loss': 5.7112, 'grad_norm': 0.5151192545890808, 'learning_rate': 0.00062890625, 'epoch': 0.02, 'num_input_tokens_seen': 168820736}\n{'loss': 5.5128, 'grad_norm': 0.6542677283287048, 'learning_rate': 0.0006328125, 'epoch': 0.02, 'num_input_tokens_seen': 169869312}\n{'loss': 5.6735, 'grad_norm': 0.6016008257865906, 'learning_rate': 0.00063671875, 'epoch': 0.02, 'num_input_tokens_seen': 170917888}\n{'loss': 5.6525, 'grad_norm': 0.48695647716522217, 'learning_rate': 0.000640625, 'epoch': 0.02, 'num_input_tokens_seen': 171966464}\n{'loss': 5.6051, 'grad_norm': 0.5894989371299744, 'learning_rate': 0.00064453125, 'epoch': 0.02, 'num_input_tokens_seen': 173015040}\n{'loss': 5.6377, 'grad_norm': 0.7626883387565613, 'learning_rate': 0.0006484375, 'epoch': 0.02, 'num_input_tokens_seen': 174063616}\n{'loss': 5.6038, 'grad_norm': 0.745198130607605, 'learning_rate': 0.00065234375, 'epoch': 0.02, 'num_input_tokens_seen': 175112192}\n{'loss': 5.5465, 'grad_norm': 0.7876908779144287, 'learning_rate': 0.00065625, 'epoch': 0.02, 'num_input_tokens_seen': 176160768}\n{'loss': 5.5903, 'grad_norm': 0.7416785359382629, 'learning_rate': 0.00066015625, 'epoch': 0.02, 'num_input_tokens_seen': 177209344}\n{'loss': 5.4993, 'grad_norm': 0.4493878185749054, 'learning_rate': 0.0006640625, 'epoch': 0.02, 'num_input_tokens_seen': 178257920}\n{'loss': 5.5612, 'grad_norm': 0.5095419883728027, 'learning_rate': 0.00066796875, 'epoch': 0.02, 'num_input_tokens_seen': 179306496}\n{'loss': 5.378, 'grad_norm': 0.6330733895301819, 'learning_rate': 0.0006718750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 180355072}\n{'loss': 5.4875, 'grad_norm': 0.4710595905780792, 'learning_rate': 0.0006757812500000001, 'epoch': 0.02, 'num_input_tokens_seen': 181403648}\n{'loss': 5.4221, 'grad_norm': 0.5276287198066711, 'learning_rate': 0.0006796875000000001, 'epoch': 0.02, 'num_input_tokens_seen': 182452224}\n{'loss': 5.308, 'grad_norm': 0.6985499858856201, 'learning_rate': 0.0006835937500000001, 'epoch': 0.02, 'num_input_tokens_seen': 183500800}\n{'loss': 5.4455, 'grad_norm': 0.4874110519886017, 'learning_rate': 0.0006875, 'epoch': 0.02, 'num_input_tokens_seen': 184549376}\n{'loss': 5.476, 'grad_norm': 0.5807638764381409, 'learning_rate': 0.00069140625, 'epoch': 0.02, 'num_input_tokens_seen': 185597952}\n{'loss': 5.2876, 'grad_norm': 0.5431288480758667, 'learning_rate': 0.0006953125, 'epoch': 0.02, 'num_input_tokens_seen': 186646528}\n{'loss': 5.3881, 'grad_norm': 0.7681945562362671, 'learning_rate': 0.00069921875, 'epoch': 0.02, 'num_input_tokens_seen': 187695104}\n{'loss': 5.4006, 'grad_norm': 0.7372023463249207, 'learning_rate': 0.000703125, 'epoch': 0.02, 'num_input_tokens_seen': 188743680}\n{'loss': 5.3813, 'grad_norm': 0.7354347109794617, 'learning_rate': 0.00070703125, 'epoch': 0.02, 'num_input_tokens_seen': 189792256}\n{'loss': 5.3393, 'grad_norm': 0.5908933281898499, 'learning_rate': 0.0007109375, 'epoch': 0.02, 'num_input_tokens_seen': 190840832}\n{'loss': 5.3024, 'grad_norm': 0.5665153861045837, 'learning_rate': 0.00071484375, 'epoch': 0.02, 'num_input_tokens_seen': 191889408}\n{'loss': 5.2782, 'grad_norm': 0.5930947661399841, 'learning_rate': 0.00071875, 'epoch': 0.02, 'num_input_tokens_seen': 192937984}\n{'loss': 5.3199, 'grad_norm': 0.5926457643508911, 'learning_rate': 0.00072265625, 'epoch': 0.02, 'num_input_tokens_seen': 193986560}\n{'loss': 5.2949, 'grad_norm': 0.548610270023346, 'learning_rate': 0.0007265625, 'epoch': 0.02, 'num_input_tokens_seen': 195035136}\n{'loss': 5.3143, 'grad_norm': 0.6023995280265808, 'learning_rate': 0.00073046875, 'epoch': 0.02, 'num_input_tokens_seen': 196083712}\n{'loss': 5.2982, 'grad_norm': 1.0335254669189453, 'learning_rate': 0.000734375, 'epoch': 0.02, 'num_input_tokens_seen': 197132288}\n{'loss': 5.2933, 'grad_norm': 1.2596269845962524, 'learning_rate': 0.00073828125, 'epoch': 0.02, 'num_input_tokens_seen': 198180864}\n{'loss': 5.2524, 'grad_norm': 0.6956535577774048, 'learning_rate': 0.0007421875, 'epoch': 0.02, 'num_input_tokens_seen': 199229440}\n{'loss': 5.3543, 'grad_norm': 0.946761429309845, 'learning_rate': 0.00074609375, 'epoch': 0.02, 'num_input_tokens_seen': 200278016}\n{'loss': 5.1616, 'grad_norm': 0.9568974375724792, 'learning_rate': 0.00075, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n[2025-03-10 18:01:06 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: ba6e4c51-f4a4-407e-9934-3772550b7ce9)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2770.jsonl.zst\n[2025-03-10 18:01:06 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:30 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: bdf2cfaa-7e0b-46a0-bec1-b1e573fa7998)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4386.jsonl.zst\n[2025-03-10 18:02:30 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:02:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 1dc5e455-8042-4c7b-9b97-5ded33dfea34)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_1763.jsonl.zst\n[2025-03-10 18:02:44 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:04:45 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9cf29917-8111-41fe-80aa-953df65c5803)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5509.jsonl.zst\n[2025-03-10 18:04:45 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:05:26 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2515a0b0-3d81-409f-940c-e78ed5e2dbf8)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3093.jsonl.zst\n[2025-03-10 18:05:26 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:06:39 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a4c1e0c7-1c7a-4377-bc7e-6f076473072b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_3422.jsonl.zst\n[2025-03-10 18:06:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:07:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c7b0d366-db86-4d0c-a4e0-be251d26519e)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_2250.jsonl.zst\n[2025-03-10 18:07:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:23 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: b0df5a1a-4836-46cf-8e45-58a7c1553309)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_6161.jsonl.zst\n[2025-03-10 18:09:23 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-10 18:09:44 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c1d97368-c0ae-45bb-ae10-5559b3ebc4e4)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_5782.jsonl.zst\n[2025-03-10 18:09:44 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 5.276012420654297, 'eval_runtime': 754.8295, 'eval_samples_per_second': 21.706, 'eval_steps_per_second': 0.17, 'epoch': 0.02, 'num_input_tokens_seen': 201326592}\n{'loss': 5.2363, 'grad_norm': 0.8435476422309875, 'learning_rate': 0.00075390625, 'epoch': 0.02, 'num_input_tokens_seen': 202375168}\n{'loss': 5.1035, 'grad_norm': 1.1267820596694946, 'learning_rate': 0.0007578125, 'epoch': 0.02, 'num_input_tokens_seen': 203423744}\n{'loss': 5.3017, 'grad_norm': 0.8555666208267212, 'learning_rate': 0.00076171875, 'epoch': 0.02, 'num_input_tokens_seen': 204472320}\n{'loss': 5.1679, 'grad_norm': 0.7608171105384827, 'learning_rate': 0.000765625, 'epoch': 0.02, 'num_input_tokens_seen': 205520896}\n{'loss': 5.2326, 'grad_norm': 0.6787221431732178, 'learning_rate': 0.00076953125, 'epoch': 0.02, 'num_input_tokens_seen': 206569472}\n{'loss': 5.144, 'grad_norm': 0.6404955983161926, 'learning_rate': 0.0007734375, 'epoch': 0.02, 'num_input_tokens_seen': 207618048}\n{'loss': 5.1933, 'grad_norm': 0.6099393367767334, 'learning_rate': 0.00077734375, 'epoch': 0.02, 'num_input_tokens_seen': 208666624}\n{'loss': 5.0498, 'grad_norm': 0.5971768498420715, 'learning_rate': 0.00078125, 'epoch': 0.02, 'num_input_tokens_seen': 209715200}\n{'loss': 5.1443, 'grad_norm': 0.642633318901062, 'learning_rate': 0.00078515625, 'epoch': 0.02, 'num_input_tokens_seen': 210763776}\n{'loss': 5.2125, 'grad_norm': 0.706398606300354, 'learning_rate': 0.0007890625, 'epoch': 0.02, 'num_input_tokens_seen': 211812352}\n{'loss': 5.1882, 'grad_norm': 0.817449688911438, 'learning_rate': 0.00079296875, 'epoch': 0.02, 'num_input_tokens_seen': 212860928}\n{'loss': 5.0905, 'grad_norm': 0.9392185807228088, 'learning_rate': 0.0007968750000000001, 'epoch': 0.02, 'num_input_tokens_seen': 213909504}\n{'loss': 5.059, 'grad_norm': 0.5305852890014648, 'learning_rate': 0.0008007812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 214958080}\n{'loss': 5.0838, 'grad_norm': 0.7662672996520996, 'learning_rate': 0.0008046875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 216006656}\n{'loss': 5.0112, 'grad_norm': 0.5768160223960876, 'learning_rate': 0.0008085937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 217055232}\n{'loss': 4.9684, 'grad_norm': 0.5972586870193481, 'learning_rate': 0.0008125000000000001, 'epoch': 0.03, 'num_input_tokens_seen': 218103808}\n{'loss': 5.0764, 'grad_norm': 0.559498131275177, 'learning_rate': 0.00081640625, 'epoch': 0.03, 'num_input_tokens_seen': 219152384}\n{'loss': 5.0117, 'grad_norm': 0.555585503578186, 'learning_rate': 0.0008203125, 'epoch': 0.03, 'num_input_tokens_seen': 220200960}\n{'loss': 5.1955, 'grad_norm': 0.6180793046951294, 'learning_rate': 0.00082421875, 'epoch': 0.03, 'num_input_tokens_seen': 221249536}\n{'loss': 5.1265, 'grad_norm': 0.5784006118774414, 'learning_rate': 0.000828125, 'epoch': 0.03, 'num_input_tokens_seen': 222298112}\n{'loss': 5.03, 'grad_norm': 0.5200456380844116, 'learning_rate': 0.00083203125, 'epoch': 0.03, 'num_input_tokens_seen': 223346688}\n{'loss': 5.051, 'grad_norm': 0.5112505555152893, 'learning_rate': 0.0008359375, 'epoch': 0.03, 'num_input_tokens_seen': 224395264}\n{'loss': 5.0994, 'grad_norm': 0.44979697465896606, 'learning_rate': 0.00083984375, 'epoch': 0.03, 'num_input_tokens_seen': 225443840}\n{'loss': 4.94, 'grad_norm': 0.46642380952835083, 'learning_rate': 0.00084375, 'epoch': 0.03, 'num_input_tokens_seen': 226492416}\n{'loss': 5.0562, 'grad_norm': 0.49667519330978394, 'learning_rate': 0.00084765625, 'epoch': 0.03, 'num_input_tokens_seen': 227540992}\n{'loss': 4.9217, 'grad_norm': 0.4302496314048767, 'learning_rate': 0.0008515625, 'epoch': 0.03, 'num_input_tokens_seen': 228589568}\n{'loss': 4.8588, 'grad_norm': 0.5326887369155884, 'learning_rate': 0.00085546875, 'epoch': 0.03, 'num_input_tokens_seen': 229638144}\n{'loss': 4.8501, 'grad_norm': 0.45604026317596436, 'learning_rate': 0.000859375, 'epoch': 0.03, 'num_input_tokens_seen': 230686720}\n{'loss': 4.8774, 'grad_norm': 0.4497997462749481, 'learning_rate': 0.00086328125, 'epoch': 0.03, 'num_input_tokens_seen': 231735296}\n{'loss': 5.0143, 'grad_norm': 0.526670515537262, 'learning_rate': 0.0008671875, 'epoch': 0.03, 'num_input_tokens_seen': 232783872}\n{'loss': 4.9512, 'grad_norm': 0.5823948979377747, 'learning_rate': 0.00087109375, 'epoch': 0.03, 'num_input_tokens_seen': 233832448}\n{'loss': 4.915, 'grad_norm': 0.6516634821891785, 'learning_rate': 0.000875, 'epoch': 0.03, 'num_input_tokens_seen': 234881024}\n{'loss': 4.9318, 'grad_norm': 0.7564677596092224, 'learning_rate': 0.00087890625, 'epoch': 0.03, 'num_input_tokens_seen': 235929600}\n{'loss': 4.9041, 'grad_norm': 0.7170491814613342, 'learning_rate': 0.0008828125, 'epoch': 0.03, 'num_input_tokens_seen': 236978176}\n{'loss': 4.9727, 'grad_norm': 0.7671059966087341, 'learning_rate': 0.00088671875, 'epoch': 0.03, 'num_input_tokens_seen': 238026752}\n{'loss': 4.7895, 'grad_norm': 0.8752806782722473, 'learning_rate': 0.000890625, 'epoch': 0.03, 'num_input_tokens_seen': 239075328}\n{'loss': 4.8845, 'grad_norm': 0.8313667178153992, 'learning_rate': 0.00089453125, 'epoch': 0.03, 'num_input_tokens_seen': 240123904}\n{'loss': 4.8325, 'grad_norm': 0.9223323464393616, 'learning_rate': 0.0008984375, 'epoch': 0.03, 'num_input_tokens_seen': 241172480}\n{'loss': 4.8991, 'grad_norm': 0.7362072467803955, 'learning_rate': 0.00090234375, 'epoch': 0.03, 'num_input_tokens_seen': 242221056}\n{'loss': 4.7443, 'grad_norm': 0.6667400598526001, 'learning_rate': 0.00090625, 'epoch': 0.03, 'num_input_tokens_seen': 243269632}\n{'loss': 4.8913, 'grad_norm': 0.5431771874427795, 'learning_rate': 0.00091015625, 'epoch': 0.03, 'num_input_tokens_seen': 244318208}\n{'loss': 4.8997, 'grad_norm': 0.5542160272598267, 'learning_rate': 0.0009140625, 'epoch': 0.03, 'num_input_tokens_seen': 245366784}\n{'loss': 4.8448, 'grad_norm': 0.6110911965370178, 'learning_rate': 0.0009179687500000001, 'epoch': 0.03, 'num_input_tokens_seen': 246415360}\n{'loss': 4.7975, 'grad_norm': 0.5550041794776917, 'learning_rate': 0.0009218750000000001, 'epoch': 0.03, 'num_input_tokens_seen': 247463936}\n{'loss': 4.87, 'grad_norm': 0.4778221547603607, 'learning_rate': 0.0009257812500000001, 'epoch': 0.03, 'num_input_tokens_seen': 248512512}\n{'loss': 4.7594, 'grad_norm': 0.35899603366851807, 'learning_rate': 0.0009296875000000001, 'epoch': 0.03, 'num_input_tokens_seen': 249561088}\n{'loss': 4.8338, 'grad_norm': 0.494094580411911, 'learning_rate': 0.0009335937500000001, 'epoch': 0.03, 'num_input_tokens_seen': 250609664}\n{'loss': 4.7424, 'grad_norm': 0.4671477675437927, 'learning_rate': 0.0009375, 'epoch': 0.03, 'num_input_tokens_seen': 251658240}\n{'loss': 4.7593, 'grad_norm': 0.4691649079322815, 'learning_rate': 0.00094140625, 'epoch': 0.03, 'num_input_tokens_seen': 252706816}\n{'loss': 4.7869, 'grad_norm': 0.6212939023971558, 'learning_rate': 0.0009453125, 'epoch': 0.03, 'num_input_tokens_seen': 253755392}\n{'loss': 4.7925, 'grad_norm': 0.621306300163269, 'learning_rate': 0.00094921875, 'epoch': 0.03, 'num_input_tokens_seen': 254803968}\n{'loss': 4.7714, 'grad_norm': 0.6991429328918457, 'learning_rate': 0.000953125, 'epoch': 0.03, 'num_input_tokens_seen': 255852544}\n{'loss': 5.2726, 'grad_norm': 1.016664743423462, 'learning_rate': 0.00095703125, 'epoch': 0.03, 'num_input_tokens_seen': 256901120}\n{'loss': 4.9125, 'grad_norm': 1.3091747760772705, 'learning_rate': 0.0009609375, 'epoch': 0.03, 'num_input_tokens_seen': 257949696}\n{'loss': 4.839, 'grad_norm': 1.2617076635360718, 'learning_rate': 0.00096484375, 'epoch': 0.03, 'num_input_tokens_seen': 258998272}\n{'loss': 4.8412, 'grad_norm': 0.9403041005134583, 'learning_rate': 0.00096875, 'epoch': 0.03, 'num_input_tokens_seen': 260046848}\n{'loss': 5.0193, 'grad_norm': 0.9802642464637756, 'learning_rate': 0.00097265625, 'epoch': 0.03, 'num_input_tokens_seen': 261095424}\n{'loss': 4.7372, 'grad_norm': 0.9636861085891724, 'learning_rate': 0.0009765625, 'epoch': 0.03, 'num_input_tokens_seen': 262144000}\n{'loss': 4.7878, 'grad_norm': 0.7803710699081421, 'learning_rate': 0.00098046875, 'epoch': 0.03, 'num_input_tokens_seen': 263192576}\n{'loss': 4.8126, 'grad_norm': 0.7087182402610779, 'learning_rate': 0.000984375, 'epoch': 0.03, 'num_input_tokens_seen': 264241152}\n{'loss': 4.7252, 'grad_norm': 0.7220279574394226, 'learning_rate': 0.00098828125, 'epoch': 0.03, 'num_input_tokens_seen': 265289728}\n{'loss': 4.7419, 'grad_norm': 0.6956494450569153, 'learning_rate': 0.0009921875, 'epoch': 0.03, 'num_input_tokens_seen': 266338304}\n{'loss': 4.8041, 'grad_norm': 0.8009976148605347, 'learning_rate': 0.00099609375, 'epoch': 0.03, 'num_input_tokens_seen': 267386880}\n{'loss': 4.7016, 'grad_norm': 0.6665300130844116, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'eval_loss': 4.753816604614258, 'eval_runtime': 661.8529, 'eval_samples_per_second': 24.755, 'eval_steps_per_second': 0.193, 'epoch': 0.03, 'num_input_tokens_seen': 268435456}\n{'loss': 4.6762, 'grad_norm': 0.5311985611915588, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 269484032}\n{'loss': 4.6296, 'grad_norm': 0.5160760879516602, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 270532608}\n{'loss': 4.7422, 'grad_norm': 0.5964047312736511, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 271581184}\n{'loss': 4.7396, 'grad_norm': 0.4793979227542877, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 272629760}\n{'loss': 4.733, 'grad_norm': 0.5280688405036926, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 273678336}\n{'loss': 4.9591, 'grad_norm': 0.8669152855873108, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 274726912}\n{'loss': 4.7953, 'grad_norm': 0.8417720198631287, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 275775488}\n{'loss': 4.7972, 'grad_norm': 0.9349585175514221, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 276824064}\n{'loss': 4.7233, 'grad_norm': 0.8441230654716492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 277872640}\n{'loss': 4.8032, 'grad_norm': 0.7163352370262146, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 278921216}\n{'loss': 4.4369, 'grad_norm': 1.0364480018615723, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 279969792}\n{'loss': 4.557, 'grad_norm': 1.012042760848999, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 281018368}\n{'loss': 4.7696, 'grad_norm': 1.1818541288375854, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 282066944}\n{'loss': 4.7835, 'grad_norm': 0.8296499848365784, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 283115520}\n{'loss': 4.761, 'grad_norm': 0.6920194625854492, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 284164096}\n{'loss': 4.6239, 'grad_norm': 0.8495435118675232, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 285212672}\n{'loss': 4.6914, 'grad_norm': 0.6536931991577148, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 286261248}\n{'loss': 4.776, 'grad_norm': 0.7161967754364014, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 287309824}\n{'loss': 4.7096, 'grad_norm': 0.5441194176673889, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 288358400}\n{'loss': 4.7278, 'grad_norm': 0.5437328219413757, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 289406976}\n{'loss': 4.6126, 'grad_norm': 0.49404028058052063, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 290455552}\n{'loss': 4.6594, 'grad_norm': 0.4274217188358307, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 291504128}\n{'loss': 4.6365, 'grad_norm': 0.48871853947639465, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 292552704}\n{'loss': 4.5999, 'grad_norm': 0.5101707577705383, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 293601280}\n{'loss': 4.5869, 'grad_norm': 0.4579870104789734, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 294649856}\n{'loss': 4.5993, 'grad_norm': 0.44694098830223083, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 295698432}\n{'loss': 4.6369, 'grad_norm': 0.42955130338668823, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 296747008}\n{'loss': 4.5973, 'grad_norm': 0.532283365726471, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 297795584}\n{'loss': 4.3953, 'grad_norm': 0.5553389191627502, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 298844160}\n{'loss': 4.5501, 'grad_norm': 0.4733176529407501, 'learning_rate': 0.001, 'epoch': 0.03, 'num_input_tokens_seen': 299892736}\n{'loss': 4.4896, 'grad_norm': 0.5510519742965698, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 300941312}\n{'loss': 4.348, 'grad_norm': 0.5312983393669128, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 301989888}\n{'loss': 4.4, 'grad_norm': 0.4173823297023773, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 303038464}\n{'loss': 4.4971, 'grad_norm': 0.4799824357032776, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 304087040}\n{'loss': 4.5507, 'grad_norm': 0.4494017958641052, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 305135616}\n{'loss': 4.5655, 'grad_norm': 0.36501485109329224, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 306184192}\n{'loss': 4.5189, 'grad_norm': 0.4833853840827942, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 307232768}\n{'loss': 4.5387, 'grad_norm': 0.5214531421661377, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 308281344}\n{'loss': 4.5509, 'grad_norm': 0.5383253693580627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 309329920}\n{'loss': 4.4112, 'grad_norm': 0.5364778637886047, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 310378496}\n{'loss': 4.568, 'grad_norm': 0.3624066114425659, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 311427072}\n{'loss': 4.5289, 'grad_norm': 0.5469081401824951, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 312475648}\n{'loss': 4.4953, 'grad_norm': 0.5212593674659729, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 313524224}\n{'loss': 4.4614, 'grad_norm': 0.36742305755615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 314572800}\n{'loss': 4.4757, 'grad_norm': 0.43591663241386414, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 315621376}\n{'loss': 4.5321, 'grad_norm': 0.483548104763031, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 316669952}\n{'loss': 4.449, 'grad_norm': 0.3971082866191864, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 317718528}\n{'loss': 4.4539, 'grad_norm': 0.3416251540184021, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 318767104}\n{'loss': 4.3456, 'grad_norm': 0.45731472969055176, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 319815680}\n{'loss': 4.4179, 'grad_norm': 0.4462226331233978, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 320864256}\n{'loss': 4.3691, 'grad_norm': 0.3393065631389618, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 321912832}\n{'loss': 4.4361, 'grad_norm': 0.39659640192985535, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 322961408}\n{'loss': 4.4166, 'grad_norm': 0.42212849855422974, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 324009984}\n{'loss': 4.3931, 'grad_norm': 0.3403238356113434, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 325058560}\n{'loss': 4.3003, 'grad_norm': 0.3405858278274536, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 326107136}\n{'loss': 4.4339, 'grad_norm': 0.42516669631004333, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 327155712}\n{'loss': 4.4258, 'grad_norm': 0.4387160539627075, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 328204288}\n{'loss': 4.3774, 'grad_norm': 0.3546140193939209, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 329252864}\n{'loss': 4.3261, 'grad_norm': 0.3842155933380127, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 330301440}\n{'loss': 4.2843, 'grad_norm': 0.32807183265686035, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 331350016}\n{'loss': 4.3627, 'grad_norm': 0.3635430932044983, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 332398592}\n{'loss': 4.3304, 'grad_norm': 0.32113364338874817, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 333447168}\n{'loss': 4.258, 'grad_norm': 0.3261938989162445, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 334495744}\n{'loss': 4.392, 'grad_norm': 0.35287028551101685, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'eval_loss': 4.340233325958252, 'eval_runtime': 641.4064, 'eval_samples_per_second': 25.544, 'eval_steps_per_second': 0.2, 'epoch': 0.04, 'num_input_tokens_seen': 335544320}\n{'loss': 4.4095, 'grad_norm': 0.30875736474990845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 336592896}\n{'loss': 3.8896, 'grad_norm': 0.6334038972854614, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 337641472}\n{'loss': 4.449, 'grad_norm': 0.5519331693649292, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 338690048}\n{'loss': 4.4388, 'grad_norm': 0.4262654185295105, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 339738624}\n{'loss': 4.3918, 'grad_norm': 0.4348645508289337, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 340787200}\n{'loss': 4.3677, 'grad_norm': 0.3858915865421295, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 341835776}\n{'loss': 4.3343, 'grad_norm': 0.4542510509490967, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 342884352}\n{'loss': 4.3196, 'grad_norm': 0.4413583278656006, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 343932928}\n{'loss': 4.322, 'grad_norm': 0.5200892686843872, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 344981504}\n{'loss': 4.2409, 'grad_norm': 0.4969848692417145, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 346030080}\n{'loss': 4.2263, 'grad_norm': 0.43436068296432495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 347078656}\n{'loss': 4.2271, 'grad_norm': 0.4760046899318695, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 348127232}\n{'loss': 4.3567, 'grad_norm': 0.43881112337112427, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 349175808}\n{'loss': 4.2606, 'grad_norm': 0.5361112952232361, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 350224384}\n{'loss': 4.3831, 'grad_norm': 0.5959597229957581, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 351272960}\n{'loss': 4.2899, 'grad_norm': 0.6709368824958801, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 352321536}\n{'loss': 4.2263, 'grad_norm': 0.6585149168968201, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 353370112}\n{'loss': 4.3428, 'grad_norm': 0.5447191596031189, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 354418688}\n{'loss': 4.3642, 'grad_norm': 0.576545238494873, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 355467264}\n{'loss': 4.025, 'grad_norm': 0.7567218542098999, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 356515840}\n{'loss': 4.2593, 'grad_norm': 0.6053742170333862, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 357564416}\n{'loss': 4.2864, 'grad_norm': 0.54949551820755, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 358612992}\n{'loss': 4.3183, 'grad_norm': 0.4792100489139557, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 359661568}\n{'loss': 4.2957, 'grad_norm': 0.4366244077682495, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 360710144}\n{'loss': 4.3502, 'grad_norm': 0.5610309839248657, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 361758720}\n{'loss': 4.2673, 'grad_norm': 0.42132946848869324, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 362807296}\n{'loss': 4.2565, 'grad_norm': 0.45927727222442627, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 363855872}\n{'loss': 4.3009, 'grad_norm': 0.40793168544769287, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 364904448}\n{'loss': 4.2584, 'grad_norm': 0.3818293511867523, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 365953024}\n{'loss': 4.3187, 'grad_norm': 0.4942944645881653, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 367001600}\n{'loss': 4.2056, 'grad_norm': 0.5316190719604492, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 368050176}\n{'loss': 4.2403, 'grad_norm': 0.4738222658634186, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 369098752}\n{'loss': 4.244, 'grad_norm': 0.41153445839881897, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 370147328}\n{'loss': 4.2876, 'grad_norm': 0.35864201188087463, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 371195904}\n{'loss': 4.2457, 'grad_norm': 0.4317127466201782, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 372244480}\n{'loss': 4.2138, 'grad_norm': 0.4922076165676117, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 373293056}\n{'loss': 4.1875, 'grad_norm': 0.5150508880615234, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 374341632}\n{'loss': 4.1485, 'grad_norm': 0.40701162815093994, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 375390208}\n{'loss': 4.1062, 'grad_norm': 0.40378910303115845, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 376438784}\n{'loss': 4.226, 'grad_norm': 0.4435281753540039, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 377487360}\n{'loss': 4.2034, 'grad_norm': 0.37908127903938293, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 378535936}\n{'loss': 4.1502, 'grad_norm': 0.408202588558197, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 379584512}\n{'loss': 4.1623, 'grad_norm': 0.4542413651943207, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 380633088}\n{'loss': 4.206, 'grad_norm': 0.5084658861160278, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 381681664}\n{'loss': 4.1867, 'grad_norm': 0.432908833026886, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 382730240}\n{'loss': 4.2377, 'grad_norm': 0.38273656368255615, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 383778816}\n{'loss': 4.1443, 'grad_norm': 0.39886555075645447, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 384827392}\n{'loss': 4.16, 'grad_norm': 0.4073260724544525, 'learning_rate': 0.001, 'epoch': 0.04, 'num_input_tokens_seen': 385875968}\n{'loss': 4.0871, 'grad_norm': 0.46062660217285156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 386924544}\n{'loss': 4.1655, 'grad_norm': 0.3555128574371338, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 387973120}\n{'loss': 4.1993, 'grad_norm': 0.35318323969841003, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 389021696}\n{'loss': 4.0745, 'grad_norm': 0.3469637632369995, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 390070272}\n{'loss': 4.1844, 'grad_norm': 0.3650517761707306, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 391118848}\n{'loss': 4.1744, 'grad_norm': 0.4310692846775055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 392167424}\n{'loss': 4.1896, 'grad_norm': 0.465585857629776, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 393216000}\n{'loss': 4.0568, 'grad_norm': 0.5539769530296326, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 394264576}\n{'loss': 4.2642, 'grad_norm': 0.5437971949577332, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 395313152}\n{'loss': 4.1705, 'grad_norm': 0.6534202694892883, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 396361728}\n{'loss': 3.9844, 'grad_norm': 0.7271204590797424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 397410304}\n{'loss': 4.105, 'grad_norm': 0.7395262122154236, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 398458880}\n{'loss': 4.2332, 'grad_norm': 0.9734097719192505, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 399507456}\n{'loss': 4.1501, 'grad_norm': 1.1519765853881836, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 400556032}\n{'loss': 4.0756, 'grad_norm': 0.7837873697280884, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 401604608}\n{'loss': 4.013, 'grad_norm': 0.8097010850906372, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'eval_loss': 4.120734214782715, 'eval_runtime': 626.8806, 'eval_samples_per_second': 26.136, 'eval_steps_per_second': 0.204, 'epoch': 0.05, 'num_input_tokens_seen': 402653184}\n{'loss': 4.0955, 'grad_norm': 0.6811020970344543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 403701760}\n{'loss': 4.0917, 'grad_norm': 0.5382081270217896, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 404750336}\n{'loss': 4.0414, 'grad_norm': 0.4250117242336273, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 405798912}\n{'loss': 4.1051, 'grad_norm': 0.4233124256134033, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 406847488}\n{'loss': 4.1475, 'grad_norm': 0.41960859298706055, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 407896064}\n{'loss': 4.0322, 'grad_norm': 0.4991297423839569, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 408944640}\n{'loss': 4.0664, 'grad_norm': 0.43890711665153503, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 409993216}\n{'loss': 4.1126, 'grad_norm': 0.38538315892219543, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 411041792}\n{'loss': 4.0591, 'grad_norm': 0.41170960664749146, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 412090368}\n{'loss': 4.1145, 'grad_norm': 0.42465972900390625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 413138944}\n{'loss': 4.0393, 'grad_norm': 0.4215935468673706, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 414187520}\n{'loss': 3.9509, 'grad_norm': 0.5031537413597107, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 415236096}\n{'loss': 3.9314, 'grad_norm': 0.5212794542312622, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 416284672}\n{'loss': 4.062, 'grad_norm': 0.5779813528060913, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 417333248}\n{'loss': 4.0264, 'grad_norm': 0.5523960590362549, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 418381824}\n{'loss': 4.0366, 'grad_norm': 0.501869797706604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 419430400}\n{'loss': 4.016, 'grad_norm': 0.390077143907547, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 420478976}\n{'loss': 3.9438, 'grad_norm': 0.39393457770347595, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 421527552}\n{'loss': 3.9882, 'grad_norm': 0.3395244777202606, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 422576128}\n{'loss': 3.95, 'grad_norm': 0.3985426425933838, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 423624704}\n{'loss': 3.9708, 'grad_norm': 0.4353885352611542, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 424673280}\n{'loss': 3.9959, 'grad_norm': 0.39546582102775574, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 425721856}\n{'loss': 3.9475, 'grad_norm': 0.3725046217441559, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 426770432}\n{'loss': 3.8599, 'grad_norm': 0.5391167998313904, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 427819008}\n{'loss': 3.9765, 'grad_norm': 0.5383077263832092, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 428867584}\n{'loss': 3.8999, 'grad_norm': 0.4455236494541168, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 429916160}\n{'loss': 4.0357, 'grad_norm': 0.4489726722240448, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 430964736}\n{'loss': 3.992, 'grad_norm': 0.45914894342422485, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 432013312}\n{'loss': 3.9556, 'grad_norm': 0.5718650817871094, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 433061888}\n{'loss': 3.9797, 'grad_norm': 0.5529163479804993, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 434110464}\n{'loss': 3.9479, 'grad_norm': 0.4689369201660156, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 435159040}\n{'loss': 3.9358, 'grad_norm': 0.448303759098053, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 436207616}\n{'loss': 3.9699, 'grad_norm': 0.4203392565250397, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 437256192}\n{'loss': 3.8173, 'grad_norm': 0.4046834707260132, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 438304768}\n{'loss': 3.8183, 'grad_norm': 0.3998134136199951, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 439353344}\n{'loss': 3.8477, 'grad_norm': 0.4120945632457733, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 440401920}\n{'loss': 3.8486, 'grad_norm': 0.39726078510284424, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 441450496}\n{'loss': 3.942, 'grad_norm': 0.399142861366272, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 442499072}\n{'loss': 3.9038, 'grad_norm': 0.41262856125831604, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 443547648}\n{'loss': 3.8447, 'grad_norm': 0.4645870327949524, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 444596224}\n{'loss': 3.9215, 'grad_norm': 0.49330976605415344, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 445644800}\n{'loss': 4.5329, 'grad_norm': 4.813076972961426, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 446693376}\n{'loss': 3.763, 'grad_norm': 1.0100675821304321, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 447741952}\n{'loss': 3.9888, 'grad_norm': 1.2422761917114258, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 448790528}\n{'loss': 3.9209, 'grad_norm': 1.1251254081726074, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 449839104}\n{'loss': 4.1438, 'grad_norm': 1.926529049873352, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 450887680}\n{'loss': 4.0952, 'grad_norm': 1.2948275804519653, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 451936256}\n{'loss': 3.9411, 'grad_norm': 1.1000643968582153, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 452984832}\n{'loss': 3.988, 'grad_norm': 1.3160468339920044, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 454033408}\n{'loss': 4.0241, 'grad_norm': 1.0201517343521118, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 455081984}\n{'loss': 3.9875, 'grad_norm': 0.9689710140228271, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 456130560}\n{'loss': 3.8684, 'grad_norm': 1.045577049255371, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 457179136}\n{'loss': 3.865, 'grad_norm': 0.931566059589386, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 458227712}\n{'loss': 3.728, 'grad_norm': 0.945274293422699, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 459276288}\n{'loss': 3.955, 'grad_norm': 0.7679930925369263, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 460324864}\n{'loss': 4.4113, 'grad_norm': 0.889451801776886, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 461373440}\n{'loss': 3.8928, 'grad_norm': 0.9069199562072754, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 462422016}\n{'loss': 3.9624, 'grad_norm': 0.8945743441581726, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 463470592}\n{'loss': 3.9698, 'grad_norm': 0.7373656630516052, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 464519168}\n{'loss': 3.921, 'grad_norm': 0.6688440442085266, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 465567744}\n{'loss': 3.8908, 'grad_norm': 0.5442579984664917, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 466616320}\n{'loss': 3.9138, 'grad_norm': 0.5583804845809937, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 467664896}\n{'loss': 3.8731, 'grad_norm': 0.504666268825531, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 468713472}\n{'loss': 3.7961, 'grad_norm': 0.4965992867946625, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'eval_loss': 3.7728981971740723, 'eval_runtime': 616.374, 'eval_samples_per_second': 26.581, 'eval_steps_per_second': 0.208, 'epoch': 0.05, 'num_input_tokens_seen': 469762048}\n{'loss': 3.8829, 'grad_norm': 0.44414225220680237, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 470810624}\n{'loss': 3.6939, 'grad_norm': 0.5276159644126892, 'learning_rate': 0.001, 'epoch': 0.05, 'num_input_tokens_seen': 471859200}\n{'loss': 3.8173, 'grad_norm': 0.4666613042354584, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 472907776}\n{'loss': 3.6884, 'grad_norm': 0.4581243097782135, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 473956352}\n{'loss': 3.789, 'grad_norm': 0.4697781205177307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 475004928}\n{'loss': 3.8791, 'grad_norm': 0.5336131453514099, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 476053504}\n{'loss': 3.8077, 'grad_norm': 0.5709654092788696, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 477102080}\n{'loss': 3.8421, 'grad_norm': 0.5592761039733887, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 478150656}\n{'loss': 3.8135, 'grad_norm': 0.4490680694580078, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 479199232}\n{'loss': 3.7535, 'grad_norm': 0.3931736648082733, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 480247808}\n{'loss': 3.7885, 'grad_norm': 0.41578060388565063, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 481296384}\n{'loss': 3.6255, 'grad_norm': 0.429817795753479, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 482344960}\n{'loss': 3.7202, 'grad_norm': 0.49616578221321106, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 483393536}\n 9%|▊ | 704/8192 [9:33:48<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 9%|▊ | 704/8192 [9:38:28<79:08:04, 38.05s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n 9%|▊ | 704/8192 [9:44:58<79:08:04, 38.05s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:28:20<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:30:25<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:38:24<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 10%|█ | 832/8192 [11:39:58<80:32:25, 39.39s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n 10%|█ | 832/8192 [11:41:00<80:32:25, 39.39s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:24:54<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█ | 896/8192 [12:25:55<77:09:28, 38.07s/it]'(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n 11%|█ | 896/8192 [12:33:14<77:09:28, 38.07s/it]Retrying in 1s [Retry 1/5].\n 11%|█▏ | 922/8192 [12:52:49<76:09:46, 37.71s/it]'(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n 11%|█▏ | 922/8192 [12:52:59<76:09:46, 37.71s/it]Retrying in 1s [Retry 1/5].\n 12%|█▏ | 943/8192 [13:06:07<76:15:57, 37.88s/it]\n{'loss': 3.7796, 'grad_norm': 0.4774172008037567, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 484442112}\n{'loss': 3.7779, 'grad_norm': 0.45830512046813965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 485490688}\n{'loss': 3.6516, 'grad_norm': 0.4130597710609436, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 486539264}\n{'loss': 3.7018, 'grad_norm': 0.3804127275943756, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 487587840}\n{'loss': 3.6893, 'grad_norm': 0.36560356616973877, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 488636416}\n{'loss': 3.6362, 'grad_norm': 0.3827981948852539, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 489684992}\n{'loss': 3.5987, 'grad_norm': 0.37492236495018005, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 490733568}\n{'loss': 3.7165, 'grad_norm': 0.46995237469673157, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 491782144}\n{'loss': 3.6097, 'grad_norm': 0.4908960461616516, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 492830720}\n{'loss': 3.6035, 'grad_norm': 0.5318525433540344, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 493879296}\n{'loss': 3.6643, 'grad_norm': 0.4848596453666687, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 494927872}\n{'loss': 3.6586, 'grad_norm': 0.4421922266483307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 495976448}\n{'loss': 3.5902, 'grad_norm': 0.4107126295566559, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 497025024}\n{'loss': 3.6937, 'grad_norm': 0.3975088894367218, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 498073600}\n{'loss': 3.6496, 'grad_norm': 0.4559416174888611, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 499122176}\n{'loss': 3.66, 'grad_norm': 0.41401296854019165, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 500170752}\n{'loss': 3.5551, 'grad_norm': 0.45235902070999146, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 501219328}\n{'loss': 3.4794, 'grad_norm': 0.427593857049942, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 502267904}\n{'loss': 3.5345, 'grad_norm': 0.4024144411087036, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 503316480}\n{'loss': 3.5784, 'grad_norm': 0.410284161567688, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 504365056}\n{'loss': 3.6177, 'grad_norm': 0.37683290243148804, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 505413632}\n{'loss': 3.5883, 'grad_norm': 0.417323499917984, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 506462208}\n{'loss': 3.5888, 'grad_norm': 0.4327872693538666, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 507510784}\n{'loss': 3.5891, 'grad_norm': 0.5366392731666565, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 508559360}\n{'loss': 3.3725, 'grad_norm': 0.45735156536102295, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 509607936}\n{'loss': 3.5674, 'grad_norm': 0.4255360960960388, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 510656512}\n{'loss': 3.3523, 'grad_norm': 0.6517689824104309, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 511705088}\n{'loss': 3.5901, 'grad_norm': 0.5713740587234497, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 512753664}\n{'loss': 3.542, 'grad_norm': 0.5570502281188965, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 513802240}\n{'loss': 3.4246, 'grad_norm': 0.6477808356285095, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 514850816}\n{'loss': 3.4954, 'grad_norm': 0.5195346474647522, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 515899392}\n{'loss': 3.6516, 'grad_norm': 0.5446246862411499, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 516947968}\n{'loss': 3.5955, 'grad_norm': 0.5475099086761475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 517996544}\n{'loss': 3.5516, 'grad_norm': 0.4719395041465759, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 519045120}\n{'loss': 3.5439, 'grad_norm': 0.43647533655166626, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 520093696}\n{'loss': 3.579, 'grad_norm': 0.5048384070396423, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 521142272}\n{'loss': 3.4742, 'grad_norm': 0.4902295172214508, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 522190848}\n{'loss': 3.4363, 'grad_norm': 0.525496244430542, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 523239424}\n{'loss': 3.3658, 'grad_norm': 0.5224571824073792, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 524288000}\n{'loss': 3.4816, 'grad_norm': 0.45781856775283813, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 525336576}\n{'loss': 3.4612, 'grad_norm': 0.3764704763889313, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 526385152}\n{'loss': 3.5172, 'grad_norm': 0.3994409143924713, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 527433728}\n{'loss': 3.5462, 'grad_norm': 0.45144984126091003, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 528482304}\n{'loss': 3.5079, 'grad_norm': 0.4901409149169922, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 529530880}\n{'loss': 3.5187, 'grad_norm': 0.45689818263053894, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 530579456}\n{'loss': 3.4408, 'grad_norm': 0.4650699198246002, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 531628032}\n{'loss': 3.4019, 'grad_norm': 0.40419647097587585, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 532676608}\n{'loss': 3.5255, 'grad_norm': 0.3895981013774872, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 533725184}\n{'loss': 3.312, 'grad_norm': 0.46533191204071045, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 534773760}\n{'loss': 3.4233, 'grad_norm': 0.5021492838859558, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 535822336}\n{'loss': 3.4211, 'grad_norm': 0.6763796806335449, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'eval_loss': 3.38647198677063, 'eval_runtime': 681.5531, 'eval_samples_per_second': 24.039, 'eval_steps_per_second': 0.188, 'epoch': 0.06, 'num_input_tokens_seen': 536870912}\n{'loss': 3.2825, 'grad_norm': 0.75739586353302, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 537919488}\n{'loss': 3.4758, 'grad_norm': 0.49962809681892395, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 538968064}\n{'loss': 3.4105, 'grad_norm': 0.47640085220336914, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 540016640}\n{'loss': 3.4393, 'grad_norm': 0.4722411632537842, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 541065216}\n{'loss': 3.4254, 'grad_norm': 0.4715781807899475, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 542113792}\n{'loss': 3.3992, 'grad_norm': 0.474001407623291, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 543162368}\n{'loss': 3.4274, 'grad_norm': 0.48976385593414307, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 544210944}\n{'loss': 3.3255, 'grad_norm': 0.4819697141647339, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 545259520}\n{'loss': 3.3679, 'grad_norm': 0.37490880489349365, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 546308096}\n{'loss': 3.377, 'grad_norm': 0.4356544315814972, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 547356672}\n{'loss': 3.4294, 'grad_norm': 0.3786229193210602, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 548405248}\n{'loss': 3.2323, 'grad_norm': 0.4364008605480194, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 549453824}\n{'loss': 3.4615, 'grad_norm': 0.39242950081825256, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 550502400}\n{'loss': 3.3589, 'grad_norm': 0.4270903766155243, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 551550976}\n{'loss': 3.4366, 'grad_norm': 0.4204763174057007, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 552599552}\n{'loss': 3.3859, 'grad_norm': 0.554025411605835, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 553648128}\n{'loss': 3.2353, 'grad_norm': 0.5719075798988342, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 554696704}\n{'loss': 3.3798, 'grad_norm': 0.4803822338581085, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 555745280}\n{'loss': 3.1191, 'grad_norm': 0.5494056344032288, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 556793856}\n{'loss': 3.424, 'grad_norm': 0.4569101333618164, 'learning_rate': 0.001, 'epoch': 0.06, 'num_input_tokens_seen': 557842432}\n{'loss': 3.4299, 'grad_norm': 0.48103874921798706, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 558891008}\n{'loss': 3.3483, 'grad_norm': 0.44187718629837036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 559939584}\n{'loss': 3.3196, 'grad_norm': 0.4359618127346039, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 560988160}\n{'loss': 3.4479, 'grad_norm': 0.37653473019599915, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 562036736}\n{'loss': 3.2509, 'grad_norm': 0.4397211968898773, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 563085312}\n{'loss': 3.4193, 'grad_norm': 0.5013746619224548, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 564133888}\n{'loss': 3.3391, 'grad_norm': 0.5044407844543457, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 565182464}\n{'loss': 3.3223, 'grad_norm': 0.45118412375450134, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 566231040}\n{'loss': 3.3041, 'grad_norm': 0.5617747902870178, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 567279616}\n{'loss': 3.3436, 'grad_norm': 0.5154598355293274, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 568328192}\n{'loss': 3.3739, 'grad_norm': 0.4647876024246216, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 569376768}\n{'loss': 3.3366, 'grad_norm': 0.3766598701477051, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 570425344}\n{'loss': 3.3098, 'grad_norm': 0.40857356786727905, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 571473920}\n{'loss': 3.0331, 'grad_norm': 0.4163903594017029, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 572522496}\n{'loss': 3.3184, 'grad_norm': 0.38519713282585144, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 573571072}\n{'loss': 3.3886, 'grad_norm': 0.38155344128608704, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 574619648}\n{'loss': 3.2855, 'grad_norm': 0.3684964179992676, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 575668224}\n{'loss': 3.0484, 'grad_norm': 0.3504279553890228, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 576716800}\n{'loss': 3.2702, 'grad_norm': 0.42653048038482666, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 577765376}\n{'loss': 3.312, 'grad_norm': 0.4263192415237427, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 578813952}\n{'loss': 3.3355, 'grad_norm': 0.4272316098213196, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 579862528}\n{'loss': 3.2806, 'grad_norm': 0.40996676683425903, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 580911104}\n{'loss': 3.2504, 'grad_norm': 0.403242826461792, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 581959680}\n{'loss': 3.2924, 'grad_norm': 0.46690869331359863, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 583008256}\n{'loss': 3.1466, 'grad_norm': 0.515250027179718, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 584056832}\n{'loss': 3.2898, 'grad_norm': 0.4872475266456604, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 585105408}\n{'loss': 3.3699, 'grad_norm': 0.43510228395462036, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 586153984}\n{'loss': 3.1568, 'grad_norm': 0.4732394814491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 587202560}\n{'loss': 3.2145, 'grad_norm': 0.49767330288887024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 588251136}\n{'loss': 3.2966, 'grad_norm': 0.4968816936016083, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 589299712}\n{'loss': 3.2249, 'grad_norm': 0.4123048782348633, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 590348288}\n{'loss': 3.3819, 'grad_norm': 0.4349605143070221, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 591396864}\n{'loss': 3.3477, 'grad_norm': 0.47485488653182983, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 592445440}\n{'loss': 3.3202, 'grad_norm': 0.46784669160842896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 593494016}\n{'loss': 3.2231, 'grad_norm': 0.42318931221961975, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 594542592}\n{'loss': 3.2901, 'grad_norm': 0.40393564105033875, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 595591168}\n{'loss': 3.2065, 'grad_norm': 0.4144214391708374, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 596639744}\n{'loss': 2.8698, 'grad_norm': 0.40921372175216675, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 597688320}\n{'loss': 3.2242, 'grad_norm': 0.35226207971572876, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 598736896}\n{'loss': 3.2125, 'grad_norm': 0.43364742398262024, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 599785472}\n{'loss': 3.2296, 'grad_norm': 0.4272080361843109, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 600834048}\n{'loss': 2.9346, 'grad_norm': 0.4155097007751465, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 601882624}\n{'loss': 3.2706, 'grad_norm': 0.4263918697834015, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 602931200}\n{'loss': 3.3124, 'grad_norm': 0.43336594104766846, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'eval_loss': 3.1686322689056396, 'eval_runtime': 664.0006, 'eval_samples_per_second': 24.675, 'eval_steps_per_second': 0.193, 'epoch': 0.07, 'num_input_tokens_seen': 603979776}\n{'loss': 3.349, 'grad_norm': 0.4504219889640808, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 605028352}\n{'loss': 3.3015, 'grad_norm': 0.5899333953857422, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 606076928}\n{'loss': 3.2036, 'grad_norm': 0.5814825892448425, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 607125504}\n{'loss': 3.2786, 'grad_norm': 0.3971703350543976, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 608174080}\n{'loss': 3.0979, 'grad_norm': 0.5669280290603638, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 609222656}\n{'loss': 3.0683, 'grad_norm': 0.4786263406276703, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 610271232}\n{'loss': 3.1731, 'grad_norm': 0.46415817737579346, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 611319808}\n{'loss': 3.2282, 'grad_norm': 0.4295870363712311, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 612368384}\n{'loss': 3.2196, 'grad_norm': 0.4184265732765198, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 613416960}\n{'loss': 3.2445, 'grad_norm': 0.4624122381210327, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 614465536}\n{'loss': 3.1135, 'grad_norm': 0.3681364059448242, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 615514112}\n{'loss': 3.1877, 'grad_norm': 0.3612712621688843, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 616562688}\n{'loss': 3.308, 'grad_norm': 0.34696292877197266, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 617611264}\n{'loss': 3.4995, 'grad_norm': 0.5025363564491272, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 618659840}\n{'loss': 3.1853, 'grad_norm': 0.6652331352233887, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 619708416}\n{'loss': 3.1844, 'grad_norm': 0.7156277894973755, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 620756992}\n{'loss': 3.2325, 'grad_norm': 0.5241081118583679, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 621805568}\n{'loss': 2.972, 'grad_norm': 0.5001779198646545, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 622854144}\n{'loss': 3.1742, 'grad_norm': 0.4062795341014862, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 623902720}\n{'loss': 3.2539, 'grad_norm': 0.4671201705932617, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 624951296}\n{'loss': 3.1948, 'grad_norm': 0.3894169330596924, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 625999872}\n{'loss': 3.2469, 'grad_norm': 0.4665684998035431, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 627048448}\n{'loss': 3.2742, 'grad_norm': 0.43211206793785095, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 628097024}\n{'loss': 3.1195, 'grad_norm': 0.4476025700569153, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 629145600}\n{'loss': 3.2127, 'grad_norm': 0.3596750795841217, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 630194176}\n{'loss': 3.1741, 'grad_norm': 0.40869519114494324, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 631242752}\n{'loss': 3.1708, 'grad_norm': 0.36658936738967896, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 632291328}\n{'loss': 3.0925, 'grad_norm': 0.35227081179618835, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 633339904}\n{'loss': 3.171, 'grad_norm': 0.3942136764526367, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 634388480}\n{'loss': 3.1729, 'grad_norm': 0.3163004219532013, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 635437056}\n{'loss': 3.1683, 'grad_norm': 0.35835322737693787, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 636485632}\n{'loss': 3.1118, 'grad_norm': 0.3395129144191742, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 637534208}\n{'loss': 3.2123, 'grad_norm': 0.38003110885620117, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 638582784}\n{'loss': 3.167, 'grad_norm': 0.4000258445739746, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 639631360}\n{'loss': 3.0668, 'grad_norm': 0.38393035531044006, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 640679936}\n{'loss': 2.9125, 'grad_norm': 0.38961607217788696, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 641728512}\n{'loss': 3.1024, 'grad_norm': 0.3406165540218353, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 642777088}\n{'loss': 3.1262, 'grad_norm': 0.4859096109867096, 'learning_rate': 0.001, 'epoch': 0.07, 'num_input_tokens_seen': 643825664}\n{'loss': 3.1155, 'grad_norm': 0.5454179048538208, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 644874240}\n{'loss': 3.1594, 'grad_norm': 0.46631914377212524, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 645922816}\n{'loss': 3.1164, 'grad_norm': 0.4049534797668457, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 646971392}\n{'loss': 2.9272, 'grad_norm': 0.32954707741737366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 648019968}\n{'loss': 3.0888, 'grad_norm': 0.409853458404541, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 649068544}\n{'loss': 3.2185, 'grad_norm': 0.43080267310142517, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 650117120}\n{'loss': 3.1871, 'grad_norm': 0.4323279857635498, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 651165696}\n{'loss': 2.9759, 'grad_norm': 0.3696155846118927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 652214272}\n{'loss': 3.1058, 'grad_norm': 0.3963398337364197, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 653262848}\n{'loss': 3.1214, 'grad_norm': 0.4020082652568817, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 654311424}\n{'loss': 3.0678, 'grad_norm': 0.4210987091064453, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 655360000}\n{'loss': 2.9177, 'grad_norm': 0.44535601139068604, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 656408576}\n{'loss': 3.1005, 'grad_norm': 0.363700807094574, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 657457152}\n{'loss': 3.0285, 'grad_norm': 0.393673837184906, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 658505728}\n{'loss': 3.031, 'grad_norm': 0.3472498059272766, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 659554304}\n{'loss': 3.1837, 'grad_norm': 0.45663976669311523, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 660602880}\n{'loss': 3.1636, 'grad_norm': 0.44765880703926086, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 661651456}\n{'loss': 3.0421, 'grad_norm': 0.5289708375930786, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 662700032}\n{'loss': 2.9394, 'grad_norm': 0.5272406339645386, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 663748608}\n{'loss': 3.2419, 'grad_norm': 0.5471237301826477, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 664797184}\n{'loss': 3.1506, 'grad_norm': 0.5762659311294556, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 665845760}\n{'loss': 3.1258, 'grad_norm': 0.5486758351325989, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 666894336}\n{'loss': 3.1686, 'grad_norm': 0.4877275228500366, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 667942912}\n{'loss': 3.1062, 'grad_norm': 0.35992035269737244, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 668991488}\n{'loss': 3.1655, 'grad_norm': 0.39184319972991943, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 670040064}\n{'loss': 3.1455, 'grad_norm': 0.46003854274749756, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'eval_loss': 3.036459445953369, 'eval_runtime': 676.6057, 'eval_samples_per_second': 24.215, 'eval_steps_per_second': 0.189, 'epoch': 0.08, 'num_input_tokens_seen': 671088640}\n{'loss': 3.1058, 'grad_norm': 0.45958808064460754, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 672137216}\n{'loss': 3.0861, 'grad_norm': 0.41562288999557495, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 673185792}\n{'loss': 3.1135, 'grad_norm': 0.38576263189315796, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 674234368}\n{'loss': 2.9998, 'grad_norm': 0.3936232924461365, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 675282944}\n{'loss': 3.1349, 'grad_norm': 0.3888678252696991, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 676331520}\n{'loss': 2.9192, 'grad_norm': 0.31759846210479736, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 677380096}\n{'loss': 3.1324, 'grad_norm': 0.3801535964012146, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 678428672}\n{'loss': 3.1064, 'grad_norm': 0.36299699544906616, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 679477248}\n{'loss': 3.2258, 'grad_norm': 0.36732324957847595, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 680525824}\n{'loss': 3.2162, 'grad_norm': 0.42108356952667236, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 681574400}\n{'loss': 3.2189, 'grad_norm': 0.4113474190235138, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 682622976}\n{'loss': 3.0585, 'grad_norm': 0.39936116337776184, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 683671552}\n{'loss': 3.0693, 'grad_norm': 0.35424771904945374, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 684720128}\n{'loss': 3.1134, 'grad_norm': 0.3333597183227539, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 685768704}\n{'loss': 3.0536, 'grad_norm': 0.37569180130958557, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 686817280}\n{'loss': 3.1396, 'grad_norm': 0.33836638927459717, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 687865856}\n{'loss': 3.1353, 'grad_norm': 0.31407052278518677, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 688914432}\n{'loss': 2.9977, 'grad_norm': 0.34316036105155945, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 689963008}\n{'loss': 3.1683, 'grad_norm': 0.3779186010360718, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 691011584}\n{'loss': 2.9567, 'grad_norm': 0.3414095342159271, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 692060160}\n{'loss': 3.0806, 'grad_norm': 0.31614938378334045, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 693108736}\n{'loss': 3.0975, 'grad_norm': 0.35552725195884705, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 694157312}\n{'loss': 3.0241, 'grad_norm': 0.38724133372306824, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 695205888}\n{'loss': 3.0701, 'grad_norm': 0.3581823408603668, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 696254464}\n{'loss': 3.0222, 'grad_norm': 0.3632317781448364, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 697303040}\n{'loss': 3.0188, 'grad_norm': 0.40560677647590637, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 698351616}\n{'loss': 3.106, 'grad_norm': 0.3953804075717926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 699400192}\n{'loss': 3.1552, 'grad_norm': 0.40652376413345337, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 700448768}\n{'loss': 2.8893, 'grad_norm': 0.3625616133213043, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 701497344}\n{'loss': 2.9183, 'grad_norm': 0.3450768291950226, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 702545920}\n{'loss': 2.9828, 'grad_norm': 0.36742398142814636, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 703594496}\n{'loss': 3.0327, 'grad_norm': 0.3611394762992859, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 704643072}\n{'loss': 3.1466, 'grad_norm': 0.3593210279941559, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 705691648}\n{'loss': 3.0163, 'grad_norm': 0.3994838297367096, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 706740224}\n{'loss': 3.0563, 'grad_norm': 0.41202738881111145, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 707788800}\n{'loss': 3.0912, 'grad_norm': 0.3404449224472046, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 708837376}\n{'loss': 3.0108, 'grad_norm': 0.3745224177837372, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 709885952}\n{'loss': 3.0864, 'grad_norm': 0.4320204555988312, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 710934528}\n{'loss': 3.0387, 'grad_norm': 0.34649956226348877, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 711983104}\n{'loss': 3.013, 'grad_norm': 0.34744057059288025, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 713031680}\n{'loss': 3.0985, 'grad_norm': 0.3638330101966858, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 714080256}\n{'loss': 3.1498, 'grad_norm': 0.43823716044425964, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 715128832}\n{'loss': 3.0366, 'grad_norm': 0.6364668011665344, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 716177408}\n{'loss': 2.9614, 'grad_norm': 0.6294976472854614, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 717225984}\n{'loss': 3.0619, 'grad_norm': 0.5871465802192688, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 718274560}\n{'loss': 3.1489, 'grad_norm': 0.7779986262321472, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 719323136}\n{'loss': 3.1331, 'grad_norm': 1.102079153060913, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 720371712}\n{'loss': 3.1423, 'grad_norm': 0.6352481245994568, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 721420288}\n{'loss': 3.1509, 'grad_norm': 0.5698557496070862, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 722468864}\n{'loss': 2.6683, 'grad_norm': 0.501290500164032, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 723517440}\n{'loss': 3.0334, 'grad_norm': 0.4512772560119629, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 724566016}\n{'loss': 3.0485, 'grad_norm': 0.4409146308898926, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 725614592}\n{'loss': 3.0154, 'grad_norm': 0.3902524411678314, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 726663168}\n{'loss': 3.0742, 'grad_norm': 0.3692473769187927, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 727711744}\n{'loss': 2.8306, 'grad_norm': 0.385005384683609, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 728760320}\n{'loss': 2.9258, 'grad_norm': 0.37514418363571167, 'learning_rate': 0.001, 'epoch': 0.08, 'num_input_tokens_seen': 729808896}\n{'loss': 3.0061, 'grad_norm': 0.42038342356681824, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 730857472}\n{'loss': 3.0588, 'grad_norm': 0.40415653586387634, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 731906048}\n{'loss': 2.9542, 'grad_norm': 0.38514354825019836, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 732954624}\n{'loss': 2.9252, 'grad_norm': 0.3861909806728363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 734003200}\n{'loss': 2.8432, 'grad_norm': 0.40519189834594727, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 735051776}\n{'loss': 2.9779, 'grad_norm': 0.37011685967445374, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 736100352}\n{'loss': 2.9908, 'grad_norm': 0.34850460290908813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 737148928}\n{'loss': 2.9589, 'grad_norm': 0.371500700712204, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n[2025-03-11 00:58:41 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0faae356-e828-4cff-9a49-42b397431927)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_185.jsonl.zst\n[2025-03-11 00:58:41 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 01:05:12 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 9557423f-6937-4f70-b50f-05b0c01f5bf3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_4035.jsonl.zst\n[2025-03-11 01:05:12 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.9496541023254395, 'eval_runtime': 714.5105, 'eval_samples_per_second': 22.93, 'eval_steps_per_second': 0.179, 'epoch': 0.09, 'num_input_tokens_seen': 738197504}\n{'loss': 2.9029, 'grad_norm': 0.3044391870498657, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 739246080}\n{'loss': 2.8536, 'grad_norm': 0.34875407814979553, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 740294656}\n{'loss': 2.8478, 'grad_norm': 0.4568244516849518, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 741343232}\n{'loss': 3.1164, 'grad_norm': 0.44005003571510315, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 742391808}\n{'loss': 2.8584, 'grad_norm': 0.39490336179733276, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 743440384}\n{'loss': 3.0681, 'grad_norm': 0.4427798092365265, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 744488960}\n{'loss': 3.0315, 'grad_norm': 0.4771106243133545, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 745537536}\n{'loss': 2.8794, 'grad_norm': 0.4624035656452179, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 746586112}\n{'loss': 2.9624, 'grad_norm': 0.4244724214076996, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 747634688}\n{'loss': 2.9925, 'grad_norm': 0.39176708459854126, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 748683264}\n{'loss': 2.9753, 'grad_norm': 0.43686383962631226, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 749731840}\n{'loss': 3.0718, 'grad_norm': 0.4536241590976715, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 750780416}\n{'loss': 3.0065, 'grad_norm': 0.3421417772769928, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 751828992}\n{'loss': 2.8965, 'grad_norm': 0.30937010049819946, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 752877568}\n{'loss': 3.0347, 'grad_norm': 0.33371758460998535, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 753926144}\n{'loss': 3.0133, 'grad_norm': 0.3285418450832367, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 754974720}\n{'loss': 3.1219, 'grad_norm': 0.33177846670150757, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 756023296}\n{'loss': 2.9354, 'grad_norm': 0.36487525701522827, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 757071872}\n{'loss': 3.133, 'grad_norm': 0.35576146841049194, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 758120448}\n{'loss': 2.9771, 'grad_norm': 0.4217855930328369, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 759169024}\n{'loss': 2.9906, 'grad_norm': 0.4007001519203186, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 760217600}\n{'loss': 3.0219, 'grad_norm': 0.36323100328445435, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 761266176}\n{'loss': 2.89, 'grad_norm': 0.323297381401062, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 762314752}\n{'loss': 2.8566, 'grad_norm': 0.3450233042240143, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 763363328}\n{'loss': 3.0536, 'grad_norm': 0.36228489875793457, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 764411904}\n{'loss': 2.9259, 'grad_norm': 0.3553276062011719, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 765460480}\n{'loss': 2.8431, 'grad_norm': 0.37074941396713257, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 766509056}\n{'loss': 3.0549, 'grad_norm': 0.4105451703071594, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 767557632}\n{'loss': 2.8431, 'grad_norm': 0.4433744549751282, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 768606208}\n{'loss': 2.9545, 'grad_norm': 0.4024113416671753, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 769654784}\n{'loss': 2.9237, 'grad_norm': 0.3534025549888611, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 770703360}\n{'loss': 2.9306, 'grad_norm': 0.3788505792617798, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 771751936}\n{'loss': 2.9218, 'grad_norm': 0.3302527666091919, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 772800512}\n{'loss': 3.0647, 'grad_norm': 0.36651748418807983, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 773849088}\n{'loss': 3.0289, 'grad_norm': 0.35838624835014343, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 774897664}\n{'loss': 2.9157, 'grad_norm': 0.34652525186538696, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 775946240}\n{'loss': 2.9358, 'grad_norm': 0.37369009852409363, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 776994816}\n{'loss': 3.0725, 'grad_norm': 0.37748783826828003, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 778043392}\n{'loss': 2.8444, 'grad_norm': 0.339287132024765, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 779091968}\n{'loss': 2.859, 'grad_norm': 0.3415367305278778, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 780140544}\n{'loss': 2.9334, 'grad_norm': 0.3661401569843292, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 781189120}\n{'loss': 3.0287, 'grad_norm': 0.3512025773525238, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 782237696}\n{'loss': 2.8093, 'grad_norm': 0.3412944972515106, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 783286272}\n{'loss': 2.9112, 'grad_norm': 0.35280412435531616, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 784334848}\n{'loss': 2.8939, 'grad_norm': 0.3652521073818207, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 785383424}\n{'loss': 2.961, 'grad_norm': 0.3336659371852875, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 786432000}\n{'loss': 2.9547, 'grad_norm': 0.3242711126804352, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 787480576}\n{'loss': 2.8035, 'grad_norm': 0.3276830017566681, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 788529152}\n{'loss': 2.9639, 'grad_norm': 0.32558611035346985, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 789577728}\n{'loss': 2.9981, 'grad_norm': 0.32141759991645813, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 790626304}\n{'loss': 2.8053, 'grad_norm': 0.33697575330734253, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 791674880}\n{'loss': 2.9265, 'grad_norm': 0.3305177092552185, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 792723456}\n{'loss': 2.9357, 'grad_norm': 0.3303467035293579, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 793772032}\n{'loss': 2.9209, 'grad_norm': 0.33826348185539246, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 794820608}\n{'loss': 3.0134, 'grad_norm': 0.3682444393634796, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 795869184}\n{'loss': 2.8786, 'grad_norm': 0.364545613527298, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 796917760}\n{'loss': 3.0202, 'grad_norm': 0.4031524360179901, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 797966336}\n{'loss': 2.4912, 'grad_norm': 0.40752920508384705, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 799014912}\n{'loss': 2.9311, 'grad_norm': 0.36912065744400024, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 800063488}\n{'loss': 2.8768, 'grad_norm': 0.3906254172325134, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 801112064}\n{'loss': 2.8677, 'grad_norm': 0.3680756092071533, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 802160640}\n{'loss': 2.967, 'grad_norm': 0.42479801177978516, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 803209216}\n{'loss': 3.0138, 'grad_norm': 0.4966808259487152, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 804257792}\n{'loss': 2.9186, 'grad_norm': 0.413562536239624, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'eval_loss': 2.8718671798706055, 'eval_runtime': 1149.5487, 'eval_samples_per_second': 14.253, 'eval_steps_per_second': 0.111, 'epoch': 0.09, 'num_input_tokens_seen': 805306368}\n{'loss': 2.8717, 'grad_norm': 0.3343268632888794, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 806354944}\n{'loss': 3.0123, 'grad_norm': 0.42326104640960693, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 807403520}\n{'loss': 2.9691, 'grad_norm': 0.35408785939216614, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 808452096}\n{'loss': 2.8862, 'grad_norm': 0.35168665647506714, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 809500672}\n{'loss': 2.9754, 'grad_norm': 0.3385300934314728, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 810549248}\n{'loss': 2.751, 'grad_norm': 0.36974239349365234, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 811597824}\n{'loss': 2.8481, 'grad_norm': 0.3535187244415283, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 812646400}\n{'loss': 2.9605, 'grad_norm': 0.39851564168930054, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 813694976}\n{'loss': 2.9251, 'grad_norm': 0.35983574390411377, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 814743552}\n{'loss': 2.8766, 'grad_norm': 0.34153202176094055, 'learning_rate': 0.001, 'epoch': 0.09, 'num_input_tokens_seen': 815792128}\n{'loss': 2.9205, 'grad_norm': 0.3700859546661377, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 816840704}\n{'loss': 2.7621, 'grad_norm': 0.3954067528247833, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 817889280}\n{'loss': 2.886, 'grad_norm': 0.4191531538963318, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 818937856}\n{'loss': 2.9203, 'grad_norm': 0.3315434157848358, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 819986432}\n{'loss': 2.9563, 'grad_norm': 0.3308311700820923, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 821035008}\n{'loss': 2.9391, 'grad_norm': 0.3073643445968628, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 822083584}\n{'loss': 2.7197, 'grad_norm': 0.3343094289302826, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 823132160}\n{'loss': 2.909, 'grad_norm': 0.31464704871177673, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 824180736}\n{'loss': 2.8581, 'grad_norm': 0.40213140845298767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 825229312}\n{'loss': 2.9224, 'grad_norm': 0.36158621311187744, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 826277888}\n{'loss': 2.985, 'grad_norm': 0.3831183910369873, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 827326464}\n{'loss': 2.8964, 'grad_norm': 0.3219353258609772, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 828375040}\n{'loss': 3.0832, 'grad_norm': 0.31743234395980835, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 829423616}\n{'loss': 2.9602, 'grad_norm': 0.3629371225833893, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 830472192}\n{'loss': 2.8327, 'grad_norm': 0.3800980746746063, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 831520768}\n{'loss': 2.8298, 'grad_norm': 0.3349006772041321, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 832569344}\n{'loss': 2.9633, 'grad_norm': 0.3282972276210785, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 833617920}\n{'loss': 2.9234, 'grad_norm': 0.3283899128437042, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 834666496}\n{'loss': 2.9754, 'grad_norm': 0.33885031938552856, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 835715072}\n{'loss': 2.8825, 'grad_norm': 0.3113347589969635, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 836763648}\n{'loss': 2.9483, 'grad_norm': 0.3759271204471588, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 837812224}\n{'loss': 2.8577, 'grad_norm': 0.38608986139297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 838860800}\n{'loss': 2.6639, 'grad_norm': 0.3253604471683502, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 839909376}\n{'loss': 2.8295, 'grad_norm': 0.31234994530677795, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 840957952}\n{'loss': 2.9323, 'grad_norm': 0.37187162041664124, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 842006528}\n{'loss': 3.2357, 'grad_norm': 0.5417175889015198, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 843055104}\n{'loss': 2.8982, 'grad_norm': 0.6133915781974792, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 844103680}\n{'loss': 2.928, 'grad_norm': 0.7637872099876404, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 845152256}\n{'loss': 2.9283, 'grad_norm': 0.7322977781295776, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 846200832}\n{'loss': 2.8209, 'grad_norm': 0.5112255215644836, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 847249408}\n{'loss': 2.8696, 'grad_norm': 0.49990609288215637, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 848297984}\n{'loss': 2.9193, 'grad_norm': 0.4511178135871887, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 849346560}\n{'loss': 2.9658, 'grad_norm': 0.4653412997722626, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 850395136}\n{'loss': 2.889, 'grad_norm': 0.3913695812225342, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 851443712}\n{'loss': 2.9534, 'grad_norm': 0.39285045862197876, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 852492288}\n{'loss': 2.8341, 'grad_norm': 0.5052099227905273, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 853540864}\n{'loss': 3.0436, 'grad_norm': 0.5978823900222778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 854589440}\n{'loss': 2.9484, 'grad_norm': 0.4584784507751465, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 855638016}\n{'loss': 2.8786, 'grad_norm': 0.40823692083358765, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 856686592}\n{'loss': 2.942, 'grad_norm': 0.4448293447494507, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 857735168}\n{'loss': 2.9347, 'grad_norm': 0.4112764596939087, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 858783744}\n{'loss': 2.8359, 'grad_norm': 0.3826068341732025, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 859832320}\n{'loss': 2.9277, 'grad_norm': 0.37165558338165283, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 860880896}\n{'loss': 2.6527, 'grad_norm': 0.4285834729671478, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 861929472}\n{'loss': 2.8451, 'grad_norm': 0.36497727036476135, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 862978048}\n{'loss': 2.9039, 'grad_norm': 0.35966625809669495, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 864026624}\n{'loss': 2.9268, 'grad_norm': 0.3529391586780548, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 865075200}\n{'loss': 2.9953, 'grad_norm': 0.3455546498298645, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 866123776}\n{'loss': 2.9307, 'grad_norm': 0.3788530230522156, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 867172352}\n{'loss': 2.9448, 'grad_norm': 0.35837656259536743, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 868220928}\n{'loss': 2.9937, 'grad_norm': 0.3842633366584778, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 869269504}\n{'loss': 2.8324, 'grad_norm': 0.32774215936660767, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 870318080}\n{'loss': 2.8613, 'grad_norm': 0.327158659696579, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 871366656}\n{'loss': 2.7653, 'grad_norm': 0.3515920639038086, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n[2025-03-11 02:50:38 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 939d1d36-c607-4d3c-a0a0-8e447579340b)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_165.jsonl.zst\n[2025-03-11 02:50:39 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 02:58:37 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 0b99bfd1-07ae-46db-81fa-fc6ef0eabdbc)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_1529.jsonl.zst\n[2025-03-11 02:58:37 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:00:11 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: c208d1bb-5d13-45d2-9a01-1d5a2defa598)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_4562.jsonl.zst\n[2025-03-11 03:00:11 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:01:14 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 2bf98b5c-473b-4e00-aca2-b152efddb992)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk3/example_holdout_4414.jsonl.zst\n[2025-03-11 03:01:14 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.816462278366089, 'eval_runtime': 954.8041, 'eval_samples_per_second': 17.16, 'eval_steps_per_second': 0.134, 'epoch': 0.1, 'num_input_tokens_seen': 872415232}\n{'loss': 2.867, 'grad_norm': 0.3173666000366211, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 873463808}\n{'loss': 2.8701, 'grad_norm': 0.3399354815483093, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 874512384}\n{'loss': 2.8575, 'grad_norm': 0.36704689264297485, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 875560960}\n{'loss': 2.9582, 'grad_norm': 0.33231136202812195, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 876609536}\n{'loss': 2.7719, 'grad_norm': 0.34316956996917725, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 877658112}\n{'loss': 2.8915, 'grad_norm': 0.3483976423740387, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 878706688}\n{'loss': 2.7566, 'grad_norm': 0.3104913532733917, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 879755264}\n{'loss': 3.0013, 'grad_norm': 0.38844239711761475, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 880803840}\n{'loss': 2.5568, 'grad_norm': 0.40875244140625, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 881852416}\n{'loss': 2.8336, 'grad_norm': 0.3538399934768677, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 882900992}\n{'loss': 2.9391, 'grad_norm': 0.3494492471218109, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 883949568}\n{'loss': 2.8535, 'grad_norm': 0.3472343981266022, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 884998144}\n{'loss': 2.9836, 'grad_norm': 0.34867390990257263, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 886046720}\n{'loss': 2.8416, 'grad_norm': 0.3527415096759796, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 887095296}\n{'loss': 2.8756, 'grad_norm': 0.3338777422904968, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 888143872}\n{'loss': 2.8428, 'grad_norm': 0.3345812261104584, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 889192448}\n{'loss': 2.8977, 'grad_norm': 0.31487980484962463, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 890241024}\n{'loss': 2.9543, 'grad_norm': 0.3655254542827606, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 891289600}\n{'loss': 2.9423, 'grad_norm': 0.33075806498527527, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 892338176}\n{'loss': 2.9001, 'grad_norm': 0.34644609689712524, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 893386752}\n{'loss': 2.9029, 'grad_norm': 0.39070528745651245, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 894435328}\n{'loss': 2.9101, 'grad_norm': 0.39556533098220825, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 895483904}\n{'loss': 2.8119, 'grad_norm': 0.39002978801727295, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 896532480}\n{'loss': 3.0102, 'grad_norm': 0.37797507643699646, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 897581056}\n{'loss': 2.666, 'grad_norm': 0.4306756258010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 898629632}\n{'loss': 2.9257, 'grad_norm': 0.4526049494743347, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 899678208}\n{'loss': 2.8196, 'grad_norm': 0.3978416621685028, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 900726784}\n{'loss': 2.9057, 'grad_norm': 0.3925896883010864, 'learning_rate': 0.001, 'epoch': 0.1, 'num_input_tokens_seen': 901775360}\n{'loss': 3.0017, 'grad_norm': 0.45828214287757874, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 902823936}\n{'loss': 2.89, 'grad_norm': 0.4745008647441864, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 903872512}\n{'loss': 2.7335, 'grad_norm': 0.4270082116127014, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 904921088}\n{'loss': 2.8234, 'grad_norm': 0.38832950592041016, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 905969664}\n{'loss': 2.8618, 'grad_norm': 0.3907729387283325, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 907018240}\n{'loss': 2.8703, 'grad_norm': 0.368655264377594, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 908066816}\n{'loss': 2.8321, 'grad_norm': 0.41538506746292114, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 909115392}\n{'loss': 2.886, 'grad_norm': 0.41877180337905884, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 910163968}\n{'loss': 2.6224, 'grad_norm': 0.33238673210144043, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 911212544}\n{'loss': 2.8617, 'grad_norm': 0.4095931351184845, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 912261120}\n{'loss': 2.8172, 'grad_norm': 0.41708603501319885, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 913309696}\n{'loss': 2.7658, 'grad_norm': 0.37449270486831665, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 914358272}\n{'loss': 2.9042, 'grad_norm': 0.3935737609863281, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 915406848}\n{'loss': 2.7612, 'grad_norm': 0.3586251735687256, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 916455424}\n{'loss': 2.8785, 'grad_norm': 0.3712047338485718, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 917504000}\n{'loss': 2.739, 'grad_norm': 0.37707045674324036, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 918552576}\n{'loss': 2.8372, 'grad_norm': 0.3432702422142029, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 919601152}\n{'loss': 2.5638, 'grad_norm': 0.3493041396141052, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 920649728}\n{'loss': 2.8759, 'grad_norm': 0.3401539623737335, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 921698304}\n{'loss': 3.0048, 'grad_norm': 0.4632040858268738, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 922746880}\n{'loss': 2.9394, 'grad_norm': 0.4968065023422241, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 923795456}\n{'loss': 2.8441, 'grad_norm': 0.5426673889160156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 924844032}\n{'loss': 2.9975, 'grad_norm': 0.4630672037601471, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 925892608}\n{'loss': 2.9584, 'grad_norm': 0.38806748390197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 926941184}\n{'loss': 2.8904, 'grad_norm': 0.39797642827033997, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 927989760}\n{'loss': 2.5774, 'grad_norm': 0.4063512980937958, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 929038336}\n{'loss': 2.812, 'grad_norm': 0.3161136209964752, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 930086912}\n{'loss': 2.7483, 'grad_norm': 0.3628361225128174, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 931135488}\n{'loss': 2.7916, 'grad_norm': 0.37376269698143005, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 932184064}\n{'loss': 2.7985, 'grad_norm': 0.3399117887020111, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 933232640}\n{'loss': 2.7107, 'grad_norm': 0.3453179597854614, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 934281216}\n{'loss': 2.9254, 'grad_norm': 0.39461833238601685, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 935329792}\n{'loss': 2.8487, 'grad_norm': 0.3668413460254669, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 936378368}\n{'loss': 2.7928, 'grad_norm': 0.28304487466812134, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 937426944}\n{'loss': 2.8503, 'grad_norm': 0.35816267132759094, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 938475520}\n{'loss': 3.0328, 'grad_norm': 0.3540339469909668, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n[2025-03-11 03:46:08 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: 3b8321b9-2d88-4bfa-9eca-b201c444cba3)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk5/example_holdout_405.jsonl.zst\n[2025-03-11 03:46:08 WARNING] Retrying in 1s [Retry 1/5].\n[2025-03-11 03:53:27 WARNING] '(ReadTimeoutError(\"HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)\"), '(Request ID: a98a238a-c0a4-4295-8502-316a89a7ae29)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk1/example_holdout_2524.jsonl.zst\n[2025-03-11 03:53:27 WARNING] Retrying in 1s [Retry 1/5].\n{'eval_loss': 2.7651162147521973, 'eval_runtime': 687.962, 'eval_samples_per_second': 23.815, 'eval_steps_per_second': 0.186, 'epoch': 0.11, 'num_input_tokens_seen': 939524096}\n{'loss': 2.9368, 'grad_norm': 0.34962671995162964, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 940572672}\n{'loss': 2.3627, 'grad_norm': 0.37516310811042786, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 941621248}\n{'loss': 2.8854, 'grad_norm': 0.3487492501735687, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 942669824}\n{'loss': 2.7892, 'grad_norm': 0.37180987000465393, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 943718400}\n{'loss': 2.8067, 'grad_norm': 0.3387952744960785, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 944766976}\n{'loss': 2.841, 'grad_norm': 0.32076528668403625, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 945815552}\n{'loss': 2.7965, 'grad_norm': 0.3348572552204132, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 946864128}\n{'loss': 2.6788, 'grad_norm': 0.3531329929828644, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 947912704}\n{'loss': 2.7276, 'grad_norm': 0.300353467464447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 948961280}\n{'loss': 2.8189, 'grad_norm': 0.3258875012397766, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 950009856}\n{'loss': 2.8388, 'grad_norm': 0.3434987962245941, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 951058432}\n{'loss': 2.856, 'grad_norm': 0.33045029640197754, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 952107008}\n{'loss': 2.658, 'grad_norm': 0.34896957874298096, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 953155584}\n{'loss': 2.8484, 'grad_norm': 0.3819083273410797, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 954204160}\n{'loss': 2.8402, 'grad_norm': 0.39541998505592346, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 955252736}\n{'loss': 2.8281, 'grad_norm': 0.3843367397785187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 956301312}\n{'loss': 2.8339, 'grad_norm': 0.4067714214324951, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 957349888}\n{'loss': 2.8693, 'grad_norm': 0.3071018159389496, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 958398464}\n{'loss': 2.6747, 'grad_norm': 0.3676702380180359, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 959447040}\n{'loss': 2.6961, 'grad_norm': 0.357799232006073, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 960495616}\n{'loss': 2.7944, 'grad_norm': 0.318391352891922, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 961544192}\n{'loss': 2.8084, 'grad_norm': 0.32000190019607544, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 962592768}\n{'loss': 2.8024, 'grad_norm': 0.3250137269496918, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 963641344}\n{'loss': 2.7951, 'grad_norm': 0.33021438121795654, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 964689920}\n{'loss': 2.8069, 'grad_norm': 0.3257495164871216, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 965738496}\n{'loss': 2.8148, 'grad_norm': 0.3608018159866333, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 966787072}\n[2025-03-11 04:13:12 WARNING] '(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: 36a7cc72-4605-416a-8742-59488d719150)')' thrown while requesting GET https://huggingface.co/datasets/cerebras/SlimPajama-627B/resolve/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk1/example_train_5267.jsonl.zst\n[2025-03-11 04:13:12 WARNING] Retrying in 1s [Retry 1/5].\n{'loss': 2.8089, 'grad_norm': 0.3657573163509369, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 967835648}\n{'loss': 2.8243, 'grad_norm': 0.3791966736316681, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 968884224}\n{'loss': 2.6837, 'grad_norm': 0.4036826193332672, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 969932800}\n{'loss': 2.6694, 'grad_norm': 0.34643635153770447, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 970981376}\n{'loss': 2.8455, 'grad_norm': 0.35321497917175293, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 972029952}\n{'loss': 2.5156, 'grad_norm': 0.3488744795322418, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 973078528}\n{'loss': 2.7185, 'grad_norm': 0.33396172523498535, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 974127104}\n{'loss': 2.856, 'grad_norm': 0.36425134539604187, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 975175680}\n{'loss': 2.7639, 'grad_norm': 0.34361588954925537, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 976224256}\n{'loss': 2.7777, 'grad_norm': 0.45501893758773804, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 977272832}\n{'loss': 2.8692, 'grad_norm': 0.4391760230064392, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 978321408}\n{'loss': 2.7885, 'grad_norm': 0.385729044675827, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 979369984}\n{'loss': 2.8622, 'grad_norm': 0.4122815728187561, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 980418560}\n{'loss': 2.674, 'grad_norm': 0.3223947584629059, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 981467136}\n{'loss': 2.7148, 'grad_norm': 0.39820024371147156, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 982515712}\n{'loss': 2.6975, 'grad_norm': 0.38311144709587097, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 983564288}\n{'loss': 2.8515, 'grad_norm': 0.4324709177017212, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 984612864}\n{'loss': 2.5684, 'grad_norm': 0.3579341471195221, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 985661440}\n{'loss': 2.9478, 'grad_norm': 0.4081536531448364, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 986710016}\n{'loss': 2.7375, 'grad_norm': 0.4332145154476166, 'learning_rate': 0.001, 'epoch': 0.11, 'num_input_tokens_seen': 987758592}\n{'loss': 2.7773, 'grad_norm': 0.43510711193084717, 'learning_rate': 0.001, 'epoch': 0.12, 'num_input_tokens_seen': 988807168}\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 1378, in _iter_from_urlpaths\n raise FileNotFoundError(urlpath)\nFileNotFoundError: zstd://example_train_1215.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_1215.jsonl.zst\n```\n\n</details>", "Two more today:\n```python\nFileNotFoundError: zstd://example_holdout_5012.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk4/example_holdout_5012.jsonl.zst\n```\nand\n```python\nFileNotFoundError: zstd://example_holdout_3073.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/validation/chunk2/example_holdout_3073.jsonl.zst\n```\nboth of which exist on the hub ([here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk4/example_holdout_5012.jsonl.zst) and [here](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/validation/chunk2/example_holdout_3073.jsonl.zst)).", "I also observe the same thing when using streaming with DCLM dataset with 64 GPUs. I have tried ```export HF_DATASETS_STREAMING_PARALLELISM=1``` but doesn't help.", "Another error today, this time a 504 gateway timeout `HfHubHTTPError`. I have no idea if this is related, but I suspect that it is considering the setup is identical. Notably though, the two errors I posted yesterday were for evaluation (hence the `holdout` in the URLs) whereas today there was no problem doing that first evaluation, but now the `train` split failed.\n```python\n...\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 2226, in __iter__\n for key, example in ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1499, in __iter__\n for x in self.ex_iterable:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1067, in __iter__\n yield from self._iter()\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1231, in _iter\n for key, transformed_example in iter_outputs():\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1207, in iter_outputs\n for i, key_example in inputs_iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 1111, in iter_inputs\n for key, example in iterator:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py\", line 371, in __iter__\n for key, pa_table in self.generate_tables_fn(**gen_kwags):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py\", line 114, in _generate_tables\n with open(file, \"rb\") as f:\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/streaming.py\", line 75, in wrapper\n return function(*args, download_config=download_config, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py\", line 948, in xopen\n file_obj = fsspec.open(file, mode=mode, *args, **kwargs).open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/filesystems/compression.py\", line 85, in _open\n return self._open_with_fsspec().open()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 147, in open\n return self.__enter__()\n ^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/core.py\", line 105, in __enter__\n f = self.fs.open(self.path, mode=mode)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/fsspec/spec.py\", line 1301, in open\n f = self._open(\n ^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 234, in _open\n return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 691, in __init__\n self.details = fs.info(self.resolved_path.unresolve(), expand_info=False)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 524, in info\n self.ls(parent_path, expand_info=False)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 284, in ls\n out = self._ls_tree(path, refresh=refresh, revision=revision, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_file_system.py\", line 375, in _ls_tree\n for path_info in tree:\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/hf_api.py\", line 3080, in list_repo_tree\n for path_info in paginate(path=tree_url, headers=headers, params={\"recursive\": recursive, \"expand\": expand}):\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_pagination.py\", line 46, in paginate\n hf_raise_for_status(r)\n File \"/miniconda3/envs/draft/lib/python3.11/site-packages/huggingface_hub/utils/_http.py\", line 477, in hf_raise_for_status\n raise _format(HfHubHTTPError, str(e), response) from e\nhuggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/api/datasets/cerebras/SlimPajama-627B/tree/2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train%2Fchunk8?recursive=False&expand=False&cursor=ZXlKbWFXeGxYMjVoYldVaU9pSjBjbUZwYmk5amFIVnVhemd2WlhoaGJYQnNaVjkwY21GcGJsOHpOams0TG1wemIyNXNMbnB6ZENKOTozMDAw\n```" ]
2025-03-07T19:14:18
2025-03-13T15:00:47
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug In https://github.com/huggingface/datasets/issues/6843 it was noted that the streaming feature of `datasets` is highly susceptible to outages and doesn't back off for long (or even *at all*). I was training a model while streaming SlimPajama and training crashed with a `FileNotFoundError`. I can only assume that this was due to a momentary outage considering the file in question, `train/chunk9/example_train_3889.jsonl.zst`, [exists like all other files in SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B/blob/main/train/chunk9/example_train_3889.jsonl.zst). ```python ... File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 2226, in __iter__ for key, example in ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1499, in __iter__ for x in self.ex_iterable: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1067, in __iter__ yield from self._iter() File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1231, in _iter for key, transformed_example in iter_outputs(): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1207, in iter_outputs for i, key_example in inputs_iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1111, in iter_inputs for key, example in iterator: File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 371, in __iter__ for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/packaged_modules/json/json.py", line 99, in _generate_tables for file_idx, file in enumerate(itertools.chain.from_iterable(files)): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/track.py", line 50, in __iter__ for x in self.generator(*self.args): File "/miniconda3/envs/draft/lib/python3.11/site-packages/datasets/utils/file_utils.py", line 1378, in _iter_from_urlpaths raise FileNotFoundError(urlpath) FileNotFoundError: zstd://example_train_3889.jsonl::hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543/train/chunk9/example_train_3889.jsonl.zst ``` That final `raise` is at the bottom of the following snippet: https://github.com/huggingface/datasets/blob/f693f4e93aabafa878470c80fd42ddb10ec550d6/src/datasets/utils/file_utils.py#L1354-L1379 So clearly, something choked up in `xisfile`. ### Steps to reproduce the bug This happens when streaming a dataset and iterating over it. In my case, that iteration is done in Trainer's `inner_training_loop`, but this is not relevant to the iterator. ```python File "/miniconda3/envs/draft/lib/python3.11/site-packages/accelerate/data_loader.py", line 835, in __iter__ next_batch, next_batch_info = self._fetch_batches(main_iterator) ``` ### Expected behavior This bug and the linked issue have one thing in common: *when streaming fails to retrieve an example, the entire program gives up and crashes*. As users, we cannot even protect ourselves from this: when we are iterating over a dataset, we can't make `datasets` skip over a bad example or wait a little longer to retry the iteration, because when a Python generator/iterator raises an error, it loses all its context. In other words: if you have something that looks like `for b in a: for c in b: for d in c:`, errors in the innermost loop can only be caught by a `try ... except` in `c.__iter__()`. There should be such exception handling in `datasets` and it should have a **configurable exponential back-off**: first wait and retry after 1 minute, then 2 minutes, then 4 minutes, then 8 minutes, ... and after a given amount of retries, **skip the bad example**, and **only after** skipping a given amount of examples, give up and crash. This was requested in https://github.com/huggingface/datasets/issues/6843 too, since currently there is only linear backoff *and* it is clearly not applied to `xisfile`. ### Environment info - `datasets` version: 3.3.2 *(the latest version)* - Platform: Linux-4.18.0-513.24.1.el8_9.x86_64-x86_64-with-glibc2.28 - Python version: 3.11.7 - `huggingface_hub` version: 0.26.5 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2024.10.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7440/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7440/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7433
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7433/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7433/comments
https://api.github.com/repos/huggingface/datasets/issues/7433/events
https://github.com/huggingface/datasets/issues/7433
2,890,240,400
I_kwDODunzps6sRZGQ
7,433
`Dataset.map` ignores existing caches and remaps when ran with different `num_proc`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "This feels related: https://github.com/huggingface/datasets/issues/3044", "@lhoestq This comment specifically, I agree:\n\n* https://github.com/huggingface/datasets/issues/3044#issuecomment-1239877570\n\n> Almost a year later and I'm in a similar boat. Using custom fingerprints and when using multiprocessing the cached datasets are saved with a template at the end of the filename (something like \"000001_of_000008\" for every process of num_proc). So if in the next time you run the script you set num_proc to a different number, the cache cannot be used.\n> \n> Is there any way to get around this? I am processing a huge dataset so I do the processing on one machine and then transfer the processed data to another in its cache dir but currently that's not possible due to num_proc mismatch.\n\n" ]
2025-03-03T05:51:26
2025-03-04T05:55:08
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug If you `map` a dataset and save it to a specific `cache_file_name` with a specific `num_proc`, and then call map again with that same existing `cache_file_name` but a different `num_proc`, the dataset will be re-mapped. ### Steps to reproduce the bug 1. Download a dataset ```python import datasets dataset = datasets.load_dataset("ylecun/mnist") ``` ``` Generating train split: 100%|██████████| 60000/60000 [00:00<00:00, 116429.85 examples/s] Generating test split: 100%|██████████| 10000/10000 [00:00<00:00, 103310.27 examples/s] ``` 2. `map` and cache it with a specific `num_proc` ```python cache_file_name="./cache/train.map" dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=2) ``` ``` Map (num_proc=2): 100%|██████████| 60000/60000 [00:01<00:00, 53764.03 examples/s] ``` 3. `map` it with a different `num_proc` and the same `cache_file_name` as before ```python dataset["train"].map(lambda x: x, cache_file_name=cache_file_name, num_proc=3) ``` ``` Map (num_proc=3): 100%|██████████| 60000/60000 [00:00<00:00, 65377.12 examples/s] ``` ### Expected behavior If I specify an existing `cache_file_name`, I don't expect using a different `num_proc` than the one that was used to generate it to cause the dataset to have be be re-mapped. ### Environment info ```console $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-5.15.0-131-generic-x86_64-with-glibc2.35 - Python version: 3.10.16 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7433/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7433/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7431
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7431/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7431/comments
https://api.github.com/repos/huggingface/datasets/issues/7431/events
https://github.com/huggingface/datasets/issues/7431
2,887,244,074
I_kwDODunzps6sF9kq
7,431
Issues with large Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/106806889?v=4", "events_url": "https://api.github.com/users/nikitabelooussovbtis/events{/privacy}", "followers_url": "https://api.github.com/users/nikitabelooussovbtis/followers", "following_url": "https://api.github.com/users/nikitabelooussovbtis/following{/other_user}", "gists_url": "https://api.github.com/users/nikitabelooussovbtis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikitabelooussovbtis", "id": 106806889, "login": "nikitabelooussovbtis", "node_id": "U_kgDOBl2-aQ", "organizations_url": "https://api.github.com/users/nikitabelooussovbtis/orgs", "received_events_url": "https://api.github.com/users/nikitabelooussovbtis/received_events", "repos_url": "https://api.github.com/users/nikitabelooussovbtis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikitabelooussovbtis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikitabelooussovbtis/subscriptions", "type": "User", "url": "https://api.github.com/users/nikitabelooussovbtis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "what's the error message ?", "This was the final error message that it was giving pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to string in row 0", "Here is the list of errors:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 160, in _generate_tables\n df = pandas_read_json(f)\n ^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 38, in pandas_read_json\n return pd.read_json(path_or_buf, **kwargs)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 815, in read_json\n return json_reader.read()\n ^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1025, in read\n obj = self._get_object_parser(self.data)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1051, in _get_object_parser\n obj = FrameParser(json, **kwargs).parse()\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1187, in parse\n self._parse()\n File \".venv/lib/python3.12/site-packages/pandas/io/json/_json.py\", line 1402, in _parse\n self.obj = DataFrame(\n ^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/frame.py\", line 778, in __init__\n mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 503, in dict_to_mgr\n return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 114, in arrays_to_mgr\n index = _extract_index(arrays)\n ^^^^^^^^^^^^^^^^^^^^^^\n File \".venv/lib/python3.12/site-packages/pandas/core/internals/construction.py\", line 677, in _extract_index\n raise ValueError(\"All arrays must be of the same length\")\nValueError: All arrays must be of the same length\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1854, in _prepare_split_single\n for _, table in generator:\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 163, in _generate_tables\n raise e\n File \".venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py\", line 137, in _generate_tables\n pa_table = paj.read_json(\n ^^^^^^^^^^^^^^\n File \"pyarrow/_json.pyx\", line 308, in pyarrow._json.read_json\n File \"pyarrow/error.pxi\", line 155, in pyarrow.lib.pyarrow_internal_check_status\n File \"pyarrow/error.pxi\", line 92, in pyarrow.lib.check_status\npyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to number in row 0\n\nThe above exception was the direct cause of the following exception:\n\nTraceback (most recent call last):\n File \"run_object_detection.py\", line 582, in <module>\n main()\n File \"run_object_detection.py\", line 407, in main\n dataset = load_dataset(\n ^^^^^^^^^^^^^\n File \"venv/lib/python3.12/site-packages/datasets/load.py\", line 2151, in load_dataset\n builder_instance.download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 924, in download_and_prepare\n self._download_and_prepare(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1000, in _download_and_prepare\n self._prepare_split(split_generator, **prepare_split_kwargs)\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1741, in _prepare_split\n for job_id, done, content in self._prepare_split_single(\n File \".venv/lib/python3.12/site-packages/datasets/builder.py\", line 1897, in _prepare_split_single\n raise DatasetGenerationError(\"An error occurred while generating the dataset\") from e\ndatasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset", "`datasets` is based on Arrow which expects all the lists inside the data to be of fixed type. Arrow can't load lists that contain a mix of integers and strings for example. In your case it looks like one of the lists contains numbers and JSON objects.\n\nI'd suggest you to reformat the data to end up with list of fixed types, otherwise you won't be able to load the data in `datasets`" ]
2025-02-28T14:05:22
2025-03-04T15:02:26
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug If the coco annotation file is too large the dataset will not be able to load it, not entirely sure were the issue is but I am guessing it is due to the code trying to load it all as one line into a dataframe. This was for object detections. My current work around is the following code but would be nice to be able to do it without worrying about it also probably there is a better way of doing it: ` dataset_dict = json.load(open("./local_data/annotations/train.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) train=Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/validation.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) val = Dataset.from_pandas(df) dataset_dict = json.load(open("./local_data/annotations/test.json")) df = pd.DataFrame(columns=['images', 'annotations', 'categories']) df = df._append({'images': dataset_dict['images'], 'annotations': dataset_dict['annotations'], 'categories': dataset_dict['categories']}, ignore_index=True) test = Dataset.from_pandas(df) dataset = DatasetDict({'train': train, 'validation': val, 'test': test}) ` ### Steps to reproduce the bug 1) step up directory in and have the json files in coco format -local_data |-images |---1.jpg |---2.jpg |---.... |---n.jpg |-annotations |---test.json |---train.json |---validation.json 2) try to load local_data into a dataset if the file is larger than about 300kb it will cause an error. ### Expected behavior That it loads the jsons preferably in the same format as it has done with a smaller size. ### Environment info - `datasets` version: 3.3.3.dev0 - Platform: Linux-6.11.0-17-generic-x86_64-with-glibc2.39 - Python version: 3.12.3 - `huggingface_hub` version: 0.29.0 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7431/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7431/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7430
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7430/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7430/comments
https://api.github.com/repos/huggingface/datasets/issues/7430/events
https://github.com/huggingface/datasets/issues/7430
2,886,922,573
I_kwDODunzps6sEvFN
7,430
Error in code "Time to slice and dice" from course "NLP Course"
{ "avatar_url": "https://avatars.githubusercontent.com/u/122965300?v=4", "events_url": "https://api.github.com/users/Yurkmez/events{/privacy}", "followers_url": "https://api.github.com/users/Yurkmez/followers", "following_url": "https://api.github.com/users/Yurkmez/following{/other_user}", "gists_url": "https://api.github.com/users/Yurkmez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Yurkmez", "id": 122965300, "login": "Yurkmez", "node_id": "U_kgDOB1RNNA", "organizations_url": "https://api.github.com/users/Yurkmez/orgs", "received_events_url": "https://api.github.com/users/Yurkmez/received_events", "repos_url": "https://api.github.com/users/Yurkmez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Yurkmez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Yurkmez/subscriptions", "type": "User", "url": "https://api.github.com/users/Yurkmez", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You should open an issue in the NLP course website / github page. I'm closing this issue if you don't mind", "ok, i don't mind, i'll mark the error there" ]
2025-02-28T11:36:10
2025-03-05T11:32:47
2025-03-03T17:52:15
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When we execute code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` answer should be like this condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 but he is different frequency | count birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 this is not correct, correct code ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "count": "frequency"}) ) ```` ### Steps to reproduce the bug ``` frequencies = ( train_df["condition"] .value_counts() .to_frame() .reset_index() .rename(columns={"index": "condition", "condition": "frequency"}) ) frequencies.head() ``` ### Expected behavior condition | frequency birth control | 27655 depression | 8023 acne | 5209 anxiety | 4991 pain | 4744 ### Environment info Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7430/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7430/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7427
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7427/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7427/comments
https://api.github.com/repos/huggingface/datasets/issues/7427/events
https://github.com/huggingface/datasets/issues/7427
2,886,032,571
I_kwDODunzps6sBVy7
7,427
Error splitting the input into NAL units.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47114466?v=4", "events_url": "https://api.github.com/users/MengHao666/events{/privacy}", "followers_url": "https://api.github.com/users/MengHao666/followers", "following_url": "https://api.github.com/users/MengHao666/following{/other_user}", "gists_url": "https://api.github.com/users/MengHao666/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MengHao666", "id": 47114466, "login": "MengHao666", "node_id": "MDQ6VXNlcjQ3MTE0NDY2", "organizations_url": "https://api.github.com/users/MengHao666/orgs", "received_events_url": "https://api.github.com/users/MengHao666/received_events", "repos_url": "https://api.github.com/users/MengHao666/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MengHao666/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MengHao666/subscriptions", "type": "User", "url": "https://api.github.com/users/MengHao666", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`", "> First time I see this error :/ maybe it's an issue with your version of `multiprocess` and `dill` ? Make sure they are compatible with `datasets`\n\nany recommendation for `multiprocess` and `dill`" ]
2025-02-28T02:30:15
2025-03-04T01:40:28
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I am trying to finetune qwen2.5-vl on 16 * 80G GPUS, and I use `LLaMA-Factory` and set `preprocessing_num_workers=16`. However, I met the following error and the program seem to got crush. It seems that the error come from `datasets` library The error logging is like following: ```text Converting format of dataset (num_proc=16): 100%|█████████▉| 19265/19267 [11:44<00:00, 5.88 examples/s] Converting format of dataset (num_proc=16): 100%|█████████▉| 19266/19267 [11:44<00:00, 5.02 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 5.44 examples/s] Converting format of dataset (num_proc=16): 100%|██████████| 19267/19267 [11:44<00:00, 27.34 examples/s] Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [00:00<?, ? examples/s] Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. Invalid NAL unit size (45405 > 35540). Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (7131 > 3225). missing picture in access unit with size 54860 Invalid NAL unit size (48042 > 33645). missing picture in access unit with size 3229 missing picture in access unit with size 33649 Invalid NAL unit size (86720 > 54856). Invalid NAL unit size (48042 > 33645). Error splitting the input into NAL units. missing picture in access unit with size 35544 Invalid NAL unit size (45405 > 35540). Error splitting the input into NAL units. Error splitting the input into NAL units. Invalid NAL unit size (8187 > 7069). missing picture in access unit with size 7073 Invalid NAL unit size (8187 > 7069). Error splitting the input into NAL units. Invalid NAL unit size (7131 > 3225). Error splitting the input into NAL units. Invalid NAL unit size (14013 > 5998). missing picture in access unit with size 6002 Invalid NAL unit size (14013 > 5998). Error splitting the input into NAL units. Invalid NAL unit size (17173 > 7231). missing picture in access unit with size 7235 Invalid NAL unit size (17173 > 7231). Error splitting the input into NAL units. Invalid NAL unit size (16964 > 6055). missing picture in access unit with size 6059 Invalid NAL unit size (16964 > 6055). Exception in thread Thread-9 (accepter)Error splitting the input into NAL units. : Traceback (most recent call last): File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 1016, in _bootstrap_inner Running tokenizer on dataset (num_proc=16): 0%| | 0/19267 [13:22<?, ? examples/s] self.run() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 953, in run Invalid NAL unit size (7032 > 2927). missing picture in access unit with size 2931 self._target(*self._args, **self._kwargs) File "/opt/conda/envs/python3.10.13/lib/python3.10/site-packages/multiprocess/managers.py", line 194, in accepter Invalid NAL unit size (7032 > 2927). Error splitting the input into NAL units. t.start() File "/opt/conda/envs/python3.10.13/lib/python3.10/threading.py", line 935, in start Invalid NAL unit size (28973 > 6121). missing picture in access unit with size 6125 _start_new_thread(self._bootstrap, ())Invalid NAL unit size (28973 > 6121). RuntimeError: can't start new threadError splitting the input into NAL units. Invalid NAL unit size (4411 > 296). missing picture in access unit with size 300 Invalid NAL unit size (4411 > 296). Error splitting the input into NAL units. Invalid NAL unit size (14414 > 1471). missing picture in access unit with size 1475 Invalid NAL unit size (14414 > 1471). Error splitting the input into NAL units. Invalid NAL unit size (5283 > 1792). missing picture in access unit with size 1796 Invalid NAL unit size (5283 > 1792). Error splitting the input into NAL units. Invalid NAL unit size (79147 > 10042). missing picture in access unit with size 10046 Invalid NAL unit size (79147 > 10042). Error splitting the input into NAL units. ``` ### Others _No response_ ### Steps to reproduce the bug None ### Expected behavior excpect to run successfully ### Environment info ``` transformers==4.49.0 datasets==3.2.0 accelerate==1.2.1 peft==0.12.0 trl==0.9.6 tokenizers==0.21.0 gradio>=4.38.0,<=5.18.0 pandas>=2.0.0 scipy einops sentencepiece tiktoken protobuf uvicorn pydantic fastapi sse-starlette matplotlib>=3.7.0 fire packaging pyyaml numpy<2.0.0 av librosa tyro<0.9.0 openlm-hub qwen-vl-utils ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7427/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7427/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7425
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7425/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7425/comments
https://api.github.com/repos/huggingface/datasets/issues/7425/events
https://github.com/huggingface/datasets/issues/7425
2,883,684,686
I_kwDODunzps6r4YlO
7,425
load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") TypeError: 'NoneType' object is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/42167236?v=4", "events_url": "https://api.github.com/users/dshwei/events{/privacy}", "followers_url": "https://api.github.com/users/dshwei/followers", "following_url": "https://api.github.com/users/dshwei/following{/other_user}", "gists_url": "https://api.github.com/users/dshwei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dshwei", "id": 42167236, "login": "dshwei", "node_id": "MDQ6VXNlcjQyMTY3MjM2", "organizations_url": "https://api.github.com/users/dshwei/orgs", "received_events_url": "https://api.github.com/users/dshwei/received_events", "repos_url": "https://api.github.com/users/dshwei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dshwei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dshwei/subscriptions", "type": "User", "url": "https://api.github.com/users/dshwei", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "> datasets\n\nHi, have you solved this bug? Today I also met the same problem about `livecodebench/code_generation_lite` when evaluating the `Open-R1` repo. I am looking forward to your reply!\n\n![Image](https://github.com/user-attachments/assets/02e92fbf-da33-41b3-b8d4-f79b293a54f1)", "Hey guys,\nI tried to reproduce the issue and it works fine. I used google colab as enviroment.\n\n![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)", "> Hey guys, I tried to reproduce the issue and it works fine. I used google colab as enviroment.\n> \n> ![Image](https://github.com/user-attachments/assets/024dd8e1-bd10-470b-9a6d-60759ffdb984)\n\nThanks for your kind reply! I wonder which Python version do you use? My Python version is 3.11.11 and datasets version is 3.3.2 but I still met this bug.\n\n<img width=\"1121\" alt=\"Image\" src=\"https://github.com/user-attachments/assets/7c2c5007-ee55-4030-94b9-01fcdea0bf4a\" />", "@zwxandy It's Python 3.11.11", "@Serzhanov @zwxandy I have met the same problem, have this problem be solved?", "> [@Serzhanov](https://github.com/Serzhanov) [@zwxandy](https://github.com/zwxandy) I have met the same problem, have this problem be solved?\n\nI try to downgrade datasets version to 2.20.0,and it works for me @Serzhanov @dshwei , hope this work for you too :)" ]
2025-02-27T07:36:02
2025-03-10T07:49:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug from datasets import load_dataset lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") or configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) both error: Traceback (most recent call last): File "", line 1, in File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 2131, in load_dataset builder_instance = load_dataset_builder( File "/workspace/miniconda/envs/grpo/lib/python3.10/site-packages/datasets/load.py", line 1888, in load_dataset_builder builder_instance: DatasetBuilder = builder_cls( TypeError: 'NoneType' object is not callable ### Steps to reproduce the bug from datasets import get_dataset_config_names configs = get_dataset_config_names("livecodebench/code_generation_lite", trust_remote_code=True) OR lcb_codegen = load_dataset("livecodebench/code_generation_lite", version_tag="release_v2") ### Expected behavior load datasets livecodebench/code_generation_lite ### Environment info import datasets version '3.3.2'
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7425/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7425/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7423
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7423/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7423/comments
https://api.github.com/repos/huggingface/datasets/issues/7423/events
https://github.com/huggingface/datasets/issues/7423
2,879,271,409
I_kwDODunzps6rnjHx
7,423
Row indexing a dataset with numpy integers
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Would be cool to be consistent when it comes to indexing with numpy objects, if we do accept numpy arrays we should indeed accept numpy integers. Your idea sounds reasonable, I'd also be in favor of adding a simple test as well" ]
2025-02-25T18:44:45
2025-03-03T17:55:24
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Allow indexing datasets with a scalar numpy integer type. ### Motivation Indexing a dataset with a scalar numpy.int* object raises a TypeError. This is due to the test in `datasets/formatting/formatting.py:key_to_query_type` ``` python def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` In the row case, it checks if key is an int, which returns false when key is integer like but not a builtin python integer type. This is counterintuitive because a numpy array of np.int64s can be used for the batch case. For example: ``` python import numpy as np import datasets dataset = datasets.Dataset.from_dict({"a": [1, 2, 3, 4], "b": [5, 6, 7, 8]}) # Regular indexing dataset[0] dataset[:2] # Indexing with numpy data types (expect same results) idx = np.asarray([0, 1]) dataset[idx] # Succeeds when using an array of np.int64 values dataset[idx[0]] # Fails with TypeError when using scalar np.int64 ``` For the user, this can be solved by wrapping `idx[0]` in `int` but the test could also be changed in `key_to_query_type` to accept a less strict definition of int. ``` diff +import numbers + def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str: + if isinstance(key, numbers.Integral): - if isinstance(key, int): return "row" elif isinstance(key, str): return "column" elif isinstance(key, (slice, range, Iterable)): return "batch" _raise_bad_key_type(key) ``` Looking at how others do it, pandas has an `is_integer` definition that it checks which uses `is_integer_object` defined in `pandas/_libs/utils.pxd`: ``` cython cdef inline bint is_integer_object(object obj) noexcept: """ Cython equivalent of `isinstance(val, (int, np.integer)) and not isinstance(val, (bool, np.timedelta64))` Parameters ---------- val : object Returns ------- is_integer : bool Notes ----- This counts np.timedelta64 objects as integers. """ return (not PyBool_Check(obj) and isinstance(obj, (int, cnp.integer)) and not is_timedelta64_object(obj)) ``` This would be less flexible as it explicitly checks for numpy integer, but worth noting that they had the need to ensure the key is not a bool. ### Your contribution I can submit a pull request with the above changes after checking that indexing succeeds with the numpy integer type. Or if there is a different integer check that would be preferred I could add that. If there is a reason not to want this behavior that is fine too.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7423/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7423/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7421
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7421/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7421/comments
https://api.github.com/repos/huggingface/datasets/issues/7421/events
https://github.com/huggingface/datasets/issues/7421
2,878,369,052
I_kwDODunzps6rkG0c
7,421
DVC integration broken
{ "avatar_url": "https://avatars.githubusercontent.com/u/34747372?v=4", "events_url": "https://api.github.com/users/maxstrobel/events{/privacy}", "followers_url": "https://api.github.com/users/maxstrobel/followers", "following_url": "https://api.github.com/users/maxstrobel/following{/other_user}", "gists_url": "https://api.github.com/users/maxstrobel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maxstrobel", "id": 34747372, "login": "maxstrobel", "node_id": "MDQ6VXNlcjM0NzQ3Mzcy", "organizations_url": "https://api.github.com/users/maxstrobel/orgs", "received_events_url": "https://api.github.com/users/maxstrobel/received_events", "repos_url": "https://api.github.com/users/maxstrobel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maxstrobel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxstrobel/subscriptions", "type": "User", "url": "https://api.github.com/users/maxstrobel", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Unfortunately `url` is a reserved argument in `fsspec.url_to_fs`, so ideally file system implementations like DVC should use another argument name to avoid this kind of errors" ]
2025-02-25T13:14:31
2025-03-03T17:42:02
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug The DVC integration seems to be broken. Followed this guide: https://dvc.org/doc/user-guide/integrations/huggingface ### Steps to reproduce the bug #### Script to reproduce ~~~python from datasets import load_dataset dataset = load_dataset( "csv", data_files="dvc://workshop/satellite-data/jan_train.csv", storage_options={"url": "https://github.com/iterative/dataset-registry.git"}, ) print(dataset) ~~~ #### Error log ~~~ Traceback (most recent call last): File "C:\tmp\test\load.py", line 3, in <module> dataset = load_dataset( ^^^^^^^^^^^^^ File "C:\tmp\test\.venv\Lib\site-packages\datasets\load.py", line 2151, in load_dataset builder_instance.download_and_prepare( File "C:\tmp\test\.venv\Lib\site-packages\datasets\builder.py", line 808, in download_and_prepare fs, output_dir = url_to_fs(output_dir, **(storage_options or {})) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: url_to_fs() got multiple values for argument 'url' ~~~ ### Expected behavior Integration would work and the indicated file is downloaded and opened. ### Environment info #### Python version ~~~ python --version Python 3.11.10 ~~~ #### Venv (pip install datasets dvc): ~~~ Package Version ---------------------- ----------- aiohappyeyeballs 2.4.6 aiohttp 3.11.13 aiohttp-retry 2.9.1 aiosignal 1.3.2 amqp 5.3.1 annotated-types 0.7.0 antlr4-python3-runtime 4.9.3 appdirs 1.4.4 asyncssh 2.20.0 atpublic 5.1 attrs 25.1.0 billiard 4.2.1 celery 5.4.0 certifi 2025.1.31 cffi 1.17.1 charset-normalizer 3.4.1 click 8.1.8 click-didyoumean 0.3.1 click-plugins 1.1.1 click-repl 0.3.0 colorama 0.4.6 configobj 5.0.9 cryptography 44.0.1 datasets 3.3.2 dictdiffer 0.9.0 dill 0.3.8 diskcache 5.6.3 distro 1.9.0 dpath 2.2.0 dulwich 0.22.7 dvc 3.59.1 dvc-data 3.16.9 dvc-http 2.32.0 dvc-objects 5.1.0 dvc-render 1.0.2 dvc-studio-client 0.21.0 dvc-task 0.40.2 entrypoints 0.4 filelock 3.17.0 flatten-dict 0.4.2 flufl-lock 8.1.0 frozenlist 1.5.0 fsspec 2024.12.0 funcy 2.0 gitdb 4.0.12 gitpython 3.1.44 grandalf 0.8 gto 1.7.2 huggingface-hub 0.29.1 hydra-core 1.3.2 idna 3.10 iterative-telemetry 0.0.10 kombu 5.4.2 markdown-it-py 3.0.0 mdurl 0.1.2 multidict 6.1.0 multiprocess 0.70.16 networkx 3.4.2 numpy 2.2.3 omegaconf 2.3.0 orjson 3.10.15 packaging 24.2 pandas 2.2.3 pathspec 0.12.1 platformdirs 4.3.6 prompt-toolkit 3.0.50 propcache 0.3.0 psutil 7.0.0 pyarrow 19.0.1 pycparser 2.22 pydantic 2.10.6 pydantic-core 2.27.2 pydot 3.0.4 pygit2 1.17.0 pygments 2.19.1 pygtrie 2.5.0 pyparsing 3.2.1 python-dateutil 2.9.0.post0 pytz 2025.1 pywin32 308 pyyaml 6.0.2 requests 2.32.3 rich 13.9.4 ruamel-yaml 0.18.10 ruamel-yaml-clib 0.2.12 scmrepo 3.3.10 semver 3.0.4 setuptools 75.8.0 shellingham 1.5.4 shortuuid 1.0.13 shtab 1.7.1 six 1.17.0 smmap 5.0.2 sqltrie 0.11.2 tabulate 0.9.0 tomlkit 0.13.2 tqdm 4.67.1 typer 0.15.1 typing-extensions 4.12.2 tzdata 2025.1 urllib3 2.3.0 vine 5.1.0 voluptuous 0.15.2 wcwidth 0.2.13 xxhash 3.5.0 yarl 1.18.3 zc-lockfile 3.0.post1 ~~~
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7421/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7421/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7420
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7420/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7420/comments
https://api.github.com/repos/huggingface/datasets/issues/7420/events
https://github.com/huggingface/datasets/issues/7420
2,876,281,928
I_kwDODunzps6rcJRI
7,420
better correspondence between cached and saved datasets created using from_generator
{ "avatar_url": "https://avatars.githubusercontent.com/u/12157034?v=4", "events_url": "https://api.github.com/users/vttrifonov/events{/privacy}", "followers_url": "https://api.github.com/users/vttrifonov/followers", "following_url": "https://api.github.com/users/vttrifonov/following{/other_user}", "gists_url": "https://api.github.com/users/vttrifonov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vttrifonov", "id": 12157034, "login": "vttrifonov", "node_id": "MDQ6VXNlcjEyMTU3MDM0", "organizations_url": "https://api.github.com/users/vttrifonov/orgs", "received_events_url": "https://api.github.com/users/vttrifonov/received_events", "repos_url": "https://api.github.com/users/vttrifonov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vttrifonov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vttrifonov/subscriptions", "type": "User", "url": "https://api.github.com/users/vttrifonov", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-02-24T22:14:37
2025-02-26T03:10:22
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request At the moment `.from_generator` can only create a dataset that lives in the cache. The cached dataset cannot be loaded with `load_from_disk` because the cache folder is missing `state.json`. So the only way to convert this cached dataset to a regular is to use `save_to_disk` which needs to create a copy of the cached dataset. For large datasets this can end up wasting a lot of space. In my case the saving operation failed so I am stuck with a large cached dataset and no clear way to convert to a `Dataset` that I can use. The requested feature is to provide a way to be able to load a cached dataset using `.load_from_disk`. Alternatively `.from_generator` can create the dataset at a specified location so that it can be loaded from there with `.load_from_disk`. ### Motivation I have the following workflow which has exposed some awkwardness about the Datasets saving/caching. 1. I created a cached dataset using `.from_generator` which was cached in a folder. This dataset is rather large (~600GB) with many shards. 2. I tried to save this dataset using `.save_to_disk` to another location so that I can use later as a `Dataset`. This essentially creates another copy (for a total of 1.2TB!) of what is already in the cache... In my case the saving operation keeps dying for some reason and I am stuck with a cached dataset and no copy. 3. Now I am trying to "save" the existing cached dataset but it is not clear how to access the cached files after `.from_generator` has finished e.g. from a different process. I should not be even looking at the cache but I really do not want to waste another 2hr to generate the set so that if fails agains (I already did this couple of times). - I tried `.load_from_disk` but it does not work with cached files and complains that this is not a `Dataset` (!). - I looked at `.from_file` which takes one file but the cached file has many (shards) so I am not sure how to make this work. - I tried `.load_dataset` but this seems to either try to "download" a copy (of a file which is already in the local file system!) which I will then need to save or I need to use `streaming=False` to create an `IterableDataset `which then I need to convert (using the cache) to `Dataset` so that I can save it. With both options I will end up with 3 copies of the same dataset for a total of ~2TB! I am hoping here is another way to do this... Maybe I am missing something here: I looked at docs and forums but no luck. I have a bunch of arrow files cached by `Dataset.from_generator` and no clean way to make them into a `Dataset` that I can use. This all could be so much easer if `load_from_disk` can recognize the cached files and produce a `Dataset`: after the cache is created I would not have to "save" it again and I can just load it when I need. At the moment `load_from_disk` needs `state.json` which is lacking in the cache folder. So perhaps `.from_generator` could be made to "finalize" (e.g. create `state.json`) the dataset once it is done so that it can be loaded easily. Or provide `.from_generator` with a `save_to_dir` parameter in addition to `cache_dir` which can be used for the whole process including creating the `state.json` at the end. As a proof of concept I just created `state.json` by hand and `load_from_disk` worked using the cache! So it seems to be the missing piece here. ### Your contribution Time permitting I can look into `.from_generator` to see if adding `state.json` is feasible.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7420/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7420/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7419
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7419/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7419/comments
https://api.github.com/repos/huggingface/datasets/issues/7419/events
https://github.com/huggingface/datasets/issues/7419
2,875,635,320
I_kwDODunzps6rZrZ4
7,419
Import order crashes script execution
{ "avatar_url": "https://avatars.githubusercontent.com/u/23298479?v=4", "events_url": "https://api.github.com/users/DamienMatias/events{/privacy}", "followers_url": "https://api.github.com/users/DamienMatias/followers", "following_url": "https://api.github.com/users/DamienMatias/following{/other_user}", "gists_url": "https://api.github.com/users/DamienMatias/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DamienMatias", "id": 23298479, "login": "DamienMatias", "node_id": "MDQ6VXNlcjIzMjk4NDc5", "organizations_url": "https://api.github.com/users/DamienMatias/orgs", "received_events_url": "https://api.github.com/users/DamienMatias/received_events", "repos_url": "https://api.github.com/users/DamienMatias/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DamienMatias/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DamienMatias/subscriptions", "type": "User", "url": "https://api.github.com/users/DamienMatias", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-24T17:03:43
2025-02-24T17:03:43
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Hello, I'm trying to convert an HF dataset into a TFRecord so I'm importing `tensorflow` and `datasets` to do so. Depending in what order I'm importing those librairies, my code hangs forever and is unkillable (CTRL+C doesn't work, I need to kill my shell entirely). Thank you for your help 🙏 ### Steps to reproduce the bug If you run the following script, this will hang forever : ```python import tensorflow as tf import datasets dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` however running the following will work fine (I just changed the order of the imports) : ```python import datasets import tensorflow as tf dataset = datasets.load_dataset("imagenet-1k", split="validation", streaming=True) print(next(iter(dataset))) ``` ### Expected behavior I'm expecting the script to reach the end and my case print the content of the first item in the dataset ``` {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=408x500 at 0x70C646A03110>, 'label': 91} ``` ### Environment info ``` $ datasets-cli env - `datasets` version: 3.3.2 - Platform: Linux-6.8.0-1017-aws-x86_64-with-glibc2.35 - Python version: 3.11.7 - `huggingface_hub` version: 0.29.1 - PyArrow version: 19.0.1 - Pandas version: 2.2.3 - `fsspec` version: 2024.12.0 ``` I'm also using `tensorflow==2.18.0`.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7419/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7419/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7418
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7418/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7418/comments
https://api.github.com/repos/huggingface/datasets/issues/7418/events
https://github.com/huggingface/datasets/issues/7418
2,868,701,471
I_kwDODunzps6q_Okf
7,418
pyarrow.lib.arrowinvalid: cannot mix list and non-list, non-null values with map function
{ "avatar_url": "https://avatars.githubusercontent.com/u/15705569?v=4", "events_url": "https://api.github.com/users/alexxchen/events{/privacy}", "followers_url": "https://api.github.com/users/alexxchen/followers", "following_url": "https://api.github.com/users/alexxchen/following{/other_user}", "gists_url": "https://api.github.com/users/alexxchen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alexxchen", "id": 15705569, "login": "alexxchen", "node_id": "MDQ6VXNlcjE1NzA1NTY5", "organizations_url": "https://api.github.com/users/alexxchen/orgs", "received_events_url": "https://api.github.com/users/alexxchen/received_events", "repos_url": "https://api.github.com/users/alexxchen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alexxchen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexxchen/subscriptions", "type": "User", "url": "https://api.github.com/users/alexxchen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "@lhoestq ", "Can you try passing text: None for the image object ? Pyarrow expects all the objects to have the exact same type, in particular the dicttionaries in \"content\" should all have the keys \"type\" and \"text\"", "The following modification on system prompt works, but it is different from the usual way to use it.\n```\ndef make_conversation(example):\n prompt = []\n\n prompt.append({\"role\": \"system\", \"content\": [{\"type\": \"text\", \"text\": system_prompt}]})\n prompt.append(\n {\n \"role\": \"user\", \n \"content\": [\n {\"type\": \"image\"},\n {\"type\": \"text\", \"text\": example[\"problem\"]},\n ]\n }\n )\n return {\"prompt\": prompt}\n```", "Good to know ! But yes Arrow / Parquet have this typing limitation (which is great to ensure data integrity, but constraining at the same time). It's is really blocking you, feel free to ping the arrow team / community if they plan to have a Union type or a JSON type" ]
2025-02-21T10:58:06
2025-02-25T15:26:46
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Encounter pyarrow.lib.arrowinvalid error with map function in some example when loading the dataset ### Steps to reproduce the bug ``` from datasets import load_dataset from PIL import Image, PngImagePlugin dataset = load_dataset("leonardPKU/GEOQA_R1V_Train_8K") system_prompt="You are a helpful AI Assistant" def make_conversation(example): prompt = [] prompt.append({"role": "system", "content": system_prompt}) prompt.append( { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": example["problem"]}, ] } ) return {"prompt": prompt} def check_data_types(example): for key, value in example.items(): if key == 'image': if not isinstance(value, PngImagePlugin.PngImageFile): print(value) if key == "problem" or key == "solution": if not isinstance(value, str): print(value) return example dataset = dataset.map(check_data_types) dataset = dataset.map(make_conversation) ``` ### Expected behavior Successfully process the dataset with map ### Environment info datasets==3.3.1
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7418/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7418/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7415
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7415/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7415/comments
https://api.github.com/repos/huggingface/datasets/issues/7415/events
https://github.com/huggingface/datasets/issues/7415
2,865,774,546
I_kwDODunzps6q0D_S
7,415
Shard Dataset at specific indices
{ "avatar_url": "https://avatars.githubusercontent.com/u/11044035?v=4", "events_url": "https://api.github.com/users/nikonikolov/events{/privacy}", "followers_url": "https://api.github.com/users/nikonikolov/followers", "following_url": "https://api.github.com/users/nikonikolov/following{/other_user}", "gists_url": "https://api.github.com/users/nikonikolov/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikonikolov", "id": 11044035, "login": "nikonikolov", "node_id": "MDQ6VXNlcjExMDQ0MDM1", "organizations_url": "https://api.github.com/users/nikonikolov/orgs", "received_events_url": "https://api.github.com/users/nikonikolov/received_events", "repos_url": "https://api.github.com/users/nikonikolov/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikonikolov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikonikolov/subscriptions", "type": "User", "url": "https://api.github.com/users/nikonikolov", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! if it's an option I'd suggest to have one sequence per row instead.\n\nOtherwise you'd have to make your own save/load mechanism", "Saving one sequence per row is very difficult and heavy and makes all the optimizations pointless. How would a custom save/load mechanism look like?", "You can use `pyarrow` for example to save/load individual arrow or parquet files and control what they contain" ]
2025-02-20T10:43:10
2025-02-24T11:06:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
I have a dataset of sequences, where each example in the sequence is a separate row in the dataset (similar to LeRobotDataset). When running `Dataset.save_to_disk` how can I provide indices where it's possible to shard the dataset such that no episode spans more than 1 shard. Consequently, when I run `Dataset.load_from_disk`, how can I load just a subset of the shards to save memory and time on different ranks? I guess an alternative to this would be, given a loaded `Dataset`, how can I run `Dataset.shard` such that sharding doesn't split any episode across shards?
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7415/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7415/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7413
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7413/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7413/comments
https://api.github.com/repos/huggingface/datasets/issues/7413/events
https://github.com/huggingface/datasets/issues/7413
2,860,947,582
I_kwDODunzps6qhph-
7,413
Documentation on multiple media files of the same type with WebDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/3616964?v=4", "events_url": "https://api.github.com/users/DCNemesis/events{/privacy}", "followers_url": "https://api.github.com/users/DCNemesis/followers", "following_url": "https://api.github.com/users/DCNemesis/following{/other_user}", "gists_url": "https://api.github.com/users/DCNemesis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DCNemesis", "id": 3616964, "login": "DCNemesis", "node_id": "MDQ6VXNlcjM2MTY5NjQ=", "organizations_url": "https://api.github.com/users/DCNemesis/orgs", "received_events_url": "https://api.github.com/users/DCNemesis/received_events", "repos_url": "https://api.github.com/users/DCNemesis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DCNemesis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DCNemesis/subscriptions", "type": "User", "url": "https://api.github.com/users/DCNemesis", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Yes this is correct and it works with huggingface datasets as well ! Feel free to include an example here: https://github.com/huggingface/datasets/blob/main/docs/source/video_dataset.mdx" ]
2025-02-18T16:13:20
2025-02-20T14:17:54
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
The [current documentation](https://huggingface.co/docs/datasets/en/video_dataset) on a creating a video dataset includes only examples with one media file and one json. It would be useful to have examples where multiple files of the same type are included. For example, in a sign language dataset, you may have a base video and a video annotation of the extracted pose. According to the WebDataset documentation, this should be able to be done with period separated filenames. For example: ```e39871fd9fd74f55.base.mp4 e39871fd9fd74f55.pose.mp4 e39871fd9fd74f55.json f18b91585c4d3f3e.base.mp4 f18b91585c4d3f3e.pose.mp4 f18b91585c4d3f3e.json ... ``` If you can confirm that this method of including multiple media files works with huggingface datasets and include an example in the documentation, I'd appreciate it.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7413/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7413/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7412
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7412/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7412/comments
https://api.github.com/repos/huggingface/datasets/issues/7412/events
https://github.com/huggingface/datasets/issues/7412
2,859,433,710
I_kwDODunzps6qb37u
7,412
Index Error Invalid Ket is out of bounds for size 0 for code-search-net/code_search_net dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/56113657?v=4", "events_url": "https://api.github.com/users/harshakhmk/events{/privacy}", "followers_url": "https://api.github.com/users/harshakhmk/followers", "following_url": "https://api.github.com/users/harshakhmk/following{/other_user}", "gists_url": "https://api.github.com/users/harshakhmk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harshakhmk", "id": 56113657, "login": "harshakhmk", "node_id": "MDQ6VXNlcjU2MTEzNjU3", "organizations_url": "https://api.github.com/users/harshakhmk/orgs", "received_events_url": "https://api.github.com/users/harshakhmk/received_events", "repos_url": "https://api.github.com/users/harshakhmk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harshakhmk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harshakhmk/subscriptions", "type": "User", "url": "https://api.github.com/users/harshakhmk", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-18T05:58:33
2025-02-18T06:42:07
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I am trying to do model pruning on sentence-transformers/all-mini-L6-v2 for the code-search-net/code_search_net dataset using INCTrainer class However I am getting below error ``` raise IndexError(f"Invalid Key: {key is our of bounds for size {size}") IndexError: Invalid key: 1840208 is out of bounds for size 0 ``` ### Steps to reproduce the bug Model pruning on the above dataset using the below guide https://huggingface.co/docs/optimum/en/intel/neural_compressor/optimization#pruning ### Expected behavior The modsl should be successfully pruned ### Environment info Torch version: 2.4.1 Python version: 3.8.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7412/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7412/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7406
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7406/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7406/comments
https://api.github.com/repos/huggingface/datasets/issues/7406/events
https://github.com/huggingface/datasets/issues/7406
2,856,441,206
I_kwDODunzps6qQdV2
7,406
Adding Core Maintainer List to CONTRIBUTING.md
{ "avatar_url": "https://avatars.githubusercontent.com/u/93233241?v=4", "events_url": "https://api.github.com/users/jp1924/events{/privacy}", "followers_url": "https://api.github.com/users/jp1924/followers", "following_url": "https://api.github.com/users/jp1924/following{/other_user}", "gists_url": "https://api.github.com/users/jp1924/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jp1924", "id": 93233241, "login": "jp1924", "node_id": "U_kgDOBY6gWQ", "organizations_url": "https://api.github.com/users/jp1924/orgs", "received_events_url": "https://api.github.com/users/jp1924/received_events", "repos_url": "https://api.github.com/users/jp1924/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jp1924/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jp1924/subscriptions", "type": "User", "url": "https://api.github.com/users/jp1924", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "@lhoestq", "there is no per-module maintainer and the list is me alone nowadays ^^'", "@lhoestq \nOh... I feel for you. \nWhat are your criteria for choosing a core maintainer? \nIt seems like it's too much work for you to manage all this code by yourself.\n\nAlso, if you don't mind, can you check this PR for me?\n#7368 I'd like this to be added as soon as possible because I need it." ]
2025-02-17T00:32:40
2025-02-19T01:28:38
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request I propose adding a core maintainer list to the `CONTRIBUTING.md` file. ### Motivation The Transformers and Liger-Kernel projects maintain lists of core maintainers for each module. However, the Datasets project doesn't have such a list. ### Your contribution I have nothing to add here.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7406/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7406/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7405
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7405/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7405/comments
https://api.github.com/repos/huggingface/datasets/issues/7405/events
https://github.com/huggingface/datasets/issues/7405
2,856,372,814
I_kwDODunzps6qQMpO
7,405
Lazy loading of environment variables
{ "avatar_url": "https://avatars.githubusercontent.com/u/7225987?v=4", "events_url": "https://api.github.com/users/nikvaessen/events{/privacy}", "followers_url": "https://api.github.com/users/nikvaessen/followers", "following_url": "https://api.github.com/users/nikvaessen/following{/other_user}", "gists_url": "https://api.github.com/users/nikvaessen/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/nikvaessen", "id": 7225987, "login": "nikvaessen", "node_id": "MDQ6VXNlcjcyMjU5ODc=", "organizations_url": "https://api.github.com/users/nikvaessen/orgs", "received_events_url": "https://api.github.com/users/nikvaessen/received_events", "repos_url": "https://api.github.com/users/nikvaessen/repos", "site_admin": false, "starred_url": "https://api.github.com/users/nikvaessen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/nikvaessen/subscriptions", "type": "User", "url": "https://api.github.com/users/nikvaessen", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Many python packages out there, including `huggingface_hub`, do load the environment variables on import.\nYou should `load_dotenv()` before importing the libraries.\n\nFor example you can move all you imports inside your `main()` function" ]
2025-02-16T22:31:41
2025-02-17T15:17:18
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Loading a `.env` file after an `import datasets` call does not correctly use the environment variables. This is due the fact that environment variables are read at import time: https://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/config.py#L155C1-L155C80 ### Steps to reproduce the bug ```bash # make tmp dir mkdir -p /tmp/debug-env # make .env file echo HF_HOME=/tmp/debug-env/data > /tmp/debug-env/.env # first load dotenv, downloads to /tmp/debug-env/data uv run --with datasets,python-dotenv python3 -c \ 'import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); import datasets; datasets.load_dataset("Anthropic/hh-rlhf")' # first import datasets, downloads to `~/.cache/huggingface` uv run --with datasets,python-dotenv python3 -c \ 'import datasets; import dotenv; dotenv.load_dotenv("/tmp/debug-env/.env"); datasets.load_dataset("Anthropic/hh-rlhf")' ``` ### Expected behavior I expect that setting environment variables with something like this: ```python3 if __name__ == "__main__": load_dotenv() main() ``` works correctly. ### Environment info "datasets>=3.3.0",
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7405/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7405/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7404
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7404/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7404/comments
https://api.github.com/repos/huggingface/datasets/issues/7404/events
https://github.com/huggingface/datasets/issues/7404
2,856,366,207
I_kwDODunzps6qQLB_
7,404
Performance regression in `dataset.filter`
{ "avatar_url": "https://avatars.githubusercontent.com/u/82200?v=4", "events_url": "https://api.github.com/users/ttim/events{/privacy}", "followers_url": "https://api.github.com/users/ttim/followers", "following_url": "https://api.github.com/users/ttim/following{/other_user}", "gists_url": "https://api.github.com/users/ttim/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ttim", "id": 82200, "login": "ttim", "node_id": "MDQ6VXNlcjgyMjAw", "organizations_url": "https://api.github.com/users/ttim/orgs", "received_events_url": "https://api.github.com/users/ttim/received_events", "repos_url": "https://api.github.com/users/ttim/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ttim/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ttim/subscriptions", "type": "User", "url": "https://api.github.com/users/ttim", "user_view_type": "public" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" } ]
null
[ "Thanks for reporting, I'll fix the regression today", "I just released `datasets` 3.3.1 with a fix, let me know if it's good now :)", "@lhoestq it fixed the issue.\n\nThis was (very) fast, thank you very much!" ]
2025-02-16T22:19:14
2025-02-17T17:46:06
2025-02-17T14:28:48
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug We're filtering dataset of ~1M (small-ish) records. At some point in the code we do `dataset.filter`, before (including 3.2.0) it was taking couple of seconds, and now it takes 4 hours. We use 16 threads/workers, and stack trace at them look as follows: ``` Traceback (most recent call last): File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 314, in _bootstrap self.run() File "/python/lib/python3.12/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/python/lib/python3.12/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) ^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 678, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3511, in _map_single for i, batch in iter_outputs(shard_iterable): File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3461, in iter_outputs yield i, apply_function(example, i, offset=offset) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 3390, in apply_function processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/python/lib/python3.12/site-packages/datasets/arrow_dataset.py", line 6416, in get_indices_from_mask_function indices_array = indices_mapping.column(0).take(indices_array) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "pyarrow/table.pxi", line 1079, in pyarrow.lib.ChunkedArray.take File "/python/lib/python3.12/site-packages/pyarrow/compute.py", line 458, in take def take(data, indices, *, boundscheck=True, memory_pool=None): ``` ### Steps to reproduce the bug 1. Save dataset of 1M records in arrow 2. Filter it with 16 threads 3. Watch it take too long ### Expected behavior Filtering done fast ### Environment info datasets 3.3.0, python 3.12
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7404/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7404/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7399
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7399/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7399/comments
https://api.github.com/repos/huggingface/datasets/issues/7399/events
https://github.com/huggingface/datasets/issues/7399
2,853,098,442
I_kwDODunzps6qDtPK
7,399
Synchronize parameters for various datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/7976840?v=4", "events_url": "https://api.github.com/users/grofte/events{/privacy}", "followers_url": "https://api.github.com/users/grofte/followers", "following_url": "https://api.github.com/users/grofte/following{/other_user}", "gists_url": "https://api.github.com/users/grofte/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/grofte", "id": 7976840, "login": "grofte", "node_id": "MDQ6VXNlcjc5NzY4NDA=", "organizations_url": "https://api.github.com/users/grofte/orgs", "received_events_url": "https://api.github.com/users/grofte/received_events", "repos_url": "https://api.github.com/users/grofte/repos", "site_admin": false, "starred_url": "https://api.github.com/users/grofte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/grofte/subscriptions", "type": "User", "url": "https://api.github.com/users/grofte", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Hi ! the `desc` parameter is only available for Dataset / DatasetDict for the progress bar of `map()``\n\nSince IterableDataset only runs the map functions when you iterate over the dataset, there is no progress bar and `desc` is useless. We could still add the argument for parity but it wouldn't be used for anything", "I think you should add it. It doesn't hurt. The reason I ran into it was because I re-wrote a pipeline to use either a stream or a fully loaded dataset. Of course I can simply remove it but it is nice to have on the memory loaded dataset. " ]
2025-02-14T09:15:11
2025-02-19T11:50:29
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug [IterableDatasetDict](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.IterableDatasetDict.map) map function is missing the `desc` parameter. You can see the equivalent map function for [Dataset here](https://huggingface.co/docs/datasets/v3.2.0/en/package_reference/main_classes#datasets.Dataset.map). There might be other parameters missing - I haven't checked. ### Steps to reproduce the bug from datasets import Dataset, IterableDataset, IterableDatasetDict ds = IterableDatasetDict({"train": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3), "validate": Dataset.from_dict({"a": range(6)}).to_iterable_dataset(num_shards=3)}) for d in ds["train"]: print(d) ds = ds.map(lambda x: {k: v+1 for k, v in x.items()}, desc="increment") for d in ds["train"]: print(d) ### Expected behavior The description parameter should be available for all datasets (or none). ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.11.11 - `huggingface_hub` version: 0.28.1 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7399/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7399/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7400
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7400/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7400/comments
https://api.github.com/repos/huggingface/datasets/issues/7400/events
https://github.com/huggingface/datasets/issues/7400
2,853,201,277
I_kwDODunzps6qEGV9
7,400
504 Gateway Timeout when uploading large dataset to Hugging Face Hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/3500?v=4", "events_url": "https://api.github.com/users/hotchpotch/events{/privacy}", "followers_url": "https://api.github.com/users/hotchpotch/followers", "following_url": "https://api.github.com/users/hotchpotch/following{/other_user}", "gists_url": "https://api.github.com/users/hotchpotch/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hotchpotch", "id": 3500, "login": "hotchpotch", "node_id": "MDQ6VXNlcjM1MDA=", "organizations_url": "https://api.github.com/users/hotchpotch/orgs", "received_events_url": "https://api.github.com/users/hotchpotch/received_events", "repos_url": "https://api.github.com/users/hotchpotch/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hotchpotch/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hotchpotch/subscriptions", "type": "User", "url": "https://api.github.com/users/hotchpotch", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "I transferred to the `datasets` repository. Is there any retry mechanism in `datasets` @lhoestq ?\n\nAnother solution @hotchpotch if you want to get your dataset pushed to the Hub in a robust way is to save it to a local folder first and then use `huggingface-cli upload-large-folder` (see https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-large-folder). It has better retry mechanism in case of failure.", "There is no retry mechanism for `api.preupload_lfs_files` in `push_to_hub()` but we can definitely add one here\n\nhttps://github.com/huggingface/datasets/blob/de062f0552a810c52077543c1169c38c1f0c53fc/src/datasets/arrow_dataset.py#L5372", "@Wauplin \n\nThank you! I believe that to use load_dataset() to read data from Hugging Face, we need to first save the markdown metadata and parquet files in our local filesystem, then upload them using upload-large-folder. If you know how to do this, could you please let me know?\n\n", "@lhoestq \n\nI see, so adding a retry mechanism there would solve it. If I continue to have issues, I'll consider implementing that kind of solution." ]
2025-02-14T02:18:35
2025-02-14T23:48:36
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Description I encountered consistent 504 Gateway Timeout errors while attempting to upload a large dataset (approximately 500GB) to the Hugging Face Hub. The upload fails during the process with a Gateway Timeout error. I will continue trying to upload. While it might succeed in future attempts, I wanted to report this issue in the meantime. ### Reproduction - I attempted the upload 3 times - Each attempt resulted in the same 504 error during the upload process (not at the start, but in the middle of the upload) - Using `dataset.push_to_hub()` method ### Environment Information ``` - huggingface_hub version: 0.28.0 - Platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.39 - Python version: 3.11.10 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Running in Google Colab Enterprise ?: No - Token path ?: /home/hotchpotch/.cache/huggingface/token - Has saved token ?: True - Who am I ?: hotchpotch - Configured git credential helpers: store - FastAI: N/A - Tensorflow: N/A - Torch: 2.5.1 - Jinja2: 3.1.5 - Graphviz: N/A - keras: N/A - Pydot: N/A - Pillow: 10.4.0 - hf_transfer: N/A - gradio: N/A - tensorboard: N/A - numpy: 1.26.4 - pydantic: 2.10.6 - aiohttp: 3.11.11 - ENDPOINT: https://huggingface.co - HF_HUB_CACHE: /home/hotchpotch/.cache/huggingface/hub - HF_ASSETS_CACHE: /home/hotchpotch/.cache/huggingface/assets - HF_TOKEN_PATH: /home/hotchpotch/.cache/huggingface/token - HF_STORED_TOKENS_PATH: /home/hotchpotch/.cache/huggingface/stored_tokens - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False - HF_HUB_ENABLE_HF_TRANSFER: False - HF_HUB_ETAG_TIMEOUT: 10 - HF_HUB_DOWNLOAD_TIMEOUT: 10 ``` ### Full Error Traceback ```python Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/create_edu_japanese_ds/upload_edu_japanese_ds.py", line 12, in <module> ds.push_to_hub("hotchpotch/fineweb-2-edu-japanese", private=True) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/dataset_dict.py", line 1665, in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 5301, in _push_parquet_shards_to_hub api.preupload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/hf_api.py", line 4215, in preupload_lfs_files _upload_lfs_files( File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/_commit_api.py", line 395, in _upload_lfs_files batch_actions_chunk, batch_errors_chunk = post_lfs_batch_info( ^^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/lfs.py", line 168, in post_lfs_batch_info hf_raise_for_status(resp) File "/home/hotchpotch/src/github.com/hotchpotch/fineweb-2-edu-classifier-japanese/.venv/lib/python3.11/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 504 Server Error: Gateway Time-out for url: https://huggingface.co/datasets/hotchpotch/fineweb-2-edu-japanese.git/info/lfs/objects/batch ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7400/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7400/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7394
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7394/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7394/comments
https://api.github.com/repos/huggingface/datasets/issues/7394/events
https://github.com/huggingface/datasets/issues/7394
2,847,172,115
I_kwDODunzps6ptGYT
7,394
Using load_dataset with data_files and split arguments yields an error
{ "avatar_url": "https://avatars.githubusercontent.com/u/61103399?v=4", "events_url": "https://api.github.com/users/devon-research/events{/privacy}", "followers_url": "https://api.github.com/users/devon-research/followers", "following_url": "https://api.github.com/users/devon-research/following{/other_user}", "gists_url": "https://api.github.com/users/devon-research/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/devon-research", "id": 61103399, "login": "devon-research", "node_id": "MDQ6VXNlcjYxMTAzMzk5", "organizations_url": "https://api.github.com/users/devon-research/orgs", "received_events_url": "https://api.github.com/users/devon-research/received_events", "repos_url": "https://api.github.com/users/devon-research/repos", "site_admin": false, "starred_url": "https://api.github.com/users/devon-research/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/devon-research/subscriptions", "type": "User", "url": "https://api.github.com/users/devon-research", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-12T04:50:11
2025-02-12T04:50:11
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug It seems the list of valid splits recorded by the package becomes incorrectly overwritten when using the `data_files` argument. If I run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` then I get the error ``` ValueError: Unknown split "all_examples". Should be one of ['train']. ``` However, if I run ```python from datasets import load_dataset load_dataset("allenai/super", split="train", name="Expert") ``` then I get ``` ValueError: Unknown split "train". Should be one of ['all_examples']. ``` ### Steps to reproduce the bug Run ```python from datasets import load_dataset load_dataset("allenai/super", split="all_examples", data_files="tasks/expert.jsonl") ``` ### Expected behavior No error. ### Environment info Python = 3.12 datasets = 3.2.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7394/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7394/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7392
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7392/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7392/comments
https://api.github.com/repos/huggingface/datasets/issues/7392/events
https://github.com/huggingface/datasets/issues/7392
2,846,095,043
I_kwDODunzps6po_bD
7,392
push_to_hub payload too large error when using large ClassLabel feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/35470740?v=4", "events_url": "https://api.github.com/users/DavidRConnell/events{/privacy}", "followers_url": "https://api.github.com/users/DavidRConnell/followers", "following_url": "https://api.github.com/users/DavidRConnell/following{/other_user}", "gists_url": "https://api.github.com/users/DavidRConnell/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/DavidRConnell", "id": 35470740, "login": "DavidRConnell", "node_id": "MDQ6VXNlcjM1NDcwNzQw", "organizations_url": "https://api.github.com/users/DavidRConnell/orgs", "received_events_url": "https://api.github.com/users/DavidRConnell/received_events", "repos_url": "https://api.github.com/users/DavidRConnell/repos", "site_admin": false, "starred_url": "https://api.github.com/users/DavidRConnell/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DavidRConnell/subscriptions", "type": "User", "url": "https://api.github.com/users/DavidRConnell", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "See also <https://discuss.huggingface.co/t/datasetdict-push-to-hub-failing-with-payload-to-large/140083/8>\n" ]
2025-02-11T17:51:34
2025-02-11T18:01:31
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When using `datasets.DatasetDict.push_to_hub` an `HfHubHTTPError: 413 Client Error: Payload Too Large for url` is raised if the dataset contains a large `ClassLabel` feature. Even if the total size of the dataset is small. ### Steps to reproduce the bug ``` python import random import sys import datasets random.seed(42) def random_str(sz): return "".join(chr(random.randint(ord("a"), ord("z"))) for _ in range(sz)) data = datasets.DatasetDict( { str(i): datasets.Dataset.from_dict( { "label": [list(range(3)) for _ in range(10)], "abstract": [random_str(10_000) for _ in range(10)], }, ) for i in range(3) } ) features = data["1"].features.copy() features["label"] = datasets.Sequence( datasets.ClassLabel(names=[str(i) for i in range(50_000)]) ) data = data.map(lambda examples: {}, features=features) feat_size = sys.getsizeof(data["1"].features["label"].feature.names) print(f"Size of ClassLabel names: {feat_size}") # Size of ClassLabel names: 444376 data.push_to_hub("dconnell/pubtator3_test") ``` Note that this succeeds if `ClassLabel` has fewer names or if `ClassLabel` is replaced with `Value("int64")` ### Expected behavior Should push the dataset to hub. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 3.2.0 - Platform: Linux-5.15.0-126-generic-x86_64-with-glibc2.35 - Python version: 3.12.8 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7392/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7392/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7391
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7391/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7391/comments
https://api.github.com/repos/huggingface/datasets/issues/7391/events
https://github.com/huggingface/datasets/issues/7391
2,845,184,764
I_kwDODunzps6plhL8
7,391
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/25193686?v=4", "events_url": "https://api.github.com/users/LinXin04/events{/privacy}", "followers_url": "https://api.github.com/users/LinXin04/followers", "following_url": "https://api.github.com/users/LinXin04/following{/other_user}", "gists_url": "https://api.github.com/users/LinXin04/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LinXin04", "id": 25193686, "login": "LinXin04", "node_id": "MDQ6VXNlcjI1MTkzNjg2", "organizations_url": "https://api.github.com/users/LinXin04/orgs", "received_events_url": "https://api.github.com/users/LinXin04/received_events", "repos_url": "https://api.github.com/users/LinXin04/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LinXin04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LinXin04/subscriptions", "type": "User", "url": "https://api.github.com/users/LinXin04", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-02-11T12:02:26
2025-02-11T12:02:26
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
pyarrow 尝试了若干个版本都不可以
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7391/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7391/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7390
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7390/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7390/comments
https://api.github.com/repos/huggingface/datasets/issues/7390/events
https://github.com/huggingface/datasets/issues/7390
2,843,813,365
I_kwDODunzps6pgSX1
7,390
Re-add py.typed
{ "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/NeilGirdhar", "id": 730137, "login": "NeilGirdhar", "node_id": "MDQ6VXNlcjczMDEzNw==", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "type": "User", "url": "https://api.github.com/users/NeilGirdhar", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2025-02-10T22:12:52
2025-02-10T22:12:52
null
CONTRIBUTOR
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request The motivation for removing py.typed no longer seems to apply. Would a solution like [this one](https://github.com/huggingface/huggingface_hub/pull/2752) work here? ### Motivation MyPy support is broken. As more type checkers come out, such as RedKnot, these may also be broken. It would be good to be PEP 561 compliant as long as it's not too onerous. ### Your contribution I can re-add py.typed, but I don't know how to make sur all of the `__all__` files are provided (although you may not need to with modern PyRight).
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7390/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7390/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7389
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7389/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7389/comments
https://api.github.com/repos/huggingface/datasets/issues/7389/events
https://github.com/huggingface/datasets/issues/7389
2,843,592,606
I_kwDODunzps6pfcee
7,389
Getting statistics about filtered examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can actually track a running sum in map() or filter() :)\n\n```python\nnum_filtered = 0\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered += 1\n return condition\n\nds = ds.filter(f)\nprint(num_filtered)\n```\n\nand if you want to use multiprocessing, make sure to use a variable that is shared across processes\n\n\n```python\nfrom multiprocess import Manager\n\nmanager = Manager()\nnum_filtered = manager.Value('i', 0)\n\ndef f(x):\n global num_filtered\n condition = len(x[\"text\"]) < 1000\n if not condition:\n num_filtered.value += 1\n return condition\n\nds = ds.filter(f, num_proc=4)\nprint(num_filtered.value)\n```\n\nPS: `datasets` uses `multiprocess` instead of the `multiprocessing` package to support lambda functions in map() and filter()", "Oh that's great to know!\n\nI guess this value would not be exactly synced with the batch in cases of pre-fetch and shuffle buffers and so on, but that's probably fine. Thanks!" ]
2025-02-10T20:48:29
2025-02-11T20:44:15
2025-02-11T20:44:13
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
@lhoestq wondering if the team has thought about this and if there are any recommendations? Currently when processing datasets some examples are bound to get filtered out, whether it's due to bad format, or length is too long, or any other custom filters that might be getting applied. Let's just focus on the filter by length for now, since that would be something that gets applied dynamically for each training run. Say we want to show a graph in W&B with the running total of the number of filtered examples so far. What would be a good way to go about hooking this up? Because the map/filter operations happen before the DataLoader batches are created, at training time if we're just grabbing batches from the DataLoader then we won't know how many things have been filtered already. But there's not really a good way to include a 'num_filtered' key into the dataset itself either because dataset map/filter process examples independently and don't have a way to track a running sum. The only approach I can kind of think of is having a 'is_filtered' key in the dataset, and then creating a custom batcher/collator that reads that and tracks the metric?
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7389/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7389/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7388
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7388/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7388/comments
https://api.github.com/repos/huggingface/datasets/issues/7388/events
https://github.com/huggingface/datasets/issues/7388
2,843,188,499
I_kwDODunzps6pd50T
7,388
OSError: [Errno 22] Invalid argument forbidden character
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
[]
closed
false
null
[]
null
[ "You can probably copy the dataset in your HF account and rename the files (without having to download them to your disk). Or alternatively feel free to open a Pull Request to this dataset with the renamed file", "Thank you, that will help me work around this problem" ]
2025-02-10T17:46:31
2025-02-11T13:42:32
2025-02-11T13:42:30
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug I'm on Windows and i'm trying to load a datasets but i'm having title error because files in the repository are named with charactere like < >which can't be in a name file. Could it be possible to load this datasets but removing those charactere ? ### Steps to reproduce the bug load_dataset("CATMuS/medieval") on Windows ### Expected behavior Making the function to erase the forbidden character to allow loading the datasets who have those characters. ### Environment info - `datasets` version: 3.2.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.12.2 - `huggingface_hub` version: 0.28.1 - PyArrow version: 19.0.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/124634542?v=4", "events_url": "https://api.github.com/users/langflogit/events{/privacy}", "followers_url": "https://api.github.com/users/langflogit/followers", "following_url": "https://api.github.com/users/langflogit/following{/other_user}", "gists_url": "https://api.github.com/users/langflogit/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/langflogit", "id": 124634542, "login": "langflogit", "node_id": "U_kgDOB23Frg", "organizations_url": "https://api.github.com/users/langflogit/orgs", "received_events_url": "https://api.github.com/users/langflogit/received_events", "repos_url": "https://api.github.com/users/langflogit/repos", "site_admin": false, "starred_url": "https://api.github.com/users/langflogit/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/langflogit/subscriptions", "type": "User", "url": "https://api.github.com/users/langflogit", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7388/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7388/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7387
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7387/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7387/comments
https://api.github.com/repos/huggingface/datasets/issues/7387/events
https://github.com/huggingface/datasets/issues/7387
2,841,228,048
I_kwDODunzps6pWbMQ
7,387
Dynamic adjusting dataloader sampling weight
{ "avatar_url": "https://avatars.githubusercontent.com/u/72799643?v=4", "events_url": "https://api.github.com/users/whc688/events{/privacy}", "followers_url": "https://api.github.com/users/whc688/followers", "following_url": "https://api.github.com/users/whc688/following{/other_user}", "gists_url": "https://api.github.com/users/whc688/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/whc688", "id": 72799643, "login": "whc688", "node_id": "MDQ6VXNlcjcyNzk5NjQz", "organizations_url": "https://api.github.com/users/whc688/orgs", "received_events_url": "https://api.github.com/users/whc688/received_events", "repos_url": "https://api.github.com/users/whc688/repos", "site_admin": false, "starred_url": "https://api.github.com/users/whc688/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/whc688/subscriptions", "type": "User", "url": "https://api.github.com/users/whc688", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "You mean based on a condition that has to be checked on-the-fly during training ? Otherwise if you know in advance after how many samples you need to change the sampling you can simply concatenate the two mixes", "Yes, like during training, if one data sample's prediction is consistently wrong, its sampling weight gets higher and higher, and if one data sample's prediction is already correct, then we rarely sample it", "it's not possible to use `interleave_datasets()` and modify the probabilities while iterating on the dataset at the moment, so you'd have to implement your own torch `Sampler` or your own`IterableDataset` to implement this logic" ]
2025-02-10T03:18:47
2025-03-07T14:06:54
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
Hi, Thanks for your wonderful work! I'm wondering is there a way to dynamically adjust the sampling weight of each data in the dataset during training? Looking forward to your reply, thanks again.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7387/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7387/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7386
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7386/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7386/comments
https://api.github.com/repos/huggingface/datasets/issues/7386/events
https://github.com/huggingface/datasets/issues/7386
2,840,032,524
I_kwDODunzps6pR3UM
7,386
Add bookfolder Dataset Builder for Digital Book Formats
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[ "On second thought, probably not a good idea." ]
2025-02-08T14:27:55
2025-02-08T14:30:10
2025-02-08T14:30:09
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request This feature proposes adding a new dataset builder called bookfolder to the datasets library. This builder would allow users to easily load datasets consisting of various digital book formats, including: AZW, AZW3, CB7, CBR, CBT, CBZ, EPUB, MOBI, and PDF. ### Motivation Currently, loading datasets of these digital book files requires manual effort. This would also lower the barrier to entry for working with these formats, enabling more diverse and interesting datasets to be used within the Hugging Face ecosystem. ### Your contribution This feature is rather simple as it will be based on the folder-based builder, similar to imagefolder. I'm willing to contribute to this feature by submitting a PR
{ "avatar_url": "https://avatars.githubusercontent.com/u/22115108?v=4", "events_url": "https://api.github.com/users/shikanime/events{/privacy}", "followers_url": "https://api.github.com/users/shikanime/followers", "following_url": "https://api.github.com/users/shikanime/following{/other_user}", "gists_url": "https://api.github.com/users/shikanime/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/shikanime", "id": 22115108, "login": "shikanime", "node_id": "MDQ6VXNlcjIyMTE1MTA4", "organizations_url": "https://api.github.com/users/shikanime/orgs", "received_events_url": "https://api.github.com/users/shikanime/received_events", "repos_url": "https://api.github.com/users/shikanime/repos", "site_admin": false, "starred_url": "https://api.github.com/users/shikanime/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/shikanime/subscriptions", "type": "User", "url": "https://api.github.com/users/shikanime", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7386/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7386/timeline
null
completed
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7381
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7381/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7381/comments
https://api.github.com/repos/huggingface/datasets/issues/7381/events
https://github.com/huggingface/datasets/issues/7381
2,815,649,092
I_kwDODunzps6n02VE
7,381
Iterating over values of a column in the IterableDataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47208659?v=4", "events_url": "https://api.github.com/users/TopCoder2K/events{/privacy}", "followers_url": "https://api.github.com/users/TopCoder2K/followers", "following_url": "https://api.github.com/users/TopCoder2K/following{/other_user}", "gists_url": "https://api.github.com/users/TopCoder2K/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/TopCoder2K", "id": 47208659, "login": "TopCoder2K", "node_id": "MDQ6VXNlcjQ3MjA4NjU5", "organizations_url": "https://api.github.com/users/TopCoder2K/orgs", "received_events_url": "https://api.github.com/users/TopCoder2K/received_events", "repos_url": "https://api.github.com/users/TopCoder2K/repos", "site_admin": false, "starred_url": "https://api.github.com/users/TopCoder2K/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/TopCoder2K/subscriptions", "type": "User", "url": "https://api.github.com/users/TopCoder2K", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "I'd be in favor of that ! I saw many people implementing their own iterables that wrap a dataset just to iterate on a single column, that would make things more practical.\n\nKinda related: https://github.com/huggingface/datasets/issues/5847", "(For anyone's information, I'm going on vacation for the next 3 weeks, so the work is postponed. If anyone can implement this feature within the next 4 weeks, go ahead :) )" ]
2025-01-28T13:17:36
2025-02-18T17:15:51
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request I would like to be able to iterate (and re-iterate if needed) over a column of an `IterableDataset` instance. The following example shows the supposed API: ``` def gen(): yield {"text": "Good", "label": 0} yield {"text": "Bad", "label": 1} ds = IterableDataset.from_generator(gen) texts = ds["text"] for v in texts: print(v) # Prints "Good" and "Bad" for v in texts: print(v) # Prints "Good" and "Bad" again ``` ### Motivation In the real world problems, huge NNs like Transformer are not always the best option, so there is a need to conduct experiments with different methods. While 🤗Datasets is perfectly adapted to 🤗Transformers, it may be inconvenient when being used with other libraries. The ability to retrieve a particular column is the case (e.g., gensim's FastText [requires](https://radimrehurek.com/gensim/models/fasttext.html#gensim.models.fasttext.FastText.train) only lists of strings, not dictionaries). While there are ways to achieve the desired functionality, they are not good ([forum](https://discuss.huggingface.co/t/how-to-iterate-over-values-of-a-column-in-the-iterabledataset/135649)). It would be great if there was a built-in solution. ### Your contribution Theoretically, I can submit a PR, but I have very little knowledge of the internal structure of 🤗Datasets, so some help may be needed. Moreover, I can only work on weekends, since I have a full-time job. However, the feature does not seem to be popular, so there is no need to implement it as fast as possible.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7381/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7381/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7378
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7378/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7378/comments
https://api.github.com/repos/huggingface/datasets/issues/7378/events
https://github.com/huggingface/datasets/issues/7378
2,802,957,388
I_kwDODunzps6nEbxM
7,378
Allow pushing config version to hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/129072?v=4", "events_url": "https://api.github.com/users/momeara/events{/privacy}", "followers_url": "https://api.github.com/users/momeara/followers", "following_url": "https://api.github.com/users/momeara/following{/other_user}", "gists_url": "https://api.github.com/users/momeara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/momeara", "id": 129072, "login": "momeara", "node_id": "MDQ6VXNlcjEyOTA3Mg==", "organizations_url": "https://api.github.com/users/momeara/orgs", "received_events_url": "https://api.github.com/users/momeara/received_events", "repos_url": "https://api.github.com/users/momeara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/momeara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/momeara/subscriptions", "type": "User", "url": "https://api.github.com/users/momeara", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! This sounds reasonable to me, feel free to open a PR :)" ]
2025-01-21T22:35:07
2025-01-30T13:56:56
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request Currently, when datasets are created, they can be versioned by passing the `version` argument to `load_dataset(...)`. For example creating `outcomes.csv` on the command line ``` echo "id,value\n1,0\n2,0\n3,1\n4,1\n" > outcomes.csv ``` and creating it ``` import datasets dataset = datasets.load_dataset( "csv", data_files ="outcomes.csv", keep_in_memory = True, version = '1.0.0') ``` The version info is stored in the `info` and can be accessed e.g. by `next(iter(dataset.values())).info.version` This dataset can be uploaded to the hub with `dataset.push_to_hub(repo_id = "maomlab/example_dataset")`. This will create a dataset on the hub with the following in the `README.md`, but it doesn't upload the version information: ``` --- dataset_info: features: - name: id dtype: int64 - name: value dtype: int64 splits: - name: train num_bytes: 64 num_examples: 4 download_size: 1332 dataset_size: 64 configs: - config_name: default data_files: - split: train path: data/train-* --- ``` However, when I download from the hub, the version information is missing: ``` dataset_from_hub_no_version = datasets.load_dataset("maomlab/example_dataset") next(iter(dataset.values())).info.version ``` I can add the version information manually to the hub, by appending it to the end of config section: ``` ... configs: - config_name: default data_files: - split: train path: data/train-* version: 1.0.0 --- ``` And then when I download it, the version information is correct. ### Motivation ### Why adding version information for each config makes sense 1. The version information is already recorded in the dataset config info data structure and is able to parse it correctly, so it makes sense to sync it with `push_to_hub`. 2. Keeping the version info in at the config level is different from version info at the branch level. As the former relates to the version of the specific dataset the config refers to rather than the version of the dataset curation itself. ## A explanation for the current behavior: In [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 ), the `_INCLUDED_INFO_IN_YAML` variable doesn't include `"version"`. If my reading of the code is right, adding `"version"` to `_INCLUDED_INFO_IN_YAML`, would allow the version information to be uploaded to the hub. ### Your contribution Request: add `"version"` to `_INCLUDE_INFO_IN_YAML` in [datasets/src/datasets/info.py:159](https://github.com/huggingface/datasets/blob/fb91fd3c9ea91a818681a777faf8d0c46f14c680/src/datasets/info.py#L159C1-L160C1 )
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7378/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7378/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7377
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7377/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7377/comments
https://api.github.com/repos/huggingface/datasets/issues/7377/events
https://github.com/huggingface/datasets/issues/7377
2,802,723,285
I_kwDODunzps6nDinV
7,377
Support for sparse arrays with the Arrow Sparse Tensor format?
{ "avatar_url": "https://avatars.githubusercontent.com/u/3231217?v=4", "events_url": "https://api.github.com/users/JulesGM/events{/privacy}", "followers_url": "https://api.github.com/users/JulesGM/followers", "following_url": "https://api.github.com/users/JulesGM/following{/other_user}", "gists_url": "https://api.github.com/users/JulesGM/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JulesGM", "id": 3231217, "login": "JulesGM", "node_id": "MDQ6VXNlcjMyMzEyMTc=", "organizations_url": "https://api.github.com/users/JulesGM/orgs", "received_events_url": "https://api.github.com/users/JulesGM/received_events", "repos_url": "https://api.github.com/users/JulesGM/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JulesGM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JulesGM/subscriptions", "type": "User", "url": "https://api.github.com/users/JulesGM", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! Unfortunately the Sparse Tensor structure in Arrow is not part of the Arrow format (yes it's confusing...), so it's not possible to use it in `datasets`. It's a separate structure that doesn't correspond to any type or extension type in Arrow.\n\nThe Arrow community recently added an extension type for fixed shape tensors at https://arrow.apache.org/docs/format/CanonicalExtensions.html#fixed-shape-tensor, it should be possible to contribute an extension type for sparse tensors as well." ]
2025-01-21T20:14:35
2025-01-30T14:06:45
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Feature request AI in biology is becoming a big thing. One thing that would be a huge benefit to the field that Huggingface Datasets doesn't currently have is native support for **sparse arrays**. Arrow has support for sparse tensors. https://arrow.apache.org/docs/format/Other.html#sparse-tensor It would be a big deal if Hugging Face Datasets supported sparse tensors as a feature type, natively. ### Motivation This is important for example in the field of transcriptomics (modeling and understanding gene expression), because a large fraction of the genes are not expressed (zero). More generally, in science, sparse arrays are very common, so adding support for them would be very benefitial, it would make just using Hugging Face Dataset objects a lot more straightforward and clean. ### Your contribution We can discuss this further once the team comments of what they think about the feature, and if there were previous attempts at making it work, and understanding their evaluation of how hard it would be. My intuition is that it should be fairly straightforward, as the Arrow backend already supports it.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/7377/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7377/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7375
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7375/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7375/comments
https://api.github.com/repos/huggingface/datasets/issues/7375/events
https://github.com/huggingface/datasets/issues/7375
2,800,609,218
I_kwDODunzps6m7efC
7,375
vllm批量推理报错
{ "avatar_url": "https://avatars.githubusercontent.com/u/51228154?v=4", "events_url": "https://api.github.com/users/YuShengzuishuai/events{/privacy}", "followers_url": "https://api.github.com/users/YuShengzuishuai/followers", "following_url": "https://api.github.com/users/YuShengzuishuai/following{/other_user}", "gists_url": "https://api.github.com/users/YuShengzuishuai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/YuShengzuishuai", "id": 51228154, "login": "YuShengzuishuai", "node_id": "MDQ6VXNlcjUxMjI4MTU0", "organizations_url": "https://api.github.com/users/YuShengzuishuai/orgs", "received_events_url": "https://api.github.com/users/YuShengzuishuai/received_events", "repos_url": "https://api.github.com/users/YuShengzuishuai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/YuShengzuishuai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/YuShengzuishuai/subscriptions", "type": "User", "url": "https://api.github.com/users/YuShengzuishuai", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "Make sure you have installed a recent version of `soundfile`" ]
2025-01-21T03:22:23
2025-01-30T14:02:40
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug ![Image](https://github.com/user-attachments/assets/3d958e43-28dc-4467-9333-5990c7af3b3f) ### Steps to reproduce the bug ![Image](https://github.com/user-attachments/assets/3067eeca-a54d-4956-b0fd-3fc5ea93dabb) ### Expected behavior ![Image](https://github.com/user-attachments/assets/77d32936-488f-4572-9365-bfb4170e555b) ### Environment info ![Image](https://github.com/user-attachments/assets/230335c4-825f-4db1-b07d-4776ef63ead8)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7375/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7375/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7373
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7373/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7373/comments
https://api.github.com/repos/huggingface/datasets/issues/7373/events
https://github.com/huggingface/datasets/issues/7373
2,793,237,139
I_kwDODunzps6mfWqT
7,373
Excessive RAM Usage After Dataset Concatenation concatenate_datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/40773225?v=4", "events_url": "https://api.github.com/users/sam-hey/events{/privacy}", "followers_url": "https://api.github.com/users/sam-hey/followers", "following_url": "https://api.github.com/users/sam-hey/following{/other_user}", "gists_url": "https://api.github.com/users/sam-hey/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sam-hey", "id": 40773225, "login": "sam-hey", "node_id": "MDQ6VXNlcjQwNzczMjI1", "organizations_url": "https://api.github.com/users/sam-hey/orgs", "received_events_url": "https://api.github.com/users/sam-hey/received_events", "repos_url": "https://api.github.com/users/sam-hey/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sam-hey/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sam-hey/subscriptions", "type": "User", "url": "https://api.github.com/users/sam-hey", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "![Image](https://github.com/user-attachments/assets/b6f8bcbd-44af-413e-bc06-65380eb0f746)\n\n![Image](https://github.com/user-attachments/assets/a241fcd8-4b62-495c-926c-685f82015dfb)\n\nAdding a img from memray\nhttps://gist.github.com/sam-hey/00c958f13fb0f7b54d17197fe353002f" ]
2025-01-16T16:33:10
2025-01-17T08:05:22
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug When loading a dataset from disk, concatenating it, and starting the training process, the RAM usage progressively increases until the kernel terminates the process due to excessive memory consumption. https://github.com/huggingface/datasets/issues/2276 ### Steps to reproduce the bug ``` rom datasets import DatasetDict, concatenate_datasets dataset = DatasetDict.load_from_disk("data") ... ... combined_dataset = concatenate_datasets( [dataset[split] for split in dataset] ) #start SentenceTransformer training ``` ### Expected behavior I would not expect RAM utilization to increase after concatenation. Removing the concatenation step resolves the issue ### Environment info sentence-transformers==3.1.1 datasets==3.2.0 python3.10
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7373/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7373/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7372
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7372/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7372/comments
https://api.github.com/repos/huggingface/datasets/issues/7372/events
https://github.com/huggingface/datasets/issues/7372
2,791,760,968
I_kwDODunzps6mZuRI
7,372
Inconsistent Behavior Between `load_dataset` and `load_from_disk` When Loading Sharded Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/38203359?v=4", "events_url": "https://api.github.com/users/gaohongkui/events{/privacy}", "followers_url": "https://api.github.com/users/gaohongkui/followers", "following_url": "https://api.github.com/users/gaohongkui/following{/other_user}", "gists_url": "https://api.github.com/users/gaohongkui/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gaohongkui", "id": 38203359, "login": "gaohongkui", "node_id": "MDQ6VXNlcjM4MjAzMzU5", "organizations_url": "https://api.github.com/users/gaohongkui/orgs", "received_events_url": "https://api.github.com/users/gaohongkui/received_events", "repos_url": "https://api.github.com/users/gaohongkui/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gaohongkui/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gaohongkui/subscriptions", "type": "User", "url": "https://api.github.com/users/gaohongkui", "user_view_type": "public" }
[]
open
false
null
[]
null
[]
2025-01-16T05:47:20
2025-01-16T05:47:20
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Description I encountered an inconsistency in behavior between `load_dataset` and `load_from_disk` when loading sharded datasets. Here is a minimal example to reproduce the issue: #### Code 1: Using `load_dataset` ```python from datasets import Dataset, load_dataset # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_dataset("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 1350 samples. - `test` has 150 samples. #### Code 2: Using `load_from_disk` ```python from datasets import Dataset, load_from_disk # First save with max_shard_size=10 Dataset.from_dict({"id": range(1000)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Second save with max_shard_size=10 Dataset.from_dict({"id": range(500)}).train_test_split(test_size=0.1).save_to_disk("my_sharded_datasetdict", max_shard_size=10) # Load the DatasetDict loaded_datasetdict = load_from_disk("my_sharded_datasetdict") print(loaded_datasetdict) ``` **Output**: - `train` has 450 samples. - `test` has 50 samples. ### Expected Behavior I expected both `load_dataset` and `load_from_disk` to load the same dataset, as they are pointing to the same directory. However, the results differ significantly: - `load_dataset` seems to merge all shards, resulting in a combined dataset. - `load_from_disk` only loads the last saved dataset, ignoring previous shards. ### Questions 1. Is this behavior intentional? If so, could you clarify the difference between `load_dataset` and `load_from_disk` in the documentation? 2. If this is not intentional, could this be considered a bug? 3. What is the recommended way to handle cases where multiple datasets are saved to the same directory? Thank you for your time and effort in maintaining this great library! I look forward to your feedback.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7372/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7372/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7371
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7371/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7371/comments
https://api.github.com/repos/huggingface/datasets/issues/7371/events
https://github.com/huggingface/datasets/issues/7371
2,790,549,889
I_kwDODunzps6mVGmB
7,371
500 Server error with pushing a dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/7677814?v=4", "events_url": "https://api.github.com/users/martinmatak/events{/privacy}", "followers_url": "https://api.github.com/users/martinmatak/followers", "following_url": "https://api.github.com/users/martinmatak/following{/other_user}", "gists_url": "https://api.github.com/users/martinmatak/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/martinmatak", "id": 7677814, "login": "martinmatak", "node_id": "MDQ6VXNlcjc2Nzc4MTQ=", "organizations_url": "https://api.github.com/users/martinmatak/orgs", "received_events_url": "https://api.github.com/users/martinmatak/received_events", "repos_url": "https://api.github.com/users/martinmatak/repos", "site_admin": false, "starred_url": "https://api.github.com/users/martinmatak/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/martinmatak/subscriptions", "type": "User", "url": "https://api.github.com/users/martinmatak", "user_view_type": "public" }
[]
open
false
null
[]
null
[ "EDIT: seems to be all good now. I'll add a comment if the error happens again within the next 48 hours. If it doesn't, I'll just close the topic." ]
2025-01-15T18:23:02
2025-01-15T20:06:05
null
NONE
{ "completed": 0, "percent_completed": 0, "total": 0 }
null
### Describe the bug Suddenly, I started getting this error message saying it was an internal error. `Error creating/pushing dataset: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible! Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 406, in hf_raise_for_status response.raise_for_status() File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/requests/models.py", line 1024, in raise_for_status raise HTTPError(http_error_msg, response=self) requests.exceptions.HTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/uufs/chpc.utah.edu/common/home/u1295595/grasp_dataset_converter/src/grasp_dataset_converter/main.py", line 142, in main subset_train.push_to_hub(dataset_name, split='train') File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5624, in push_to_hub commit_info = api.create_commit( File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 1518, in _inner return fn(self, *args, **kwargs) File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 4087, in create_commit hf_raise_for_status(commit_resp, endpoint_name="commit") File "/uufs/chpc.utah.edu/common/home/hermans-group1/martin/software/pkg/miniforge3/envs/myenv2/lib/python3.10/site-packages/huggingface_hub/utils/_http.py", line 477, in hf_raise_for_status raise _format(HfHubHTTPError, str(e), response) from e huggingface_hub.errors.HfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/ll4ma-lab/grasp-dataset/commit/main (Request ID: Root=1-6787f0b7-66d5bd45413e481c4c2fb22d;670d04ff-65f5-4741-a353-2eacc47a3928) Internal Error - We're working hard to fix this as soon as possible!` ### Steps to reproduce the bug I am pushing a Dataset in a loop via push_to_hub API ### Expected behavior It worked fine until it stopped working suddenly. Expected behavior: It should start working again ### Environment info - `datasets` version: 3.2.0 - Platform: Linux-4.18.0-477.15.1.el8_8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.0 - `huggingface_hub` version: 0.27.1 - PyArrow version: 18.1.0 - Pandas version: 2.2.3 - `fsspec` version: 2024.9.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7371/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7371/timeline
null
null
null
null
false