caption
stringlengths
0
5.16k
code
stringlengths
99
1.67M
image
imagewidth (px)
336
336
uri
stringlengths
21
93
origin
stringclasses
9 values
date
timestamp[us]
Mapping to r_1r_2 random variables in a node with data x_u
\documentclass[10pt,twosided,a4paper,draft,onecolumn]{article} \usepackage{tikz} \usetikzlibrary{matrix,arrows,decorations.pathmorphing} \usepackage{graphicx,color} \usepackage{amsmath,amsfonts,amssymb,mathrsfs,wasysym,stackrel,amsthm} \begin{document} \begin{tikzpicture}[>=latex] \tikzstyle{every node} = [circle,fill=gray] \node (a) at (2.5,2) {$x_u$}; \node (b) at (0,0) {$y_u^1$}; \node (c) at (5,0) {$y_u^{r_1}$}; % \node (d) at (-1.5,-1.5) {$z_u^{1,1}(0)$}; \node (e) at (1.5,-1.5) {$z_u^{1,r_2}(0)$}; \node (f) at (3.5,-1.5) {$z_u^{r_1,1}(0)$}; \node (g) at (6.5,-1.5) {$z_u^{r_1,r_2}(0)$}; %% \draw [->] (a) -- (b) node[pos=.5,sloped,above,fill=white] {$\phi_1$};; \draw [->] (a) -- (c)node[pos=.5,sloped,above,fill=white] {$\phi_{r_1}$};; \draw [->] (b) -- (d); \draw [->] (b) -- (e); \draw [->] (c) -- (f); \draw [->] (c) -- (g); \fill[black] (1,0) circle (0.3ex); \fill[black] (2,0) circle (0.3ex); \fill[black] (3,0) circle (0.3ex); \fill[black] (4,0) circle (0.3ex); \fill[black] (-0.5,-1.5) circle (0.3ex); \fill[black] (0.5,-1.5) circle (0.3ex); \fill[black] (4.5,-1.5) circle (0.3ex); \fill[black] (5.5,-1.5) circle (0.3ex); \fill[black] (2.5,-1.5) circle (0.3ex); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1210.6134
arxiv
2012-10-24T02:02:18
A cross-sectional view of a collar neighborhood of F in the knot complement X_K, where F_ represent F 1, respectively. In addition, the point P_+(resp. P_-) is the intersection point of the meridian Z and F_+(resp. F_-).
\documentclass[11pt, oneside]{amsart} \usepackage{amsmath} \usepackage{amssymb} \usepackage{color} \usepackage{tikz} \begin{document} \begin{tikzpicture}[scale=0.8] \draw [ultra thick] (2,2) -- (9,2); \draw [ultra thick] (2,4) -- (9,4); \draw [ultra thick] (10.5,3) circle [radius=1.8]; \draw [->, ultra thick, cyan] (9,2) to [out=298, in=180] (10.5,1) to [out=0, in=270] (12.6,3); \draw [ultra thick, cyan](12.6,3) to [out=90, in=0] (10.5,5) to [out=180, in=62] (9,4); \draw [dashed, thick] (2,3) -- (10.5,3); \draw [ultra thick] (12,2.18) -- (12,2) -- (12.18,2); \node[right] at (10.5,3) {$K$}; \node[left] at (2,2) {$F_-$}; \node[left] at (2,3) {$F$}; \node[left] at (2,4) {$F_+$}; \node[above left] at (9,4) {$P_+$}; \node[below left] at (9,2) {$P_-$}; \node[cyan] at (13, 3) {$C$}; \node [below left] at (12,2.3) {$Z$}; \draw [fill=black] (10.5,3) circle [radius=0.1]; \draw [fill=black] (9,2) circle [radius=0.1]; \draw [fill=black] (9,4) circle [radius=0.1]; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.3291
arxiv
2014-07-02T02:12:28
Hasse-diagram of Szondi's signatures
\documentclass{article} \usepackage{amsmath,amssymb,array,multirow,tikz,tikz-cd} \usetikzlibrary{arrows,automata} \begin{document} \begin{tikzpicture} \node (pbbb) at (0,4) {$+!!!$}; \node (pbb) at (0,3) {$+!!$}; \node (pb) at (0,2) {$+!$}; \node (p) at (0,1) {$+$}; \node (n) at (0,0) {$0$}; \node (m) at (0,-1) {$-$}; \node (mb) at (0,-2) {$-!$}; \node (mbb) at (0,-3) {$-!!$}; \node (mbbb) at (0,-4) {$-!!!$}; \draw (mbbb) -- (mbb) -- (mb) -- (m) -- (n) -- (p) -- (pb) -- (pbb) -- (pbbb); \node (pmub) at (1,1) {$\pm^{!}$}; \node (pm) at (1,0) {$\pm$}; \node (pmlb) at (1,-1) {$\pm_{!}$}; \draw (pmlb) -- (pm) -- (pmub); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.2000
arxiv
2014-05-06T19:50:29
Schematic of the LHCb detector showing the path of charged particles from a D^0 K^-^+^-^+ decay and its charge conjugate. In this case, the raw asymmetry will be dominated by the material interaction effects of the charged kaon, but when the pion tracking efficiency is measured, this cancels between the numerator and the denominator.
\documentclass[12pt]{article} \usepackage{tikz} \usetikzlibrary{trees} \usetikzlibrary{decorations.pathmorphing} \usetikzlibrary{decorations.markings} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture}[scale=0.7, % Set the overall layout of the tree level/.style={level distance=3.15cm, line width=0.4mm}, level 2/.style={sibling angle=60}, level 3/.style={sibling angle=60}, level 4/.style={level distance=1.4cm, sibling angle=60} ] \node[draw=none,fill=none] at (-7.80, 0.8){$D^0$} ; \node[draw=none,fill=none] at (-1.8, 1.5){$K^-$} ; \node[draw=none,fill=none] at (-1.8, 1.0){$\pi^-$} ; \node[draw=none,fill=none] at (-1.8, -2.6){$\pi^+$} ; \node[draw=none,fill=none] at (-1.8, -2.1){$\pi^+$} ; \filldraw[draw=black,fill=lightgray] (-9.0,-0.3) rectangle (-7.5,0.3); \draw[blue,very thick] (-8.5,0.0) -- (-1.8,3.0) ; \draw[blue,very thick] (-8.5,0.0) -- (-1.8,-3.0) ; \draw[blue] (-8.5,0.0) -- (-1.8,0.0) ; \draw[very thick, ->] (-9, -3.5) -- (-7.5, -3.5); \draw[very thick, ->] (-9, -3.5) -- (-9, -2.0); \node[draw=none,fill=none] at (-9.30, -2.5){$x$} ; \node[draw=none,fill=none] at (-8.0, -3.8){$z$} ; \node[circle, fill=red,inner sep=1pt,minimum size=1pt] at (-8.0, 0.1){}; \node[circle, fill=red,inner sep=2pt,minimum size=2pt] at (-8.5, 0.0){}; \filldraw[draw=black,fill=blue] (-7.0,2.5) rectangle (-5.5,1.0); \filldraw[draw=black,fill=blue] (-7.0,-2.5) rectangle (-5.5,-1.0); \filldraw[draw=black,fill=green] (-5.0,-2.0) rectangle (-4.4,2.0); \filldraw[draw=black,fill=yellow] (-4.0,-2.6) rectangle (-3.4,2.6); \filldraw[draw=black,fill=orange] (-3.0,-2.8) rectangle (-2.4,2.8); \draw[dotted] (-8.5,0.0) -- (-8.0,0.1) ; \draw[dotted, thick] (-8.0,0.1) parabola(-2,-2.6); \draw[dotted, thick] (-8.0,0.1) parabola(-2,-2.1); \draw[dotted, thick] (-8.0,0.1) parabola(-2,1.0); \draw[dotted, thick] (-8.0,0.1) parabola(-2,1.5); \node[draw=red,fill=none, font=\huge,red] at (0.0, 2.0){${\cal C}$} ; \draw[thick,red, style=->] (-0.5,1.3) -- (0.5,1.3) ; %------------------------------------------- \node[draw=none,fill=none] at (1.20, 0.8){$\bar{D^0}$} ; \node[draw=none,fill=none] at (7.2, 1.5){$\pi^-$} ; \node[draw=none,fill=none] at (7.2, 2.0){$\pi^-$} ; \node[draw=none,fill=none] at (7.2, -1.6){$\pi^+$} ; \node[draw=none,fill=none] at (7.2, -2.6){$K^+$} ; \filldraw[draw=black,fill=lightgray] (0.0,-0.3) rectangle (1.5,0.3); \draw[blue,very thick] (0.5,0.0) -- (7.2,3.0) ; \draw[blue,very thick] (0.5,0.0) -- (7.2,-3.0) ; \draw[blue] (0.5,0.0) -- (7.2,0.0) ; \node[circle, fill=red,inner sep=1pt,minimum size=1pt] at (1.1, 0.1){}; \node[circle, fill=red,inner sep=2pt,minimum size=2pt] at (0.5, 0.0){}; \filldraw[draw=black,fill=blue] (2.0,2.5) rectangle (3.5,1.0); \filldraw[draw=black,fill=blue] (2.0,-2.5) rectangle (3.5,-1.0); \filldraw[draw=black,fill=green] (4.0,-2.0) rectangle (4.6,2.0); \filldraw[draw=black,fill=yellow] (5.0,-2.6) rectangle (5.6,2.6); \filldraw[draw=black,fill=orange] (6.0,-2.8) rectangle (6.6,2.8); \draw[dotted] (0.5,0.0) -- (1.1,0.1) ; \draw[dotted, thick] (1.1,0.1) parabola(7,-2.6); \draw[dotted, thick] (1.1,0.1) parabola(7,-1.6); \draw[dotted, thick] (1.1,0.1) parabola(7,1.5); \draw[dotted, thick] (1.1,0.1) parabola(7,2.0); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.5745
arxiv
2013-11-25T02:07:02
Discipline inclusions for considering the context of a message.
\documentclass{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[leqno]{amsmath} \usepackage{amssymb} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{pgf,pgfarrows,pgfnodes} \usepackage{tikz} \usetikzlibrary{arrows} \usetikzlibrary{shapes} \usetikzlibrary{decorations.text} \usetikzlibrary{trees} \usetikzlibrary{snakes} \usetikzlibrary{plotmarks} \usetikzlibrary{fit} \begin{document} \begin{tikzpicture}[scale=.5] % 1, 4.25 \fill[yellow!50] (1,1) ellipse [x radius=6.25cm,y radius=3.25cm]; \fill [decorate,decoration={text along path,text=Semantics, text align=fit to path}] (-.3,3.6) arc (100:80:8cm); \fill[yellow] (1,1) ellipse [x radius=5cm,y radius=2.5cm]; \fill [decorate,decoration={text along path,text={Semiology, hermeneutics}, text align=fit to path}] (-2,2.5) arc (110:70:9cm); \fill[green!50] (1,1) ellipse [x radius=3.5cm,y radius=1.75cm]; \fill [decorate,decoration={text along path,text=Rhetorics, text align=fit to path}] (-.5,2) arc (105:75:6cm); \fill[green!80!black] (1,1) ellipse [x radius=2cm,y radius=1cm]; \draw (1,1) node {Pragmatics, context}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1207.6224
arxiv
2012-07-27T02:03:05
A comb-like order
\documentclass{amsart} \usepackage{amsmath, amssymb, amsthm} \usepackage{tikz} \begin{document} \begin{tikzpicture} \begin{scope}[scale=0.5] \coordinate [label=left:$i_1$] (i1) at (0,0); \coordinate [label=right:$i_2$] (i2) at (1,0); \coordinate [label=left:$i_3$] (i3) at (0.5,1); \coordinate [label=right:$i_4$] (i4) at (1.5,1); \coordinate [label=left:$i_5$] (i5) at (1,2); \coordinate [label=left:$i_{2m -1}$] (j3) at (1.5,3); \coordinate [label=right:$i_{2m}$] (j2) at (2.5,3); \coordinate [label=left:$i_{2m + 1}$] (j1) at (2,4); \draw (i1) -- (i5); \draw (i3) -- (i2); \draw (i5) -- (i4); \draw[style=dotted] (i5) -- (j3); \draw (j3) -- (j1); \draw (j1) -- (j2); \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1304.0026
arxiv
2013-04-02T02:00:36
Left and Right intervals
\documentclass[notitlepage,a4paper]{article} \usepackage[latin1]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{matrix} \begin{document} \begin{tikzpicture} \matrix (m) [matrix of math nodes,row sep=3em,column sep=1em,minimum width=1em] { Level \; h=k & \qquad & I \left [1, \; p_k^2 \right ]_{h=k} & \cup & I \left [p_k^2+1, \; m_k \right ]_{h=k} & = & I \left [1, \; m_k \right ]_{h=k} \\ Level \; h=h^\prime & \qquad & I \left [1, \; p_k^2 \right ]_{h=h^\prime} & \cup & I \left [p_k^2+1, \; m_k \right ]_{h=h^\prime} & = & I \left [1, \; m_k \right ]_{h=h^\prime} \\ Level \; h=1 & \qquad & I \left [1, \; p_k^2 \right ]_{h=1} & \cup & I \left [p_k^2+1, \; m_k \right ]_{h=1} & = & I \left [1, \; m_k \right ]_{h=1}\\ }; \path[loosely dotted] (m-2-1) edge (m-1-1) (m-3-1) edge (m-2-1) (m-2-3) edge (m-1-3) (m-3-3) edge (m-2-3) (m-2-5) edge (m-1-5) (m-3-5) edge (m-2-5) (m-2-7) edge (m-1-7) (m-3-7) edge (m-2-7); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1207.4802
arxiv
2014-05-16T02:13:16
The zero sets of the polynomials in eq-cad-intro and some projections on the x-axis (solid dots).
\documentclass[a4paper]{report} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{tikz} \usetikzlibrary{automata,arrows} \begin{document} \begin{tikzpicture}[scale=1.2] % Axes \draw[->] (-2.5, 0) -- (2.5,0) node[right] {$x$}; \draw[->] (0, -2.2) -- (0,2.2) node[above] {$y$}; % x^3 - y^2 = 0 \draw[domain=0:1.5,samples=50] plot (\x,{sqrt(\x*\x*\x)}); \draw[domain=0:1.5,samples=50] plot (\x,{-sqrt(\x*\x*\x)}); % x^2 + y^2 - 2 < 0 \draw (0,0) circle (1.41); % cad \draw[dotted] (1,-2) -- (1, 2); \draw[dotted] (1.41,-2) -- (1.41,2); \draw[dotted] (-1.41,-2) -- (-1.41,2); \draw[fill] (-1.41, 0) circle (0.05); \draw[fill] (0, 0) circle (0.05); \draw[fill] (1, 0) circle (0.05); \draw[fill] (1.41, 0) circle (0.05); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.5351
arxiv
2014-01-22T02:10:17
Geometric interpretation. Top: input feature pairs x_i, x_i' R^p are segments for y_i=0 and arrows for y_i\{-1,1\}. The level curves of the ranking function r( x)=|| x||_2^2 are grey, and differences |r( x')-r( x)| 1 are considered insignificant (y_i=0). Middle: in the enlarged feature space, the ranking function is linear: r( x)= w^( x). Bottom: two symmetric hyperplanes w^( x_i')-( x_i)\{-1,1\} are used to classify the difference vectors.
\documentclass{article} \usepackage[table]{xcolor} \usepackage{tikz} \usepackage{amsmath,amssymb,amsthm} \begin{document} \begin{tikzpicture}[x=1pt,y=1pt] \definecolor[named]{fillColor}{rgb}{1.00,1.00,1.00} \path[use as bounding box,fill=fillColor,fill opacity=0.00] (0,0) rectangle (224.04,578.16); \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40,409.44) -- (212.04,409.44) -- (212.04,578.16) -- ( 14.40,578.16) -- ( 14.40,409.44); \end{scope} \begin{scope} \path[clip] ( 0.00,385.44) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (113.22,398.64) {input feature $ x_{i,1}$}; \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 10.80,493.80) {input feature $ x_{i,2}$}; \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (221.64,493.80) {Original feature space $\mathbf x\in\mathbb R^p$}; \end{scope} \begin{scope} \path[clip] ( 14.40,409.44) rectangle (212.04,578.16); \definecolor[named]{drawColor}{rgb}{0.50,0.50,0.50} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 84.58,472.80) -- ( 80.89,481.06) -- ( 79.47,489.32) -- ( 80.34,497.58) -- ( 83.48,505.83) -- ( 87.24,511.56) -- ( 89.55,514.09) -- ( 95.50,518.71) -- (103.09,522.35) -- (103.76,522.60) -- (112.02,523.77) -- (120.28,523.06) -- (122.51,522.35) -- (128.54,519.89) -- (136.78,514.09) -- (136.80,514.07) -- (142.60,505.83) -- (145.06,499.81) -- (145.76,497.58) -- (146.48,489.32) -- (145.31,481.06) -- (145.06,480.39) -- (141.42,472.80) -- (136.80,466.84) -- (134.26,464.54) -- (128.54,460.78) -- (120.28,457.63) -- (112.02,456.76) -- (103.76,458.18) -- ( 95.50,461.88) -- ( 91.83,464.54) -- ( 87.24,469.12); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 85.48,471.55) -- ( 84.58,472.80); \node[text=drawColor,rotate=-54.13,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 83.81,470.34) { 1 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 68.95,472.80) -- ( 66.57,481.06) -- ( 65.65,489.32) -- ( 66.21,497.58) -- ( 68.24,505.83) -- ( 70.72,511.70) -- ( 71.95,514.09) -- ( 77.99,522.35) -- ( 78.98,523.40) -- ( 87.24,530.23) -- ( 87.89,530.61) -- ( 95.50,534.32) -- (103.76,536.81) -- (112.02,537.76) -- (120.28,537.18) -- (128.54,535.06) -- (136.80,531.41) -- (138.07,530.61) -- (145.06,525.22) -- (147.92,522.35) -- (153.32,515.36) -- (154.11,514.09) -- (157.77,505.83) -- (159.89,497.58) -- (160.47,489.32) -- (159.52,481.06) -- (157.03,472.80) -- (153.32,465.19) -- (152.93,464.54) -- (146.10,456.28) -- (145.06,455.29) -- (136.80,449.25) -- (134.41,448.02) -- (128.54,445.53) -- (120.28,443.51) -- (112.02,442.95) -- (103.76,443.86) -- ( 95.50,446.24) -- ( 91.69,448.02) -- ( 87.24,450.54) -- ( 79.92,456.28) -- ( 78.98,457.22) -- ( 73.25,464.54) -- ( 70.72,468.99); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 70.72,468.99) -- ( 70.22,470.08); \node[text=drawColor,rotate=-65.04,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 67.07,471.92) { 2 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 60.90,464.54) -- ( 57.63,472.80) -- ( 55.61,481.06) -- ( 54.84,489.32) -- ( 55.31,497.58) -- ( 57.03,505.83) -- ( 60.00,514.09) -- ( 62.46,518.92) -- ( 64.53,522.35) -- ( 70.72,530.31) -- ( 71.02,530.61) -- ( 78.98,537.46) -- ( 81.09,538.87) -- ( 87.24,542.37) -- ( 95.50,545.76) -- (100.90,547.13) -- (103.76,547.76) -- (112.02,548.45) -- (120.28,548.03) -- (125.08,547.13) -- (128.54,546.39) -- (136.80,543.30) -- (145.06,538.93) -- (145.14,538.87) -- (153.32,532.22) -- (154.92,530.61) -- (161.58,522.44) -- (161.63,522.35) -- (166.01,514.09) -- (169.09,505.83) -- (169.84,502.38) -- (170.74,497.58) -- (171.16,489.32) -- (170.47,481.06) -- (169.84,478.20) -- (168.47,472.80) -- (165.07,464.54) -- (161.58,458.38) -- (160.16,456.28) -- (153.32,448.31) -- (153.01,448.02) -- (145.06,441.82) -- (141.63,439.76) -- (136.80,437.29) -- (128.54,434.33) -- (120.28,432.61) -- (112.02,432.13) -- (103.76,432.91) -- ( 95.50,434.93) -- ( 87.24,438.20) -- ( 84.39,439.76) -- ( 78.98,443.24) -- ( 73.17,448.02) -- ( 70.72,450.47) -- ( 65.95,456.28) -- ( 62.46,461.68); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 62.46,461.68) -- ( 62.34,461.91); \node[text=drawColor,rotate=-61.36,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 59.09,463.55) { 3 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.94,487.25) -- ( 45.80,489.32); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.94,492.70) -- ( 46.19,497.58) -- ( 47.68,505.83) -- ( 50.26,514.09) -- ( 53.92,522.35) -- ( 54.20,522.84) -- ( 59.35,530.61) -- ( 62.46,534.45) -- ( 66.70,538.87) -- ( 70.72,542.42) -- ( 77.23,547.13) -- ( 78.98,548.23) -- ( 87.24,552.28) -- ( 95.50,555.22) -- ( 96.29,555.39) -- (103.76,556.84) -- (112.02,557.45) -- (120.28,557.07) -- (128.54,555.71) -- (129.68,555.39) -- (136.80,553.10) -- (145.06,549.31) -- (148.73,547.13) -- (153.32,543.98) -- (159.38,538.87) -- (161.58,536.68) -- (166.69,530.61) -- (169.84,526.03) -- (172.02,522.35) -- (175.80,514.09) -- (178.10,506.97) -- (178.42,505.83) -- (179.78,497.58) -- (180.15,489.32) -- (179.54,481.06) -- (178.10,473.59) -- (177.92,472.80) -- (174.99,464.54) -- (170.94,456.28) -- (169.84,454.52) -- (165.13,448.02) -- (161.58,443.99) -- (157.16,439.76) -- (153.32,436.64) -- (145.55,431.50) -- (145.06,431.22) -- (136.80,427.56) -- (128.54,424.98) -- (120.28,423.48) -- (115.40,423.24) -- (112.02,423.09) -- (109.96,423.24) -- (103.76,423.74) -- ( 95.50,425.50) -- ( 87.24,428.34) -- ( 80.60,431.50) -- ( 78.98,432.38) -- ( 70.72,438.15) -- ( 68.82,439.76) -- ( 62.46,446.12) -- ( 60.85,448.02) -- ( 55.09,456.28) -- ( 54.20,457.89) -- ( 51.05,464.54) -- ( 48.21,472.80) -- ( 46.45,481.06) -- ( 45.94,487.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.93,492.31) -- ( 45.94,492.70); \node[text=drawColor,rotate= 87.52,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 47.86,489.23) { 4 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 42.52,464.54) -- ( 40.01,472.80) -- ( 38.45,481.06) -- ( 37.86,489.32) -- ( 38.22,497.58) -- ( 39.54,505.83) -- ( 41.82,514.09) -- ( 45.06,522.35) -- ( 45.94,524.09) -- ( 49.69,530.61) -- ( 54.20,537.01) -- ( 55.72,538.87) -- ( 62.46,545.87) -- ( 63.90,547.13) -- ( 70.72,552.33) -- ( 75.61,555.39) -- ( 78.98,557.25) -- ( 87.24,560.82) -- ( 95.50,563.40) -- ( 96.78,563.65) -- (103.76,564.86) -- (112.02,565.40) -- (120.28,565.07) -- (128.54,563.86) -- (129.35,563.65) -- (136.80,561.53) -- (145.06,558.20) -- (150.44,555.39) -- (153.32,553.68) -- (161.58,547.66) -- (162.19,547.13) -- (169.84,539.49) -- (170.37,538.87) -- (176.39,530.61) -- (178.10,527.73) -- (180.91,522.35) -- (184.24,514.09) -- (186.36,506.64) -- (186.56,505.83) -- (187.78,497.58) -- (188.11,489.32) -- (187.56,481.06) -- (186.36,474.07) -- (186.11,472.80) -- (183.53,464.54) -- (179.96,456.28) -- (178.10,452.90) -- (175.04,448.02) -- (169.84,441.19) -- (168.58,439.76) -- (161.58,433.02) -- (159.71,431.50) -- (153.32,426.99) -- (146.80,423.24) -- (145.06,422.36) -- (136.80,419.12) -- (128.54,416.84) -- (120.28,415.52) -- (112.02,415.15) -- (103.76,415.75) -- ( 95.50,417.30) -- ( 87.24,419.81) -- ( 79.08,423.24) -- ( 78.98,423.29) -- ( 70.72,428.29) -- ( 66.38,431.50) -- ( 62.46,434.82) -- ( 57.53,439.76) -- ( 54.20,443.67) -- ( 51.00,448.02) -- ( 45.99,456.28) -- ( 45.94,456.38); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.94,456.38) -- ( 43.68,461.77); \node[text=drawColor,rotate=-67.25,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 40.61,463.74) { 5 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 79.85,414.98) -- ( 78.98,415.34); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 70.72,419.77) -- ( 65.40,423.24) -- ( 62.46,425.41) -- ( 55.45,431.50) -- ( 54.20,432.75) -- ( 48.11,439.76) -- ( 45.94,442.70) -- ( 42.48,448.02) -- ( 38.05,456.28) -- ( 37.69,457.15); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 76.34,416.76) -- ( 70.72,419.77); \node[text=drawColor,rotate=-28.21,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 75.36,414.94) { 6 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 41.32,530.61) -- ( 45.94,538.02) -- ( 46.54,538.87) -- ( 53.46,547.13) -- ( 54.20,547.90) -- ( 62.46,555.31) -- ( 62.57,555.39) -- ( 70.72,560.86) -- ( 75.78,563.65) -- ( 78.98,565.23) -- ( 87.24,568.42) -- ( 95.50,570.73) -- (102.36,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 39.04,526.13) -- ( 41.32,530.61); \node[text=drawColor,rotate= 63.10,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 39.53,522.52) { 6 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (193.86,505.83) -- (191.76,514.09) -- (188.78,522.35) -- (186.36,527.55) -- (184.76,530.61) -- (179.46,538.87) -- (178.10,540.66) -- (172.50,547.13) -- (169.84,549.79) -- (163.36,555.39) -- (161.58,556.75) -- (153.32,562.05) -- (150.26,563.65) -- (145.06,566.08) -- (136.80,569.06) -- (128.54,571.15) -- (123.37,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (194.18,503.63) -- (193.86,505.83); \node[text=drawColor,rotate=-81.68,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (192.14,503.33) { 6 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (153.32,418.62) -- (160.73,423.24) -- (161.58,423.84) -- (169.84,430.75) -- (170.61,431.50) -- (178.02,439.76) -- (178.10,439.86) -- (183.57,448.02) -- (186.36,453.07) -- (187.93,456.28) -- (191.12,464.54) -- (193.43,472.80) -- (194.62,479.66); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (148.84,416.34) -- (153.32,418.62); \node[text=drawColor,rotate= 26.94,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (147.10,413.14) { 6 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 62.46,417.22) -- ( 54.63,423.24) -- ( 54.20,423.61) -- ( 46.31,431.50) -- ( 45.94,431.92) -- ( 39.93,439.76) -- ( 37.69,443.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 63.39,416.62) -- ( 62.46,417.22); \node[text=drawColor,rotate=-33.12,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 62.26,414.89) { 7 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 37.69,537.51) -- ( 38.54,538.87); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 44.65,547.13) -- ( 45.94,548.65) -- ( 52.48,555.39) -- ( 54.20,556.96) -- ( 62.46,563.49) -- ( 62.71,563.65) -- ( 70.72,568.46) -- ( 77.74,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 40.32,541.28) -- ( 44.65,547.13); \node[text=drawColor,rotate= 53.53,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 40.20,537.64) { 7 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (192.22,530.61) -- (187.49,538.87) -- (186.36,540.53) -- (181.33,547.13) -- (178.10,550.81) -- (173.51,555.39) -- (169.84,558.63) -- (163.24,563.65) -- (161.58,564.78) -- (153.32,569.52) -- (148.19,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (193.35,528.21) -- (192.22,530.61); \node[text=drawColor,rotate=-65.00,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (191.48,527.33) { 7 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (160.21,414.98) -- (161.58,415.83); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (169.84,421.94) -- (171.35,423.24) -- (178.10,429.77) -- (179.67,431.50) -- (186.19,439.76) -- (186.36,440.00) -- (191.16,448.02) -- (194.62,455.03); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (163.99,417.62) -- (169.84,421.94); \node[text=drawColor,rotate= 36.52,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (162.81,414.17) { 7 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 55.05,414.98) -- ( 54.20,415.63); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.94,422.93) -- ( 45.63,423.24) -- ( 38.33,431.50) -- ( 37.69,432.34); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 51.96,417.61) -- ( 45.94,422.93); \node[text=drawColor,rotate=-41.50,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 50.59,416.07) { 8 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 37.69,548.27) -- ( 43.78,555.39); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.94,557.62) -- ( 52.58,563.65) -- ( 54.20,564.97) -- ( 62.46,570.80) -- ( 64.32,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 43.78,555.39) -- ( 43.85,555.46); \node[text=drawColor,rotate= 45.84,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 45.34,554.03) { 8 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (189.16,547.13) -- (186.36,550.70) -- (182.22,555.39) -- (178.10,559.52) -- (173.40,563.65) -- (169.84,566.46) -- (161.82,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (192.93,541.59) -- (189.16,547.13); \node[text=drawColor,rotate=-55.81,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (191.22,540.43) { 8 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (170.97,414.98) -- (178.10,421.08); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (180.32,423.24) -- (186.36,429.88) -- (187.68,431.50) -- (193.51,439.76) -- (194.62,441.61); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (180.25,423.17) -- (180.32,423.24); \node[text=drawColor,rotate= 44.21,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (179.54,419.60) { 8 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 45.96,414.98) -- ( 45.94,414.99) -- ( 37.70,423.24) -- ( 37.69,423.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 43.87,563.65) -- ( 45.94,565.55) -- ( 53.77,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 37.69,557.28) -- ( 41.78,561.50); \node[text=drawColor,rotate= 45.84,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 43.27,560.06) { 9 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (194.62,549.47) -- (189.96,555.39); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (186.36,559.42) -- (182.13,563.65) -- (178.10,567.25) -- (172.18,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (189.96,555.39) -- (188.36,557.19); \node[text=drawColor,rotate=-48.25,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (184.82,558.05) { 9 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (186.36,421.17) -- (188.26,423.24) -- (194.62,431.06); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (182.14,417.07) -- (186.36,421.17); \node[text=drawColor,rotate= 44.21,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (181.43,413.50) { 9 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 38.02,414.98) -- ( 37.69,415.31); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 37.69,565.26) -- ( 44.92,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (194.62,558.34) -- (189.88,563.65) -- (186.36,567.17) -- (181.05,571.91); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (187.96,414.98) -- (194.62,422.22); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (100.63,495.53) -- ( 80.92,474.49); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (126.56,458.28) -- (136.18,460.04); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (167.13,435.53) -- (172.14,440.61); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (146.92,508.30) -- (129.95,511.75); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 82.85,497.64) -- (108.20,472.01); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (119.30,454.37) -- (126.18,468.66); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 66.63,553.30) -- ( 64.50,571.91); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 68.80,566.10) -- ( 64.50,571.91) -- ( 61.62,565.28); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (150.67,449.16) -- (146.25,415.69); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (143.48,422.37) -- (146.25,415.69) -- (150.65,421.42); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (158.03,534.70) -- (188.75,564.86); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (186.82,557.89) -- (188.75,564.86) -- (181.75,563.05); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (164.27,504.77) -- (180.41,525.15); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (179.36,518.00) -- (180.41,525.15) -- (173.69,522.48); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (172.75,452.52) -- (171.28,421.91); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (167.97,428.33) -- (171.28,421.91) -- (175.19,427.98); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (153.24,472.60) -- (157.50,455.59); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (152.47,460.78) -- (157.50,455.59) -- (159.49,462.54); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (144.53,517.70) -- (160.45,538.00); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (159.43,530.84) -- (160.45,538.00) -- (153.75,535.30); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (133.04,448.30) -- (115.45,419.41); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (115.62,426.64) -- (115.45,419.41) -- (121.79,422.88); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 61.85,506.20) -- ( 39.56,482.39); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 41.20,489.43) -- ( 39.56,482.39) -- ( 46.47,484.49); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 71.29,500.46) -- ( 37.69,488.92); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 42.43,494.37) -- ( 37.69,488.92) -- ( 44.78,487.54); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 56.31,504.32) -- ( 44.66,523.85); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 50.97,520.33) -- ( 44.66,523.85) -- ( 44.76,516.62); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 75.21,532.01) -- ( 55.23,532.41); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 61.56,535.90) -- ( 55.23,532.41) -- ( 61.41,528.67); \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (107.80,481.85) -- ( 77.35,457.85); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 80.03,464.56) -- ( 77.35,457.85) -- ( 84.50,458.89); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (100.25,455.57) -- (115.80,434.41); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (109.18,437.31) -- (115.80,434.41) -- (115.00,441.59); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \definecolor[named]{fillColor}{rgb}{1.00,1.00,1.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 14.40,469.44) rectangle ( 63.23,409.44); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 23.40,445.44) -- ( 41.40,445.44); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 23.40,433.44) -- ( 41.40,433.44); \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 23.40,421.44) -- ( 41.40,421.44); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 38.82,457.44) {label $y_i$}; \node[text=drawColor,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 50.40,442.00) {1}; \node[text=drawColor,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 50.40,430.00) {0}; \node[text=drawColor,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 50.40,418.00) {-1}; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 66.63,553.30) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (146.92,508.30) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (115.80,434.41) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 64.50,571.91) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (129.95,511.75) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (100.25,455.57) circle ( 2.25); \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (107.39,427.70) {$\mathbf x_{20}$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 91.84,448.87) {$\mathbf x_{20}'$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 75.04,550.80) {$\mathbf x_{1}$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 72.90,569.41) {$\mathbf x_{1}'$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (146.92,497.40) {$\mathbf x_{11}$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (129.95,500.85) {$\mathbf x_{11}'$}; \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40,216.72) -- (212.04,216.72) -- (212.04,385.44) -- ( 14.40,385.44) -- ( 14.40,216.72); \end{scope} \begin{scope} \path[clip] ( 0.00,192.72) rectangle (224.04,385.44); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (113.22,205.92) {additional feature $ x_{i,1}^2$}; \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 10.80,301.08) {additional feature $ x_{i,2}^2$}; \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (221.64,301.08) {Enlarged feature space $\Phi(\mathbf x)$}; \end{scope} \begin{scope} \path[clip] ( 14.40,216.72) rectangle (212.04,385.44); \definecolor[named]{drawColor}{rgb}{0.50,0.50,0.50} \node[text=drawColor,rotate=-45.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (176.71,260.95) {$r(\mathbf x)=\mathbf w^\intercal \Phi(\mathbf x)$}; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 72.32,222.97) -- ( 70.56,224.74); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 64.10,231.19) -- ( 62.33,232.96) -- ( 55.88,239.41) -- ( 54.11,241.18) -- ( 47.66,247.64) -- ( 45.89,249.40); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 68.43,226.86) -- ( 64.10,231.19); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 66.97,225.40) { 1 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 95.22,226.60) -- ( 90.63,231.19) -- ( 87.00,234.82) -- ( 82.41,239.41) -- ( 78.78,243.04) -- ( 74.18,247.64) -- ( 70.56,251.26) -- ( 65.96,255.86) -- ( 62.33,259.49) -- ( 57.74,264.08) -- ( 54.11,267.71) -- ( 49.52,272.30) -- ( 45.89,275.93); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 96.73,225.09) -- ( 95.22,226.60); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at ( 95.27,223.63) { 2 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (119.89,228.46) -- (117.15,231.19) -- (111.67,236.68) -- (108.93,239.41) -- (103.44,244.90) -- (100.71,247.64) -- ( 95.22,253.12) -- ( 92.49,255.86) -- ( 87.00,261.35) -- ( 84.27,264.08) -- ( 78.78,269.57) -- ( 76.04,272.30) -- ( 70.56,277.79) -- ( 67.82,280.52) -- ( 62.33,286.01) -- ( 59.60,288.75) -- ( 54.11,294.23) -- ( 51.38,296.97) -- ( 45.89,302.46); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (123.26,225.09) -- (119.89,228.46); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (121.79,223.63) { 3 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (144.56,230.32) -- (143.68,231.19) -- (136.33,238.54) -- (135.46,239.41) -- (128.11,246.76) -- (127.24,247.64) -- (119.89,254.98) -- (119.01,255.86) -- (111.67,263.20) -- (110.79,264.08) -- (103.44,271.43) -- (102.57,272.30) -- ( 95.22,279.65) -- ( 94.35,280.52) -- ( 87.00,287.87) -- ( 86.12,288.75) -- ( 78.78,296.09) -- ( 77.90,296.97) -- ( 70.56,304.32) -- ( 69.68,305.19) -- ( 62.33,312.54) -- ( 61.46,313.41) -- ( 54.11,320.76) -- ( 53.24,321.64) -- ( 45.89,328.98); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (149.78,225.09) -- (144.56,230.32); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (148.32,223.63) { 4 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (178.43,222.97) -- (177.44,223.95); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (170.21,231.19) -- (169.22,232.18) -- (161.98,239.41) -- (161.00,240.40) -- (153.76,247.64) -- (152.78,248.62) -- (145.54,255.86) -- (144.56,256.84) -- (137.32,264.08) -- (136.33,265.06) -- (129.10,272.30) -- (128.11,273.29) -- (120.87,280.52) -- (119.89,281.51) -- (112.65,288.75) -- (111.67,289.73) -- (104.43,296.97) -- (103.44,297.95) -- ( 96.21,305.19) -- ( 95.22,306.18) -- ( 87.98,313.41) -- ( 87.00,314.40) -- ( 79.76,321.64) -- ( 78.78,322.62) -- ( 71.54,329.86) -- ( 70.56,330.84) -- ( 63.32,338.08) -- ( 62.33,339.06) -- ( 55.10,346.30) -- ( 54.11,347.29) -- ( 46.87,354.52) -- ( 45.89,355.51); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (175.32,226.07) -- (170.21,231.19); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (173.86,224.61) { 5 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (196.73,231.19) -- (193.89,234.03) -- (188.51,239.41) -- (185.67,242.26) -- (180.29,247.64) -- (177.44,250.48) -- (172.07,255.86) -- (169.22,258.70) -- (163.84,264.08) -- (161.00,266.92) -- (155.62,272.30) -- (152.78,275.15) -- (147.40,280.52) -- (144.56,283.37) -- (139.18,288.75) -- (136.33,291.59) -- (130.95,296.97) -- (128.11,299.81) -- (122.73,305.19) -- (119.89,308.03) -- (114.51,313.41) -- (111.67,316.26) -- (106.29,321.64) -- (103.44,324.48) -- ( 98.07,329.86) -- ( 95.22,332.70) -- ( 89.84,338.08) -- ( 87.00,340.92) -- ( 81.62,346.30) -- ( 78.78,349.15) -- ( 73.40,354.52) -- ( 70.56,357.37) -- ( 65.18,362.75) -- ( 62.33,365.59) -- ( 56.95,370.97) -- ( 54.11,373.81) -- ( 48.73,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (199.99,227.93) -- (196.73,231.19); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (198.53,226.47) { 6 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (198.59,255.86) -- (193.89,260.56) -- (190.37,264.08) -- (185.67,268.78) -- (182.15,272.30) -- (177.44,277.01) -- (173.93,280.52) -- (169.22,285.23) -- (165.70,288.75) -- (161.00,293.45) -- (157.48,296.97) -- (152.78,301.67) -- (149.26,305.19) -- (144.56,309.89) -- (141.04,313.41) -- (136.33,318.12) -- (132.81,321.64) -- (128.11,326.34) -- (124.59,329.86) -- (119.89,334.56) -- (116.37,338.08) -- (111.67,342.78) -- (108.15,346.30) -- (103.44,351.01) -- ( 99.93,354.52) -- ( 95.22,359.23) -- ( 91.70,362.75) -- ( 87.00,367.45) -- ( 83.48,370.97) -- ( 78.78,375.67) -- ( 75.26,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (199.99,254.46) -- (198.59,255.86); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (198.53,253.00) { 7 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (202.11,278.87) -- (200.45,280.52); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (193.89,287.09) -- (192.23,288.75) -- (185.67,295.31) -- (184.01,296.97) -- (177.44,303.53) -- (175.78,305.19) -- (169.22,311.75) -- (167.56,313.41) -- (161.00,319.98) -- (159.34,321.64) -- (152.78,328.20) -- (151.12,329.86) -- (144.56,336.42) -- (142.90,338.08) -- (136.33,344.64) -- (134.67,346.30) -- (128.11,352.87) -- (126.45,354.52) -- (119.89,361.09) -- (118.23,362.75) -- (111.67,369.31) -- (110.01,370.97) -- (103.44,377.53) -- (101.78,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (198.33,282.65) -- (193.89,287.09); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (196.87,281.18) { 8 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (194.09,313.41) -- (193.89,313.61) -- (185.87,321.64) -- (185.67,321.84) -- (177.64,329.86) -- (177.44,330.06) -- (169.42,338.08) -- (169.22,338.28) -- (161.20,346.30) -- (161.00,346.50) -- (152.98,354.52) -- (152.78,354.72) -- (144.76,362.75) -- (144.56,362.95) -- (136.53,370.97) -- (136.33,371.17) -- (128.31,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (199.99,307.51) -- (194.09,313.41); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (198.53,306.05) { 9 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (195.95,338.08) -- (193.89,340.14) -- (187.73,346.30) -- (185.67,348.36) -- (179.50,354.52) -- (177.44,356.58) -- (171.28,362.75) -- (169.22,364.81) -- (163.06,370.97) -- (161.00,373.03) -- (154.84,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (197.87,336.16) -- (195.95,338.08); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (196.41,334.70) { 10 }; \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (197.81,362.75) -- (193.89,366.67) -- (189.59,370.97) -- (185.67,374.89) -- (181.36,379.19); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (197.87,362.69) -- (197.81,362.75); \node[text=drawColor,rotate=-45.02,anchor=base west,inner sep=0pt, outer sep=0pt, scale= 0.60] at (196.41,361.22) { 11 }; \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 49.44,223.56) -- ( 70.02,228.80); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 50.15,247.00) -- ( 58.44,244.42); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (114.57,293.35) -- (127.88,280.91); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 72.81,230.52) -- ( 52.57,233.71); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 67.20,224.19) -- ( 46.39,230.78); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 46.77,253.24) -- ( 49.91,233.92); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 96.34,316.03) -- (101.10,379.19); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (104.23,372.68) -- (101.10,379.19) -- ( 97.02,373.22); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 79.11,262.68) -- ( 71.75,353.62); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 75.86,347.67) -- ( 71.75,353.62) -- ( 68.66,347.09); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 93.39,269.17) -- (180.45,353.34); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (178.47,346.39) -- (180.45,353.34) -- (173.44,351.59); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (107.50,227.83) -- (152.43,251.41); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (148.57,245.30) -- (152.43,251.41) -- (145.21,251.70); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (129.59,256.44) -- (125.50,332.74); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (129.44,326.69) -- (125.50,332.74) -- (122.22,326.30); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 83.82,230.29) -- ( 92.28,251.22); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 93.28,244.07) -- ( 92.28,251.22) -- ( 86.58,246.77); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 69.15,240.53) -- ( 98.65,276.29); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 97.46,269.16) -- ( 98.65,276.29) -- ( 91.88,273.76); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 55.25,264.35) -- ( 45.98,340.91); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 50.32,335.13) -- ( 45.98,340.91) -- ( 43.15,334.26); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (107.30,228.85) -- (172.50,224.40); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (166.01,221.22) -- (172.50,224.40) -- (166.50,228.43); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 86.71,225.34) -- (179.03,222.97); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (172.68,219.52) -- (179.03,222.97) -- (172.87,226.74); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (121.33,227.53) -- (155.51,249.32); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (152.17,242.91) -- (155.51,249.32) -- (148.29,249.00); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 79.38,263.72) -- (124.22,264.52); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] (118.03,260.80) -- (124.22,264.52) -- (117.90,268.02); \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 46.48,224.61) -- ( 75.70,247.65); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 73.03,240.94) -- ( 75.70,247.65) -- ( 68.55,246.61); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 49.67,251.26) -- ( 46.02,296.28); \path[draw=drawColor,line width= 1.2pt,line join=round,line cap=round] ( 50.13,290.33) -- ( 46.02,296.28) -- ( 42.93,289.75); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 96.34,316.03) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 72.81,230.52) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 46.02,296.28) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] (101.10,379.19) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 52.57,233.71) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 49.67,251.26) circle ( 2.25); \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 30.11,300.91) {$\Phi(\mathbf x_{20})$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 33.75,255.89) {$\Phi(\mathbf x_{20}')$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at (112.26,314.03) {$\Phi(\mathbf x_{1})$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at (117.01,377.19) {$\Phi(\mathbf x_{1}')$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 32.58,234.19) {$\Phi(\mathbf x_{11}')$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 77.67,219.60) {$\Phi(\mathbf x_{11})$}; \end{scope} \begin{scope} \path[clip] ( 14.40, 24.00) rectangle (212.04,192.72); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \definecolor[named]{fillColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 82.42,154.55) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \definecolor[named]{fillColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (100.60, 88.00) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \definecolor[named]{fillColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 68.51,186.47) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (177.01,178.70) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \definecolor[named]{fillColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 86.48, 79.02) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \definecolor[named]{fillColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (128.58,109.07) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \definecolor[named]{fillColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 92.26, 67.68) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \definecolor[named]{fillColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 72.25,169.66) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 86.69,106.04) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (110.86,123.07) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \definecolor[named]{fillColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 53.70, 85.65) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \definecolor[named]{fillColor}{rgb}{0.30,0.69,0.29} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 43.39, 55.50) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \definecolor[named]{fillColor}{rgb}{0.60,0.31,0.64} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 53.05, 89.56) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 80.57, 59.79) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \definecolor[named]{fillColor}{rgb}{1.00,0.50,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 66.31,169.94) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (151.88, 76.87) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (183.05, 79.25) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (116.24,107.02) circle ( 1.50); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] (128.48, 82.90) circle ( 1.50); \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \definecolor[named]{fillColor}{rgb}{0.30,0.69,0.29} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round,fill=fillColor] ( 81.15, 30.25) circle ( 1.50); \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40, 24.00) -- (212.04, 24.00) -- (212.04,192.72) -- ( 14.40,192.72) -- ( 14.40, 24.00); \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,192.72); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (113.22, 13.20) {difference feature ${x'}_{i,1}^2-x_{i,1}^2$}; \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 10.80,108.36) {difference feature ${x'}_{i,2}^2-x_{i,2}^2$}; \end{scope} \begin{scope} \path[clip] ( 0.00, 0.00) rectangle (224.04,578.16); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,rotate= 90.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (221.64,108.36) {Difference of enlarged features $\Phi(\mathbf x')-\Phi(\mathbf x)$}; \end{scope} \begin{scope} \path[clip] ( 14.40, 24.00) rectangle (212.04,192.72); \definecolor[named]{drawColor}{rgb}{0.75,0.75,0.75} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40, 81.98) -- (212.04, 81.98); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 76.96, 24.00) -- ( 76.96,192.72); \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40,175.02) -- (189.42, 0.00); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 14.40,114.06) -- (128.46, 0.00); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 82.42,154.55) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 53.70, 85.65) circle ( 2.25); \path[draw=drawColor,line width= 0.4pt,line join=round,line cap=round] ( 81.15, 30.25) circle ( 2.25); \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 52.58, 37.31) {$\Phi(\mathbf x_{20}')-\Phi(\mathbf x_{20})$}; \definecolor[named]{drawColor}{rgb}{0.60,0.31,0.64} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (107.44, 55.01) {$y_i=0$}; \definecolor[named]{drawColor}{rgb}{1.00,0.50,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at (137.92,125.11) {$y_i=1$}; \definecolor[named]{drawColor}{rgb}{0.30,0.69,0.29} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 1.00] at ( 37.34, 64.15) {$y_i=-1$}; \definecolor[named]{drawColor}{rgb}{0.00,0.00,0.00} \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at ( 52.58,104.36) {$\Phi(\mathbf x_{11}')-\Phi(\mathbf x_{11})$}; \node[text=drawColor,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.80] at (113.54,156.18) {$\Phi(\mathbf x_{1}')-\Phi(\mathbf x_{1})$}; \node[text=drawColor,rotate=-45.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.70] at ( 81.82, 50.26) {$\mathbf w^\intercal [ \Phi(\mathbf x') - \Phi(\mathbf x) ] = -1$}; \node[text=drawColor,rotate=-45.00,anchor=base,inner sep=0pt, outer sep=0pt, scale= 0.70] at (142.78, 50.26) {$\mathbf w^\intercal [ \Phi(\mathbf x') - \Phi(\mathbf x) ] = 1$}; \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.8008
arxiv
2014-02-03T02:00:54
Timed automaton .
\documentclass[runningheads,a4paper]{llncs} \usepackage{amsmath,wasysym} \usepackage{tikz} \usetikzlibrary{automata,fit,positioning} \begin{document} \begin{tikzpicture}[shorten >=1pt,node distance=3cm,on grid,auto,every node/.style={shape=rectangle}] \node[draw] (q0) {\footnotesize $q_0$}; \node[draw] (q1) [right=of q0] {\footnotesize $q_1$}; \node[draw] (q2) [right=of q1] {\footnotesize $q_2$}; \node[draw] (q3) [right=of q2] {\footnotesize $q_3$}; \node (fakeinit) [node distance=1cm,left=of q0] {}; \begin{scope}[->] \draw (fakeinit) edge (q0); \draw (q0) edge node {\footnotesize $x\leq 5$} (q1); \draw (q1) edge (q2); \draw (q2) edge [bend right=20] node [swap] {\footnotesize $y\geq 5,\ x:=0$} (q1); \draw (q2) edge node {\footnotesize $x\leq 14,\ y:=0$} (q3); \draw (q0) edge [bend right=16] node[swap] {\footnotesize $y\geq 10^6$} (q3); \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1110.3704
arxiv
2011-10-18T02:10:40
Plate notation of LDA.
\documentclass[10pt, twocolumn]{amsart} \usepackage{amssymb} \usepackage[T1]{fontenc} \usepackage{tikz} \usetikzlibrary{arrows,backgrounds} \usepackage{xcolor} \begin{document} \begin{tikzpicture}[scale=0.7] \tikzstyle{post}=[->,shorten >=0pt,>=stealth',thick] \foreach \x/\y in {-2.2/1.5, 1.6/1.5, 4/1.5, 6.4/5.1, 3/5.1} { \draw[thick] (\x, \y) circle (0.8); } \draw[thick, fill=gray] (6.4,1.5) circle (0.8); \draw[very thick] (0, -0.8) rectangle (8, 3.2); \draw[very thick] (2.9, 0) rectangle (7.5, 2.8); \draw[very thick] (5, 3.6) rectangle (8, 6.4); \node at (1.6, 1.5) {$\theta$}; \node at (4, 1.5) {$z$}; \node at (6.4, 1.5) {$w$}; \node at (-2.2, 1.5) {$\alpha$}; \node at (6.4, 5.1) {$\varphi$}; \node at (3, 5.1) {$\beta$}; \node at (7.7, -0.4) {$M$}; \node at (7.2, 0.4) {$N$}; \node at (7.7, 4) {$K$}; \foreach \x/\y in {-1.4/0.8, 2.4/3.2, 4.8/5.6} { \draw[->, post] (\x, 1.5) -- (\y, 1.5); } \draw[->, post] (3.8, 5.1) -- (5.6, 5.1); \draw[->, post] (6.4, 4.3) -- (6.4, 2.3); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1307.0317
arxiv
2013-07-02T02:03:26
Plate notation of parameterized distribution q.
\documentclass[10pt, twocolumn]{amsart} \usepackage{amssymb} \usepackage[T1]{fontenc} \usepackage{tikz} \usetikzlibrary{arrows,backgrounds} \usepackage{xcolor} \begin{document} \begin{tikzpicture}[scale=0.7] \tikzstyle{post}=[->,shorten >=0pt,>=stealth',thick] \draw[very thick] (0, 0) rectangle (2.8, -5.2); \draw[very thick] (-2.6, 0.5) rectangle (3.8, -5.7); \draw[very thick] (4.3, 0) rectangle (7.1 , -5.2); \foreach \x/\y/\name in {1.3/-1.3/$\psi$, 1.3/-3.9/$z$, -1.3/-1.3/$\gamma$, -1.3/-3.9/$\theta$, 5.6/-1.3/$\lambda$, 5.6/-3.9/$\varphi$ }{ \draw[thick] (\x, \y) circle (0.8); \node at (\x, \y) {\name}; } \node at (2.4, -4.8) {$N$}; \node at (6.7, -4.8) {$K$}; \node at (3.4, -5.2) {$M$}; \foreach \x/\y/\z/\u in {1.3/-2.1/1.3/-3.1, -1.3/-2.1/-1.3/-3.1, 5.6/-2.1/5.6/-3.1 } { \draw[->, post] (\x, \y) -- (\z, \u); } \end{tikzpicture} \end{document}
https://arxiv.org/abs/1307.0317
arxiv
2013-07-02T02:03:26
A quantum circuit for producing a GHZ state using Hadamard gates and controlled phase gates.
\documentclass[english,10pt,a4paper,nofootinbib,twocolumn]{revtex4} \usepackage{amsmath,amssymb,amsfonts,amsthm} \usepackage[colorlinks=true,linkcolor=blue,citecolor=blue]{hyperref} \usepackage{tikz} \usetikzlibrary{backgrounds,fit,decorations.pathreplacing} \usetikzlibrary{circuits.logic.US} \newcommand{\fullket}[1]{\ensuremath{\left|#1\right\rangle}} \begin{document} \begin{tikzpicture}[thick] % % `operator' will only be used by Hadamard (H) gates here. % `phase' is used for controlled phase gates (dots). % `surround' is used for the background box. \tikzstyle{operator} = [draw,fill=white,minimum size=1.5em] \tikzstyle{phase} = [fill,shape=circle,minimum size=5pt,inner sep=0pt] \tikzstyle{surround} = [fill=blue!10,thick,draw=black,rounded corners=2mm] % % Qubits \node at (0,0) (q1) {\fullket{0}}; \node at (0,-1) (q2) {\fullket{0}}; \node at (0,-2) (q3) {\fullket{0}}; % % Column 1 \node[operator] (op11) at (1,0) {H} edge [-] (q1); \node[operator] (op21) at (1,-1) {H} edge [-] (q2); \node[operator] (op31) at (1,-2) {H} edge [-] (q3); % % Column 3 \node[phase] (phase11) at (2,0) {} edge [-] (op11); \node[phase] (phase12) at (2,-1) {} edge [-] (op21); \draw[-] (phase11) -- (phase12); % % Column 4 \node[phase] (phase21) at (3,0) {} edge [-] (phase11); \node[phase] (phase23) at (3,-2) {} edge [-] (op31); \draw[-] (phase21) -- (phase23); % % Column 5 \node[operator] (op24) at (4,-1) {H} edge [-] (phase12); \node[operator] (op34) at (4,-2) {H} edge [-] (phase23); % % Column 6 \node (end1) at (5,0) {} edge [-] (phase21); \node (end2) at (5,-1) {} edge [-] (op24); \node (end3) at (5,-2) {} edge [-] (op34); % % Bracket \draw[decorate,decoration={brace},thick] (5,0.2) to node[midway,right] (bracket) {$\frac{\fullket{000}+\fullket{111}}{\sqrt{2}}$} (5,-2.2); % % Background Box % \end{tikzpicture} \end{document}
https://arxiv.org/abs/1307.0096
arxiv
2013-07-02T02:01:05
The scheme X
\documentclass{amsart} \usepackage{amssymb,amsmath,amsthm} \usepackage[utf8]{inputenc} \usepackage{pgf,tikz} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture}[line cap=round,line join=round,>=triangle 45,x=0.5cm,y=0.5cm] \foreach \x in {-1,1,2,3,4,5,6,7,8,9} \foreach \y in {-1,1,2,3,4,5,6,7,8} \clip(-1,0) rectangle (10,10); \fill [color=black] (1,1) circle (2pt); \fill [color=black] (2,1) circle (2pt); \fill [color=black] (3,1) circle (2pt); \fill [color=black] (1,2) circle (2pt); \fill [color=black] (2,2) circle (2pt); \fill [color=black] (3,2) circle (2pt); \fill [color=black] (4,2) circle (2pt); \fill [color=black] (1,3) circle (2pt); \fill [color=black] (2,3) circle (2pt); \fill [color=black] (3,3) circle (2pt); \fill [color=black] (4,3) circle (2pt); \fill [color=black] (5,3) circle (2pt); \fill [color=black] (1,4) circle (2pt); \fill [color=black] (2,4) circle (2pt); \fill [color=black] (3,4) circle (2pt); \fill [color=black] (4,4) circle (2pt); \fill [color=black] (5,4) circle (2pt); \fill [color=black] (6,5) circle (2pt); \fill [color=black] (1,6) circle (2pt); \fill [color=black] (2,6) circle (2pt); \fill [color=black] (5,6) circle (2pt); \fill [color=black] (6,6) circle (2pt); \fill [color=black] (1,7) circle (2pt); \fill [color=black] (2,7) circle (2pt); \fill [color=black] (4,7) circle (2pt); \fill [color=black] (5,7) circle (2pt); \fill [color=black] (6,7) circle (2pt); \fill [color=black] (3,8) circle (2pt); \fill [color=black] (7,8) circle (2pt); \fill [color=black] (8,8) circle (2pt); \fill [color=black] (9,8) circle (2pt); \draw (1,0.5) -- (1,8.5); \draw[color=black] (1,9.5) node {\footnotesize $C_0$}; \draw (2,0.5) -- (2,8.5); \draw[color=black] (2,9.5) node {\footnotesize $C_1$}; \draw (3,0.5) -- (3,8.5); \draw[color=black] (3,9.5) node {\footnotesize $C_2$}; \draw (4,1.5) -- (4,8.5); \draw[color=black] (4,9.5) node {\footnotesize $C_3$}; \draw (5,2.5) -- (5,8.5); \draw[color=black] (5,9.5) node {\footnotesize $C_4$}; \draw (6,4.5) -- (6,8.5); \draw[color=black] (6,9.5) node {\footnotesize $C_5$}; \draw (7,7.5) -- (7,8.5); \draw[color=black] (7,9.5) node {\footnotesize $C_6$}; \draw (8,7.5) -- (8,8.5); \draw[color=black] (8,9.5) node {\footnotesize $C_7$}; \draw (9,7.5) -- (9,8.5); \draw[color=black] (9,9.5) node {\footnotesize $C_8$}; \draw (0.5,1) -- (3.5,1); \draw[color=black] (-0.5,1) node {\footnotesize $R_7$}; \draw (0.5,2) -- (4.5,2); \draw[color=black] (-0.5,2) node {\footnotesize $R_6$}; \draw (0.5,3) -- (5.5,3); \draw[color=black] (-0.5,3) node {\footnotesize $R_5$}; \draw (0.5,4) -- (5.5,4); \draw[color=black] (-0.5,4) node {\footnotesize $R_4$}; \draw (0.5,5) -- (6.5,5); \draw[color=black] (-0.5,5) node {\footnotesize $R_3$}; \draw (0.5,6) -- (6.5,6); \draw[color=black] (-0.5,6) node {\footnotesize $R_2$}; \draw (0.5,7) -- (6.5,7); \draw[color=black] (-0.5,7) node {\footnotesize $R_1$}; \draw (0.5,8) -- (9.5,8); \draw[color=black] (-0.5,8) node {\footnotesize $R_0$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1009.4095
arxiv
2010-09-22T02:02:13
Hasse-diagram of Szondi's signatures
\documentclass{article} \usepackage[usenames,dvipsnames]{xcolor} \usepackage{amsmath,amssymb,array,marvosym,multirow,rotating,pgf,tikz,stmaryrd,chemarrow,colortbl,listings} \usetikzlibrary{arrows,automata} \begin{document} \begin{tikzpicture} \node (pbbb) at (0,4) {$+!!!$}; \node (pbb) at (0,3) {$+!!$}; \node (pb) at (0,2) {$+!$}; \node (p) at (0,1) {$+$}; \node (n) at (0,0) {$0$}; \node (m) at (0,-1) {$-$}; \node (mb) at (0,-2) {$-!$}; \node (mbb) at (0,-3) {$-!!$}; \node (mbbb) at (0,-4) {$-!!!$}; \draw (mbbb) -- (mbb) -- (mb) -- (m) -- (n) -- (p) -- (pb) -- (pbb) -- (pbbb); \node (pmub) at (1,1) {$\pm^{!}$}; \node (pm) at (1,0) {$\pm$}; \node (pmlb) at (1,-1) {$\pm_{!}$}; \draw (pmlb) -- (pm) -- (pmub); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.6048
arxiv
2014-03-25T01:14:19
To count the number of ranked topologies for the tree above, we multiply the counts in the 3 levels. In the lowest level we have 3 lineages reducing to 1 (root of lowest calibration), 5 lineages reducing to 3 and 2 free lineages not reducing. So, the total number of topologies is R_3^1 R_5^2 R_2^2 2+5+2 - (1+3+2)1,2,0 = 3 (10 6) 1 3!1!2!0! = 540 Note that in the binomial we use one less lineage (2 instead of 3) for the calibrated clade, since its position as root is fixed. In the second level we have 3 lineages reducing to 1, and 3 free lineages reducing to 2, giving R_3^1 R_3^2 2+3 - (1+2)1,1 = 3 3 2!1!1! = 9 and in the last level 3 lineages to 1 in 3 ways. So, the total number is 540 9 3 = 12960.
\documentclass[11pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{shapes,positioning} \begin{document} \begin{tikzpicture}[scale=0.6,node distance = .5cm,auto,transform shape] \tikzstyle{tip} = [text centered] \tikzstyle{internal} = [green] \tikzstyle{calibrated} = [thick, red, fill] \tikzstyle{line}=[draw,blue,thick] \tikzstyle{hline}=[densely dotted, thick] \node[tip] (c1) at (0,0) {A}; \node[tip] (c2) at (1,0) {B}; \node[tip] (c4) at (2,0) {C}; \node[tip] (c6) at (3,0) {D}; \node[tip] (c7) at (4,0) {E}; \node[tip] (c9) at (5,0) {F}; \node[tip] (c10) at (6,0) {G}; \node[tip] (c12) at (7,0) {H}; \node[tip] (c15) at (8,0) {I}; \node[tip] (c16) at (9,0) {K}; \node (c0) at (4.5,7.0) {}; \node (c3) at (0.642857142857,1.0) {}; \node (c5) at (1.28571428571,2.0) {}; \node (c8) at (3.47571428571,1.5) {}; \node (c11) at (5.11714285714,1.0) {}; \node (c13) at (5.29285714286,2.5) {}; \node (c14) at (4.26857142857,4.0) {}; \node (c17) at (7.23214285714,2.75) {}; \node (c18) at (4.98214285714,6.25) {}; \draw[internal] (c0) circle (3pt); \draw[internal] (c3) circle (3pt); \draw[calibrated] (c5) circle (3pt); \draw[internal] (c8) circle (3pt); \draw[internal] (c11) circle (3pt); \draw[internal] (c13) circle (3pt); \draw[calibrated] (c14) circle (3pt); \draw[internal] (c17) circle (3pt); \draw[internal] (c18) circle (3pt); \draw[line] (c1) -- (c3); \draw[line] (c2) -- (c3); \draw[line] (c3) -- (c5); \draw[line] (c4) -- (c5); \draw[line] (c5) -- (c0); \draw[line] (c6) -- (c8); \draw[line] (c7) -- (c8); \draw[line] (c8) -- (c14); \draw[line] (c9) -- (c11); \draw[line] (c10) -- (c11); \draw[line] (c11) -- (c13); \draw[line] (c12) -- (c13); \draw[line] (c13) -- (c14); \draw[line] (c14) -- (c18); \draw[line] (c15) -- (c17); \draw[line] (c16) -- (c17); \draw[line] (c17) -- (c18); \draw[line] (c18) -- (c0); \draw[hline] (0,7.0) -- (9,7.0); \draw[hline] (0,2.0) -- (9,2.0); \draw[hline] (0,4.0) -- (9,4.0); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.4921
arxiv
2013-11-21T02:02:03
Parent of monophyletic clade of size n.
\documentclass[11pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{shapes,positioning} \begin{document} \begin{tikzpicture}[scale=0.8] \node at (-0.4, 4) {$h$}; \draw[dashed] (0,4) -- (6, 4); \draw[densely dotted] (0,3) -- (6, 3); \node at (1.0, -0.4) {$n$}; \node at (5.0, -0.4) {$l$}; \node at (3.5, 3) {$i$}; \node at (3, 4) {$k$}; % Leve 1 forests \draw[thick, blue] (1.5,3) -- (3,6); \draw[thick, blue] (4,0) -- (2,4); \draw[thick, blue] (6,0) -- (3,6); \draw[thick, blue, dashed] (4,0) -- (6,0); % Level 2 forests \draw[thick, green] (0,0) -- (2,4); \draw[thick, green, dashed] (0,0) -- (2,0); \draw[thick, green] (2,0) -- (1.5,3); \fill[white] (2,4) circle (3pt); \draw[thick, green] (2,4) circle (3pt); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.4921
arxiv
2013-11-21T02:02:03
Monophyletic clade of size n and root with n+m taxa.
\documentclass[11pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{shapes,positioning} \begin{document} \begin{tikzpicture}[scale=0.8] \node at (-0.4,6) {$h_0$}; \node at (-0.4, 3) {$h$}; \node at (3.5, 3) {$k$}; \draw[dashed] (0,6) -- (6, 6); \draw[dashed] (0,3) -- (6, 3); \node at (0.0, -0.4) {1}; \node at (1.0, -0.4) {$\dots$}; \node at (2.0, -0.4) {$n$}; \node at (4.0, -0.4) {$n+1$}; \node at (5.0, -0.4) {$\dots$}; \node at (6.0, -0.4) {$n+m$}; % Leve 1 forests \draw[thick, blue] (1.5,3) -- (3,6); \draw[thick, blue] (4,0) -- (2,4); \draw[thick, blue] (6,0) -- (3,6); \draw[thick, blue, dashed] (4,0) -- (6,0); % Level 2 forests \draw[thick, green] (0,0) -- (1.5,3); \draw[thick, green, dashed] (0,0) -- (2,0); \draw[thick, green] (2,0) -- (1.5,3); \fill[white] (1.5,3) circle (3pt); \draw[thick, green] (1.5,3) circle (3pt); \fill[white] (3,6) circle (3pt); \draw[thick, blue] (3,6) circle (3pt); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.4921
arxiv
2013-11-21T02:02:03
Two nested monophyletic clades of size n and n+m taxa in a n + m + l taxa tree (l > 0).
\documentclass[11pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{shapes,positioning} \begin{document} \begin{tikzpicture}[scale=0.5] \node at (-0.4,6) {$h_1$}; \node at (-0.4, 3) {$h_2$}; \draw[dashed] (0,6) -- (9, 6); \draw[dashed] (0,3) -- (9, 3); \node at (3.5, 3) {$m_1$}; \node at (6.5, 3) {$l_1$}; \node at (5, 6) {$l_2$}; \node at (1.0, -0.4) {$n$}; \node at (5.0, -0.4) {$m$}; \node at (8.0, -0.4) {$l$}; % Leve 1 forests \draw[thick, blue] (1.5,3) -- (3,6); \draw[thick, blue] (4,0) -- (2,4); \draw[thick, blue] (6,0) -- (3,6); \draw[thick, blue, dashed] (4,0) -- (6,0); % Level 2 forests \draw[thick, green] (0,0) -- (1.5,3); \draw[thick, green, dashed] (0,0) -- (2,0); \draw[thick, green] (2,0) -- (1.5,3); \draw[thick, red] (3,6) -- (4.5,9); \draw[thick, red] (4.5,9) -- (9,0); \draw[thick, red, dashed] (9,0) -- (7,0); \draw[thick, red] (3.5,7) -- (7,0); \fill[white] (1.5,3) circle (3pt); \draw[thick, green] (1.5,3) circle (3pt); \fill[white] (3,6) circle (3pt); \draw[thick, blue] (3,6) circle (3pt); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1311.4921
arxiv
2013-11-21T02:02:03
Finite state machine illustrating the first strategy set, _1, of the S_i strategies. The action to perform is in the node, and transitions are taken on the basis of the opponent's action in the previous round (or based on the previous round number t). All strategies start in the left node (C), except S_0 that starts with defection in the right node (D). S_i cooperates conditionally for i rounds after which it starts to defect.
\documentclass[10pt,a4paper]{article} \usepackage{color} \usepackage{amsmath} \usepackage{pgf} \usepackage{tikz} \usetikzlibrary{arrows,automata} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=3.5cm,semithick] \tikzstyle{every state}=[circle,draw] \node[state, label=220:$S_{i \in \{1..N\}}$] (C) {$C$}; \node[state, label=300:$S_0$] (D) [right of=C] {$D$}; \path (C) edge node {$D \lor (t \geq i)$} (D) (C) edge [loop above, distance=2.5cm, out=130, in=50, looseness=0.8] node {$C \land (t < i)$} (C) (D) edge [loop above, distance=2.5cm, out=130, in=50, looseness=0.8] node {} (D); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1301.1710
arxiv
2013-01-10T02:00:23
Finite state machine illustrating the extended strategy set _2 consisting of the strategies S_i,CC_i, and DC_i. S_i are the conditional cooperators as described in Figure~fig_statespace0. The Convincers are denoted CC_i and the Followers DC_i. Strategies start in the state at which the name is placed. The strategies CC_i start with at least two rounds of cooperation, which may trigger DC_i to switch from defection to cooperation. After that the latter two strategies act as the conditional cooperators S_i.
\documentclass[10pt,a4paper]{article} \usepackage{color} \usepackage{amsmath} \usepackage{pgf} \usepackage{tikz} \usetikzlibrary{arrows,automata} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=3.5cm,semithick] \tikzstyle{every state}=[circle,draw] \node[state, label=220:$S_{i \in \{1..N\}}$] (C) {$C$}; \node[state, label=left:$CC_{i \in \{2..N\}}$] (A) [left of=C] {$C$}; \node[state, label=left:$DC_{i \in \{2..N\}}$] (B) [below of=C] {$D$}; \node[state, label=300:$S_0$] (D) [right of=C] {$D$}; \path (A) edge node {} (C) (B) edge node {$C$} (C) (B) edge node {$D$} (D) (C) edge node {$D \lor (t \geq i)$} (D) (C) edge [loop above, distance=2.5cm, out=130, in=50, looseness=0.8] node {$C \land (t < i)$} (C) (D) edge [loop above, distance=2.5cm, out=130, in=50, looseness=0.8] node {} (D); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1301.1710
arxiv
2013-01-10T02:00:23
Birth/death steps for the product rule (PR) in the Achlioptas' model of percolation. In this example, edge e_2 was born before edge e_1, since |C_11||C_12| > |C_21||C_22|. Therefore, when e_1 and e_2 are selected during a death step, e_2 is discarded aftere_1. This death step specification ensures that births and deaths constitute genuine reverse PR operations.
\documentclass[8pt,apl,superscriptaddress,pdftex,dvipsnames,twocolumn]{revtex4-1} \usepackage{amsmath,amsthm,amssymb,amsfonts} \usepackage[dvipsnames]{xcolor} \usepackage{pgf,tikz} \usetikzlibrary{snakes} \usetikzlibrary{backgrounds} \usetikzlibrary{arrows} \usetikzlibrary{patterns} \usetikzlibrary{fit} \usetikzlibrary{calc} \begin{document} \begin{tikzpicture}[font=\small,scale=.8,show background rectangle] %%% C11 \draw[rounded corners=10pt,thick] (-2.75,1.0) -- (-2.75,2.0) -- (-0.25,2.0) -- (-0.25,1.0) -- cycle; %%% C12 \draw[rounded corners=10pt,thick] (-2.75,-1.0) -- (-2.75,-2.0) -- (-0.5,-2.0) -- (-0.5,-1.0) -- cycle; %%% C21 \draw[rounded corners=10pt,thick] (+2.75,1.0) -- (+2.75,2.0) -- (+1.0,2.0) -- (+1.0,1.0) -- cycle; %%% C22 \draw[rounded corners=10pt,thick] (+2.75,-1.0) -- (+2.75,-2.0) -- (+1.10,-2.0) -- (+1.10,-1.0) -- cycle; %%%%%%%%%%%%%%%%%%% %%% Gt. \draw[rounded corners=10pt,thick] (-3.5,+2.5) -- (-3.5,-2.5) -- (+3.5,-2.5) -- (+3.5,+2.5) -- cycle; %%% Points Location. \draw(-1.5,1.5) node(v11){}; \draw(-1.5,-1.5) node(v12){}; \draw(1.5,1.5) node(v21){}; \draw(1.5,-1.5) node(v22){}; % %%% Points filling. \fill[fill=black](v11) circle (2.0pt); \fill[fill=black](v12) circle (2.0pt); \fill[fill=black](v21) circle (2.0pt); \fill[fill=black](v22) circle (2.0pt); % %%% Edges. \draw[semithick,dashed] (v11) -- (v12) node[pos=0.5,anchor=west]{$e_{1}$}; \draw[semithick] (v21) -- (v22) node[pos=0.5,anchor=east]{$e_{2}$}; %%% Node Labels. \draw(v11) node[anchor=east]{$v_{11}$}; \draw(v12) node[anchor=east]{$v_{12}$}; \draw(v21) node[anchor=west]{$v_{21}$}; \draw(v22) node[anchor=west]{$v_{22}$}; %%% Labels. \draw(+3.5,-2.5)node[anchor=north west]{$G_{t}$}; \draw(-2.5,1.0)node[anchor=north east]{$C_{11}$}; \draw(-2.5,-1.0)node[anchor=south east]{$C_{12}$}; \draw(+2.5,1.0)node[anchor=north west]{$C_{21}$}; \draw(+2.5,-1.0)node[anchor=south west]{$C_{22}$}; %%% Labels. \draw[gray!10] (-4.5,-3.0) -- (+4.5,-3.0); \draw[gray!10] (-4.5,+3.0) -- (+4.5,+3.0); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.3518
arxiv
2014-01-16T02:07:26
Directed Acyclic Graph (DAG) representation of the hidden Markov process combining a latent stochastic graph process in the first row denoted by G_t, with an observed stochastic graph process contaminated by noise in the second row, denoted by G^_t. Directed arrows indicate probabilistic dependence, such that the distribution of the observed G_t^ depends on the value taken by the latent graph, G_t.
\documentclass[8pt,apl,superscriptaddress,pdftex,dvipsnames,twocolumn]{revtex4-1} \usepackage{amsmath,amsthm,amssymb,amsfonts} \usepackage[dvipsnames]{xcolor} \usepackage{pgf,tikz} \usetikzlibrary{snakes} \usetikzlibrary{backgrounds} \usetikzlibrary{arrows} \usetikzlibrary{patterns} \usetikzlibrary{fit} \usetikzlibrary{calc} \newcommand{\as}{^\ast} \begin{document} \begin{tikzpicture}[font=\small,scale=1.0,show background rectangle] % Observed (Boxes) \draw (-2.0,0)node[draw,minimum size=1.0cm](x1){$G\as_{t-1}$}; \draw (0,0) node[draw,minimum size=1.0cm](x2){$G\as_{t}$}; \draw (2.0,0) node[draw,minimum size=1.0cm](x3){$G\as_{t+1}$}; % Latent (Circles) \draw (-2.0,2.0)node[draw,circle,minimum size=1.0cm](l1){$G_{t-1}$}; \draw (0,2.0) node[draw,circle,minimum size=1.0cm](l2){$G_{t}$}; \draw (2.0,2.0) node[draw,circle,minimum size=1.0cm](l3){$G_{t+1}$}; % Arrows \draw[thick,->,dashed] (-3.5,2.0) -- (l1); \draw[thick,->] (l1) -- (l2); \draw[thick,->] (l2) -- (l3); \draw[thick,->] (l1) -- (x1); \draw[thick,->] (l2) -- (x2); \draw[thick,->] (l3) -- (x3); \draw[thick,->,dashed] (l3) -- (+3.5,2.0); % Frame \draw[color=gray!10](-3.2,-.8)--(3.2,-.8); \draw[color=gray!10](-3.2,+2.8)--(3.2,+2.8); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.3518
arxiv
2014-01-16T02:07:26
Illustration of subroutine SUB
\documentclass[a4paper]{llncs} \usepackage[utf8x]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usepackage{tkz-berge} \begin{document} \begin{tikzpicture} \draw (0,0) circle (100pt); \draw[very thick] (60:100pt) ++(0,0) arc (60:100:100pt); \draw (60:95pt) -- (60:105pt); \draw (60:110pt) node [rotate=60,anchor=west] {$k$}; \draw (100:95pt) -- (100:105pt); \draw (100:110pt) node [rotate=110,anchor=west]{$k+(b-a)$}; \fill (70:100pt) circle (2pt); \draw (70:110pt) node [rotate=70,anchor=west] {rightmost 1}; \fill (95:100pt) circle (2pt); \draw (95:110pt) node [rotate=95,anchor=west] {leftmost 1}; \filldraw[fill=blue!80,draw=blue!80,opacity=0.5] (185:100pt) -- (70:100pt) arc (70:30:100pt) -- cycle; \filldraw[fill=blue!80,draw=blue!80,opacity=0.5] (250:100pt) -- (95:100pt) arc (95:135:100pt) -- cycle; \filldraw[fill=blue!20,draw=blue!80,opacity=0.3,style=dashed] (215:100pt) -- (60:100pt) arc (60:100:100pt) -- cycle; \draw[very thick,draw=blue!100] (185:100pt) ++(0,0) arc (185:250:100pt); \draw (185:95pt) -- (185:105pt); \draw (185:110pt) node [rotate=5,anchor=east] {$u$}; \draw (250:95pt) -- (250:105pt); \draw (250:110pt) node [rotate=70,anchor=east] {$v$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1305.1021
arxiv
2013-05-07T02:02:01
The graph CS(20)
\documentclass[a4paper]{llncs} \usepackage[utf8x]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usepackage{tkz-berge} \begin{document} \begin{tikzpicture} \grCirculant[RA=2.7,prefix=]{20}{1,4,9} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1305.1021
arxiv
2013-05-07T02:02:01
The graph CI(20,4,6)
\documentclass[a4paper]{llncs} \usepackage[utf8x]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usepackage{tkz-berge} \begin{document} \begin{tikzpicture} \grCirculant[RA=3,prefix=]{20}{4,5,6} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1305.1021
arxiv
2013-05-07T02:02:01
Proof of inference node
\documentclass[conference]{llncs} \usepackage[utf8]{inputenc} \usepackage{tikz} \usepackage{amsmath, amsfonts, amssymb} \begin{document} \begin{tikzpicture}[-, main node/.style={circle,fill=white!25,draw,node distance=2.5cm},minimum width=3pt] \node[main node] (1) {i}; \node[main node] (2) [below left of=1] {k}; \node[main node] (3) [below right of=1] {j}; \node[main node] (4) [below left of=2] {l}; \node[main node] (5) [below right of=2] {m}; \path[every node/.style={font=\sffamily\small}] (1) edge node [left] {} (2) edge node [right] {} (3) (2) edge node [left] {} (4) edge node [right] {} (5) ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.6237
arxiv
2014-04-01T02:09:13
The LTT of the list =3,9,5,7,8,4,6. The up and down nodes are indicated by a dashed grey line. The layer number is 3. The team of 3 is a list 4,5,9. The team of 5 is a list with a single element 7. The team of 4 is 6,8. These teams form their own team trees at layer 1.
\documentclass[envcountsame]{llncs} \usepackage{amsmath} \usepackage{amssymb} \usepackage{xcolor} \usepackage{color} \usepackage{tikz} \usetikzlibrary{arrows,positioning, calc, decorations.markings,shapes.multipart,chains} \begin{document} \begin{tikzpicture}[tnode/.style={thin,circle,draw},level distance=1cm,emph/.style={edge from parent/.style={black,thick,draw}},norm/.style={edge from parent/.style={black,thin,draw}}] \node[tnode](root1){3} child[emph] { node[tnode](first3){3} child[emph] { node[tnode](3){3} child { node[tnode](three){3} } child[norm] { node[tnode](mark1){9} } } child[norm] { node[tnode](first5){5} child[emph] { node[tnode]{5} } child[norm] { node[tnode](first7){7} } } } child { node[tnode](root3){4} child[emph] { node[tnode](first4){4} child[norm] { node[tnode](first8){8} } child[emph] { node[tnode](mark2){4} } } child { node[tnode](first16){6} } }; \tikzstyle{level 1}=[sibling distance=4cm] \tikzstyle{level 2}=[sibling distance=2cm] \node[tnode, below=of mark1](root2){4} child[emph] { node[tnode](four){4} child[emph] { node[tnode](second4){4} } child[norm] { node[tnode](second5){5} } } child { node[tnode](second9){9} }; \draw[dashed,very thick] (-8,-3.75) to (6,-3.75); \node[above left=of 3]{\Large Layer 0}; \node[tnode, below=of first7](root5){7}; \node[above left=of four,yshift=-0.5cm,xshift=1cm]{\Large Layer 1}; \node[tnode, below=of mark2](root4){6} child[emph] { node[tnode](second6){6} } child[norm] { node[tnode](second8){8} }; \draw[dashed,very thick] (-8,-7) to (6,-7); \node[tnode, below=of second5, yshift=0.5cm,xshift=0.75cm](third5root){5} child[emph]{ node[tnode](third5leaf){5}} child[norm]{ node[tnode](third9){9}}; \node[above left=of third5leaf,yshift=-0.5cm,xshift=1.3cm]{\Large Layer 2}; \node[tnode, below=of root4,yshift=-1.75cm](third8){8}; \draw[dashed,very thick] (-8,-9.25) to (6,-9.25); \node[tnode, below=of third5root, yshift=-1cm](fourth9){9}; \node[left=of fourth9,xshift=-0.6cm]{\Large Layer 3}; \path[-,gray,dashed] (second4) edge[bend left=23] node {} (root1) (second5) edge[bend right=30] node {} (first3) (second9) edge[bend right=30] node {} (3) (root5) edge[bend left=30] node {} (first5) (second6) edge[bend right=25] node {} (root3) (second8) edge[bend right=30] node {} (first4) (four) edge[bend left=20] node {} (third5leaf) (third5root) edge[bend left=20] node{} (fourth9) (root2) edge[bend left=20] node {} (third9) (root4) edge[bend left=20] node {} (third8); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.2712
arxiv
2014-04-21T02:03:32
A tournament tree of a list =3,6,9,2,4,7,8. Edges in principal paths are bolded.
\documentclass[envcountsame]{llncs} \usepackage{amsmath} \usepackage{amssymb} \usepackage{xcolor} \usepackage{color} \usepackage{tikz} \usetikzlibrary{arrows,positioning, calc, decorations.markings,shapes.multipart,chains} \begin{document} \begin{tikzpicture}[decoration={markings,mark=at position 3cm with {\arrow[black]{stealth}}},path/.style={*->,>=stealth,postaction=decorate}, list/.style={rectangle split, rectangle split parts=2,draw,rectangle split horizontal,minimum width=1.5cm, on chain}, start chain] \node[circle,draw,minimum size=20pt,thin]{\Large 2} child[very thick]{node[circle,draw,minimum size=20pt,thin]{\Large 2} child[thin]{node[circle,draw,minimum size=20pt]{\Large 3} child[very thick]{node[circle,draw,minimum size=20pt,thin](base){\Large 3}} child{node[circle,draw,minimum size=20pt]{\Large 6}}} child[very thick]{node[circle,draw,minimum size=20pt,thin]{\Large 2} child[thin]{node[circle,draw,minimum size=20pt]{\Large 9}} child[very thick]{node[circle,draw,minimum size=20pt,thin]{\Large 2}}}} child{node[circle,draw,minimum size=20pt]{\Large 4} child[very thick]{node[circle,draw,minimum size=20pt,thin]{\Large 4} child[very thick]{node[circle,draw,minimum size=20pt,thin]{\Large 4}} child[thin]{node[circle,draw,minimum size=20pt,thin]{\Large 7}}} child{node[circle,draw,minimum size=20pt]{\Large 8}}}; \node [ list, below=of base, yshift=0.5cm ] (3) {\Large 3}; \node[left=of 3](label){\huge $\ell:$}; \node [ list, right=of 3 ] (12) {\Large 6}; \node [ list, right=of 12 ] (16) {\Large 9}; \node [ list, right=of 16, xshift=0.1cm ] (2) {\Large 2}; \node [ list, right=of 2, xshift=0.1cm ] (4) {\Large 4}; \node [ list, right=of 4, xshift=0.2cm ] (7) {\Large 7}; \node [ list, right=of 7, xshift=0.5cm ] (13) {\Large 8}; \node [ draw, on chain, inner sep=6.5pt, right=of 13, ] (end){}; \draw(end.north east) -- (end.south west); \draw(end.north west) -- (end.south east); \draw[path] let \p1 = (3.two), \p2 = (3.center) in (\x1,\y2) -- (12); \draw[path] let \p1 = (12.two), \p2 = (12.center) in (\x1,\y2) -- (16); \draw[path] let \p1 = (16.two), \p2 = (16.center) in (\x1,\y2) -- (2); \draw[path] let \p1 = (2.two), \p2 = (2.center) in (\x1,\y2) -- (4); \draw[path] let \p1 = (4.two), \p2 = (4.center) in (\x1,\y2) -- (7); \draw[path] let \p1 = (7.two), \p2 = (7.center) in (\x1,\y2) -- (13); \draw[path] let \p1 = (13.two), \p2 = (13.center) in (\x1,\y2) -- (end); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.2712
arxiv
2014-04-21T02:03:32
Example of modeling over four automatically identified frames as possible key postures.
\documentclass[a4paper,11pt]{article} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{amsmath,amssymb,amsthm} \usepackage{pgf} \usepackage{tikz} \usetikzlibrary{automata,positioning,shapes,arrows} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto, font=\scriptsize] \tikzstyle{every state}=[circle, fill=blue!65, draw=none, text=white, text width=.2cm, inner sep=0pt, minimum size=10pt, node distance=1.75cm] \tikzstyle{invisible}=[fill=none,draw=none,text=black, node distance=.4cm] \node[state] (s0) {$\vdots$}; \node[invisible] (s0tag1) [below=0.05cm of s0] {$\mathbb{R}^\nearrow_{\mathbb{L}}$}; \node[invisible] (s0tag2) [below of=s0tag1] {$\Xi^\mathbb{L}_{\mathtt{TORSE}}$}; \node[invisible] (s0tag3) [below of=s0tag2] {$\Xi^\mathbb{R}_{\mathtt{R\_SIDEOFBODY}}$}; \node[invisible] (s0tag4) [below of=s0tag3] {$\neg\mathcal{F}^{\mathbb{R}}_{\mathtt{L\_CONFIG}}$}; \node[invisible] (s0tag5) [below of=s0tag4] {$\neg\mathcal{F}^{\mathbb{L}}_{\mathtt{FIST\_CONFIG}}$}; \node[invisible] (s0tag6) [below of=s0tag5] {$\neg\mathcal{T}^{\mathbb{R}}_{\mathbb{L}}$}; \node[invisible] (s0tag7) [below of=s0tag6] {$\vdots$}; \node[state] (s1) [right of=s0] {$\vdots$}; \node[invisible] (s1tag1) [below=0.05cm of s1] {$\mathbb{R}^\leftarrow_{\mathbb{L}}$}; \node[invisible] (s1tag2) [below of=s1tag1] {$\Xi^\mathbb{L}_{\mathtt{L\_SIDEOFBODY}}$}; \node[invisible] (s1tag3) [below of=s1tag2] {$\Xi^\mathbb{R}_{\mathtt{R\_SIDEOFBODY}}$}; \node[invisible] (s1tag4) [below of=s1tag3] {$\mathcal{F}^{\mathbb{R}}_{\mathtt{KEY\_CONFIG}}$}; \node[invisible] (s1tag5) [below of=s1tag4] {$\mathcal{F}^{\mathbb{L}}_{\mathtt{KEY\_CONFIG}}$}; \node[invisible] (s1tag6) [below of=s1tag5] {$\neg\mathcal{T}^{\mathbb{R}}_{\mathbb{L}}$}; \node[invisible] (s1tag7) [below of=s1tag6] {$\vdots$}; \path[->] (s0) edge node {$\nearrow_{\mathbb{L}}$} (s1); \path[->] (s1) edge[loop above, distance=.5cm] node {$\leftrightsquigarrow_\mathbb{D} \cap \leftrightsquigarrow_\mathbb{G}$} (s1); \node[state] (s2) [right of=s1] {$\vdots$}; \node[invisible] (s2tag1) [below=0.05cm of s2] {$\mathbb{R}^\leftarrow_{\mathbb{L}}$}; \node[invisible] (s2tag2) [below of=s2tag1] {$\Xi^\mathbb{L}_{\mathtt{CENTEROFBODY}}$}; \node[invisible] (s2tag3) [below of=s2tag2] {$\Xi^\mathbb{R}_{\mathtt{R\_SIDEOFHEAD}}$}; \node[invisible] (s2tag4) [below of=s2tag3] {$\mathcal{F}^{\mathbb{R}}_{\mathtt{BEAK\_CONFIG}}$}; \node[invisible] (s2tag5) [below of=s2tag4] {$\mathcal{F}^{\mathbb{L}}_{\mathtt{INDEX\_CONFIG}}$}; \node[invisible] (s2tag6) [below of=s2tag5] {$\neg\mathcal{T}^{\mathbb{R}}_{\mathbb{L}}$}; \node[invisible] (s2tag7) [below of=s2tag6] {$\vdots$}; \path[->] (s1) edge node {$\swarrow_{\mathbb{L}}$} (s2); \node[state] (s3) [right of=s2] {$\vdots$}; \node[invisible] (s3tag1) [below=0.05cm of s3] {$\mathbb{R}^\leftarrow_{\mathbb{L}}$}; \node[invisible] (s3tag2) [below of=s3tag1] {$\Xi^\mathbb{L}_{\mathtt{L\_SIDEOFBODY}}$}; \node[invisible] (s3tag3) [below of=s3tag2] {$\Xi^\mathbb{R}_{\mathtt{R\_SIDEOFBODY}}$}; \node[invisible] (s3tag4) [below of=s3tag3] {$\mathcal{F}^{\mathbb{R}}_{\mathtt{OPENPALM\_CONFIG}}$}; \node[invisible] (s3tag5) [below of=s3tag4] {$\mathcal{F}^{\mathbb{L}}_{\mathtt{OPENPALM\_CONFIG}}$}; \node[invisible] (s3tag6) [below of=s3tag5] {$\neg\mathcal{T}^{\mathbb{R}}_{\mathbb{L}}$}; \node[invisible] (s3tag7) [below of=s3tag6] {$\vdots$}; \path[->] (s2) edge node {$\nearrow_{\mathbb{L}}$} (s3); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.6636
arxiv
2014-03-27T01:08:32
RDF extraction from OMDoc markup in a wiki page
\documentclass[runningheads]{llncs} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage{tikz} \usepackage[pdfpagescrop={91 71 521 721},a4paper=false,pdftex,pdfstartview=FitV,plainpages=false,pdfpagelabels,colorlinks=true,linkcolor=NavyBlue,citecolor=NavyBlue,urlcolor=NavyBlue,hypertexnames=true]{hyperref} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture} \node[text width=3.7cm,draw] (page) at (0,0) {<omdoc>\\ ~~<proof id="pyth-proof"\\ ~~~~for="pythagoras">\\ ~~~~\ldots</proof>\\ </omdoc>}; \node (rdfdummy) at (4,0) {}; \draw[->,dashed] (page) -- node [below] {extraction} node[above] {RDF} (rdfdummy); \begin{scope}[xshift=5cm,xscale=3,yscale=.8,>=latex,font=\scriptsize] \tikzstyle abox=[font=\scriptsize,draw,minimum height=2.5ex,rounded corners]; \tikzstyle tbox=[font=\scriptsize\bfseries\itshape,draw,minimum height=2.5ex]; \node[abox] (pp) at (0,0) {pyth-proof}; \node[abox] (pt) at (1,0) {pythagoras}; \node[tbox] (P) at (0,1) {\bfseries Proof}; \node[tbox] (T) at (1,1) {\bfseries Theorem}; \draw[-open triangle 60] (pp) -- node[left=.4em] {type} (P); \draw[-open triangle 60] (pt) -- node[right=.5em] {type} (T); \draw[->] (pp) -- node[below=-.3ex] {proves} (pt); \draw[->] (P) -- node[below=-.3ex,font=\scriptsize\bfseries\itshape] {proves} (T); \end{scope} \node[text width=5.25cm,draw,anchor=west] (triples) at (4,-.8) {\scriptsize <pyth-proof, rdf:type, omdoc:Proof>\\ <pyth-proof, omdoc:proves, pythagoras>}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1003.5196
arxiv
2010-03-29T02:01:59
Mutual information and variation of information. The total information H(X,Y) = H(X|Y) + I(X:Y) + H(Y|X).
\documentclass[9pt,technote]{IEEEtran} \usepackage{amsmath,amssymb} \usepackage{tikz} \begin{document} \begin{tikzpicture} \draw (-1cm,0) circle(2cm); \draw (1cm,0) circle(2cm); \draw (0,0cm) node[fill=white] {$I(X:Y)$}; \draw (1.8cm,0cm) node[fill=white] {$H(Y|X)$}; \draw (-1.8cm,0cm) node[fill=white] {$H(X|Y)$}; \path(1cm,0) ++ (60:2.2cm) node[rotate=-25] {$H(Y)$}; \path(-1cm,0) ++ (120:2.2cm) node[rotate= 25] {$H(X)$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1110.2515
arxiv
2013-08-05T02:03:55
Kripke structure part corresponding to the fragment C_i with C_i = x_j .
\documentclass[a4paper,oneside]{scrartcl} \usepackage{amsmath, amssymb} \usepackage{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.8cm, thick] \node[state] (C1) {$c_i$}; \node[state] (x1_) [below left of=C1, label=left:{$p_j$}] {$s_j^0$}; \node[state] (x1) [below right of=C1, label=right:{$p_j,q$}] {$s_j^1$}; \path (C1) edge [bend left] node {}(x1); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.1034
arxiv
2012-01-30T02:02:34
Kripke structure construction in the proof of nor vee
\documentclass[a4paper,oneside]{scrartcl} \usepackage{amsmath, amssymb} \usepackage{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.2cm,thick] \node[state] (c1) [label=225:{$p_1$, $q_2$}] {$c_{1}$}; \node[state] (c2) [right of=c1,label=225:{$p_2$, $q_3$}] {$c_{2}$}; \node[state] (c3) [right of=c2,label=225:{$q_1$, $p_4$}] {$c_{3}$}; \node (cx) [right of=c3] {$\dots$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.1034
arxiv
2012-01-30T02:02:34
Kripke structure corresponding to \,=\,( x_1 x_2 x_3)(x_2 x_3 x_4)(x_1 x_2)
\documentclass[a4paper,oneside]{scrartcl} \usepackage{amsmath, amssymb} \usepackage{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.0cm, thick] \node[state] (C1) {$s_1$}; \node[color=white, state] (C1_) [right of=C1] {$s_1$}; \node[state] (C2) [right of=C1_] {$s_2$}; \node[color=white, state] (C2_) [right of=C2] {$s_1$}; \node[state] (C3) [right of=C2_] {$s_3$}; \node[state] (s1x1) [below of=C1, label=left:{}] {$r_1^1$}; \node[state] (s2x1_) [below left of=C2] {$\overline r_2^1 $}; \node[state] (s2x1) [below right of=C2, label=left:$p_1$] {$r_2^1$}; \node[color=lightgray, state] (s3x1) [below of=C3, label=left:$p_1$] {$r_3^1$}; \node[state] (s1x2) [below of=s1x1, label=left:$p_2$] {$r_1^2$}; \node[state] (s2x2) [below left of=s2x1, label=left:$p_2$] {$r_2^2$}; \node[color=lightgray, state] (s3x2) [below of=s3x1] {$r_3^2$}; \node[color=lightgray, state] (s1x3) [below of=s1x2, label=left:$p_3$] {$r_1^3$}; \node[state] (s2x3) [below of=s2x2] {$r_2^3$}; \node[state] (s3x3_) [below left of=s3x2] {$\overline r_3^3 $}; \node[state] (s3x3) [below right of=s3x2, label=left:$p_3$] {$r_3^3$}; \node[state] (s1x4) [below right of=s1x3, label=left:$p_4$] {$r_1^4$}; \node[state] (s1x4_) [below left of=s1x3, label=left:$$] {$\overline r_1^4 $}; \node[color=lightgray, state] (s2x4) [below of=s2x3, label=left:$p_4$] {$r_2^4$}; \node[state] (s3x4) [below of=s3x3, label=left:$p_4$] {$r_3^4$} ; \node[state] (s3x4_) [below of=s3x3_, label=left:$$] {$\overline r_3^4 $}; \path (C1) edge node {}(s1x1) (s1x1) edge node {}(s1x2) (s1x2) edge node {}(s1x3) (s1x3) edge node {}(s1x4_) edge node {}(s1x4) (C2) edge node {}(s2x1) edge node {}(s2x1_) (s2x1) edge node {}(s2x2) (s2x1_) edge node {}(s2x2) (s2x2) edge node {}(s2x3) (s2x3) edge node {}(s2x4) (C3) edge node {}(s3x1) (s3x1) edge node {}(s3x2) (s3x2) edge node {}(s3x3) (s3x2) edge node {}(s3x3_) (s3x3_) edge node {}(s3x4_) (s3x3) edge node {}(s3x4); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.1034
arxiv
2012-01-30T02:02:34
Kripke structure construction in the proof of Theorem diamond-vee-boundedThe underlying formula contains the clauses C_1= p_2, C_2=p_2 p_3 and C_3= p_1
\documentclass[a4paper,oneside]{scrartcl} \usepackage{amsmath, amssymb} \usepackage{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=2.2cm,thick] \node[state] (c1) [label=left:{$q$}] {$c_{1,1}$}; \node[state] (c2) [right of=c1,label=left:{$q$}] {$c_{2,1}$}; \node[state] (c3) [right of=c2] {$c_{3,1}$}; \node[state] (c12) [below of=c1] {$c_{1,2}$}; \node[state] (c22) [below of=c2,label=left:{$p_2$}] {$c_{2,2}$}; \node[state] (c32) [below of=c3,label=left:{$q$}] {$c_{3,2}$}; \node[state] (c13) [below of=c12,label=left:{$q$}] {$c_{1,3}$}; \node[state] (c23) [below of=c22,label=below:{$\vdots$}] {$c_{2,3}$}; \node[state] (c33) [below of=c32,label=left:{$q$}] {$c_{3,3}$}; \node (cx) [right of=c32] {$\dots$}; \node[state] (x2) [below of=c23,label=left:{$q$}] {$x_{2,1}$}; \node[state] (x1) [left of=x2,label=left:{$q,p_1$}] {$x_{1,1}$}; \node[state] (x3) [right of=x2,label=left:{$q$}] {$x_{3,1}$}; \node[state] (xx2) [below of=x2,label=left:{$q,p_2$}] {$x_{2,2}$}; \node[state] (xx3) [below of=x3,label=left:{$q$}] {$x_{3,2}$}; \node (xx) [right of=xx3] {$\dots$}; \node[state] (xxx3) [below of=xx3,label=left:{$q,p_3$}] {$x_{3,3}$}; \path (c1) edge node {}(c12); \path (c2) edge node {}(c22); \path (c3) edge node {}(c32); \path (c12) edge node {}(c13); \path (c22) edge node {}(c23); \path (c32) edge node {}(c33); \path (x2) edge node {}(xx2); \path (x3) edge node {}(xx3); \path (xx3) edge node {}(xxx3); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.1034
arxiv
2012-01-30T02:02:34
Kripke structure construction in the proof of diamond-wedge-bounded
\documentclass[a4paper,oneside]{scrartcl} \usepackage{amsmath, amssymb} \usepackage{xcolor} \usepackage{tikz} \usetikzlibrary{arrows,automata,positioning} \begin{document} \begin{tikzpicture}[->,>=stealth',shorten >=1pt,auto,node distance=1.5cm,thick] \node[state] (C1) {$c_1$}; \node[state] (C2) [right of=C1] {$c_2$}; \node[state] (C3) [right of=C2] {$c_3$}; \node (Cx) [right of=C3] {$\dots$}; \node[state] (x1) [below of=C1] {$s_{1,1}$}; \node[state] (tx1) [right of=x1] {$\overline{s}_{1,1}$}; \node[state] (x2) [right of=tx1] {$s_{1,2}$}; \node[state] (tx2) [right of=x2] {$\overline{s}_{1,2}$}; \node[state] (x3) [right of=tx2] {$s_{1,3}$}; \node (xx) [right of=x3] {$\dots$}; \node[state] (tt1) at (-1.5,-2) [label=225:{$r_1$}] {$\overline{t}_{1}$}; \node[state] (t1) at (-3,-1) [label=225:{$r_1,p_1$}] {$t_{1}$}; \node[state] (xx1) [below of=x1] {$s_{2,1}$}; \node (xx) at (-2.5,-3) {$\vdots$}; \node[state] (txx1) [below of=tx1] {$\overline{s}_{2,1}$}; \node[state] (xx2) [below of=x2] {$s_{2,2}$}; \node[state] (txx2) [below of=tx2] {$\overline{s}_{2,2}$}; \node[state] (xx3) [below of=x3] {$s_{2,3}$}; \node (xx) [right of=xx3] {$\dots$}; \node[state] (xxx1) [below of=xx1] {$s_{3,1}$}; \node[state] (txxx1) [below of=txx1] {$\overline{s}_{3,1}$}; \node[state] (xxx2) [below of=xx2,label=below:{$\vdots$}] {$s_{3,2}$}; \node[state] (txxx2) [below of=txx2] {$\overline{s}_{3,2}$}; \node[state] (xxx3) [below of=xx3] {$s_{3,3}$}; \node (xxx) [right of=xxx3] {$\dots$}; \path (C1) edge node {}(x1); \path (C1) edge node {}(tx2); \path (C2) edge node {}(x1); \path (C2) edge node {}(x2); \path (C2) edge node {}(x3); \path (C3) edge node {}(tx1); \path (C3) edge node {}(x3); \path (x1) edge node {}(xx1); \path (tx1) edge node {}(txx1); \path (x2) edge node {}(xx2); \path (tx2) edge node {}(txx2); \path (x3) edge node {}(xx3); \path (x1) edge node {}(t1); \path (x2) edge [bend right=14] node {}(t1); \path (tx2) edge [bend right=14] node {}(t1); \path (x3) edge [bend right=14] node {}(t1); \path (tx1) edge [bend left=10] node {}(tt1); \path (x2) edge [bend left=10] node {}(tt1); \path (tx2) edge [bend left=10] node {}(tt1); \path (x3) edge [bend left=10] node {}(tt1); \path (xx1) edge node {}(xxx1); \path (txx1) edge node {}(txxx1); \path (xx2) edge node {}(xxx2); \path (txx2) edge node {}(txxx2); \path (xx3) edge node {}(xxx3); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.1034
arxiv
2012-01-30T02:02:34
A schematic view of the Yukawa coupling between left- and right-handed fermions, interpreted in a five dimensional space time. The left- and right-handed fermions live on separate four-dimensional sheets. The Higgs field couples left- to right-handed spinors via quantum tunnelling.
\documentclass[ a4paper,11pt]{revtex4} \usepackage{subfigure, amsfonts, amsmath} \usepackage{amssymb} \usepackage{subfigure, amsfonts, amsmath} \usepackage{amssymb} \usepackage{amsmath} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{tikz,pgflibraryshapes} \begin{document} \begin{tikzpicture}[scale=0.8] \draw[-,thick] (4,-2) -- (11,-7); \draw[-,thick] (6,0) -- (13,-4.5); \draw (13,-4.5) node[below] {$\psi_R$}; \draw(11,-7) node[below] {$\psi_L$}; \draw[<->] (7.5,-4.3) to[bend left=60] (9.7,-2.5); \draw(8.5,-3) node[below] {$\phi$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1201.2661
arxiv
2012-11-29T02:00:39
A natural embedding of P into S.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} \draw [very thin] (0,1) ellipse (0.1 and 1); \draw [very thin] (0,2) .. controls (1,2) .. (3,3); \draw [very thin] (0,0) .. controls (1,0) .. (3,-1); \draw [very thin] (3,3) to[out=-10,in=110] (4,2) ; \draw [dashed] (4,2) to[out=170,in=280] (3,3) ; \draw [very thin, dashed] (3,-1) to[out=80,in=190] (4,0) ; \draw [very thin] (3,-1) to[out=10,in=260] (4,0) ; \draw (4,2) to[out=250,in=120] (4,0); \draw [dashed] (4,2) to[out=170,in=280] (3,3) ; %EMBEDDED GRAPH \draw [fill=black] (0.1,1) circle (0.1); \draw [fill=black] (3.65,2.65) circle (0.1); \draw [fill=black] (3.65,-.65) circle (0.1); \draw [very thick] (0.1,1) to[in=180,out=0] (3.65,2.65); \draw [very thick] (0.1,1) to[in=180,out=0] (3.65,-.65); \draw [very thick] (3.65,-.65) to[in=200,out=150] (3.65,2.65); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
If (), () and () do not bound a pair of pants.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo, figura principal \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (0,-1) to[out=0,in=100] (1.5,-2.5) to[out=80,in=180] (2.5,-1.5) to[out=150,in=270] (1,2) to[out=190,in=0] (0,1.7) to[out=180,in=350] (-1,2) to[out=270,in=30] (-2.5,-1.5) to[out=0,in=100] (-1.5,-2.5) to[out=80,in=180] (0,-1); %genero \filldraw [fill=white, very thick] (0,0) circle (.5); %componentes de frontera de abajo \shadedraw[top color=white!35!black, bottom color=white!90!black, very thick] (1.5,-2.5) to[out=80,in=180] (2.5,-1.5) to[out=260,in=10] (1.5,-2.5); \shadedraw[top color=white!35!black, bottom color=white!90!black, very thick,rotate around={90:(2,-2)},shift={(0,3.99)}] (1.5,-2.5) to[out=80,in=180] (2.5,-1.5) to[out=260,in=10] (1.5,-2.5); % componente de frontera de arriba \shadedraw[top color=white!35!black, bottom color=white!90!black, very thick] (1,2) to[out=190,in=0] (0,1.7) to[out=180,in=350] (-1,2) to[out=10,in=170] (1,2); %lineas \draw[very thick] (0,-1) to[out=190,in=190] (0,-.5); \draw[very thick, dashed] (0,-1) to[out=80,in=280] (0,-.5); \draw[very thick] (0.5,0) to[out=280,in=190] (1.5,-.5); \draw[very thick, dashed] (0.5,0) to[out=80,in=190] (1.5,-.5); \draw[very thick] (-0.5,0) to[out=270,in=190] (-1.4,-.5); \draw[very thick, dashed] (-0.5,0) to[out=80,in=190] (-1.4,-.5); \draw (0,-1.5) node{$\phi(\gamma)$} ; \draw (-2,0) node{$\phi(\alpha)$} ; \draw (2,0) node{$\phi(\beta)$} ; \draw (-1.7,-1.5) node{$\delta_{3}$} ; \draw (1.6,-1.5) node{$\delta_{2}$} ; \draw (0,1.2) node{$\delta_{1}$} ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Catching in a S_0,4.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno \shadedraw[left color=white!35!black, right color=white!90!black,thick] (-4,0) to[out=0,in=180] (4,0) to[out=100,in=260] (4,3) to[out=180,in=0] (-4,3) to[out=260,in=100] (-4,0); \draw[dashed] (-4,3) to[out=280,in=80] (-4,0); \shadedraw[left color=white!35!black, right color=white!90!black,thick] (4,0)to[out=100,in=260] (4,3) to[out=280,in=80] (4,0); %genero \filldraw[fill=white, very thick] (-2,1.5) ellipse (1 and .5); \filldraw[fill=white, very thick] (2,1.5) ellipse (1 and .5); %lineas \draw (-2,1) to[out=260,in=100] (-2,0); \draw (2,1) to[out=260,in=100] (2,0); \draw (-2,3) to[out=260,in=100] (-2,2); \draw (2,3) to[out=260,in=100] (2,2); \draw (0,3) to[out=260,in=100] (0,0); \draw (-2,1.5) ellipse (1.5 and 1); \draw (2,1.5) ellipse (1.5 and 1); \draw (-2,-.3) node{$\gamma_{1}$}; \draw (2,-.3) node{$\gamma_{2}$}; \draw (-2,3.3) node{$\beta_{1}$}; \draw (2,3.3) node{$\beta_{2}$}; \draw (-.8,.5) node{$\delta_{1}$}; \draw (.8,.5) node{$\delta_{2}$}; \draw (0.1,1.5) node{$\alpha$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Diagram of N.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno \shadedraw[inner color=white!35!black, outer color=white!90!black,thick] (0,0)--(6,0)--(6,3.5)--(0,3.5)--cycle; \filldraw [rounded corners=1mm,fill=white] (2,.5)--(4,.5)--(4,3)--(2,3)--cycle; %lineas %lado izquierdo \foreach \x in{0,.2,.4} \draw[dotted, very thick] (0,.4+\x)--(2,1+\x); \foreach \x in{0,.2,.4,.6,.8} \draw[dotted, very thick] (0,2+\x)--(2,1.6+\x); \draw[very thick] (0,3.1)--(3.7,3.5); %lado derecho \foreach \x in{0,.2,.4,.6,.8} \draw[dotted, very thick] (4,1+\x)--(6,2.1+\x); \foreach \x in{0,.2,.4} \draw[dotted, very thick] (4.8-\x,0)--(6,.5+\x); \foreach \x in{0,.2,.4} \draw[dotted, very thick] (4,2.2+\x)--(4.9-\x,3.5); \draw[very thick] (3.7,0)--(6,3.2); %etiquetas \draw (-.2,2) node{$\alpha$}; \draw (3,3.7) node{$\gamma$}; \draw (-.2,2) node{$\alpha$}; \draw (6.3,3) node{$\gamma'$}; \draw[very thick] (6.5,3)--(6.9,3) ; \draw (6.3,2.5) node{$\beta$}; \draw[dotted, very thick] (6.5,2.5)--(6.9,2.5) ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Three nonseparating curves bounding a pair of pants.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %figura izquiera \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (3,2) to[out=100,in=270] (2.8,3) to[out=90,in=260] (3,4) to[out=180,in=0] (-4,4) to[out=190,in=90] (-4.5,3) to[out=280,in=180] (-4,2) to[out=0,in=180] (3,2); \shadedraw[left color=white!40!black, right color= white, very thick,shift={(3,1)}] (-1+1,2-1) to[out=100,in=270] (-1.2+1,3-1) to[out=90,in=260] (-1+1,4-1) to[out=280,in=90] (-.8+1,3-1) to[out=270,in=80] (-1+1,2-1); %genero \foreach \x in {0,2,4} \filldraw[fill=white, very thick, shift={(\x,0)}] (-3.25,2.8) to[out=340,in=180] (-2.75,2.6) to[out=0,in=200] (-2.25,2.8) to[out=160,in=0] (-2.75,3) to[out=180,in=20] (-3.25,2.8); \foreach \x in {0,2,4} \draw[ very thick, shift={(\x,0)}] (-3.5,3) to[out=340,in=150](-3.25,2.8) to[out=340,in=180] (-2.75,2.6) to[out=0,in=200] (-2.25,2.8) to[out=20,in=200] (-2,3); %lineas \draw[very thick] (-3.25,2.8) to[out=110,in=0] (-3.8,3.5) node[anchor=south] {$\alpha$} to[out=180,in=70] (-4.5,3); \foreach \x in {2,4} \draw[very thick] (-2.75+\x,3) to[out=100,in=270] (-3+\x,3.5) to[out=90,in=190] (-2.75+\x,4); \draw (-.65,3.3) node[anchor=south] {$\gamma$}; \foreach \x in {2,4} \draw[very thick] (-2.75+\x,2.59) to[out=180,in=90] (-3+\x,2.2) to[out=270,in=190] (-2.75+\x,2); \foreach \x in {0,2} \draw[very thick] (-2.44+\x,2.9) to[out=40,in=180] (-1.8+\x,3.4) to[out=0,in=110] (-1+\x,2.95); \draw (-2.3,3.2) node[anchor=south] {$\beta$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Example for K_0, K_1, and _0, _1,.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %Parte de afuera. y hueco \shadedraw [inner color=white,outer color=white!60!black, very thick] (-4,0) to[out=180,in=270] (-4.5,1.5) to[out=90,in=180] (-4,3) to[out=0,in=180] (6,3) to[out=180, in=90] (5.5,1.5) to[out=270,in=180] (6,0) to[out=180,in=0] (-4,0) ; \shadedraw [left color=white!35!black, right color=white, very thick] (6,3) to[out=180, in=90] (5.5,1.5) to[out=270,in=180] (6,0) to[out=50,in=270] (6.3,1.5) to[out=90,in=310] (6,3); %puntitos \foreach \x in {.5,1,1.5} \filldraw (6.3+\x,1.5) circle (.1); %genero \foreach \x in {0,2,4,6,8} \filldraw[fill=white, thick] (-3.9+\x,1.45) to[out=340,in=180] (-3.5+\x, 1.4) to [out=0,in=200] (-3.1+\x,1.45) to[out=160,in=0] (-3.5+\x,1.55) to[out=180,in=20] (-3.9+\x,1.45); \foreach \x in {2,4,6,8} \draw[thick] (-4+\x,1.5) to[out=340,in=160] (-3.9+\x,1.45) to[out=340,in=180] (-3.5+\x, 1.4) to [out=0,in=200] (-3.1+\x,1.45) to[out=20,in=200] (-3+\x,1.5); %curvas %elipses \foreach \x in {0,2,4,6,8} \draw (-3.5+\x,1.5) ellipse (.8 and .3); \foreach \x in {2,4,6,8} \draw (-3.5+\x,1.55) to[out=100,in=270] (-3.7+\x,2.3) to[out=90,in=200] (-3.5+\x,3); %curvas horizontales \foreach \x in {0,2,6} \draw [thin] (-3.1+\x,1.45) to[out=70,in=180] (-2.5+\x,1.8) to[out=0,in=110](-1.9+\x,1.45); %curvas verticales \foreach \x in {2,4,6,8} \draw (-3.5+\x,1.4) to[out=260,in=90] (-3.7+\x,.6) to[out=270,in=110] (-3.5+\x,0); \foreach \x in {2} \draw[thin] (-.2+\x,0) to[out=100,in=270] (-.6+\x,1.5) to[out=90,in=260] (-.2+\x,3); \draw[very thick] (1.6,-.5) -- (-.8,-.5) node[anchor=east]{$K_{0}$}; \draw[very thick] (1.6,-.5) to[out=0,in=270] (1.8,-.3); \draw[very thick] (-3.8,-.5) -- (-1.6,-.5); \draw[very thick] (-3.8,-.5) to[out=180,in=270] (-4,-.3); \foreach \x in {4} \draw[very thick] (1.6+\x,-1) -- (-.8,-1) node[anchor=east]{$K_{1}$}; \foreach \x in {4} \draw[very thick] (1.6+\x,-1) to[out=0,in=270] (1.8+\x,-.7); \draw[very thick] (-3.8,-1) -- (-1.6,-1); \draw[very thick] (-3.8,-1) to[out=180,in=270] (-4,-.8); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
A superinjective but not surjective simplicial map.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno %figura izquiera \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (-5,-1) to[out=0,in=180] (-1,-1) to[out=100,in=260] (-1,1) to[out=180,in=0] (-5,1) to[out=260,in=100] (-5,-1); \draw[dashed] (-5,-1) to[out=80,in=280] (-5,1); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (-1,1) to[out=260,in=100] (-1,-1) to[out=80,in=280] (-1,1); %figura derecha \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (1,1) to[out=0,in=180] (7,1) to[out=260,in=100] (7,-1) to[out=180,in=0] (1,-1) to[out=100,in=260] (1,1); \draw[dashed] (1,-1) to[out=80,in=280] (1,1); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (7,1) to[out=260,in=100] (7,-1) to[out=80,in=280] (7,1); %genus % izq \filldraw[fill=white, very thick] (-4,0) circle (.25); \filldraw[fill=white, very thick] (-2,0) circle (.25); %derech \filldraw[fill=white, very thick] (2,0) circle (.25); \filldraw[fill=white, very thick] (4,0) circle (.25); \filldraw[fill=white, very thick] (6,0) circle (.25); %lineas %izquierda \draw (-3,1) to[out=260,in=100] (-3,-1); \draw (-2,0) ellipse (.5 and .5); \draw (-3,0) ellipse (1.75 and .75); %derecha \draw (3,1) to[out=260,in=100] (3,-1); \draw (5,1) to[out=260,in=100] (5,-1); \draw (4,0) ellipse (.5 and .5); \draw (6,0) ellipse (.5 and .5); \draw (4,0) ellipse (2.75 and .9); \draw[->] (-.5,0)--(.5,0); %etiquetas %izquierda \draw(-3,-1.2) node{$\alpha$}; \draw(-3.3,0) node{$\beta$}; \draw(-1.3,0.7) node{$\beta'$}; %derecha \draw(3,-1.2) node{$\alpha$}; \draw(3.3,0) node{$\gamma$}; \draw(5.3,0.5) node{$f(\beta)$}; \draw(6.7,1.3) node{$f(\beta')$}; \draw[dashed] (6.2,1.3) -- (5.9,0.7); \draw(0,0.5) node{$f$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Catching again in a S_0,4.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno \shadedraw[left color=white!35!black, right color=white!90!black,thick] (0,0) to[out=0,in=180] (4,0) to[out=100,in=260] (4,3) to[out=180,in=0] (0,3) to[out=260,in=100] (0,2) to[out=0,in=90] (.5,1.5) to[out=270,in=0] (0,1) to[out=260,in=100] (0,0); \draw[dashed] (0,1) to[out=280,in=80] (0,0); \draw[dashed] (0,3) to[out=280,in=80] (0,2); \shadedraw[left color=white!35!black, right color=white!90!black,thick] (4,0) to[out=100,in=260] (4,3) to[out=280,in=80] (4,0); %genero \filldraw[fill=white] (2.5,1.5) circle (.5); %lineas \draw (1.5,3) to[out=260,in=100] (1.5,0); \draw (.5,1.5) to[out=10,in=170] (2,1.5); \draw (2.5,1) to[out=260,in=100] (2.5,0); \draw (2.5,3) to[out=260,in=100] (2.5,2); \draw (2.5,1.5) ellipse (1 and 1); %etiquetas \draw (.8,1.2) node{$\beta$}; \draw (1.2,2.5) node{$\alpha$}; \draw (3.2,2.5) node{$\gamma$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
The two options for (v)=1.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %figura izquiera \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (-1+1,2-1) to[out=100,in=270] (-1.2+1,3-1) to[out=90,in=260] (-1+1,4-1) to[out=180,in=0] (-4+1,4-1) to[out=190,in=90] (-4.5+1,3-1) to[out=280,in=180] (-4+1,2-1) to[out=0,in=180] (-1+1,2-1); \shadedraw[left color=white!40!black, right color= white, very thick] (-1+1,2-1) to[out=100,in=270] (-1.2+1,3-1) to[out=90,in=260] (-1+1,4-1) to[out=280,in=90] (-.8+1,3-1) to[out=270,in=80] (-1+1,2-1); %genero \filldraw[fill=white, very thick] (-3.25+1,2.8-1) to[out=340,in=180] (-2.75+1,2.6-1) to[out=0,in=200] (-2.25+1,2.8-1) to[out=160,in=0] (-2.75+1,3-1) to[out=180,in=20] (-3.25+1,2.8-1); \draw[ very thick] (-3.5+1,3-1) to[out=340,in=150](-3.25+1,2.8-1) to[out=340,in=180] (-2.75+1,2.6-1) to[out=0,in=200] (-2.25+1,2.8-1) to[out=20,in=200] (-2+1,3-1); %lineas \draw[very thick] (-3.25+1,2.8-1) to[out=110,in=0] (-3.8+1,3.5-1) node[anchor=south] {$v$} to[out=180,in=70] (-4.5+1,3-1); \draw [dashed, thick] (-4.5+1,3-1) to[out=290,in=180] (-3.8+1,2.5-1) to[out=0,in=250] (-3.25+1,2.8-1); %figura derecha %interior \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (2,0) to[out=90,in=270] (1,2) to[out=290,in=180] (2.5-1,-.25+2) to[out=0,in=240] (3-1,0+2) (2,+2) to[out=290,in=180] (2.5,-.25+2) to[out=0,in=240] (3,0+2) to[out=290,in=180] (2.5+1,-.25+2) to[out=0,in=240] (3+1,0+2) to[out=270,in=90] (3,0) to[out=250,in=0] (2.5,-.25) to[out=180,in=290] (2,0); \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (2+1,0+2) to[out=90,in=270] (1+1,2+2) to[out=290,in=180] (2.5-1+1,-.25+2+2) to[out=0,in=240] (3-1+1,0+2+2) (2+1,+2+2) to[out=290,in=180] (2.5+1,-.25+2+2) to[out=0,in=240] (3+1,0+2+2) to[out=290,in=180] (2.5+1+1,-.25+2+2) to[out=0,in=240] (3+1+1,0+2+2) to[out=270,in=90] (3+1,0+2) to[out=250,in=0] (2.5+1,-.25+2) to[out=180,in=290] (2+1,0+2); % u \draw[very thick] (2,0) to[out=290,in=180] (2.5,-.25) to[out=0,in=240] (3,0); \draw[thick, dashed] (2,0) to[out=70,in=180] (2.5,.25) to[out=0,in=110] (3,0) node[anchor=west]{$u$}; % frontera hasta arriba \shadedraw[top color=white, bottom color=white!40!black, very thick, shift={(1 ,2 )}] (2-1,0+2) to[out=290,in=180] (2.5-1,-.25+2) to[out=0,in=240] (3-1,0+2) to[out=110,in=0] (2.5-1,.25+2) to[out=180,in=70] (2-1,0+2); \shadedraw[top color=white, bottom color=white!40!black, very thick, shift={(3 ,2 )}] (2-1,0+2) to[out=290,in=180] (2.5-1,-.25+2) to[out=0,in=240] (3-1,0+2) to[out=110,in=0] (2.5-1,.25+2) to[out=180,in=70] (2-1,0+2); \shadedraw[top color=white, bottom color=white!40!black, very thick] (2-1,0+2) to[out=290,in=180] (2.5-1,-.25+2) to[out=0,in=240] (3-1,0+2) to[out=110,in=0] (2.5-1,.25+2) to[out=180,in=70] (2-1,0+2); \draw[very thick] (2,+4) to[out=290,in=180] (2.5,-.25+4) to[out=0,in=240] (3,0+4); \draw[very thick, dashed] (2,0+4) to[out=70,in=180] (2.5,.25+4) to[out=0,in=110] (3,0+4); %frontera middle izquierda \shadedraw[top color=white, bottom color=white!40!black, very thick] (2-1,0+2) to[out=290,in=180] (2.5-1,-.25+2) to[out=0,in=240] (3-1,0+2) to[out=110,in=0] (2.5-1,.25+2) to[out=180,in=70] (2-1,0+2); % v \draw[very thick] (2+1,0+2) to[out=290,in=180] (2.5+1,-.25+2) to[out=0,in=240] (3+1,0+2) node[anchor=west]{$v$} ; \draw[thick, dashed] (2+1,0+2) to[out=70,in=180] (2.5+1,.25+2) to[out=0,in=110] (3+1,0+2); \draw [very thick](-.5,1) to[out=120,in=240] (-.5,3); \draw [dashed](-.5,1) to[out=70,in=290] (-.5,3); \draw (-.5,3.2) node{$u$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Catching in an annulus.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (-2*.5,-4*.5) to[out=0,in=180] (6*.5,-4*.5) to[out=100,in=260] (6*.5,4*.5) to[out=180,in=0] (-2*.5,4*.5) to[out=270,in=0] (-3*.5,3*.5) to[out=0,in=90] (-2*.5,2.5*.5) to[out=270,in=0] (-3*.5,2*.5) to[out=280,in=80] (-3*.5,1*.5) to[out=0,in=90] (-2*.5,0) to[out=270,in=0] (-3*.5,-1*.5) to[out=280,in=80] (-3*.5,-2*.5) to[out=0,in=90] (-2*.5,-2.5*.5) to[out=270,in=0] (-3*.5,-3*.5) to[out=0,in=90] (-2*.5,-4*.5); \shadedraw[left color=white!35!black, right color=white!90!black] (6*.5,-4*.5) to[out=100,in=260] (6*.5,4*.5) to[out=280,in=80] (6*.5,-4*.5); \shadedraw[right color=white!35!black, left color=white!90!black] (-2*.5,4*.5) to[out=270,in=0] (-3*.5,3*.5) to[out=90,in=180] (-2*.5,4*.5); \shadedraw[right color=white!35!black, left color=white!90!black] (-3*.5,2*.5) to[out=280,in=80] (-3*.5,1*.5) to[out=120,in=240] (-3*.5,2*.5); \shadedraw[right color=white!35!black, left color=white!90!black] (-3*.5,-1*.5) to[out=280,in=80] (-3*.5,-2*.5) to[out=120,in=240] (-3*.5,-1*.5); \shadedraw[right color=white!35!black, left color=white!90!black] (-3*.5,-3*.5) to[out=0,in=90] (-2*.5,-4*.5) to[out=180,in=270] (-3*.5,-3*.5); %genero \filldraw[fill=white,very thick] (1.5,0) circle (.25); %lineas \draw (-.5,2) to[out=270,in=45] (-1.03,.1); \draw (-.5,-2) to[out=90,in=315] (-1.03,-.1); \draw (-1,1.25) to[out=315,in=45] (-1,-1.25); \draw (.5,2) to[out=260,in=100] (.5,-2); \draw (1.5,2) to[out=260,in=100] (1.5,.25); \draw (1.5,-.25) to[out=260,in=100] (1.5,-2); \draw (1.5,0) ellipse (.5 and 1); \draw(1*.5,0) node{$\alpha$}; \draw(2.2,0) node{$\gamma$}; \draw(1.8,1.5) node{$\delta_{1}$}; \draw(1.8,-1.5) node{$\delta_{2}$}; \draw(-.2,1.5) node{$\beta_{1}$}; \draw(-.25,0) node{$\beta_{2}$}; \draw(-.2,-1.5) node{$\beta_{3}$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Examples of and in S_
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] %contorno (-2,-1) to[out=350,in=190] (2,-1) to[out=80,in=270] (3,3) to[out=180,in=0] (2,2.8) to[out=180,in=0] (1,3) to[out=270,in=0] (0,2) to[out=180,in=270] (-1,3) to[out=190,in=10] (-1.5,2.8) to[out=180,in=350] (-2.5,3) to[out=260,in=100] (-2,-1); %contorno frontera \shadedraw[bottom color=white!35!black, top color=white!90!black, very thick] (3,3) to[out=180,in=0] (2,2.8) to[out=180,in=0] (1,3) to[out=0,in=180] (2,3.2) to[out=0,in=180] (3,3); \shadedraw[bottom color=white!35!black, top color=white!90!black, very thick] (-1,3) to[out=190,in=10] (-1.5,2.8) to[out=180,in=350] (-2.5,3) to[out=0,in=180] (-1.5,3.2) to[out=0,in=180] (-1,3); %GENERO \filldraw [fill=white, very thick] (-1.75,1.5) ellipse (.3 and .2); \filldraw [fill=white, very thick] (1.25,2) ellipse (.3 and .2); %LINEAS %beta lado izquiedo \draw (-1.5,2.8) to[out=200,in=160] (-1.75,1.7); \draw[dashed] (-1.5,3.2) to[out=310,in=0] (-1.75,1.7); %beta lado derecho \draw (0,2) to[out=270,in=180] (1,1) to[out=8,in=270] (2.5,2.9); \draw [dashed] (0,2) to[out=350,in=150] (1,1.2) to[out=10,in=270] (2,3.2) ; %gamma \draw (-1,3) to[out=270,in=180] (1,0); \draw (1,0) to[out=0,in=270] (2.5,1.5); \draw (2.5,1.5) to[out=90,in=0] (2,2.8) ; %frontera abajo \draw[dashed,very thick] (-2,-1) to[out=10,in=170] (2,-1); %etiquetas \draw (-2.2,2) node{$\beta$}; \draw (1,.3) node{$\gamma$}; \draw (-.2,1.7) node{$\beta$}; % figura de la derecha \begin{scope}[xshift=8cm] \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] %contorno (-2,-1) to[out=350,in=190] (2,-1) to[out=80,in=270] (3,3) to[out=180,in=0] (2,2.8) to[out=180,in=0] (1,3) to[out=270,in=0] (0,2) to[out=180,in=270] (-1,3) to[out=190,in=10] (-1.5,2.8) to[out=180,in=350] (-2.5,3) to[out=260,in=100] (-2,-1); %contorno frontera \shadedraw[bottom color=white!35!black, top color=white!90!black, very thick] (3,3) to[out=180,in=0] (2,2.8) to[out=180,in=0] (1,3) to[out=0,in=180] (2,3.2) to[out=0,in=180] (3,3); \shadedraw[bottom color=white!35!black, top color=white!90!black, very thick] (-1,3) to[out=190,in=10] (-1.5,2.8) to[out=180,in=350] (-2.5,3) to[out=0,in=180] (-1.5,3.2) to[out=0,in=180] (-1,3); %GENERO \filldraw [fill=white, very thick] (-1.75,1.5) ellipse (.3 and .2); \filldraw [fill=white, very thick] (1.25,2) ellipse (.3 and .2); %LINEAS %beta lado izquiedo \draw (-1.5,2.8) to[out=200,in=160] (-1.75,1.7); \draw[dashed] (-1.5,3.2) to[out=310,in=0] (-1.75,1.7); %beta lado derecho \draw (1.55,2) to[out=0,in=270] (2.5,2.9); \draw [dashed] (1.55,2) to[out=80,in=200] (2,3.2); %gamma \draw (-1,3) to[out=270,in=180] (1,0); \draw (1,0) to[out=0,in=270] (2.5,1.5); \draw (2.5,1.5) to[out=90,in=0] (2,2.8) ; %frontera abajo \draw[dashed,very thick] (-2,-1) to[out=10,in=170] (2,-1); %etiquetas \draw (-2.2,2) node{$\beta$}; \draw (1,.3) node{$\gamma$}; \draw (1.9,1.8) node{$\beta$}; \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Example of a convenient pants decomposition.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %contorno \shadedraw[inner color=white!35!black, outer color=white!90!black, very thick] (-1,0) to[out=90,in=0] (-1.5,.5) to[out=45,in=335] (-1.5,1) to[out=0,in=270] (-1,1.25) to[out=90,in=0] (-1.5,1.5) to[out=0,in=270] (-1,2) to[out=0,in=180] (0,2) to[out=0,in=160] (1.5,1.5) to[out=0,in=180] (4,1.5) to[out=220,in=140] (4,.5) to[out=180,in=0] (1.5,.5) to[out=190,in=90] (1,0) to[out=270,in=170] (1.5,-.5) to[out=0,in=180] (4,-.5) to[out=220,in=140] (4,-1.5) to[out=180,in=0] (1.5,-1.5) to[out=200,in=0] (0,-2) to[out=180,in=0] (-1,-2) to[out=90,in=0] (-1.5,-1.5) to[out=0,in=270] (-1,-1.25) to[out=90,in=0] (-1.5,-1) to[out=45,in=335] (-1.5,-.5) to[out=0,in=270] (-1,0); %genero \draw[fill=white, very thick] (1.5,1) ellipse (.4 and .2); \draw[fill=white, very thick] (3,1) ellipse (.4 and .2); \draw[fill=white, very thick] (1.5,-1) ellipse (.4 and .2); \draw[fill=white, very thick] (3,-1) ellipse (.4 and .2); %lineas \draw (-1,0) to[out=10,in=170] (-.5,0); \draw (-1,1.25) to[out=330,in=170] (-.25,.25); \draw (0,.5) to[out=70,in=290] (0,2); \draw (-1,-1.25) to[out=30,in=210] (-.25,-.25); \draw (0,-.5) to[out=290,in=70] (0,-2); \draw (.25,.25) to[out=45,in=180] (1.1,1); \draw (.25,-.25) to[out=45,in=180] (1.1,-1); \foreach \x in {0,1.5} \foreach \y in {0,.7} \draw (1.5+\x,1.2-\y) to[out=45,in=325] (1.5+\x,1.5-\y); \foreach \x in {0,1.5} \foreach \y in {0,.7} \draw (1.5+\x,-1.2+\y) to[out=45,in=325] (1.5+\x,-1.5+\y); \draw (0.5,0) to (.95,0); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (4,1.5) to[out=220,in=140] (4,.5) to[out=50,in=320] (4,1.5); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (4,1.5-2) to[out=220,in=140] (4,.5-2) to[out=50,in=320] (4,1.5-2); \shadedraw[right color=white!35!black, left color=white!90!black, very thick] (-1.5,.5) to[out=45,in=335] (-1.5,1) to[out=205,in=135] (-1.5,.5); \shadedraw[right color=white!35!black, left color=white!90!black, very thick] (-1.5,.5-1.5) to[out=45,in=335] (-1.5,1-1.5) to[out=205,in=135] (-1.5,.5-1.5); \shadedraw[right color=white!35!black, left color=white!90!black, very thick] (-1.5,1.5) to[out=0,in=270] (-1,2) to[out=220,in=90] (-1.5,1.5) ; \shadedraw[right color=white!35!black, left color=white!90!black, very thick] (-1,-2) to[out=90,in=0] (-1.5,-1.5) to[out=270,in=130] (-1,-2) ; \draw [fill=white,very thick] (0,0) circle (0.5); \draw (-.5,1) node{$\beta$}; \draw (.33,1.5) node{$\alpha$}; \foreach \x in {.2,.5,.8} \filldraw[fill=black] (4.3+\x,1) circle (0.05); \foreach \x in {.2,.5,.8} \filldraw[fill=black] (4.3+\x,1-2) circle (0.05); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
A superinjecive map between two nonhomeomorphic surfaces.
\documentclass[12pt]{article} \usepackage{amssymb,amsmath,amsthm} \usepackage[T1]{fontenc} \usepackage{tikz} \usepackage{color} \begin{document} \begin{tikzpicture} %fondo y contorno %figura izquiera \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (-6,-1) to[out=0,in=180] (-1,-1) to[out=100,in=260] (-1,1) to[out=180,in=0] (-6,1) to[out=260,in=100] (-6,-1); \draw[dashed] (-6,-1) to[out=80,in=280] (-6,1); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (-1,1) to[out=260,in=100] (-1,-1) to[out=80,in=280] (-1,1); %figura derecha \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (1,1) to[out=0,in=180] (2.5,1) to[out=0,in=270] (3,2) to[out=350,in=190] (5,2) to[out=270,in=180] (6,1) to[out=0,in=180] (9,1) to[out=260,in=100] (9,-1) to[out=180,in=0] (1,-1) to[out=100,in=260] (1,1); \draw[dashed] (1,1) to[out=80,in=280] (1,-1); \shadedraw[left color=white!35!black, right color=white!90!black, very thick] (9,1) to[out=260,in=100] (9,-1) to[out=80,in=280] (9,1); \shadedraw[bottom color=white!35!black, top color=white!90!black, very thick] (3,2) to[out=10,in=170] (5,2) to[out=190,in=350] (3,2); %GENUS %izquierda \filldraw[fill=white, very thick] (-5,0) circle (.25); \filldraw[fill=white, very thick] (-3.5,0) circle (.25); \filldraw[fill=white, very thick] (-2.5,0) circle (.25); %derecha \filldraw[fill=white, very thick] (1.75,0) circle (.25); \filldraw[fill=white, very thick] (3,0) circle (.25); \filldraw[fill=white, very thick] (4,0) circle (.25); \filldraw[fill=white, very thick] (5,0) circle (.25); \filldraw[fill=white, very thick] (4,.75) circle (.25); \filldraw[fill=white, very thick] (4,1.5) circle (.25); \filldraw[fill=white, very thick] (7,0) circle (.25); \filldraw[fill=white, very thick] (8.25,0) circle (.25); %lineas %izquierda \draw (-4.5,1) to[out=260,in=100] (-4.5,-1); \draw (-3.5,0) ellipse (.5 and .5); \draw (-3.5,0) ellipse (2 and .75); %derecha \draw (2.5,1) to[out=260,in=100] (2.5,-1); \draw (6,1) to[out=260,in=100] (6,-1); \draw (7,0) ellipse (.5 and .5); \draw (5,0) ellipse (3.75 and .75); %etiquetas %izquierda \draw (-4.5, -1.2) node{$\alpha$}; \draw (-4.2, 0) node{$\beta$}; \draw (-1.4, .5) node{$\beta'$}; %derecha \draw (2.5, -1.2) node{$\alpha$}; \draw (8.3, .7) node{$f(\beta')$}; \draw[dashed] (7,.6)--(7.5,1.5); \draw (8, 1.5) node{$f(\beta)$}; \draw(0,0.5) node{$f$}; \draw[->] (-.5,0)--(.5,0); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1402.3275
arxiv
2014-02-14T02:09:23
Piecewise syndetic sets always consist of eventually growing intervals that have bounded gaps. The space between these intervals may be arbitrary, however.
\documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns} \usetikzlibrary{decorations.markings} \begin{document} \begin{tikzpicture}[yscale=0.5,xscale=0.66,scale=0.5] \def\block#1#2{\draw (#1,-1) rectangle +(#2,2)} \def\number#1[#2]{\node[#2] at (#1+0.5,0) {$#1$}} \node[left] at (0.5,0) {$A = \Big\{$}; \block{1}{3}; \number{1}[black]; \number{2}[black!70]; \number{3}[black!60]; \node at (5.6,0) {$…$}; % interval \block{7}{4}; \block{13}{3}; \def\gapsize#1#2{ \draw (#1,-2) -- +(0,-0.5) -- node[midway,below,style={font=\footnotesize}] {gap size $\leq d$} (#2,-2.5) -- +(0,0.5)} \gapsize{11}{13}; \def\intervals#1#2#3{ \draw (#1,-5) -- +(0,-0.5) -- node[midway,below,style={font=\footnotesize}] {#3} (#2,-5.5) -- +(0,0.5)} \intervals{7}{16}{large interval}; % small block \node at (17.6,0) {$…$}; \block{19}{1}; % interval \node at (21.6,0) {$…$}; \block{23}{6}; \block{30}{5}; \gapsize{29}{30}; \intervals{23}{35}{larger interval}; \path (37.6,0) node {$\dots\dots$} +(2.5,0) node {$\Big\}$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1206.0967
arxiv
2012-06-06T02:04:38
In a compact space Y, every sequence will have one or more limit points. An ultrafilter limit picks one of them.
\documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns} \usetikzlibrary{decorations.markings} \begin{document} \begin{tikzpicture} \draw (0,0) ellipse (2.3 and 2); \path (90:2.1) node[above] {$Y$}; \def\mypoint{\fill circle (0.05)} \def\y#1{\mypoint node[above=1pt] {$y_{#1}$}} \def\yl#1{\mypoint node[left] {$y_{#1}$}} \def\yr#1{\mypoint node[right] {$y_{#1}$}} \def\yend{\mypoint node[above] (yend) {$y$}} \begin{scope}[decoration={markings ,mark=at position 0.00 with \y1; ,mark=at position 0.36 with \yl3; ,mark=at position 0.62 with \yl5; ,mark=at position 0.70 with \mypoint; ,mark=at position 0.80 with \mypoint; ,mark=at position 0.88 with \mypoint; ,mark=at position 0.93 with \mypoint; ,mark=at position 0.96 with \mypoint; ,mark=at position 0.99 with \mypoint; }] \draw decorate{ (0,-1.5) .. controls (0,-0.8) and (130:1.6) .. (140:1.7) }; \end{scope} \begin{scope}[decoration={markings ,mark=at position 0.30 with \yr2; ,mark=at position 0.5 with \yr4; ,mark=at position 0.70 with \mypoint; ,mark=at position 0.80 with \mypoint; ,mark=at position 0.88 with \mypoint; ,mark=at position 0.93 with \mypoint; ,mark=at position 0.96 with \mypoint; ,mark=at position 0.99 with \mypoint; }] \draw decorate{ (0,-1.5) .. controls (0,-1) and (50:1.5) .. (40:1.6) }; \draw (40:1.7) -- (30:2.6) node[right] {pick this limit point}; \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1206.0967
arxiv
2012-06-06T02:04:38
A set A is not piecewise syndetic if and only if a gap of length at least d can be found in each interval that has size at least l(d).
\documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns} \usetikzlibrary{decorations.markings} \begin{document} \begin{tikzpicture}[yscale=0.5,xscale=0.66,scale=0.6] \def\block#1#2{\draw (#1,-1) rectangle +(#2,2)} \def\number#1[#2]{\node[#2] at (#1+0.5,0) {$#1$}} \node[left] at (0.5,0) {$A = \Big\{$}; \block{1}{3}; \number{1}[black]; \number{2}[black!70]; \number{3}[black!60]; \node at (5.6,0) {$…$}; % interval \block{7}{4}; \block{12}{5}; \block{20}{3}; \block{24}{4}; \def\gapsize#1#2{ \draw (#1,-2) -- +(0,-0.5) -- node[midway,below,style={font=\footnotesize}] {some gap has size $\geq d$} (#2,-2.5) -- +(0,0.5)} \gapsize{17}{20}; \def\intervals#1#2#3{ \draw (#1,-4.7) -- +(0,-0.5) -- node[midway,below,style={font=\footnotesize}] {#3} (#2,-4.7-0.5) -- +(0,0.5)} \intervals{9}{30}{when looking at any interval of size $\geq l(d)$}; \path (30.6,0) node {$\dots\dots$} +(2.5,0) node {$\Big\}$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1206.0967
arxiv
2012-06-06T02:04:38
Illustration of a syndetic set. The rectangular blocks indicate natural numbers that are contained in the set, while empty space indicates numbers that are absent from the set. Being syndetic means that no gap may exceed a fixed size d.
\documentclass[11pt]{article} \usepackage[utf8]{inputenc} \usepackage{amsmath} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns} \usetikzlibrary{decorations.markings} \begin{document} \begin{tikzpicture}[yscale=0.5,xscale=0.7,scale=0.6] \def\block#1#2{\draw (#1,-1) rectangle +(#2,2)} \def\number#1[#2]{\node[#2] at (#1+0.5,0) {$#1$}} \node[left] at (0.5,0) {$A = \Bigg\{$}; \block{1}{4}; \number{1}[black]; \number{2}[black!70]; \number{3}[black!60]; \number{4}[black!50]; \block{7}{3}; \number{7}[black!40]; \number{8}[black!20]; \number{9}[black!10]; \block{11}{1}; \block{15}{6}; \draw (12,-2) -- +(0,-0.5) -- node[midway,below,style={font=\footnotesize}] {all gap sizes $\leq d$} (15,-2.5) -- (15,-2); \node at (25,0) {$\dots\dots \quad \Bigg\}$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1206.0967
arxiv
2012-06-06T02:04:38
A Complete (and Undecomposable) Function.
\documentclass[11pt]{article} \usepackage{amssymb,amsfonts} \usepackage{amsmath} \usepackage[usenames,dvipsnames]{color} \usepackage[pdftex,bookmarks=true,pdfstartview=FitH,colorlinks,linkcolor=blue,filecolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true]{hyperref} \usepackage{tikz} \usetikzlibrary{fit, matrix, positioning, calc} \begin{document} \begin{tikzpicture} \tikzset{sim/.style={rounded corners, rectangle, draw, thick, dotted, inner sep = 0}} \pgfsetmatrixcolumnsep{8pt} \pgfsetmatrixrowsep{8pt} \matrix at (0,0) [left delimiter = (, right delimiter = )] { \node (n00) {0}; & \node (n01) {1}; \\ \node (n10) {1}; & \node (n11) {1}; \\ }; \node [sim, fit = (n01) (n11)] {}; \node [sim, fit = (n10) (n11)] {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1205.3554
arxiv
2012-05-17T02:01:45
Decomposition of a Decomposable Function
\documentclass[11pt]{article} \usepackage{amssymb,amsfonts} \usepackage{amsmath} \usepackage[usenames,dvipsnames]{color} \usepackage[pdftex,bookmarks=true,pdfstartview=FitH,colorlinks,linkcolor=blue,filecolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true]{hyperref} \usepackage{tikz} \usetikzlibrary{fit, matrix, positioning, calc} \begin{document} \begin{tikzpicture} \coordinate (o) at (0,0); \coordinate (x) at (1,0); \coordinate (y) at (0,-1); \coordinate (dy) at ($0.2*(y)$); \draw (o) node {} ++(x) node (y1) {$0$} ++(x) node (y2) {$2$} ++(x) node (y3) {$4$} (o) ++(y) node (x1) {$1$} ++(x) node (m11) {$1$} ++(x) node (m12) {$2$} ++(x) node (m13) {$4$} (o) ++($2*(y)$) node (x2) {$3$} ++(x) node (m21) {$3$} ++(x) node (m22) {$3$} ++(x) node (m23) {$4$} (o) ++($3*(y)$) node (x3) {$5$} ++(x) node (m31) {$5$} ++(x) node (m32) {$5$} ++(x) node (m33) {$5$}; \node [rectangle, rounded corners, draw, fit = (m11) (m33)] {}; \draw ($(m21)!.5!(m31)$) -- ($(m23)!.5!(m33)$); \draw ($(m13)!.5!(m12) - (dy)$) -- ($(m23)!.5!(m22) + (dy)$); \draw ($(m11)!.5!(m21)$) -- ($(m12)!.5!(m22)$); \draw ($(m11)!.5!(m12) - (dy)$) -- ++($0.4*(y)$); \coordinate (p) at ($(o) + 6*(x)$); \coordinate (s) at ($(x) + (y)$); \coordinate (t) at ($(y) - (x)$); \draw (p) node (r) [circle, draw] {A} ++(s) node (r1) [circle, draw] {B} ++(s) node (r11) [circle, draw] {A} ++(s) node (r111) [circle, draw] {B} ++(s) node (r1111) [rectangle, draw] {$2$} (r111) ++(t) node (r1110) [rectangle, draw] {$1$} (r11) ++(t) node (r110) [rectangle, draw] {$3$} (r1) ++(t) node (r10) [rectangle, draw] {$4$} (r) ++(t) node (r0) [rectangle, draw] {$5$}; \draw (r) -- (r0) (r) -- (r1) (r1) -- (r10) (r1) -- (r11) (r11) -- (r110) (r11) -- (r111) (r111) -- (r1110) (r111) -- (r1111); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1205.3554
arxiv
2012-05-17T02:01:45
An Incomplete but Undecomposable Function (Minimum ||+||).
\documentclass[11pt]{article} \usepackage{amssymb,amsfonts} \usepackage{amsmath} \usepackage[usenames,dvipsnames]{color} \usepackage[pdftex,bookmarks=true,pdfstartview=FitH,colorlinks,linkcolor=blue,filecolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true]{hyperref} \usepackage{tikz} \usetikzlibrary{fit, matrix, positioning, calc} \begin{document} \begin{tikzpicture} \tikzset{sim/.style={rounded corners, rectangle, draw, thick, dotted, inner sep = 0}} \pgfsetmatrixcolumnsep{8pt} \pgfsetmatrixrowsep{8pt} \matrix at (0,0) [left delimiter = (, right delimiter = )] { \node (n11) {1}; & \node (n12) {1}; & \node (n13) {2}; \\ \node (n21) {4}; & \node (n22) {0}; & \node (n23) {2}; \\ \node (n31) {4}; & \node (n32) {3}; & \node (n33) {3}; \\ }; \node [sim, fit = (n11) (n12)] {}; \node [sim, fit = (n13) (n23)] {}; \node [sim, fit = (n32) (n33)] {}; \node [sim, fit = (n21) (n31)] {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1205.3554
arxiv
2012-05-17T02:01:45
An Incomplete but Undecomposable Function (Minimum ||).
\documentclass[11pt]{article} \usepackage{amssymb,amsfonts} \usepackage{amsmath} \usepackage[usenames,dvipsnames]{color} \usepackage[pdftex,bookmarks=true,pdfstartview=FitH,colorlinks,linkcolor=blue,filecolor=blue,citecolor=blue,urlcolor=blue,pagebackref=true]{hyperref} \usepackage{tikz} \usetikzlibrary{fit, matrix, positioning, calc} \begin{document} \begin{tikzpicture} \tikzset{sim/.style={rounded corners, rectangle, draw, thick, dotted, inner sep = 0}} \pgfsetmatrixcolumnsep{8pt} \pgfsetmatrixrowsep{8pt} \matrix at (0,0) [left delimiter = (, right delimiter = )] { \node (n11) {1}; & \node (n12) {1}; & \node (n13) {3}; & \node (n14) {4}; \\ \node (n21) {3}; & \node (n22) {2}; & \node (n23) {2}; & \node (n24) {4}; \\ \node (n31) {3}; & \node (n32) {4}; & \node (n33) {1}; & \node (n34) {1}; \\ \node (n41) {2}; & \node (n42) {4}; & \node (n43) {3}; & \node (n44) {2}; \\ }; \node [sim, fit = (n11) (n12)] {}; \node [sim, fit = (n22) (n23)] {}; \node [sim, fit = (n33) (n34)] {}; \node [sim, fit = (n13) ] (open13) {}; \draw [color=white, line width=5pt] (open13.north west) -- (open13.north east); \node [sim, fit = (n43) ] (open43) {}; \draw [color=white, line width=5pt] (open43.south west) -- (open43.south east); \node [sim, fit = (n21) (n31)] {}; \node [sim, fit = (n32) (n42)] {}; \node [sim, fit = (n14) (n24)] {}; \node [sim, fit = (n41) ] (open41) {}; \draw [color=white, line width=5pt] (open41.north west) -- (open41.south west); \node [sim, fit = (n44) ] (open44) {}; \draw [color=white, line width=5pt] (open44.south east) -- (open44.north east); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1205.3554
arxiv
2012-05-17T02:01:45
The tree H_n,k.
\documentclass[10pt,bezier]{article} \usepackage{amsmath,amssymb,amsfonts,xspace} \usepackage{tikz} \begin{document} \begin{tikzpicture}[scale=.8] \filldraw [black] (-1,0) circle (3.5 pt) (1,0) circle (3.5 pt) (-2,1) circle (3.5 pt) (-2,0.5) circle (3.5 pt) (-2,-1) circle (3.5 pt) (-2,0.1) circle (1 pt) (-2,-0.3) circle (1 pt) (-2,-0.7) circle (1 pt) (2,0.1) circle (1 pt) (2,-0.3) circle (1 pt) (2,-0.7) circle (1 pt) (2,1) circle (3.5 pt) (2,0.5) circle (3.5 pt) (2,-1) circle (3.5 pt); \node [label=below:$H_{n,k}$] (H_{n,k}) at (0,-0.75) {}; \node [label=left:$1$] (1) at (-2,1) {}; \node [label=left:$2$] (2) at (-2,0.5) {}; \node [label=left:$k-1$] (k-1) at (-2,-1) {}; \node [label=right:$1$] (1) at (2,1) {}; \node [label=right:$2$] (2) at (2,0.5) {}; \node [label=right:$n-k-1$] (n-k-1) at (2,-1) {}; \draw[thick] (-1,0) -- (1,0); \draw[thick] (-1,0) -- (-2,1); \draw[thick] (-1,0) -- (-2,0.5); \draw[thick] (-1,0) -- (-2,-1); \draw[thick] (1,0) -- (2,1); \draw[thick] (1,0) -- (2,0.5); \draw[thick] (1,0) -- (2,-1); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1303.3222
arxiv
2013-03-14T01:02:55
I(G_n,x)=I(C_n,x).
\documentclass[10pt,bezier]{article} \usepackage{amsmath,amssymb,amsfonts,xspace} \usepackage{tikz} \begin{document} \begin{tikzpicture}[scale=1] \filldraw [black] (-3,0) circle (3.5 pt) (-2,0) circle (3.5 pt) (-1.5,0) circle (1 pt) (-1,0) circle (1 pt) (-0.5,0) circle (1 pt) (0,0) circle (3.5 pt) (1,0.5) circle (3.5 pt) (1,-0.5) circle (3.5 pt); \node [label=below:$G_n$] (G_n) at (-0.65,-0.75) {}; \node [label=above:$1$] (1) at (-3,0) {}; \node [label=above:$2$] (2) at (-2,0) {}; \node [label=above:$n-2$] (n-2) at (0,0) {}; \node [label=right:$n-1$] (n-1) at (1,0.5) {}; \node [label=right:$n$] (n) at (1,-0.5) {}; \draw[thick] (-3,0) --(-2,0); \draw[thick] (-2,0) -- (-1.6,0); \draw[thick] (-0.4,0) -- (0,0); \draw[thick] (0,0) -- (1,0.5); \draw[thick] (0,0) -- (1,-0.5); \draw[thick] (1,0.5) -- (1,-0.5); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1303.3222
arxiv
2013-03-14T01:02:55
the tree T.
\documentclass[10pt,bezier]{article} \usepackage{amsmath,amssymb,amsfonts,xspace} \usepackage{tikz} \begin{document} \begin{tikzpicture}[scale=0.7] \filldraw [black] (0,0) circle (3.5 pt) (0,-2) circle (3.5 pt) (2,-2) circle (3.5 pt) (-2,-2) circle (3.5 pt) (.075,-2) circle (1 pt) (1,-2) circle (1 pt) (1.25,-2) circle (1 pt); \node [label=below:$T$] (T) at (0,-5.5) {}; \node [label=left:$v$] (v) at (0.25,0.25) {}; \node [label=left:$v_k$] (v_k) at (2.75,-1.75) {}; \node [label=above:$v_2$] (v_2) at (-.25,-2.1) {}; \node [label=left:$v_1$] (v_1) at (-2,-2) {}; \draw[thick] (0,0) -- (-2,-2); \draw[thick] (0,0) -- (0,-2); \draw[thick] (0,0) -- (2,-2); \draw (-1.95,-3.35) ellipse (20pt and 40pt); \node [label=below:$H_1$] (H_1) at (-2,-2.75) {}; \draw (0,-3.35) ellipse (20pt and 40pt); \node [label=below:$H_2$] (H_2) at (0,-2.75) {}; \draw (2.05,-3.35) ellipse (20pt and 40pt); \node [label=below:$H_k$] (H_k) at (2,-2.75) {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1303.3222
arxiv
2013-03-14T01:02:55
A graphing and one of its refinements
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture}[x=0.7cm,y=0.7cm] \draw[-] (0,0) -- (2,0) node [below,very near start] {\scriptsize{$[0,2]$}}; \draw[-] (3,0) -- (5,0) node [below,very near end] {\scriptsize{$[3,5]$}}; \node (1) at (1,0) {}; \node (4) at (4,0) {}; \draw[->,red] (1) .. controls (1,1.5) and (4,1.5) .. (4) node [midway,above] {\scriptsize{$x\mapsto 5-x$}}; \draw[-] (7.5,0) -- (8.5,0) node [below,very near start] {\scriptsize{$[0,1]$}}; \draw[-] (9,0) -- (10,0) node [below,very near start] {\scriptsize{$[1,2]$}}; \draw[-] (10.5,0) -- (11.5,0) node [below,very near end] {\scriptsize{$[3,4]$}}; \draw[-] (12,0) -- (13,0) node [below,very near end] {\scriptsize{$[4,5]$}}; \node (8) at (8,0) {}; \node (95) at (9.5,0) {}; \node (11) at (11,0) {}; \node (125) at (12.5,0) {}; \draw[->,red] (8) .. controls (8,2) and (12.5,2) .. (125) node [midway,above] {\scriptsize{$x\mapsto 5-x$}}; \draw[->,red] (95) .. controls (9.5,1) and (11,1) .. (11) node [midway,above] {\scriptsize{$x\mapsto 5-x$}}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Plugging of the thick graphs G and H
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture} \node (G111) at (0,0,0) {$1_{1,1}$}; \node (G211) at (2,0,0) {$2_{1,1}$}; \node (G121) at (0,2,0) {$1_{2,1}$}; \node (G221) at (2,2,0) {$2_{2,1}$}; \node[opacity=0.6] (G112) at (0,0,-4) {$1_{1,2}$}; \node[opacity=0.6] (G212) at (2,0,-4) {$2_{1,2}$}; \node[opacity=0.6] (G122) at (0,2,-4) {$1_{2,2}$}; \node[opacity=0.6] (G222) at (2,2,-4) {$2_{2,2}$}; \draw[<->,blue] (G111) .. controls (-1,0.5,0) and (-1,1.5,0) .. (G121) {}; \draw[<->,blue] (G121) .. controls (0.5,3,0) and (1.5,3,0) .. (G221) {}; \draw[<->,blue] (G111) .. controls (0.5,-1,0) and (1.5,-1,0) .. (G211) {}; \draw[<->,blue,dashed] (G112) .. controls (-1,0.5,-4) and (-1,1.5,-4) .. (G122) {}; \draw[<->,blue,dashed] (G122) .. controls (0.5,3,-4) and (1.5,3,-4) .. (G222) {}; \draw[<->,blue,dashed] (G112) .. controls (0.5,-1,-4) and (1.5,-1,-4) .. (G212) {}; \draw[->,dotted] (0,0,0) -- (7,0,0) {}; \draw[->,dotted] (0,0,0) -- (0,5,0) {}; \draw[->,dotted] (0,0,0) -- (0,0,-12) {}; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,0) -- (2,0,0) -- (2,2,0) -- (0,2,0) -- (0,0,0) {} ; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,-4) -- (2,0,-4) -- (2,2,-4) -- (0,2,-4) -- (0,0,-4) {} ; \node (H211) at (4,0,0) {$3_{1,1}$}; \node[opacity=0.6] (H212) at (4,0,-4) {$3_{1,2}$}; \node (H221) at (4,2,0) {$3_{2,1}$}; \node[opacity=0.6] (H222) at (4,2,-4) {$3_{2,2}$}; \draw[<-,red] (H211) -- (3,0,-2) {}; \draw[->,red,densely dashed] (3,0,-2) -- (G212) {}; \draw[->,red,dashed] (H212) .. controls (3.5,0,-6) and (4.5,0,-6) .. (H212) {}; \draw[->,red] (G211) .. controls (1.5,0,-2) and (2.5,0,-2) .. (G211) {}; \draw[<-,red] (H221) -- (3,2,-2) {}; \draw[->,red,densely dashed] (3,2,-2) -- (G222) {}; \draw[->,red,dashed] (H222) .. controls (3.5,2,-6) and (4.5,2,-6) .. (H222) {}; \draw[->,red] (G221) .. controls (1.5,2,-2) and (2.5,2,-2) .. (G221) {}; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (2,0,0) -- (4,0,0) -- (4,0,-4) -- (2,0,-4) -- (2,0,0) {} ; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (2,2,0) -- (4,2,0) -- (4,2,-4) -- (2,2,-4) -- (2,2,0) {} ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Two thick graphs G and H, both with dialect \{1,2\}
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture}[node distance=2cm] \node (G11) at (0,0) {$1_{1}$}; \node (G21) at (2,0) {$2_{1}$}; \node (G12) at (0,2) {$1_{2}$}; \node (G22) at (2,2) {$2_{2}$}; \node (H11) at (6,0) {$2_{1}$}; \node (H21) at (8,0) {$3_{1}$}; \node (H12) at (6,2) {$2_{2}$}; \node (H22) at (8,2) {$3_{2}$}; \draw[<->,blue] (G11) .. controls (-1,0.5) and (-1,1.5) .. (G12) {}; \draw[<->,blue] (G12) .. controls (0.5,3) and (1.5,3) .. (G22) {}; \draw[<->,blue] (G11) .. controls (0.5,-1) and (1.5,-1) .. (G21) {}; \draw[dashed,blue] (-1.3,-1) -- (-1.3,3) node [sloped,above,near end] {slice $2$} node [sloped,above,near start] {slice $1$}; \draw[dashed,blue] (-1.3,-1) -- (3,-1) {}; \draw[dashed,blue] (-1.3,3) -- (3,3) {}; \draw[dashed,blue] (3,-1) -- (3,3) {}; \draw[dotted,blue] (-1.3,1) -- (3,1) {}; \node (G) at (-1.1,2.8) {\textcolor{blue}{G}}; \draw[<->,red] (H12) -- (H21) {}; \draw[->,red] (H22) .. controls (7.5,3) and (8.5,3) .. (H22) {}; \draw[->,red] (H11) .. controls (5.5,-1) and (6.5,-1) .. (H11) {}; \draw[-,dashed,red] (4.85,-1) -- (4.85,3) node [sloped,above,near end] {slice $2$} node [sloped,above,near start] {slice $1$}; \draw[dashed,red] (4.85,-1) -- (9.15,-1) {}; \draw[dashed,red] (4.85,3) -- (9.15,3) {}; \draw[dashed,red] (9.15,-1) -- (9.15,3) {}; \draw[dotted,red] (4.85,1) -- (9.15,1) {}; \node (G) at (8.8,2.8) {\textcolor{red}{H}}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Result of the execution of the thick graphs G and H
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture} \node (G111) at (0,0,0) {$1_{1,1}$}; \node (G121) at (0,2,0) {$1_{2,1}$}; \node[opacity=0.6] (G112) at (0,0,-4) {$1_{1,2}$}; \node[opacity=0.6] (G122) at (0,2,-4) {$1_{2,2}$}; \node (H211) at (4,0,0) {$3_{1,1}$}; \node[opacity=0.6] (H212) at (4,0,-4) {$3_{1,2}$}; \node (H221) at (4,2,0) {$3_{2,1}$}; \node[opacity=0.6] (H222) at (4,2,-4) {$3_{2,2}$}; \draw[<->,violet] (G111) .. controls (-1,0.5,0) and (-1,1.5,0) .. (G121) {}; \draw[<->,violet] (G121) .. controls (-0.5,3,0) and (0.5,3,0) .. (G121) {}; \draw[<->,violet] (G111) .. controls (-0.5,-1,0) and (0.5,-1,0) .. (G111) {}; \draw[<->,violet,dashed] (G112) .. controls (-1,0.5,-4) and (-1,1.5,-4) .. (G122) {}; \draw[<-,violet,densely dashed] (G122) -- (2,2,-2) {}; \draw[<-,violet,densely dashed] (G112) -- (2,0,-2) {}; \draw[->,violet] (2,2,-2) -- (H221) {}; \draw[->,violet] (2,0,-2) -- (H211) {}; \draw[->,violet,dashed] (H212) .. controls (3.5,0,-6) and (4.5,0,-6) .. (H212) {}; \draw[->,violet,dashed] (H222) .. controls (3.5,2,-6) and (4.5,2,-6) .. (H222) {}; \draw[->,dotted] (0,0,0) -- (7,0,0) {}; \draw[->,dotted] (0,0,0) -- (0,5,0) {}; \draw[->,dotted] (0,0,0) -- (0,0,-12) {}; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,0) -- (4,0,0) -- (4,2,0) -- (0,2,0) -- (0,0,0) {} ; \draw[violet,opacity=0.6] (0,0,0) -- (4,0,0) node [sloped, above, midway, opacity=0.5] {\scriptsize{slice $(1,1)$}}; \draw[violet,opacity=0.6] (0,2,0) -- (4,2,0) node [sloped, above, midway, opacity=0.5] {\scriptsize{slice $(2,1)$}}; \draw[violet,opacity=0.6] (0,0,-4) -- (4,0,-4) node [sloped, below, midway, opacity=0.5] {\scriptsize{slice $(1,2)$}}; \draw[violet,opacity=0.6] (0,2,-4) -- (4,2,-4) node [sloped, below, midway, opacity=0.5] {\scriptsize{slice $(2,2)$}}; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,-4) -- (4,0,-4) -- (4,2,-4) -- (0,2,-4) -- (0,0,-4) {} ; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (0,0,0) -- (4,0,0) -- (4,0,-4) -- (0,0,-4) -- (0,0,0) {} ; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (0,2,0) -- (4,2,0) -- (4,2,-4) -- (0,2,-4) -- (0,2,0) {} ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Alternating paths in the plugging of thick graphs G and H
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture} \node (G111) at (0,0,0) {$1_{1,1}$}; \node (G121) at (0,2,0) {$1_{2,1}$}; \node[opacity=0.6] (G112) at (0,0,-4) {$1_{1,2}$}; \node[opacity=0.6] (G122) at (0,2,-4) {$1_{2,2}$}; \draw[<->,blue] (G111) .. controls (-1,0.5,0) and (-1,1.5,0) .. (G121) {}; \draw[->,blue] (G121) .. controls (0.5,3,0) and (1.5,3,0) .. (1.8,2,0) {}; \draw[->,blue] (G111) .. controls (0.5,-1,0) and (1.5,-1,0) .. (1.8,0,0) {}; \draw[<-,blue] (G121) .. controls (0.5,3,0) and (1.5,3,0) .. (2.2,2,0) {}; \draw[<-,blue] (G111) .. controls (0.5,-1,0) and (1.5,-1,0) .. (2.2,0,0) {}; \draw[<->,blue,dashed] (G112) .. controls (-1,0.5,-4) and (-1,1.5,-4) .. (G122) {}; \draw[->,blue,dashed] (G122) .. controls (0.5,3,-4) and (1.5,3,-4) .. (1.8,2,-4) {}; \draw[->,blue,dashed] (G112) .. controls (0.5,-1,-4) and (1.5,-1,-4) .. (1.8,0,-4) {}; \draw[<-,blue,dashed] (G122) .. controls (0.5,3,-4) and (1.5,3,-4) .. (2.2,2,-4) {}; \draw[<-,blue,dashed] (G112) .. controls (0.5,-1,-4) and (1.5,-1,-4) .. (2.2,0,-4) {}; \draw[->,dotted] (0,0,0) -- (7,0,0) {}; \draw[->,dotted] (0,0,0) -- (0,5,0) {}; \draw[->,dotted] (0,0,0) -- (0,0,-12) {}; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,0) -- (2,0,0) -- (2,2,0) -- (0,2,0) -- (0,0,0) {} ; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (0,0,-4) -- (2,0,-4) -- (2,2,-4) -- (0,2,-4) -- (0,0,-4) {} ; \node (H211) at (4,0,0) {$3_{1,1}$}; \node[opacity=0.6] (H212) at (4,0,-4) {$3_{1,2}$}; \node (H221) at (4,2,0) {$3_{2,1}$}; \node[opacity=0.6] (H222) at (4,2,-4) {$3_{2,2}$}; \draw[-,red] (H211) -- (3.1,0,-2) {}; \draw[-,red,densely dashed] (1.8,0,-4) -- (2.9,0,-2) {}; \draw[->,red,densely dashed] (3.1,0,-2) -- (2.2,0,-4) {}; \draw[->,red] (2.9,0,-2) -- (H211) {}; \draw[->,red,dashed] (H212) .. controls (3.5,0,-6) and (4.5,0,-6) .. (H212) {}; \draw[->,red] (1.8,0,0) .. controls (1.5,0,-2) and (2.5,0,-2) .. (2.2,0,0) {}; \draw[-,red] (H221) -- (3.1,2,-2) {}; \draw[-,red,densely dashed] (1.8,2,-4) -- (2.9,2,-2) {}; \draw[->,red,densely dashed] (3.1,2,-2) -- (2.2,2,-4) {}; \draw[->,red] (2.9,2,-2) -- (H221) {}; \draw[->,red,dashed] (H222) .. controls (3.5,2,-6) and (4.5,2,-6) .. (H222) {}; \draw[->,red] (1.8,2,0) .. controls (1.5,2,-2) and (2.5,2,-2) .. (2.2,2,0) {}; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (4,0,-4) -- (2,0,-4) -- (2,0,0) -- (4,0,0) -- (4,0,-4) {} ; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (2,2,0) -- (4,2,0) -- (4,2,-4) -- (2,2,-4) -- (2,2,0) {} ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
The graphs G^_D^H and H^_D^G
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture}[scale=0.9] \node (G111) at (0,0,0) {$1_{1,1}$}; \node (G211) at (2,0,0) {$2_{1,1}$}; \node (G121) at (0,2,0) {$1_{2,1}$}; \node (G221) at (2,2,0) {$2_{2,1}$}; \node[opacity=0.6] (G112) at (0,0,-4) {$1_{1,2}$}; \node[opacity=0.6] (G212) at (2,0,-4) {$2_{1,2}$}; \node[opacity=0.6] (G122) at (0,2,-4) {$1_{2,2}$}; \node[opacity=0.6] (G222) at (2,2,-4) {$2_{2,2}$}; \draw[<->,blue] (G111) .. controls (-1,0.5,0) and (-1,1.5,0) .. (G121) {}; \draw[<->,blue] (G121) .. controls (0.5,3,0) and (1.5,3,0) .. (G221) {}; \draw[<->,blue] (G111) .. controls (0.5,-1,0) and (1.5,-1,0) .. (G211) {}; \draw[<->,blue,dashed] (G112) .. controls (-1,0.5,-4) and (-1,1.5,-4) .. (G122) {}; \draw[<->,blue,dashed] (G122) .. controls (0.5,3,-4) and (1.5,3,-4) .. (G222) {}; \draw[<->,blue,dashed] (G112) .. controls (0.5,-1,-4) and (1.5,-1,-4) .. (G212) {}; \draw[->,dotted] (0,0,0) -- (5,0,0) {}; \draw[->,dotted] (0,0,0) -- (0,5,0) {}; \draw[->,dotted] (0,0,0) -- (0,0,-12) {}; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (3,3,-0) -- (-1,3,0) -- (-1,-1,0) -- (3,-1,0) -- (3,3,0) node [sloped,above,midway,opacity=0.5] {slices $(\cdot,1)$} ; \draw[fill=blue,draw=red,opacity=.2,very thin,line join=round] (3,3,-4) -- (-1,3,-4) -- (-1,-1,-4) -- (3,-1,-4) -- (3,3,-4) node [sloped,above,midway,opacity=0.5] {slices $(\cdot,2)$} ; \node (H111) at (7,0,0) {$2_{1,1}$}; \node (H211) at (9,0,0) {$3_{1,1}$}; \node[opacity=0.6] (H112) at (7,0,-4) {$2_{1,2}$}; \node[opacity=0.6] (H212) at (9,0,-4) {$3_{1,2}$}; \node (H121) at (7,2,0) {$2_{2,1}$}; \node (H221) at (9,2,0) {$3_{2,1}$}; \node[opacity=0.6] (H122) at (7,2,-4) {$2_{2,2}$}; \node[opacity=0.6] (H222) at (9,2,-4) {$3_{2,2}$}; \draw[<-,red] (H211) -- (8,0,-2) {}; \draw[->,red,densely dashed] (8,0,-2) -- (H112) {}; \draw[->,red,dashed] (H212) .. controls (8.5,0,-6) and (9.5,0,-6) .. (H212) {}; \draw[->,red] (H111) .. controls (6.5,0,-2) and (7.5,0,-2) .. (H111) {}; \draw[<-,red] (H221) -- (8,2,-2) {}; \draw[->,red,densely dashed] (8,2,-2) -- (H122) {}; \draw[->,red,dashed] (H222) .. controls (8.5,2,-6) and (9.5,2,-6) .. (H222) {}; \draw[->,red] (H121) .. controls (6.5,2,-2) and (7.5,2,-2) .. (H121) {}; \draw[->,dotted] (7,0,0) -- (12,0,0) {}; \draw[->,dotted] (7,0,0) -- (7,5,0) {}; \draw[->,dotted] (7,0,0) -- (7,0,-12) {}; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (10,0,-6) -- (6,0,-6) -- (6,0,2) -- (10,0,2) -- (10,0,-6) node [sloped,above,near start,opacity=0.5] {slices $(1,\cdot )$} ; \draw[fill=red,draw=red,opacity=.2,very thin,line join=round] (10,2,-6) -- (6,2,-6) -- (6,2,2) -- (10,2,2) -- (10,2,-6) node [sloped,above,near start,opacity=0.5] {slices $(2,\cdot )$} ; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Les graphes G_1 et G_2
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture} \node (A1a) at (1,1) {$1_{a}$}; \node (A2a) at (3,1) {$2_{a}$}; \node (A1b) at (1,3) {$1_{b}$}; \node (A2b) at (3,3) {$2_{b}$}; \draw[->,blue] (A1a) .. controls (1.5,2) and (2.5,2) .. (A2a) {}; \draw[->,blue] (A2a) .. controls (2.5,0) and (3.5,0) .. (A2a) {}; \draw[->,blue] (A1b) .. controls (1.5,4) and (2.5,4) .. (A2b) {}; \draw[->,blue] (A1b) .. controls (0.5,2) and (1.5,2) .. (A1b) {}; \draw[dashed,blue] (0,0) -- (0,4) {}; \draw[dashed,blue] (0,4) -- (4,4) {}; \draw[dashed,blue] (4,4) -- (4,0) {}; \draw[dashed,blue] (4,0) -- (0,0) {}; \draw[dotted,blue] (0,2) -- (4,2) {}; \node (G1) at (3.7,3.7) {\textcolor{blue}{$F_{c}$}}; \node (1a) at (7,1) {$1_{a}$}; \node (2a) at (9,1) {$2_{a}$}; \node (1b) at (7,3) {$1_{b}$}; \node (2b) at (9,3) {$2_{b}$}; \draw[->,red] (1a) .. controls (7.5,2) and (8.5,2) .. (2a) {}; \draw[->,red] (2a) .. controls (8.5,0) and (9.5,0) .. (2a) {}; \draw[->,red] (1b) .. controls (7.5,4) and (8.5,4) .. (2b) {}; \draw[->,red] (1b) .. controls (6.5,2) and (7.5,2) .. (1b) {}; \draw[dashed,red] (6,0) -- (6,4) {}; \draw[dashed,red] (6,4) -- (10,4) {}; \draw[dashed,red] (10,4) -- (10,0) {}; \draw[dashed,red] (10,0) -- (6,0) {}; \draw[dashed,red] (6,2) -- (10,2) {}; \node (Fa) at (9.6,1.6) {\textcolor{red}{$\frac{1}{2}F_{a}$}}; \node (Fb) at (9.6,3.6) {\textcolor{red}{$\frac{1}{2}F_{b}$}}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Examples of sliced thick graphs: 12 F + 3 G and F_a+F_b
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture} \node (A1) at (0,0) {$1_{1}$}; \node (B1) at (0,2) {$1_{2}$}; \node (C1) at (0,4) {$1_{3}$}; \node (A2) at (2,0) {$2_{1}$}; \node (B2) at (2,2) {$2_{2}$}; \node (C2) at (2,4) {$2_{3}$}; \node (A3) at (4,0) {$3_{1}$}; \node (B3) at (4,2) {$3_{2}$}; \node (C3) at (4,4) {$3_{3}$}; \draw[->,blue] (A1) -- (B2) {}; \draw[->,blue] (B2) .. controls (1.5,3) and (2.5,3) .. (B2) {}; \draw[->,blue] (A2) .. controls (2.5,-1) and (3.5,-1) .. (A3) {}; \draw[->,blue] (B3) -- (A2) {}; \draw[->,blue] (C1) .. controls (1,5) and (3,5) .. (C3) {}; \draw[->,blue] (C3) .. controls (3.5,3) and (2.5,3) .. (C2) {}; \draw[-,dashed,blue] (-1,-1) -- (-1,5) {}; \draw[-,dashed,blue] (-1,-1) -- (5,-1) {}; \draw[-,dashed,blue] (5,-1) -- (5,5) {}; \draw[-,dashed,blue] (5,5) -- (-1,5) {}; \node (F) at (4.6,4.6) {\textcolor{blue}{$\frac{1}{2}F$}}; \node (F) at (4.6,2.7) {\textcolor{blue}{$3G$}}; \draw[-,dashed,blue] (-1,3) -- (5,3) {}; \draw[-,dotted,blue] (-1,1) -- (5,1) {}; \node (1a) at (7,1) {$1_{a}$}; \node (2a) at (9,1) {$2_{a}$}; \node (1b) at (7,3) {$1_{b}$}; \node (2b) at (9,3) {$2_{b}$}; \draw[->,red] (1a) .. controls (7.5,2) and (8.5,2) .. (2a) {}; \draw[->,red] (2a) .. controls (8.5,0) and (9.5,0) .. (2a) {}; \draw[->,red] (1b) .. controls (7.5,4) and (8.5,4) .. (2b) {}; \draw[->,red] (1b) .. controls (6.5,2) and (7.5,2) .. (1b) {}; \draw[dashed,red] (6,0) -- (6,4) {}; \draw[dashed,red] (6,4) -- (10,4) {}; \draw[dashed,red] (10,4) -- (10,0) {}; \draw[dashed,red] (10,0) -- (6,0) {}; \draw[dashed,red] (6,2) -- (10,2) {}; \node (Fa) at (9.7,1.7) {\textcolor{red}{$F_{a}$}}; \node (Fb) at (9.7,3.7) {\textcolor{red}{$F_{b}$}}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
The graph of a contraction project
\documentclass[a4paper]{article} \usepackage[applemac]{inputenc} \usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools} \begin{document} \begin{tikzpicture}[x=0.72cm,y=0.72cm] \node (A1) at (0,0) {$1_{1}$}; \node (B1) at (1.5,0) {$2_{1}$}; \node (C1) at (3,0) {$3_{1}$}; \node (D1) at (4.5,0) {$4_{1}$}; \node (E1) at (6,0) {$5_{1}$}; \node (F1) at (7.5,0) {$6_{1}$}; \node (G1) at (9,0) {$7_{1}$}; \node (H1) at (10.5,0) {$8_{1}$}; \node (I1) at (12,0) {$9_{1}$}; \node (A2) at (0,2) {$1_{2}$}; \node (B2) at (1.5,2) {$2_{2}$}; \node (C2) at (3,2) {$3_{2}$}; \node (D2) at (4.5,2) {$4_{2}$}; \node (E2) at (6,2) {$5_{2}$}; \node (F2) at (7.5,2) {$6_{2}$}; \node (G2) at (9,2) {$4_{2}$}; \node (H2) at (10.5,2) {$5_{2}$}; \node (I2) at (12,2) {$6_{2}$}; \draw[<->,blue] (A2) -- (D1) {}; \draw[<->,blue] (B2) -- (E1) {}; \draw[<->,blue] (C2) -- (F1) {}; \draw[<->,blue] (A1) .. controls (2,-1) and (10,-1) .. (I1) {}; \draw[<->,blue] (B1) .. controls (3.5,-0.8) and (8.5,-0.8) .. (H1) {}; \draw[<->,blue] (C1) .. controls (5,-0.6) and (7,-0.6) .. (G1) {}; \draw[opacity=0.2,fill=blue] (-1,-1) -- (13,-1) -- (13,3) -- (-1,3) -- (-1,-1) {}; \draw[dashed,blue] (-1,-1) -- (13,-1) {}; \draw[dashed,blue] (13,-1) -- (13,3) {}; \draw[dashed,blue] (13,3) -- (-1,3) {}; \draw[dashed,blue] (-1,3) -- (-1,-1) {}; \draw[dotted,blue] (-1,1) -- (13,1) {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1094
arxiv
2014-07-09T02:08:35
Semi-triangles of Type A and Type B respectively.
\documentclass[11pt]{article} \usepackage{amsmath, amsthm, amssymb, enumerate} \usepackage{tikz} \usetikzlibrary{decorations,decorations.pathmorphing} \begin{document} \begin{tikzpicture} % Intervals \foreach \a / \t in { 70/I_r', 180/I_q', 270/I_p' } { \draw (\a-15:24mm) -- (\a-15:26mm); \draw (\a+15:24mm) -- (\a+15:26mm); \draw (\a-15:26mm) arc (\a-15:\a+15:26mm); \draw (\a:31mm) node {{$\t$}}; } % Semi triangle \draw [fill=black] (60:25mm) circle (0.5mm); \draw [fill=black] (80:25mm) circle (0.5mm); \draw (60:29mm) node {$z_2$}; \draw (80:29mm) node {$z_1$}; \draw [fill=black] (170:25mm) circle (0.5mm); \draw [fill=black] (190:25mm) circle (0.5mm); \draw (170:29mm) node {$y_2$}; \draw (190:29mm) node {$y_1$}; \draw [fill=black] (270:25mm) circle (0.5mm); \draw [fill=black] (280:25mm) circle (0.5mm); \draw (260:29mm) node {$x_2$}; \draw (280:29mm) node {$x_1$}; \draw (80:25mm) -- (270:25mm); \draw (60:25mm) -- (170:25mm); \draw (190:25mm) -- (280:25mm); % Circle \draw (0:25mm) arc (0:360:25mm); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.3334
arxiv
2011-11-09T02:01:10
Constructing semi-triangles, Type A and B, respectively.
\documentclass[11pt]{article} \usepackage{amsmath, amsthm, amssymb, enumerate} \usepackage{tikz} \usetikzlibrary{decorations,decorations.pathmorphing} \begin{document} \begin{tikzpicture} % Intervals \foreach \a / \t / \s in { 180/L_{q_2}/M_{q_2}, 290/L_{q_1}/M_{q_1}, 45/L_{p}/M_{p} } { \draw (\a-15:24mm) -- (\a-15:26mm); \draw (\a:24mm) -- (\a:26mm); \draw (\a+15:24mm) -- (\a+15:26mm); \draw (\a-15:26mm) arc (\a-15:\a+15:26mm); \draw (\a-8:30mm) node {{$\t$}}; \draw (\a+8:30mm) node {{$\s$}}; } \draw (5:24mm) -- (5:26mm); \draw (25:24mm) -- (25:26mm); \draw (5:26mm) arc (5:25:26mm); \draw (15:30mm) node {$I_i'$}; % Semi triangle \draw [fill=black] (170:25mm) circle (0.5mm); \draw [fill=black] (190:25mm) circle (0.5mm); \draw [fill=black] (280:25mm) circle (0.5mm); \draw [fill=black] (300:25mm) circle (0.5mm); \draw [fill=black] (50:25mm) circle (0.5mm); \draw [fill=black] (55:25mm) circle (0.5mm); \draw (45:23mm) node {$v_2$}; \draw (60:23mm) node {$v_1$}; \draw (190:25mm) -- (50:25mm); \draw (170:25mm) -- (280:25mm); \draw (300:25mm) -- (55:25mm); % Circle \draw (0:25mm) arc (0:360:25mm); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.3334
arxiv
2011-11-09T02:01:10
Intervals I_i, and the type of edges in the graph H.
\documentclass[11pt]{article} \usepackage{amsmath, amsthm, amssymb, enumerate} \usepackage{tikz} \usetikzlibrary{decorations,decorations.pathmorphing} \begin{document} \begin{tikzpicture} % Circle \draw [thick] (0:25mm) arc (0:360:25mm); % Intervals \foreach \a / \b / \t / \c in { 20/140/Red/20, 200/320/Blue/20 } { \draw (\a-15:24mm) -- (\a-15:26mm); \draw (\a+15:24mm) -- (\a+15:26mm); \draw (\a-15:26mm) arc (\a-15:\a+15:26mm); \draw (\b-15:24mm) -- (\b-15:26mm); \draw (\b+15:24mm) -- (\b+15:26mm); \draw (\b-15:26mm) arc (\b-15:\b+15:26mm); \draw (\a+60:\c mm) node {{\t}}; } % Red \draw [fill=black] (10:25mm) circle (0.5mm); \draw [fill=black] (30:25mm) circle (0.5mm); \draw (10:29 mm) node {$x_2$}; \draw (30:29 mm) node {$x_1$}; \draw [fill=black] (130:25mm) circle (0.5mm); \draw [fill=black] (150:25mm) circle (0.5mm); \draw (130:29 mm) node {$y_2$}; \draw (150:29 mm) node {$y_1$}; \draw (10:25mm) -- (130:25mm); \draw (30:25mm) -- (150:25mm); % Blue \draw [fill=black] (190:25mm) circle (0.5mm); \draw [fill=black] (210:25mm) circle (0.5mm); \draw (190:29 mm) node {$y_2$}; \draw (210:29 mm) node {$y_1$}; \draw [fill=black] (310:25mm) circle (0.5mm); \draw [fill=black] (330:25mm) circle (0.5mm); \draw (310:29 mm) node {$x_2$}; \draw (330:29 mm) node {$x_1$}; \draw (190:25mm) -- (330:25mm); \draw (210:25mm) -- (310:25mm); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.3334
arxiv
2011-11-09T02:01:10
Two overlapping semi-triangles which give a contradicting cycle.
\documentclass[11pt]{article} \usepackage{amsmath, amsthm, amssymb, enumerate} \usepackage{tikz} \usetikzlibrary{decorations,decorations.pathmorphing} \begin{document} \begin{tikzpicture} % Intervals \foreach \a / \t in { 15/I_r', 150/I_q', 270/I_p', 240/I_i', 340/I_j', 300/I_k' } { \draw (\a-10:24mm) -- (\a-10:26mm); \draw (\a+10:24mm) -- (\a+10:26mm); \draw (\a-10:26mm) arc (\a-10:\a+10:26mm); \draw (\a:29mm) node {{$\t$}}; } % Semi triangles \draw [fill=black] (10:25mm) circle (0.5mm); \draw [fill=black] (20:25mm) circle (0.5mm); \draw [fill=black] (145:25mm) circle (0.5mm); \draw [fill=black] (155:25mm) circle (0.5mm); \draw [fill=black] (270:25mm) circle (0.5mm); \draw [fill=black] (275:25mm) circle (0.5mm); \draw (20:25mm) -- (275:25mm); \draw (10:25mm) -- (145:25mm); \draw (155:25mm) -- (270:25mm); \draw [fill=black] (295:25mm) circle (0.5mm); \draw [fill=black] (305:25mm) circle (0.5mm); \draw [fill=black] (335:25mm) circle (0.5mm); \draw [fill=black] (345:25mm) circle (0.5mm); \draw [fill=black] (240:25mm) circle (0.5mm); \draw [fill=black] (245:25mm) circle (0.5mm); \draw (305:25mm) -- (245:25mm); \draw (295:25mm) -- (335:25mm); \draw (345:25mm) -- (240:25mm); % Circle \draw (20:25mm) arc (20:145:25mm); \draw [dotted] (145:25mm) arc (145:155:25mm); \draw (155:25mm) arc (155:240:25mm); \draw [dotted] (240:25mm) arc (240:245:25mm); \draw (245:25mm) arc (245:270:25mm); \draw [dotted] (270:25mm) arc (270:275:25mm); \draw (275:25mm) arc (275:295:25mm); \draw [dotted] (295:25mm) arc (295:305:25mm); \draw (305:25mm) arc (305:335:25mm); \draw [dotted] (335:25mm) arc (335:345:25mm); \draw (345:25mm) arc (345:360:25mm); \draw (0:25mm) arc (0:10:25mm); \draw [dotted] (10:25mm) arc (10:20:25mm); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.3334
arxiv
2011-11-09T02:01:10
Contradicting cycles for a red edge, and two crossing blue edges in H.
\documentclass[11pt]{article} \usepackage{amsmath, amsthm, amssymb, enumerate} \usepackage{tikz} \usetikzlibrary{decorations,decorations.pathmorphing} \begin{document} \begin{tikzpicture} % Intervals \foreach \a/\j/\k in { 0/y_2/y_1, 70/y_4/y_3, 180/x_2/x_1, 270/x_4/x_3 } { \draw (\a-15:24mm) -- (\a-15:26mm); \draw (\a-12:29mm) node {{$\j$}}; \draw (\a+15:24mm) -- (\a+15:26mm); \draw (\a+12:29mm) node {{$\k$}}; \draw (\a-15:26mm) arc (\a-15:\a+15:26mm); } % Two blue \draw [fill=black] (-10:25mm) circle (0.5mm); \draw [fill=black] (10:25mm) circle (0.5mm); \draw [fill=black] (60:25mm) circle (0.5mm); \draw [fill=black] (80:25mm) circle (0.5mm); \draw [fill=black] (170:25mm) circle (0.5mm); \draw [fill=black] (190:25mm) circle (0.5mm); \draw [fill=black] (260:25mm) circle (0.5mm); \draw [fill=black] (280:25mm) circle (0.5mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (-10:25mm) -- (190:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (10:25mm) -- (170:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (60:25mm) -- (280:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (80:25mm) -- (260:25mm); % Circle \draw (-10:25mm) arc (-10:10:25mm); \draw (60:25mm) arc (60:80:25mm); \draw (170:25mm) arc (170:190:25mm); \draw (260:25mm) arc (260:280:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (10:25mm) arc (10:60:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (80:25mm) arc (80:170:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (190:25mm) arc (190:260:25mm); \draw [thick, decorate, decoration={snake, amplitude=.2mm, segment length=1mm}] (280:25mm) arc (280:350:25mm); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1104.3334
arxiv
2011-11-09T02:01:10
Illustration of the proof of Lemma~lemma:bad-event; the situation in G is on the left, and the situation in G' is on the right.
\documentclass[11pt,a4paper]{article} \usepackage{amsmath,amsbsy,bm,latexsym,enumerate} \usepackage[utf8x]{inputenc} \usepackage{graphicx,epsfig,color} \usepackage{tikz} \usetikzlibrary{calc} \usetikzlibrary{intersections} \begin{document} \begin{tikzpicture} \begin{scope} \node[draw,shape=circle] (V) at (0,0) {$V\phantom{'}$}; \node[draw,shape=circle] (V1) at (4,1.5) {$V_1\phantom{'}$}; \node[draw,shape=circle] (V2) at (4,-1.5) {$V_2\phantom{'}$}; \draw (V) -- node[above] {$e_1$} (V1); \draw (V) -- node[below] {$e_2$} (V2); \end{scope} \begin{scope}[shift={(6,0)}] \node[draw,shape=circle] (Vp) at (0,0) {$V'$}; \node[draw,shape=circle] (Vp1) at (4,1.5) {$V_1'$}; \node[draw,shape=circle] (Vp2) at (4,-1.5) {$V_2'$}; \draw (Vp) -- node[above] {$e_1$} (Vp1); \draw (Vp) -- node[below] {$e_2$} (Vp2); \foreach \x in {0.8,1.2,...,3.2} \fill ($(\x,0) + {\x}*(0,0.375)$) circle (2pt); \fill ($(2.4,0) + 2.4*(0,0.375)$) circle (3pt) node [below right] {$W_1$}; \foreach \x in {0.66,1.33,...,3.66} \fill ($(\x,0) + {\x}*(0,-0.375)$) circle (2pt); \fill ($(1.33,0) + 1.33*(0,-0.375)$) circle (3pt) node [above right] {$W_2$}; \end{scope} \end{tikzpicture} \end{document}
https://arxiv.org/abs/1203.1525
arxiv
2012-03-08T02:03:19
Kin(4)
\documentclass[12pt,a4paper,oneside,openright]{book} \usepackage{amsmath} \usepackage{amssymb, amsthm, paralist, mathrsfs} \usepackage{tikz} \usetikzlibrary{calc, shapes.geometric} \begin{document} \begin{tikzpicture}[thin,line join=round] \coordinate (o) at (0,0); \coordinate[label=$V_1$] (v1) at (150:3); \coordinate[label=$V_2$] (v2) at (88:3); \coordinate[label=$V_3$] (v3) at (5:3); \coordinate[label=0:$V_4$] (v4) at (-105:2); \coordinate (a) at ($(o)!0.67!(v1)$); \coordinate (b) at ($(o)!0.33!(v1)$); \coordinate (c) at ($(o)!0.67!(v4)$); \coordinate (d) at ($(o)!0.33!(v4)$); \coordinate[label=0:$e$] (e) at ($(o)!0.67!(v2)$); \coordinate[label=0:$f$] (f) at ($(o)!0.33!(v2)$); \coordinate (g) at ($(o)!0.67!(v3)$); \coordinate (h) at ($(o)!0.33!(v3)$); \draw (v1) -- (o) -- (v3); \draw (v2) -- (o) -- (v4); \foreach \p in {a, b, c, d, e, f, g, h} \fill[black] (\p) circle (3pt); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.0500
arxiv
2014-01-03T02:14:13
Kin(5)
\documentclass[12pt,a4paper,oneside,openright]{book} \usepackage{amsmath} \usepackage{amssymb, amsthm, paralist, mathrsfs} \usepackage{tikz} \usetikzlibrary{calc, shapes.geometric} \begin{document} \begin{tikzpicture}[thin,line join=round] \coordinate (a) at (0,0); \coordinate (b) at (5,0); \coordinate (c) at (0,3); \coordinate (d) at (5,3); \coordinate (o) at (intersection of c--b and a--d); \coordinate[label=$V_2$] (v2) at ($(o) + (1.5,2.5)$); \coordinate[label=0:$e$] (e) at ($(o)!0.8!(v2)$); \coordinate[label=0:$f$] (f) at ($(o)!0.45!(v2)$); \coordinate (g) at ($(o) + (-0.3,0.8)$); \coordinate (h) at ($(g) + (-0.4, 0.4)$); \coordinate (i) at ($(g) + (0.4, 0.4)$); \coordinate (j) at ($(o) + (0,-0.8)$); \coordinate (k) at ($(j) + (-0.7, -0.4)$); \coordinate (l) at ($(j) + (0.7, -0.4)$); \coordinate (m) at ($(o) + (1.2, 0)$); \coordinate (n) at ($(m) + (0.7, 0.4)$); \coordinate (p) at ($(m) + (0.7, -0.4)$); \coordinate (q) at ($(o) + (-1.2, 0)$); \coordinate (r) at ($(q) + (-0.7, 0.4)$); \coordinate (s) at ($(q) + (-0.7, -0.4)$); \draw (a) -- (b) -- (d) -- (c) -- (a) -- (d); \draw (c) -- (b); \draw (o) -- (v2); \foreach \p in {e, f, g, h, i, j, k, l, m, n, p, q, r, s} \fill[black] (\p) circle (3pt); \node at ($(c)!0.5!(d) + (0, 0.3)$) {$V_1$}; \node at ($(d)!0.5!(b) + (0.3, 0)$) {$V_3$}; \node at ($(b)!0.5!(a) + (0, -0.3)$) {$V_4$}; \node at ($(c)!0.5!(a) + (-0.3, 0)$) {$V_5$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1401.0500
arxiv
2014-01-03T02:14:13
Vector fields and
\documentclass{article} \usepackage{amsmath, amsthm} \usepackage{amssymb} \usepackage{color} \usepackage{tikz} \usetikzlibrary{intersections} \begin{document} \begin{tikzpicture}[scale=0.85] \draw (1, 4) to [out=-50,in=180] (6, 1); \draw (6, 1) to [out=0, in=-45] (6, 6.5); \draw (6, 6.5) to [out=135, in=45] (1, 8); \draw (1, 8) to [out=-135, in=130] (1, 4); \draw (0, 5.192) -- (4.356, 0); \draw (3.7, 1.55) -- (1, 4) --(2, 8) -- (4, 0.425); \draw (1, 4) -- (3.1, 3.834); \draw (0.8, 4.238) arc [radius=0.3, start angle=130, end angle= 75]; \node [right] at (2,8) {$x$}; \node [left] at (1.5,6) {$\theta_x$}; \node [right] at (2.6,6) {$\tilde{\theta}_x$}; \node [below left] at (1,4) {$A=\theta_x(t_+)$}; \node [right] at (3.7,1.7) {$B=\tilde{\theta}_x(\tilde{t}_+)$}; \node [right] at (3.1, 3.834) {$C=\tilde{\theta}_x(t_+)$}; \node [below left] at (4,0.425) {$D$}; \node [above] at (0.9,4.3) {$\phi_1$}; \node at (5.5, 5.5) {$\Omega$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1303.2135
arxiv
2013-03-12T01:00:22
Regions in the global space . The left and right sides are identified. The white square: a copy of the Minkowski space. Black: a double cone O. Dark gray: the spacelike complement O' of the double cone in the Minkowski space. Light gray + dark gray: the causal complement O^ in .
\documentclass[12pt]{article} \usepackage{a4wide, amsmath,amsthm,amsfonts,amscd,amssymb,eucal,bbm,mathrsfs, enumerate} \usepackage{graphicx,tikz} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture}[scale=0.6, line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm] \clip(-5,-5) rectangle (10,7); \fill[fill=black,fill opacity=1.0] (-1,1) -- (1,-1) -- (3,1) -- (1,3) -- cycle; \fill[line width=1.6pt,fill=black,fill opacity=0.5] (4,2) -- (3,1) -- (4,0) -- (5,1) -- cycle; \fill[line width=1.6pt,fill=black,fill opacity=0.35] (4,0) -- (6,-2) -- (7,-1) -- (5,1) -- cycle; \fill[fill=black,fill opacity=0.5] (-2,2) -- (-2,0) -- (-1,1) -- cycle; \fill[fill=black,fill opacity=0.5] (7,3) -- (5,1) -- (7,-1) -- (8,0) -- (8,2) -- cycle; \fill[fill=black,fill opacity=0.25] (4,2) -- (5,1) -- (7,3) -- (6,4) -- cycle; \draw [line width=1.6pt] (8,-5) -- (8,7); \draw [line width=2.4pt] (0,6)-- (8,-2); \draw (-1,1)-- (1,3); \draw (1,3)-- (3,1); \draw (3,1)-- (1,-1); \draw (1,-1)-- (-1,1); \draw (-1,1)-- (1,-1); \draw (1,-1)-- (3,1); \draw (3,1)-- (1,3); \draw (1,3)-- (-1,1); \draw [line width=1.6pt] (4,2)-- (3,1); \draw [line width=1.6pt] (3,1)-- (4,0); \draw [line width=1.6pt] (4,0)-- (5,1); \draw [line width=1.6pt] (5,1)-- (4,2); \draw [line width=1.6pt] (4,0)-- (6,-2); \draw [line width=1.6pt] (6,-2)-- (7,-1); \draw [line width=1.6pt] (7,-1)-- (5,1); \draw [line width=1.6pt] (5,1)-- (4,0); \draw [line width=2.4pt] (0,-4)-- (8,4); \draw [line width=2.4pt] (0,-4)-- (-2,-2); \draw [line width=2.4pt] (-2,4)-- (0,6); \draw [line width=1.6pt] (-2,-5) -- (-2,7); \draw [line width=1.6pt] (-1,1)-- (-2,2); \draw [line width=1.6pt] (-1,1)-- (-2,0); \draw [line width=1.6pt] (7,-1)-- (8,0); \draw [line width=1.6pt] (8,2)-- (7,3); \draw [line width=1.6pt] (7,3)-- (6,4); \draw [line width=1.6pt] (6,4)-- (4,2); \draw (-2,2)-- (-2,0); \draw (-2,0)-- (-1,1); \draw (-1,1)-- (-2,2); \draw (7,3)-- (5,1); \draw (5,1)-- (7,-1); \draw (7,-1)-- (8,0); \draw (8,0)-- (8,2); \draw (8,2)-- (7,3); \draw (4,2)-- (5,1); \draw (5,1)-- (7,3); \draw (7,3)-- (6,4); \draw (6,4)-- (4,2); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1310.4744
arxiv
2015-02-09T02:12:18
The global space projected on the two-dimensional cylinder. The region surrounded by thick lines is a copy of the Minkowski space.
\documentclass[12pt]{article} \usepackage{a4wide, amsmath,amsthm,amsfonts,amscd,amssymb,eucal,bbm,mathrsfs, enumerate} \usepackage{graphicx,tikz} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture}[scale=0.8, line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm] \clip(-4,-2) rectangle (2,6); \draw [line width=1.2pt] (-3,-2) -- (-3,6); \draw [line width=1.2pt] (1,-2) -- (1,6); \draw [rotate around={0:(-1,5)},line width=1.2pt] (-1,5) ellipse (2cm and 0.87cm); \draw [rotate around={0:(-1,0)},line width=1.2pt] (-1,0) ellipse (2cm and 0.87cm); \draw [line width=1.2pt,dash pattern=on 2pt off 2pt] (-0.49,5.84)-- (-0.51,0.85); \draw [line width=1.2pt,dash pattern=on 2pt off 2pt] (-1.5,-0.84)-- (-1.5,4.16); \draw [line width=2.8pt] (-1.5,4.16)-- (-1.77,4); \draw [line width=2.8pt] (-1.77,4)-- (-2.07,3.87); \draw [line width=2.8pt] (-2.07,3.87)-- (-2.39,3.78); \draw [line width=2.8pt] (-2.39,3.78)-- (-2.71,3.71); \draw [line width=2.8pt] (-2.71,3.71)-- (-3,3.69); \draw [line width=2.8pt,dotted] (-3,3.69)-- (-2.58,3.68); \draw [line width=2.8pt,dotted] (-2.58,3.68)-- (-2.22,3.64); \draw [line width=2.8pt,dotted] (-2.22,3.64)-- (-1.69,3.57); \draw [line width=2.8pt,dotted] (-1.69,3.57)-- (-1.06,3.47); \draw [line width=2.8pt,dotted] (-1.06,3.47)-- (-0.5,3.34); \draw [line width=2.8pt,dotted] (-0.5,3.34)-- (-0.09,3.24); \draw [line width=2.8pt,dotted] (-0.09,3.24)-- (0.23,3.12); \draw [line width=2.8pt,dotted] (0.23,3.12)-- (0.54,3); \draw [line width=2.8pt,dotted] (0.54,3)-- (0.78,2.9); \draw [line width=2.4pt,dotted] (0.78,2.9)-- (0.99,2.76); \draw [line width=2.8pt] (-1.5,-0.84)-- (-1.24,-0.67); \draw [line width=2.8pt] (-1.24,-0.67)-- (-0.97,-0.47); \draw [line width=2.8pt] (-0.97,-0.47)-- (-0.7,-0.24); \draw [line width=2.8pt] (-0.7,-0.24)-- (-0.49,-0.01); \draw [line width=2.8pt] (-0.49,-0.01)-- (-0.21,0.32); \draw [line width=2.8pt] (-0.21,0.32)-- (0.17,0.91); \draw [line width=2.8pt] (0.17,0.91)-- (0.52,1.49); \draw [line width=2.8pt] (0.52,1.49)-- (0.78,2.11); \draw [line width=2.8pt] (0.78,2.11)-- (0.99,2.76); \draw [line width=2.8pt] (-1.5,-0.84)-- (-1.94,-0.31); \draw [line width=2.8pt] (-1.94,-0.31)-- (-2.29,0.19); \draw [line width=2.8pt] (-2.29,0.19)-- (-2.63,0.75); \draw [line width=2.8pt] (-2.63,0.75)-- (-2.85,1.23); \draw [line width=2.8pt] (-2.85,1.23)-- (-3,1.68); \draw [line width=2.8pt,dotted] (-3,1.68)-- (-2.46,2.18); \draw [line width=2.8pt,dotted] (-2.46,2.18)-- (-1.92,2.59); \draw [line width=2.8pt,dotted] (-1.92,2.59)-- (-1.33,2.95); \draw [line width=2.8pt,dotted] (-1.33,2.95)-- (-0.89,3.17); \draw [line width=2.8pt,dotted] (-0.89,3.17)-- (-0.5,3.34); \draw [line width=2.8pt,dotted] (-0.5,3.34)-- (-0.11,3.46); \draw [line width=2.8pt,dotted] (-0.11,3.46)-- (0.26,3.55); \draw [line width=2.8pt,dotted] (0.26,3.55)-- (0.59,3.59); \draw [line width=2.8pt,dotted] (0.59,3.59)-- (1,3.61); \draw [line width=2.8pt] (-1.5,4.16)-- (-1.21,3.96); \draw [line width=2.8pt] (-1.21,3.96)-- (-0.96,3.84); \draw [line width=2.8pt] (-0.96,3.84)-- (-0.66,3.74); \draw [line width=2.8pt] (-0.66,3.74)-- (-0.32,3.68); \draw [line width=2.8pt] (-0.32,3.68)-- (0.21,3.63); \draw [line width=2.8pt] (0.21,3.63)-- (1,3.61); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1310.4744
arxiv
2015-02-09T02:12:18
How asymptotic fields are constructed. A local observable in a dark gray region is taken in the region between the cones indicated by dotted lines.
\documentclass[12pt]{article} \usepackage{a4wide, amsmath,amsthm,amsfonts,amscd,amssymb,eucal,bbm,mathrsfs, enumerate} \usepackage{graphicx,tikz} \usetikzlibrary{arrows} \begin{document} \begin{tikzpicture}[scale=0.5, line cap=round,line join=round,>=triangle 45,x=1.0cm,y=1.0cm] \clip(-15,-9) rectangle (15,9); \draw [fill=black,fill opacity=0.75] (1,-6) circle (1.41cm); \fill[fill=black,fill opacity=0.1] (1,2) -- (13,-10) -- (-11,-10) -- cycle; \fill[fill=black,fill opacity=0.1] (1,2) -- (18,19) -- (-16,19) -- cycle; \draw [rotate around={0:(1,6.5)},line width=1.6pt] (1,6.5) ellipse (4.26cm and 1.46cm); \draw [rotate around={0:(1,-2.5)},line width=1.6pt] (1,-2.5) ellipse (4.26cm and 1.46cm); \draw [line width=1.6pt] (-3,-2)-- (5,6); \draw [line width=1.6pt] (-3,6)-- (5,-2); \draw [line width=1.6pt,dash pattern=on 6pt off 6pt,domain=-15.0:-2.9999999999999947] plot(\x,{(-3--1*\x)/-1}); \draw [line width=1.6pt,dash pattern=on 6pt off 6pt,domain=5.0:15.0] plot(\x,{(--1--1*\x)/1}); \draw [line width=1.6pt,dash pattern=on 6pt off 6pt,domain=-15.0:-3.0] plot(\x,{(-1-1*\x)/-1}); \draw [line width=1.6pt,dash pattern=on 6pt off 6pt,domain=5.0:15.0] plot(\x,{(--3-1*\x)/1}); \draw [line width=1.2pt,dotted,domain=1.0:15.0] plot(\x,{(-9--1*\x)/1}); \draw [line width=1.2pt,dotted,domain=-15.0:1.0] plot(\x,{(--7--1*\x)/-1}); \draw [line width=1.2pt,dotted,domain=-15.0:2.0] plot(\x,{(--1.5--0.5*\x)/-0.5}); \draw [line width=1.2pt,dotted,domain=0.0:15.0] plot(\x,{(-2.5--0.5*\x)/0.5}); \draw [rotate around={0:(1,2)},line width=1.2pt,dotted] (1,2) ellipse (5.52cm and 2.35cm); \draw (1,2)-- (13,-10); \draw (13,-10)-- (-11,-10); \draw (-11,-10)-- (1,2); \draw (1,2)-- (18,19); \draw (18,19)-- (-16,19); \draw (-16,19)-- (1,2); \draw [shift={(1,-3)},line width=0.4pt] plot[domain=4.28:5.15,variable=\t]({1*3.36*cos(\t r)+0*3.36*sin(\t r)},{0*3.36*cos(\t r)+1*3.36*sin(\t r)}); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1310.4744
arxiv
2015-02-09T02:12:18
Labelled Moment Polytope and Stacky Fan of C P(1,k).
\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns,snakes,arrows} \usepackage{latexsym, amsmath, amsthm, graphics, amsxtra, pb-diagram} \begin{document} \begin{tikzpicture} \draw (-1,0) node[left] {1} -- (1,0) node[right] {k}; \draw (0, 0) node[above] {0}; \draw (0, -0.2) node[below] {Labelled Polytope}; \draw[-triangle 90] (5,0) node[above] {0} -- (4,0) node[below] {-1}; \draw (6, -0.2) node[below] {Stacky Fan}; \draw (5,0) -- (6.2,0); \draw[dashed] (6.2,0) -- (6.8,0); \draw[-triangle 90] (6.8,0) -- (8,0) node[below] {k}; \draw (6,0) node[above] {$v$}; \fill[black, fill opacity=0] (0,0) circle (0.03); \fill[black, fill opacity=0] (-1,0) circle (0.05); \fill[black, fill opacity=0] (1,0) circle (0.05); \fill[black, fill opacity=0] (4,0) circle (0.05); \fill[black, fill opacity=0] (5,0) circle (0.05); \fill[black, fill opacity=0] (6,0) circle (0.05); \fill[black, fill opacity=0] (7,0) circle (0.05); \fill[black, fill opacity=0] (8,0) circle (0.05); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1211.3204
arxiv
2012-11-15T02:01:21
Labelled Moment Polytope and Stacky Fan of C P(a,b).
\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns,snakes,arrows} \usepackage{latexsym, amsmath, amsthm, graphics, amsxtra, pb-diagram} \begin{document} \begin{tikzpicture} \draw (-1,0) node[left] {a} -- (1,0) node[right] {b}; \draw[snake=brace, raise snake=3, mirror snake] (-1,0) -- (1,0); \draw (0, 0) node[above] {0}; \draw (0, -0.2) node[below] {$\lambda$}; \draw[-triangle 90] (6,0) node[below] {0} -- (3,0) node[below] {-a}; \draw[-triangle 90] (6,0) -- (10,0) node[below] {b}; \fill[black, fill opacity=0] (0,0) circle (0.03); \fill[black, fill opacity=0] (-1,0) circle (0.05); \fill[black, fill opacity=0] (1,0) circle (0.05); \fill[black, fill opacity=0] (3,0) circle (0.05); \fill[black, fill opacity=0] (4,0) circle (0.05); \fill[black, fill opacity=0] (5,0) circle (0.05); \fill[black, fill opacity=0] (6,0) circle (0.05); \fill[black, fill opacity=0] (7,0) circle (0.05); \fill[black, fill opacity=0] (8,0) circle (0.05); \fill[black, fill opacity=0] (9,0) circle (0.05); \fill[black, fill opacity=0] (10,0) circle (0.05); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1211.3204
arxiv
2012-11-15T02:01:21
Moment Polytope and Fan of F_2.
\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{tikz} \usetikzlibrary{patterns,snakes,arrows} \usepackage{latexsym, amsmath, amsthm, graphics, amsxtra, pb-diagram} \begin{document} \begin{tikzpicture} \draw (-6,0) node[below left] {$(-\frac{2}{3}\lambda,-\frac{1}{3}\lambda)$} -- (-4,0) node[below right] {$(\frac{4}{3}\lambda,-\frac{1}{3}\lambda)$} -- (-6,1) node[above left] {$(-\frac{2}{3}\lambda,\frac{2}{3}\lambda)$} -- cycle; \draw[snake=brace, raise snake=10, mirror snake] (-6,0) -- (-4,0); \draw[snake=brace, raise snake=10] (-6,0) -- (-6,1); \draw[snake=brace, raise snake=10, mirror snake] (-4,0) -- (-6,1); \draw (-5,-0.5) node[below] {$2\lambda$}; \draw (-6.5,0.5) node[left] {$\lambda$}; \draw (-5,1) node[above right] {$\sqrt{5}\lambda$}; \draw[-triangle 90] (0,0) node[below right] {(0,0)} -- (-1,0) node[below] {$y_{1}$}; \draw[-triangle 90] (0,0) -- (0,-1) node[below right] {$y_{2}$}; \draw[-triangle 90] (0,0) -- (1,2) node[right] {$y_{3}$}; \draw (0,1) node[left] {$y_{4}$}; \fill[black, fill opacity=0] (-5.33,0.33) circle (0.03); \fill[black, fill opacity=0] (0,0) circle (0.05); \fill[black, fill opacity=0] (0,1) circle (0.05); \fill[black, fill opacity=0] (1,0) circle (0.05); \fill[black, fill opacity=0] (0,2) circle (0.05); \fill[black, fill opacity=0] (2,0) circle (0.05); \fill[black, fill opacity=0] (1,1) circle (0.05); \fill[black, fill opacity=0] (2,1) circle (0.05); \fill[black, fill opacity=0] (1,2) circle (0.05); \fill[black, fill opacity=0] (2,2) circle (0.05); \fill[black, fill opacity=0] (0,-1) circle (0.05); \fill[black, fill opacity=0] (1,-1) circle (0.05); \fill[black, fill opacity=0] (2,-1) circle (0.05); \fill[black, fill opacity=0] (-1,-1) circle (0.05); \fill[black, fill opacity=0] (-1,0) circle (0.05); \fill[black, fill opacity=0] (-1,1) circle (0.05); \fill[black, fill opacity=0] (-1,2) circle (0.05); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1211.3204
arxiv
2012-11-15T02:01:21
An interval process at time t.
\documentclass[a4paper, twoside]{memoir} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{positioning, fit, decorations.pathmorphing, calc} \tikzset{x=1em, y=1em, % small grid for situations >=latex} \usepackage[bookmarksnumbered, backref=page, colorlinks, linkcolor=black, citecolor=black, urlcolor=black, filecolor=black]{hyperref} \begin{document} \begin{tikzpicture}[ direct/.style={line width=.75ex}, somewhere/.style={direct, draw=shaded, decorate}, decoration={random steps, amplitude=1.5, segment length=5}, every pin edge/.style={<-}] \path ++(3,0) coordinate (a) ++(10,0) coordinate (a') ++(3,0) coordinate (end0); \draw[dashed] (0,0) -- (end0) node[right] {$t$}; \draw[direct] (a) -- node [above] {$I_t(i, j)$} (a'); \node at (a) [pin=-90:{$i$}] {}; \node at (a') [pin=-90:{$j-1$}] {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.0193
arxiv
2014-03-04T02:07:10
Two confluent reactions.
\documentclass[a4paper, twoside]{memoir} \usepackage[latin1]{inputenc} \usepackage[T1]{fontenc} \usepackage{amsmath} \usepackage{tikz} \usetikzlibrary{positioning, fit, decorations.pathmorphing, calc} \tikzset{x=1em, y=1em, % small grid for situations >=latex} \usepackage[bookmarksnumbered, backref=page, colorlinks, linkcolor=black, citecolor=black, urlcolor=black, filecolor=black]{hyperref} \begin{document} \begin{tikzpicture}[ direct/.style={line width=.75ex}, somewhere/.style={direct, draw=shaded, decorate}, decoration={random steps, amplitude=1.5, segment length=5}] \path coordinate (a1) ++(6, -2) coordinate (a2) +(0, 2) coordinate (b12) +(0, 4) coordinate (b22) +(1, 6) coordinate (c2) ++(7, -.25) coordinate (a3) +(-1.5, 4.5) coordinate (b13) +(0, 2) coordinate (b23) +(-1, 6) coordinate (c3) ++(6, 2) coordinate (a4); \coordinate (top) at ($(a1)!0.5!(a4) + (0, 7.5)$); \fill[gray!20, decorate, dashed, thin, draw=black] (a1) -- (a2) -- (a3) -- (a4) -- (top) -- (a1); \draw[direct, draw=gray!45] (a1) -- (b12) node [below] {$b_1$} -- (b13) -- (a4); \draw[direct, draw=gray!60] (a1) -- (b22) -- (b23) node [below] {$b_2$} -- (a4); \draw[direct, draw=gray!90] (a1) -- (c2) -- node [above] {$c$} (c3) -- (a4); \draw[direct] (a1) -- (a2) -- node [below] {$a$} (a3) -- (a4); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1403.0193
arxiv
2014-03-04T02:07:10
Elementary oriented plaquette.
\documentclass{article} \usepackage{amsmath,amssymb} \usepackage{tikz} \newcommand{\bde}{\boldsymbol{e}} \newcommand{\drawDiamond}[1]{ \shade[ball color=black] (#1) circle (0.08); } \newcommand{\bn}{\boldsymbol{n}} \begin{document} \begin{tikzpicture}[every node/.style={minimum size=1cm},scale=2] \begin{scope}[every node/.append style={xslant=0,yslant=-0.25},xslant=0,yslant=-0.25] \filldraw[fill=gray!20,fill opacity=0.5] (1.3,0.875) rectangle (0.8,1.375); \draw[thick,->] (0.8,0.875) -- (1.3,0.875); \node at (1.2,0.75) {$\bde_{i}$}; \draw[thick,->] (0.8,0.875) -- (0.8,1.375); \node at (0.7,1.25) {$\bde_{j}$}; \end{scope} %% circles %% \drawDiamond{0.8,0.675} \node[white] at (0.8,0.675) {$\bn$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1440
arxiv
2013-12-06T02:03:48
Elementary oriented cube.
\documentclass{article} \usepackage{amsmath,amssymb} \usepackage{tikz} \newcommand{\bde}{\boldsymbol{e}} \newcommand{\drawDot}[1]{ \shade[ball color=black] (#1) circle (0.08); } \newcommand{\bn}{\boldsymbol{n}} \begin{document} \begin{tikzpicture}[every node/.style={minimum size=1cm},scale=2] %%% back faces %%% %% left face %% \begin{scope}[every node/.append style={xslant=0,yslant=1},xslant=0,yslant=1] \filldraw[fill=gray!20,fill opacity=0.5] (0,1) rectangle (0.6,0); \end{scope} %% bottom face %% \begin{scope}[every node/.append style={xslant=1,yslant=-0.2},xslant=1,yslant=-0.2] \filldraw[fill=gray!50,fill opacity=0.5] (0,0) rectangle (1.25,0.6); \end{scope} %% back face %% \begin{scope}[every node/.append style={xslant=0,yslant=-0.25},xslant=0,yslant=-0.25] \filldraw[fill=gray!20,fill opacity=0.5] (0.6,0.75) rectangle (1.6,1.75); %%% Note that the central point in this grid is at 0.8,0.875 %%% \end{scope} %%% front faces %%% %% right face %% \begin{scope}[every node/.append style={xslant=0,yslant=1},xslant=0,yslant=1] \filldraw[fill=gray!20,fill opacity=0.5] (1,-0.25) rectangle (1.6,-1.25); \end{scope} %% top face %% \begin{scope}[every node/.append style={xslant=1,yslant=-0.2},xslant=1,yslant=-0.2] \filldraw[fill=gray!50,fill opacity=0.5] (-1,0.8) rectangle (0.25,1.4); \end{scope} %% front face %% \begin{scope}[every node/.append style={xslant=0,yslant=-0.25},xslant=0,yslant=-0.25] \filldraw[fill=gray!20,fill opacity=0.5] (0,0) rectangle (1,1); \end{scope} %% circles %% \draw[very thick,->] (0,0) -- (0,1); \node at (0,1.2) {$\bde_{j}$}; \draw[very thick,->] (0,0) -- (0.6,0.6); \node at (0.75,0.7) {$\bde_{i}$}; \draw[very thick,->] (0,0) -- (1,-0.25); \node at (1.2,-0.35) {$\bde_{k}$}; \drawDot{0,0} \node[white] at (0,0) {$\bn$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1440
arxiv
2013-12-06T02:03:48
Sch\"onhardt polyhedron obtained from an octahedron (on the left) by removing tetrahedra [ABB'C], [AA'B'C'], and [A'BCC'].
\documentclass[10pt,twoside,a4paper,reqno]{amsart} \usepackage[T1]{fontenc} \usepackage{enumerate,url,amsfonts,amsthm,amsmath,amssymb,amscd, color} \usepackage{tikz} \usetikzlibrary{calc} \newcommand{\coorshifting}{ \coordinate (AA) at ($(A)+(S1)$); \coordinate (AAp) at ($(Ap)+(S1)$); \coordinate (BB) at ($(B)+(S1)$); \coordinate (BBp) at ($(Bp)+(S1)$); \coordinate (CC) at ($(C)+(S1)$); \coordinate (CCp) at ($(Cp)+(S1)$); } \begin{document} \begin{tikzpicture}[z=-5.5,line join=bevel,scale=2]% \coordinate (Ap) at (-0.07,-0.05,-1); % A' \coordinate (Cp) at (-1,0.05,-0.15); % C' \coordinate (A) at (-0.07,-0.05,1); % A \coordinate (C) at (1,0.05,-0.15); % C \coordinate (B) at (0.05,1,0.25); % B \coordinate (Bp) at (0.05,-1,0.25); % B' \coordinate (S1) at (-0.5,0.3,0); \coorshifting \draw [fill opacity=0.7,fill=green!70!blue] (CC) -- (AAp) -- (BB) -- cycle; \draw (CC) -- (AAp) -- (CCp) -- cycle; \draw (CC) -- (BB) -- (CCp) -- cycle; \draw [fill opacity=0.7,fill=green!70!blue] (AAp) -- (BB) -- (CCp) -- cycle; \coordinate (S1) at (-0.6,-0.25,0); \coorshifting \draw (AA) -- (AAp) -- (BBp) -- cycle; \draw (AA) -- (AAp) -- (CCp) -- cycle; \draw [fill opacity=0.7,fill=gray!70!black] (AA) -- (BBp) -- (CCp) -- cycle; \node (z) at (0,0,0) [label=left:$0$]{}; \fill [blue] ($(z)$) circle (0.3pt); \draw (Cp) node (a2) [label=left:$C'$]{}; \draw (C) -- (Cp) -- (Ap) -- cycle; \draw (C) -- (Cp) -- (B) -- cycle; \draw (Ap) -- (A) -- (Cp) -- cycle; \draw (C) -- (Ap) -- (Bp) -- cycle; \draw [fill opacity=0.7,fill=green!80!blue] (Cp) -- (A) -- (B) -- cycle; \draw (Ap) -- (A) -- (Bp) -- cycle; \draw [fill opacity=0.8,fill=orange!80!black] (A) -- (Bp) -- (B) -- cycle; \draw [fill opacity=0.7,fill=purple!70!black] (C) -- (B) -- (Bp) -- cycle; \draw (A) node (a3) [label=-120:$A$]{}; \draw (C) node (a4) [label=right:$C$]{}; \draw (B) node (b1) [label=90:$B$]{}; \draw (Bp) node (c1) [label=-90:$B'$]{}; \draw (Ap) node (a1) [label=45:$A'$]{}; \coordinate (S1) at (0.53,0,0); \coorshifting \draw (AA) -- (BB) -- (BBp) -- cycle; \draw [fill opacity=0.7,fill=green!80!blue] (AA) -- (BB) -- (CC) -- cycle; \draw [fill opacity=0.7,fill=gray!70!black] (AA) -- (BBp) -- (CC) -- cycle; % now we draw the initial tetrahedron: \coordinate (S1) at (-3.2,0,0); \coorshifting \draw (CC) node (d2) [label=-90:$C$]{}; \draw (CCp) node (c2) [label=-90:$C'$]{}; \draw (AAp) node (a1) [label=45:$A'$]{}; \draw (BB) node (b1) [label=90:$B$]{}; \draw (BBp) node (c1) [label=-90:$B'$]{}; \draw[ultra thin] (AAp) -- (AA); \draw[semithick] (CCp) -- (CC); \draw[very thick] (BBp) -- (BB); \draw (AAp) -- (BB) -- (CCp) -- cycle; \draw (AAp) -- (BBp) -- (CCp) -- cycle; \draw (AAp) -- (BB) -- (CC) -- cycle; \draw (AAp) -- (BBp) -- (CC) -- cycle; \draw [fill opacity=0.7,fill=green!80!blue] (AA) -- (BB) -- (CC) -- cycle; \draw [fill opacity=0.7,fill=green!80!blue] (AA) -- (BB) -- (CCp) -- cycle; \draw [fill opacity=0.7,fill=gray!70!black] (AA) -- (BBp) -- (CC) -- cycle; \draw [fill opacity=0.7,fill=gray!70!black] (AA) -- (BBp) -- (CCp) -- cycle; \draw (AA) node (a3) [label=-120:$A$]{}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1210.3193
arxiv
2012-10-12T02:03:48
The bimodule for (). Arrows coming from the same term in x or y are parallel.
\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage[T1]{fontenc} \usepackage[utf8]{inputenc} \usepackage[bookmarks=true, bookmarksopen=true,% bookmarksdepth=3,bookmarksopenlevel=2,% colorlinks=true,% linkcolor=blue,% citecolor=blue,% filecolor=blue,% menucolor=blue,% urlcolor=blue]{hyperref} \usepackage{tikz} \usetikzlibrary{matrix,arrows} \tikzset{cdlabel/.style={above,sloped, execute at begin node=$\scriptstyle,execute at end node=$}} \tikzset{algarrow/.style={->, thick}} \tikzset{blgarrow/.style={->, thick}} \tikzset{clgarrow/.style={->, thick}} \tikzset{tensoralgarrow/.style={double, double equal sign distance, -implies}} \tikzset{tensorblgarrow/.style={double, double equal sign distance, -implies}} \tikzset{tensorclgarrow/.style={double, double equal sign distance, -implies}} \tikzset{modarrow/.style={->, dashed}} \tikzset{othmodarrow/.style={->, thick}} \tikzset{Amodar/.style={->, dashed}} \tikzset{Dmodar/.style={->, dashed}} \begin{document} \begin{tikzpicture} \node at (0,1) (x) {$x$}; \node at (0,-1) (s2x) {$\sigma_2x$}; \node at (0,-3) (s12x) {$\sigma_{12}x$}; \node at (2,1) (r2x) {$\rho_2x$}; \node at (2,-2) (r2s2x) {$\rho_2\sigma_2x$}; \node at (2,-4) (r2s12x) {$\rho_2\sigma_{12}x$}; \node at (4,1) (r12x) {$\rho_{12}x$}; \node at (4,-2) (r12s2x) {$\rho_{12}\sigma_2x$}; \node at (4,-4) (r12s12x) {$\rho_{12}\sigma_{12}x$}; \node at (5,2) (y) {$y$}; \node at (5,0) (s1y) {$\sigma_1y$}; \node at (6,-2) (s3y) {$\sigma_3y$}; \node at (6,-4) (s23y) {$\sigma_{23}y$}; \node at (6,-6) (s123y) {$\sigma_{123}y$}; \node at (7,2) (r1y) {$\rho_1y$}; \node at (7,0) (r1s1y) {$\rho_1\sigma_1y$}; \node at (8,-2) (r1s3y) {$\rho_1\sigma_3y$}; \node at (8,-4) (r1s23y) {$\rho_1\sigma_{23}y$}; \node at (8,-6) (r1s123y) {$\rho_1\sigma_{123}y$}; \node at (9,2) (r3y) {$\rho_3y$}; \node at (10,0) (r3s1y) {$\rho_3\sigma_1y$}; \node at (10,-2) (r3s3y) {$\rho_3\sigma_3y$}; \node at (10,-4) (r3s23y) {$\rho_3\sigma_{23}y$}; \node at (10,-6) (r3s123y) {$\rho_3\sigma_{123}y$}; \node at (11,2) (r23y) {$\rho_{23}y$}; \node at (12,0) (r23s1y) {$\rho_{23}\sigma_1y$}; \node at (12,-2) (r23s3y) {$\rho_{23}\sigma_3y$}; \node at (12,-4) (r23s23y) {$\rho_{23}\sigma_{23}y$}; \node at (12,-6) (r23s123y) {$\rho_{23}\sigma_{123}y$}; \node at (13,2) (r123y) {$\rho_{123}y$}; \node at (14,0) (r123s1y) {$\rho_{123}\sigma_1y$}; \node at (14,-2) (r123s3y) {$\rho_{123}\sigma_3y$}; \node at (14,-4) (r123s23y) {$\rho_{123}\sigma_{23}y$}; \node at (14,-6) (r123s123y) {$\rho_{123}\sigma_{123}y$}; \draw[->, color=red] (x) to (r1s3y); \draw[->, color=red] (s2x) to (r1s23y); \draw[->, color=red] (s12x) to (r1s123y); \draw[->, color=blue] (x) to (r3s1y); \draw[->, color=blue] (r2x) to (r23s1y); \draw[->, color=blue] (r12x) to (r123s1y); \draw[->, color=purple] (x) to (r123s123y); \draw[->, color=brown] (y) to (r2s2x); \draw[->, color=brown] (r1y) to (r12s2x); \draw[->, color=brown] (s1y) to (r2s12x); \draw[->, color=brown] (r1s1y) to (r12s12x); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1005.1248
arxiv
2011-08-02T02:03:06
The function g_s.
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \begin{document} \begin{tikzpicture}[scale=1.4] %axis \draw (-3.5,0) -- coordinate (x axis mid) (3.5,0); \draw (0,-0.5) -- coordinate (y axis mid) (0,1.5); %ticks \draw (-3,0.1) -- (-3,-0.1); \draw (-2,0.1) -- (-2,-0.1); \draw (-1,0.1) -- (-1,-0.1); \draw (3,0.1) -- (3,-0.1); \draw (2,0.1) -- (2,-0.1); \draw (1,0.1) -- (1,-0.1); \draw (-3,-0.1) node[below] {$-\delta$}; \draw (-2,-0.1) node[below] {$-s$}; \draw (-1,-0.1) node[below] {$-s/2$}; \draw (3,-0.1) node[below] {$\delta$}; \draw (2,-0.1) node[below] {$s$}; \draw (1,-0.1) node[below] {$s/2$}; \draw[very thick,blue] (-3,1) -- (-2,1) -- (-1,0.01) -- (1,0.01) -- (2,1) -- (3,1); \draw (1.6,0.6) node[right] {$g_s$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
Diagram for Lemma pasting-lemma-ac.
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \begin{document} \begin{tikzpicture}[scale=1] % the intersection point is at (11,2) \begin{scope} \clip (0,2) rectangle (6,4); \fill[blue!20,rotate around={45:(3,2)}] (3,2) ellipse (2cm and 1cm); \end{scope} \begin{scope} \clip (0,0) rectangle (6,2); \fill[green!20,rotate around={45:(3,2)}] (3,2) ellipse (2cm and 1cm); \end{scope} \draw[thick, rotate around={45:(3,2)}] (3,2) ellipse (2cm and 1cm); \draw (0,2) -- (6,2); \draw (3.2,2.3) node[right] {$\sigma_1$}; \draw (2,1.6) node[right] {$\sigma_2$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
The triangulation A used in the proof of Theorem C1-R.
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \begin{document} \begin{tikzpicture}[xscale=1] \draw[thick,blue] (0,0) -- (0,4) -- (4,4) -- (4,0) -- (0,0); \draw (1,0) -- (1,4); \draw (2,0) -- (2,4); \draw (3,0) -- (3,4); \draw (0,1) -- (4,1); \draw (0,2) -- (4,2); \draw (0,3) -- (4,3); \draw (0,3) -- (1,4); \draw (0,2) -- (2,4); \draw (0,1) -- (3,4); \draw (0,0) -- (4,4); \draw (1,0) -- (4,3); \draw (2,0) -- (4,2); \draw (3,0) -- (4,1); \draw (1,0) node[below] {$\frac{1}{n}$}; \draw (2,0) node[below] {$\frac{2}{n}$}; \draw (3,-0.25) node[below] {$\dots$}; \draw (4,-0.12) node[below] {$1$}; \draw (0,1) node[left] {$\frac{1}{n}$}; \draw (0,2) node[left] {$\frac{2}{n}$}; \draw (-0.08,3) node[left] {$\vdots$}; \draw (0,4) node[left] {$1$}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
The classification of points with respect to a triangulation.
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \newcommand{\vecx}{{\boldsymbol{x}}} \begin{document} \begin{tikzpicture}[scale=2] \draw[thick,blue] (0,0) -- (0,2) -- (2,2) -- (2,0) -- (0,0); \draw[thick,blue] (1,1) -- (2,2); \draw[thick,blue] (0,2) -- (2,0); \draw[black] (2,1.4) node[left] {$R$}; \draw[black] (0,1) node[left] {$\vecx_1$}; \draw[black] (0,1) node[circle, draw, fill=black!50,inner sep=0pt, minimum width=4pt] {}; \draw[black] (0.4,1.3) node[below] {$\vecx_2$}; \draw[black] (0.4,1.3) node[circle, draw, fill=black!50,inner sep=0pt, minimum width=4pt] {}; \draw[black] (1.5,0.5) node[above,right] {$\vecx_3$}; \draw[black] (1.5,0.5) node[circle, draw, fill=black!50,inner sep=0pt, minimum width=4pt] {}; \draw[black] (2,2) node[right] {$\vecx_4$}; \draw[black] (2,2) node[circle, draw, fill=black!50,inner sep=0pt, minimum width=4pt] {}; \draw[black] (1,1.05) node[above] {$\vecx_5$}; \draw[black] (1,1) node[circle, draw, fill=black!50,inner sep=0pt, minimum width=4pt] {}; \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
Sectors meeting at the vertex x.
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \newcommand{\vecx}{{\boldsymbol{x}}} \begin{document} \begin{tikzpicture}[scale=1] \fill[blue!20] (2,0) -- (2,2) -- (4,1) -- (4,0) -- (2,0); \draw (3.5,0.2) node[above] {$\sigma_1$}; \fill[green!20] (2,2) -- (4,1) -- (4,3.5) -- (2,2); \draw (3.9,2) node[left] {$\sigma_2$}; \fill[blue!20] (2,2) -- (1,0) -- (0,0) -- (0,3) -- (2,2); \draw (0.1,2) node[right] {$\sigma_1$}; \draw (1,0) -- (3,4); \draw (2,0) -- (2,4); \draw (0,0.5) -- (4,3.5); \draw (0,3) -- (4,1); \draw (1.8,2) node[left] {$\vecx$}; \draw[thick,blue] (0,0) -- (0,4) -- (4,4) -- (4,0) -- (0,0); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
In this example J_1 = \{1,5\}, J_2 = \{3,7\}, J_3 = \{2,4,6,8\} and S_1 = [x_0,x_1,x_4,x_5].
\documentclass[a4paper,12pt]{amsart} \usepackage{latexsym, amsfonts, amsmath, amsthm, amssymb, verbatim} \usepackage{tikz, float} \usetikzlibrary{plotmarks} \newcommand{\vecx}{{\boldsymbol{x}}} \begin{document} \begin{tikzpicture}[scale=1] % % Left picture % \draw[red] (0,0) -- (7,0) -- (7,4) -- (0,4) -- (0,0); \draw[blue] (2,2.5) circle (0.6cm); \draw[blue] (4.5,2) ellipse (0.8cm and 3cm); \path node (z0) at (1.7,2.8) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z1) at (2.3,2.3) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z2) at (4.3,4.6) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z3) at (4.7,4.2) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z4) at (4,3) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z5) at (5,3) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z6) at (4.8,-0.4) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z7) at (4.2,-0.4) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {} node (z8) at (3.9,1) [circle,draw,fill=black!50,inner sep=0pt, minimum width=4pt] {}; \draw[black,thick] (z0) -- (z1) -- (z2) -- (z3) -- (z4) -- (z5) -- (z6) -- (z7) -- (z8); \draw[black] (z0) node[right] {$\vecx_0$}; \draw[black] (z1) node[left] {$\vecx_1$}; \draw[black] (z2) node[right] {$\vecx_2$}; \draw[black] (z3) node[left] {$\vecx_3$}; \draw[black] (z4) node[below] {$\vecx_4$}; \draw[black] (z5) node[above] {$\vecx_5$}; \draw[black] (z6) node[right] {$\vecx_6$}; \draw[black] (z7) node[left] {$\vecx_7$}; \draw[black] (z8) node[right] {$\vecx_8$}; \draw[black] (0.3,0) node[above] {$R$}; \draw[black] (3,1.7) node {$\sigma$}; \draw[black] (2.8,1.8) -- (2.3,2.1); \draw[black] (3.2,1.7) -- (3.8,1.7); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1806
arxiv
2013-12-09T02:04:21
The representation of a probability measure in P.
\documentclass[12pt]{article} \usepackage{amsfonts, amssymb, amsmath, amsthm} \usepackage{tikz} \usetikzlibrary{arrows} \usepackage{color,hyperref} \begin{document} \begin{tikzpicture}[baseline=(current bounding box.center)] \node (1) at (0,0) {$1$}; \node (X) at (3,0) {$X$}; \draw[->,above] (1) to node {$P$} (X); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1445
arxiv
2013-12-06T02:03:56
The tensor product of a conditional with an identity map in P.
\documentclass[12pt]{article} \usepackage{amsfonts, amssymb, amsmath, amsthm} \usepackage{tikz} \usetikzlibrary{arrows} \usepackage{color,hyperref} \begin{document} \begin{tikzpicture}[baseline=(current bounding box.center)] \node (1) at (0,0) {$X$}; \node (X) at (-3,-3) {$X$}; \node (Y) at (3,-3) {$Y$}; \node (XY) at (0,-3) {$X \otimes Y$}; \draw[->, left] (1) to node {$1_X$} (X); \draw[->,right] (1) to node {$Q$} (Y); \draw[->,right] (1) to node [yshift=-10pt] {$\Gamma_Q$} (XY); \draw[->,below] (XY) to node {$\delta_{\pi_X}$} (X); \draw[->,below] (XY) to node {$\delta_{\pi_Y}$} (Y); \end{tikzpicture} \end{document}
https://arxiv.org/abs/1312.1445
arxiv
2013-12-06T02:03:56