The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 785 new columns ({'252.23', '0.98', '253', '3', '0.362', '0.526', '0.474', '0.138', '0.158', '0.184', '0.240', '252.21', '0.304', '252', '0.313', '253.5', '0.484', '0.42', '0.45', '0.100', '0.391', '0.92', '0.34', '0.464', '0.305', '193', '100', '0.369', '0.206', '0.299', '0.22', '66.6', '0.513', '0.126', '0.133', '0.373', '243', '0.564', '0.431', '0.154', '250', '0.311', '0.563', '0.566', '252.36', '0.426', '0.492', '0.363', '0.204', '0.152', '248', '48', '0.72', '44', '0.586', '0.293', '0.76', '0.432', '0.449', '0.558', '0.457', '0.207', '0.528', '0.298', '66.4', '0.390', '0.499', '232.1', '252.3', '252.27', '0.166', '0.62', '0.393', '0.429', '0.328', '0.136', '0.509', '0.322', '0.343', '0.538', '252.10', '0.168', '0.153', '0.553', '0.197', '0.307', '0.357', '0.511', '0.64', '252.47', '252.43', '46.1', '0.32', '0.292', '170', '0.494', '0.279', '0.82', '0.497', '252.41', '0.70', '0.4', '0.125', '0.430', '0.502', '252.28', '0.350', '0.334', '0.151', '0.339', '6', '0.422', '82', '0.178', '0.331', '0.383', '0.466', '0.316', '0.487', '0.577', '0.3', '0.560', '159.1', '0.356', '0.436', '0.183', '0.562', '92', '0.145', '240', '0.384', '0.267', '59', '0.490', '126', '0.500', '0.20', '0.588', '0.212', '0.533', '0.177', '0.503', '0.372', '0.130', '0.231', '0.377', '252.37', '0.443', '0.79', '0.336', '0.428', '0.191', '0.8', '0.220', '0.262', '209', '0.163', '0.508', '0.404', '0.106', '0.405', '0.371', '253.1', '135.1', '0.578', '0.78', '0.39', '234', '0.338', '0.355', '0.50', '0.510', '0.342', '0.532
...
 '0.536', '34.1', '0.381', '0.361', '67', '0.188', '0.448', '0.195', '249', '0.486', '252.20', '253.6', '0.13', '252.2', '0.288', '0.254', '0.222', '11', '0.263', '0.171', '0.341', '0.124', '0.241', '13', '0.245', '237', '249.1', '0.455', '177.1', '89.3', '0.150', '0.386', '79', '0.450', '16', '149', '66.7', '0.71', '0.202', '0.531', '0.155', '0.67', '0.354', '0.226', '0.189', '0.388', '0.234', '0.96', '96.1', '0.251', '0.485', '0.273', '0.47', '0.185', '0.103', '0.264', '253.4', '0.472', '0.179', '0.423', '0.389', '0.68', '0.396', '0.97', '244', '252.46', '131', '0.346', '0.312', '0.321', '252.34', '12.1', '0.349', '0.140', '252.25', '0.89', '89.1', '0.444', '0.223', '0.289', '0.529', '66.9', '0.310', '66.8', '2', '0.367', '0.576', '0.539', '67.1', '252.42', '0.285', '252.22', '0.570', '0.85', '0.111', '0.198', '0.392', '0.573', '0.5', '0.345', '0.498', '0.507', '0.471', '0.458', '0.379', '0.330', '0.352', '0.30', '0.199', '0.495', '0.244', '0.93', '246', '0.221', '0.433', '183', '0.14', '0.524', '135', '0.81', '0.134', '0.581', '0.259', '0.315', '119', '0.475', '0.2', '0.146', '0.102', '143', '5.1', '0.467', '0.35', '0.482', '0.235', '0.534', '0.424', '0.23', '0.402', '0.518', '0.110', '0.112', '89.2', '0.236', '0.277', '66', '17', '0.65', '0.568', '0.213', '0.527', '0.303', '243.1', '222', '0.365', '0.253', '0.320', '0.413', '0.370', '0.73', '0.271', '0.186', '228', '0.420', '252.35', '0.314', '0.237', '0.282', '252.8', '0.294', '0.302', '0.172', '0.323', '0.421', '0.505'}) and 9 missing columns ({'median_income', 'population', 'households', 'total_rooms', 'housing_median_age', 'latitude', 'longitude', 'median_house_value', 'total_bedrooms'}).

This happened while the csv dataset builder was generating data using

hf://datasets/Chandrasrishti/pdf_chatbot_book3/embeddings/sample_data/mnist_train_small.csv (at revision 640b158f5419db8a8ea252e8912cde5ef747a26e)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              6: int64
              0: int64
              0.1: int64
              0.2: int64
              0.3: int64
              0.4: int64
              0.5: int64
              0.6: int64
              0.7: int64
              0.8: int64
              0.9: int64
              0.10: int64
              0.11: int64
              0.12: int64
              0.13: int64
              0.14: int64
              0.15: int64
              0.16: int64
              0.17: int64
              0.18: int64
              0.19: int64
              0.20: int64
              0.21: int64
              0.22: int64
              0.23: int64
              0.24: int64
              0.25: int64
              0.26: int64
              0.27: int64
              0.28: int64
              0.29: int64
              0.30: int64
              0.31: int64
              0.32: int64
              0.33: int64
              0.34: int64
              0.35: int64
              0.36: int64
              0.37: int64
              0.38: int64
              0.39: int64
              0.40: int64
              0.41: int64
              0.42: int64
              0.43: int64
              0.44: int64
              0.45: int64
              0.46: int64
              0.47: int64
              0.48: int64
              0.49: int64
              0.50: int64
              0.51: int64
              0.52: int64
              0.53: int64
              0.54: int64
              0.55: int64
              0.56: int64
              0.57: int64
              0.58: int64
              0.59: int64
              0.60: int64
              0.61: int64
              0.62: int64
              0.63: int64
              0.64: int64
              0.65: int64
              0.66: int64
              0.67: int64
              0.68: int64
              0.69: int64
              0.70: int64
              0.71: int64
              0.72: int64
              0.73: int64
              0.74: int64
              0.75: int64
              0.76: int64
              0.77: int64
              0.78: int64
              0.79: int64
              0.80: int64
              0.81: int64
              0.82: int64
              0.83: int64
              0.84: int64
              0.85: int64
              0.86: int64
              0.87: int64
              0.88: int64
              0.89: int64
              0.90: int64
              0.91: int64
              0.92: int64
              0.93: int64
              0.94: int64
              0.95: int64
              0.96: int64
              0.97: int64
              0.98: int64
              0.99: int64
              0.100: int64
              0.101: int64
              0.102: int64
              0.103: int64
              0.104: int64
              0.105: int64
              0.106: int64
              0.107: int64
              0.108: int64
              0.109: int64
              0.110: int64
              0.111: int64
              0.112: int64
              0.113: int64
              0.114: int64
              0.115: int64
              0.116: int64
              0.117: int64
              0.118: int64
              0.119: int64
              0.120: int64
              0.121: int64
              24: int64
              67: int
              ...
              nt64
              0.484: int64
              0.485: int64
              0.486: int64
              0.487: int64
              0.488: int64
              0.489: int64
              0.490: int64
              0.491: int64
              0.492: int64
              0.493: int64
              0.494: int64
              0.495: int64
              0.496: int64
              0.497: int64
              0.498: int64
              0.499: int64
              0.500: int64
              0.501: int64
              0.502: int64
              0.503: int64
              0.504: int64
              0.505: int64
              0.506: int64
              0.507: int64
              0.508: int64
              0.509: int64
              0.510: int64
              0.511: int64
              0.512: int64
              0.513: int64
              0.514: int64
              0.515: int64
              0.516: int64
              0.517: int64
              0.518: int64
              0.519: int64
              0.520: int64
              0.521: int64
              0.522: int64
              0.523: int64
              0.524: int64
              0.525: int64
              0.526: int64
              0.527: int64
              0.528: int64
              0.529: int64
              0.530: int64
              0.531: int64
              0.532: int64
              0.533: int64
              0.534: int64
              0.535: int64
              0.536: int64
              0.537: int64
              0.538: int64
              0.539: int64
              0.540: int64
              0.541: int64
              0.542: int64
              0.543: int64
              0.544: int64
              0.545: int64
              0.546: int64
              0.547: int64
              0.548: int64
              0.549: int64
              0.550: int64
              0.551: int64
              0.552: int64
              0.553: int64
              0.554: int64
              0.555: int64
              0.556: int64
              0.557: int64
              0.558: int64
              0.559: int64
              0.560: int64
              0.561: int64
              0.562: int64
              0.563: int64
              0.564: int64
              0.565: int64
              0.566: int64
              0.567: int64
              0.568: int64
              0.569: int64
              0.570: int64
              0.571: int64
              0.572: int64
              0.573: int64
              0.574: int64
              0.575: int64
              0.576: int64
              0.577: int64
              0.578: int64
              0.579: int64
              0.580: int64
              0.581: int64
              0.582: int64
              0.583: int64
              0.584: int64
              0.585: int64
              0.586: int64
              0.587: int64
              0.588: int64
              0.589: int64
              0.590: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 83572
              to
              {'longitude': Value(dtype='float64', id=None), 'latitude': Value(dtype='float64', id=None), 'housing_median_age': Value(dtype='float64', id=None), 'total_rooms': Value(dtype='float64', id=None), 'total_bedrooms': Value(dtype='float64', id=None), 'population': Value(dtype='float64', id=None), 'households': Value(dtype='float64', id=None), 'median_income': Value(dtype='float64', id=None), 'median_house_value': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 785 new columns ({'252.23', '0.98', '253', '3', '0.362', '0.526', '0.474', '0.138', '0.158', '0.184', '0.240', '252.21', '0.304', '252', '0.313', '253.5', '0.484', '0.42', '0.45', '0.100', '0.391', '0.92', '0.34', '0.464', '0.305', '193', '100', '0.369', '0.206', '0.299', '0.22', '66.6', '0.513', '0.126', '0.133', '0.373', '243', '0.564', '0.431', '0.154', '250', '0.311', '0.563', '0.566', '252.36', '0.426', '0.492', '0.363', '0.204', '0.152', '248', '48', '0.72', '44', '0.586', '0.293', '0.76', '0.432', '0.449', '0.558', '0.457', '0.207', '0.528', '0.298', '66.4', '0.390', '0.499', '232.1', '252.3', '252.27', '0.166', '0.62', '0.393', '0.429', '0.328', '0.136', '0.509', '0.322', '0.343', '0.538', '252.10', '0.168', '0.153', '0.553', '0.197', '0.307', '0.357', '0.511', '0.64', '252.47', '252.43', '46.1', '0.32', '0.292', '170', '0.494', '0.279', '0.82', '0.497', '252.41', '0.70', '0.4', '0.125', '0.430', '0.502', '252.28', '0.350', '0.334', '0.151', '0.339', '6', '0.422', '82', '0.178', '0.331', '0.383', '0.466', '0.316', '0.487', '0.577', '0.3', '0.560', '159.1', '0.356', '0.436', '0.183', '0.562', '92', '0.145', '240', '0.384', '0.267', '59', '0.490', '126', '0.500', '0.20', '0.588', '0.212', '0.533', '0.177', '0.503', '0.372', '0.130', '0.231', '0.377', '252.37', '0.443', '0.79', '0.336', '0.428', '0.191', '0.8', '0.220', '0.262', '209', '0.163', '0.508', '0.404', '0.106', '0.405', '0.371', '253.1', '135.1', '0.578', '0.78', '0.39', '234', '0.338', '0.355', '0.50', '0.510', '0.342', '0.532
              ...
               '0.536', '34.1', '0.381', '0.361', '67', '0.188', '0.448', '0.195', '249', '0.486', '252.20', '253.6', '0.13', '252.2', '0.288', '0.254', '0.222', '11', '0.263', '0.171', '0.341', '0.124', '0.241', '13', '0.245', '237', '249.1', '0.455', '177.1', '89.3', '0.150', '0.386', '79', '0.450', '16', '149', '66.7', '0.71', '0.202', '0.531', '0.155', '0.67', '0.354', '0.226', '0.189', '0.388', '0.234', '0.96', '96.1', '0.251', '0.485', '0.273', '0.47', '0.185', '0.103', '0.264', '253.4', '0.472', '0.179', '0.423', '0.389', '0.68', '0.396', '0.97', '244', '252.46', '131', '0.346', '0.312', '0.321', '252.34', '12.1', '0.349', '0.140', '252.25', '0.89', '89.1', '0.444', '0.223', '0.289', '0.529', '66.9', '0.310', '66.8', '2', '0.367', '0.576', '0.539', '67.1', '252.42', '0.285', '252.22', '0.570', '0.85', '0.111', '0.198', '0.392', '0.573', '0.5', '0.345', '0.498', '0.507', '0.471', '0.458', '0.379', '0.330', '0.352', '0.30', '0.199', '0.495', '0.244', '0.93', '246', '0.221', '0.433', '183', '0.14', '0.524', '135', '0.81', '0.134', '0.581', '0.259', '0.315', '119', '0.475', '0.2', '0.146', '0.102', '143', '5.1', '0.467', '0.35', '0.482', '0.235', '0.534', '0.424', '0.23', '0.402', '0.518', '0.110', '0.112', '89.2', '0.236', '0.277', '66', '17', '0.65', '0.568', '0.213', '0.527', '0.303', '243.1', '222', '0.365', '0.253', '0.320', '0.413', '0.370', '0.73', '0.271', '0.186', '228', '0.420', '252.35', '0.314', '0.237', '0.282', '252.8', '0.294', '0.302', '0.172', '0.323', '0.421', '0.505'}) and 9 missing columns ({'median_income', 'population', 'households', 'total_rooms', 'housing_median_age', 'latitude', 'longitude', 'median_house_value', 'total_bedrooms'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/Chandrasrishti/pdf_chatbot_book3/embeddings/sample_data/mnist_train_small.csv (at revision 640b158f5419db8a8ea252e8912cde5ef747a26e)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

longitude
float64
latitude
float64
housing_median_age
float64
total_rooms
float64
total_bedrooms
float64
population
float64
households
float64
median_income
float64
median_house_value
float64
-114.31
34.19
15
5,612
1,283
1,015
472
1.4936
66,900
-114.47
34.4
19
7,650
1,901
1,129
463
1.82
80,100
-114.56
33.69
17
720
174
333
117
1.6509
85,700
-114.57
33.64
14
1,501
337
515
226
3.1917
73,400
-114.57
33.57
20
1,454
326
624
262
1.925
65,500
-114.58
33.63
29
1,387
236
671
239
3.3438
74,000
-114.58
33.61
25
2,907
680
1,841
633
2.6768
82,400
-114.59
34.83
41
812
168
375
158
1.7083
48,500
-114.59
33.61
34
4,789
1,175
3,134
1,056
2.1782
58,400
-114.6
34.83
46
1,497
309
787
271
2.1908
48,100
-114.6
33.62
16
3,741
801
2,434
824
2.6797
86,500
-114.6
33.6
21
1,988
483
1,182
437
1.625
62,000
-114.61
34.84
48
1,291
248
580
211
2.1571
48,600
-114.61
34.83
31
2,478
464
1,346
479
3.212
70,400
-114.63
32.76
15
1,448
378
949
300
0.8585
45,000
-114.65
34.89
17
2,556
587
1,005
401
1.6991
69,100
-114.65
33.6
28
1,678
322
666
256
2.9653
94,900
-114.65
32.79
21
44
33
64
27
0.8571
25,000
-114.66
32.74
17
1,388
386
775
320
1.2049
44,000
-114.67
33.92
17
97
24
29
15
1.2656
27,500
-114.68
33.49
20
1,491
360
1,135
303
1.6395
44,400
-114.73
33.43
24
796
243
227
139
0.8964
59,200
-114.94
34.55
20
350
95
119
58
1.625
50,000
-114.98
33.82
15
644
129
137
52
3.2097
71,300
-115.22
33.54
18
1,706
397
3,424
283
1.625
53,500
-115.32
32.82
34
591
139
327
89
3.6528
100,000
-115.37
32.82
30
1,602
322
1,130
335
3.5735
71,100
-115.37
32.82
14
1,276
270
867
261
1.9375
80,900
-115.37
32.81
32
741
191
623
169
1.7604
68,600
-115.37
32.81
23
1,458
294
866
275
2.3594
74,300
-115.38
32.82
38
1,892
394
1,175
374
1.9939
65,800
-115.38
32.81
35
1,263
262
950
241
1.8958
67,500
-115.39
32.76
16
1,136
196
481
185
6.2558
146,300
-115.4
32.86
19
1,087
171
649
173
3.3182
113,800
-115.4
32.7
19
583
113
531
134
1.6838
95,800
-115.41
32.99
29
1,141
220
684
194
3.4038
107,800
-115.46
33.19
33
1,234
373
777
298
1
40,000
-115.48
32.8
21
1,260
246
805
239
2.6172
88,500
-115.48
32.68
15
3,414
666
2,097
622
2.3319
91,200
-115.49
32.87
19
541
104
457
106
3.3583
102,800
-115.49
32.69
17
1,960
389
1,691
356
1.899
64,000
-115.49
32.67
29
1,523
440
1,302
393
1.1311
84,700
-115.49
32.67
25
2,322
573
2,185
602
1.375
70,100
-115.5
32.75
13
330
72
822
64
3.4107
142,500
-115.5
32.68
18
3,631
913
3,565
924
1.5931
88,400
-115.5
32.67
35
2,159
492
1,694
475
2.1776
75,500
-115.51
33.24
32
1,995
523
1,069
410
1.6552
43,300
-115.51
33.12
21
1,024
218
890
232
2.101
46,700
-115.51
32.99
20
1,402
287
1,104
317
1.9088
63,700
-115.51
32.68
11
2,872
610
2,644
581
2.625
72,700
-115.52
34.22
30
540
136
122
63
1.3333
42,500
-115.52
33.13
18
1,109
283
1,006
253
2.163
53,400
-115.52
33.12
38
1,327
262
784
231
1.8793
60,800
-115.52
32.98
32
1,615
382
1,307
345
1.4583
58,600
-115.52
32.97
24
1,617
366
1,416
401
1.975
66,400
-115.52
32.97
10
1,879
387
1,376
337
1.9911
67,500
-115.52
32.77
18
1,715
337
1,166
333
2.2417
79,200
-115.52
32.73
17
1,190
275
1,113
258
2.3571
63,100
-115.52
32.67
6
2,804
581
2,807
594
2.0625
67,700
-115.53
34.91
12
807
199
246
102
2.5391
40,000
-115.53
32.99
25
2,578
634
2,082
565
1.7159
62,200
-115.53
32.97
35
1,583
340
933
318
2.4063
70,700
-115.53
32.97
34
2,231
545
1,568
510
1.5217
60,300
-115.53
32.73
14
1,527
325
1,453
332
1.735
61,200
-115.54
32.99
23
1,459
373
1,148
388
1.5372
69,400
-115.54
32.99
17
1,697
268
911
254
4.3523
96,000
-115.54
32.98
27
1,513
395
1,121
381
1.9464
60,600
-115.54
32.97
41
2,429
454
1,188
430
3.0091
70,800
-115.54
32.79
23
1,712
403
1,370
377
1.275
60,400
-115.55
32.98
33
2,266
365
952
360
5.4349
143,000
-115.55
32.98
24
2,565
530
1,447
473
3.2593
80,800
-115.55
32.82
34
1,540
316
1,013
274
2.5664
67,500
-115.55
32.8
23
666
142
580
160
2.1136
61,000
-115.55
32.79
23
1,004
221
697
201
1.6351
59,600
-115.55
32.79
22
565
162
692
141
1.2083
53,600
-115.55
32.78
5
2,652
606
1,767
536
2.8025
84,300
-115.56
32.96
21
2,164
480
1,164
421
3.8177
107,200
-115.56
32.8
28
1,672
416
1,335
397
1.5987
59,400
-115.56
32.8
25
1,311
375
1,193
351
2.1979
63,900
-115.56
32.8
15
1,171
328
1,024
298
1.3882
69,400
-115.56
32.79
20
2,372
835
2,283
767
1.1707
62,500
-115.56
32.79
18
1,178
438
1,377
429
1.3373
58,300
-115.56
32.78
46
2,511
490
1,583
469
3.0603
70,800
-115.56
32.78
35
1,185
202
615
191
4.6154
86,200
-115.56
32.78
29
1,568
283
848
245
3.1597
76,200
-115.56
32.76
15
1,278
217
653
185
4.4821
140,300
-115.57
32.85
33
1,365
269
825
250
3.2396
62,300
-115.57
32.85
17
1,039
256
728
246
1.7411
63,500
-115.57
32.84
29
1,207
301
804
288
1.9531
61,100
-115.57
32.83
31
1,494
289
959
284
3.5282
67,500
-115.57
32.8
16
2,276
594
1,184
513
1.875
93,800
-115.57
32.79
34
1,152
208
621
208
3.6042
73,600
-115.57
32.78
20
1,534
235
871
222
6.2715
97,200
-115.57
32.78
15
1,413
279
803
277
4.3021
87,500
-115.58
33.88
21
1,161
282
724
186
3.1827
71,700
-115.58
32.81
5
805
143
458
143
4.475
96,300
-115.58
32.81
10
1,088
203
533
201
3.6597
87,500
-115.58
32.79
14
1,687
507
762
451
1.6635
64,400
-115.58
32.78
5
2,494
414
1,416
421
5.7843
110,100
-115.59
32.85
20
1,608
274
862
248
4.875
90,800
End of preview.