question
stringclasses
96 values
options
sequencelengths
2
4
answer
stringlengths
1
95
question_type
stringclasses
3 values
tid
int64
1
105
difficulty
stringclasses
3 values
format_hint
stringclasses
1 value
relevant_concepts
sequencelengths
1
8
question_hint
stringclasses
93 values
category
stringclasses
5 values
subcategory
stringclasses
13 values
id
int64
1
763
ts1
sequencelengths
128
308
ts2
sequencelengths
128
299
In which part of the time series does the anomaly occur?
[ "Beginning", "Middle", "End" ]
Beginning
multiple_choice
78
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Spike Anomaly", "Cutoff Anomaly", "Wander Anomaly" ]
Identify where in the time series sequence the unusual pattern or disruption occurs.
Anolmaly Detection
General Anomaly Detection
1
[ 1.7484752966407235, -3.4580961250493867, 1.0093132241793783, 7.209146884419291, 1.6827250353463046, 4.508441580333315, 2.295388861919477, 3.6435293696978412, 2.1085757119818758, 0.11679145779267563, 1.7114442910107905, 1.3780946063793453, 1.0469042848082473, 5.515794596941332, -1.1112523787795812, -0.4420963913677364, 0.03571034671280937, -6.213129567055112, 1.2190937509171105, 1.891324512852199, -1.9099914007876486, -2.149742078071549, -6.184910086173494, 3.60908934586641, -4.019220436315081, -1.3661701869222889, -1.0926096028996075, 5.297856593793597, -0.16590536900549463, -2.471324824806252, -3.1541234792445687, 1.1964065881279762, 1.7000540291612176, 1.8810868771684806, 7.030584444824944, 6.2353738799248735, 2.269206502780754, 1.9272832826969661, 1.946217830735423, 1.6040118480889212, 1.271134897863781, 3.5855129705439746, -0.35424675678702083, -0.04053406334265683, -0.8131055917051266, -0.7757211612072517, -1.5082609029951195, -1.6473013411767317, -3.818586104285287, 4.302279647476917, 0.11866108548721721, -1.7384305337974333, -0.41038626161586667, -1.3305533945832264, -0.9043594213864073, -0.4736075244620324, -0.17507002205776273, -1.0708511417442272, 0.9039045899661939, 0.3086510322561071, 4.586845444917383, 6.469608501848793, 3.221940964884831, 4.004905660311117, 2.41613841826264, 2.370745044543008, 3.7316483058564796, 1.8400467938949476, 1.4048674913111463, -2.8986240169643556, 0.5074710289032532, 3.734920903916538, 4.313487714124353, -2.124690932347082, -1.5694158097412299, -1.5363692558270015, -1.7941965212390454, -1.9919424548267946, -3.585281150406999, 0.8500380760340143, -2.4515737302538616, -1.366055269117209, -0.8863090640091877, -2.552101935754507, -0.2167254203519574, 0.30047818907425994, -4.6172732742937015, -0.06770953116397638, 5.349703065005953, -1.6435225907821867, 2.2523344763812925, 4.540688156663418, 0.18382878066714037, 2.3082465410172914, -4.336530933622756, 7.216785244747696, 0.6108378205694486, 3.6299323391081675, 2.5566458598587793, 0.1546281014222557, -0.44035308203069323, -0.16041928538397632, 0.5456386018340411, 1.1380245630128425, 1.8285972614572503, -3.3053392532414616, -3.7758650902011395, 2.3768249869216174, -7.945172150083945, 3.4385431217112643, -2.1835400372927367, -0.6579156094327075, -0.17356795550912832, 0.5512611630510893, 0.7694296935772402, 3.660858431345358, 1.656589120536703, 1.8881562000387457, -2.088375295583425, 2.505117463999255, 1.5073963836817008, 2.3498874311778506, 2.4276875777557665, 4.936542295166657, 1.7595828390704382, 1.5160126332976709, 7.7804359972034, 1.5660187944748456 ]
null
The following time series has two types of anomalies appearing at different time points. What are the likely types of anomalies?
[ "cutoff and flip", "speedup and flip", "speedup and cutoff" ]
cutoff and flip
multiple_choice
69
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You should first identify the two places where the anomalies appear. Then, you should check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
2
[ 0, 0.8382217421811881, 1.5657736145600576, 2.0873300740377565, 2.3361267470606495, 2.28321727940056, 1.9414867348959566, 1.3638650872588358, 0.635988503489143, -0.13567407141366722, -0.838582784856392, -1.369730475612079, -1.6499245694930424, -1.6347670934504035, -1.3208104341798537, -0.7460353481254869, 0.015415052986145428, 0.8635152105906305, 1.6862256171166852, 2.3750270423382775, 2.839966674886963, 3.022130038302723, 2.901809456181541, 2.501236512472399, 1.8814996525564451, 1.1340742983053047, 0.3681398227821393, -0.30455811977236813, -0.7852010776626119, -1.0015989347551326, -0.918199036979765, -0.5410155515147541, 0.0832043947348633, 0.8734621828480484, 1.7257381232614526, 2.52741373803203, 3.1728862611657247, 3.578210413701295, 3.6927373781475055, 3.5061372338046577, 3.0498311955330966, 2.3926350767201714, 1.6312180083076606, 0.8766993081116911, 0.23924183835820112, -0.18722202465250115, -0.33801407144967155, -0.1866778634788535, 0.25135309382342386, 0.9208951994818331, 1.734665937954536, 2.585385559892046, 3.360651370194404, 3.9585223101475613, -0.012651191139226421, 0.003893489132561233, -0.0022945045383195653, -0.00005527862320126283, -0.005336488038424868, -0.0016175538639752096, -0.01021552194675598, -0.006355597402746391, 0.002910340012621821, 0.009474398210466388, -0.006002538501059117, -0.005154356620924533, 0.0012221916522267957, 0.003942330218796011, 0.02559488031037793, 0.0059772046691260825, -0.0062947496092425085, -0.021396206560762396, -0.007033438017074073, -0.007424068371191725, -0.0042804606417623445, -0.01523875997615861, 0.008164450809513273, 0.009503696823969031, -0.026125490126936015, -0.009240828377471049, -0.0057138016575414155, -0.005251698071781476, -0.005808781340235147, 0.010105152848065265, 0.0027904129220013766, 0.0031890218468938335, -0.011118801180469205, 5.009990749258346, 4.731192487799564, 4.184859885795962, 3.441192517601972, 2.5977503324218953, 1.7659270120861552, 1.0555052881420137, 0.5594356164624181, 0.3409486391590555, 0.4247882850462661, 0.7937810352565746, 1.3912170237572288, 2.128712834272865, 2.8984658204263405, 3.588200893228959, 4.0967374106881085, 4.348017827425935, 4.301653038471885, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, 6.593522711156435, 6.965380183364831, 7.042942926250026, 6.821006091482838, 6.335890309848271, 5.660405852441056, 4.893757519963433, 4.14778994259551 ]
null
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "No, time series 2 has higher variance", "No, time series 1 has higher variance", "Yes, they have the same variance" ]
Yes, they have the same variance
multiple_choice
95
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
3
[ -1.9125286750400443, -1.6994866083946247, -1.801825677870189, -1.450568234783693, -1.3362980522083947, -1.3244904545471516, -1.2514001128242913, -1.2694507794629355, -1.350378029000928, -1.3158401494270129, -1.168605321974928, -1.2458885921614713, -1.3494094604714872, -1.4085516892831529, -1.2501667186737195, -1.0085076353499485, -0.9482798048406043, -0.8515672532440964, -0.9563298473097602, -0.8104652031244847, -0.7186733629332615, -0.8368165195332763, -1.1342293517420663, -1.337294170359154, -1.4486286444212833, -1.2553184938244855, -0.996971031755426, -1.0700931058985284, -1.1379575053550144, -1.0944315839673568, -1.0924107834798367, -0.9375323703157796, -1.0245745606448597, -0.8666667534822142, -0.9064663029040094, -0.7643915304692015, -0.8094842147152225, -0.9114840590036761, -0.5933340131275, -0.41611343108590576, -0.714253875404511, -0.7885830612630457, -0.588121446071759, -0.7872084467074633, -0.6589915957066687, -0.548014253083475, -0.6643304503825435, -0.6657973320392073, -1.013511136877817, -0.7189665191418922, -0.7703898778623673, -0.6366604419969814, -0.5345363769972762, -0.30862734074295306, -0.3807155210286765, -0.34680577258390577, -0.25378742941969684, -0.10862370684601948, 0.08342487236015025, 0.004003432993154511, -0.10650330875148668, 0.11977682617671276, -0.21912911113340663, 0.04207532042929622, -0.008222009617874516, -0.008981122132628893, -0.12250166146510753, -0.13051988794317654, 0.08095788985143292, 0.2092054811436196, 0.2911731543784845, 0.30595885231323455, 0.0654544144105759, -0.0749836551686584, -0.13208164292141691, -0.05593854726646815, -0.04435051505340255, 0.1192739444341685, 0.19807077817897875, 0.20711302017074332, 0.5857287616878388, 0.6533122194734277, 0.5814505013181425, 0.8908910336407488, 1.0906020969293635, 1.3927424954405572, 1.3742868792424998, 1.5367142850814615, 1.2950054222725977, 1.4254396505634757, 1.3991993003680372, 1.1737598954640567, 1.3455524152138454, 1.0444029868492255, 0.7261882439247361, 0.7864930278138766, 0.8815474438976598, 1.0430123550757862, 1.1664518730875688, 1.4121218390160335, 1.5286204389846905, 1.5066099354559939, 1.494363340341099, 1.447410531690009, 1.4965687813406694, 1.3140046344891396, 1.3707234613472208, 1.356346947430265, 1.402204045801383, 1.4485748706660657, 1.0405944812395411, 0.8906472842978898, 0.8725748606882694, 0.8633438931648406, 0.9064981886849867, 0.9567995196122302, 1.209053481611333, 1.2610368331344781, 1.20895944543767, 0.9429151463367916, 0.7152244118196114, 0.8043135570330526, 0.980738851413919, 1.237174938790473, 1.09943933694786, 1.0488857667362825, 1.0892025382487482, 1.4298258986748584 ]
[ 0.30142767328458747, 0.6310399671568204, 0.6671558054575089, 0.9121973147903856, 1.1303249757684355, 1.1656153781486245, 0.9488043704378961, 0.8916271907720499, 1.2080194733216936, 1.3945397438991234, 1.3023977329500398, 1.2296640016903613, 0.8618881264457194, 1.168781198049451, 1.3570519619101675, 1.3279256698090198, 1.3704502263567844, 0.9091847076758254, 0.8057676233228747, 1.0893106008337647, 1.2978697637126864, 1.3681370100830195, 1.3650096748440788, 1.534229881293033, 1.4744411806554796, 1.1207272105715458, 1.119410017523504, 1.205064802397329, 1.4436113297227335, 1.1373860893731251, 1.1112698979284252, 1.0952693791865054, 0.8612754010671068, 0.9648962067334171, 1.1236969480228394, 1.061930653439824, 1.4985966812383156, 1.4307390745580197, 1.3358277815041386, 1.2347571449870174, 1.061479921609185, 0.9426981983211699, 0.6379830300554172, 0.5972861402605835, 0.609498215033765, 0.12444839713613022, 0.10278616718901658, 0.11173881585895987, 0.2210786721608132, 0.47703950325994404, 0.6579352368209637, 0.5261203680537622, 0.36964752749505525, 0.49278060872698043, 0.37649460233235016, 0.11555771403689066, 0.6200152942803098, 0.5539926100461372, 0.4208687668545558, -0.04491497450149145, 0.13599092150470904, -0.07392566312701443, -0.06784436732193828, 0.13796865751337936, -0.06861894000265908, -0.05173051056193879, 0.2720438015188256, -0.24996575373222193, -0.42218201650457077, -0.6143790541045523, -0.6540926500277989, -0.6642472544967947, -0.8897443130895021, -1.028785545852268, -1.193080368881545, -1.2676160592156256, -1.2212480982829035, -1.0277714555741781, -0.803534750940384, -0.6646505588933149, -0.8503525586733817, -0.8510528757448595, -0.34655542148967317, -0.13098753947357453, -0.22458593749392308, 0.11156549737680566, 0.029108565310136027, -0.112913468756476, 0.1836516192481214, -0.09462263023313136, -0.5012620442234116, -0.30125791983246364, -0.29537415135207273, -0.2683115375515295, -0.34510665373565813, -0.39578171867189954, -0.49312089975080714, -0.6261318624380245, -0.7072801372543457, -0.7951302464832404, -0.9711877061184759, -1.087025244413164, -1.6188115270723062, -1.4733387686369344, -1.3904177634776809, -1.4084591901537435, -1.3580325106172566, -1.2999027906120326, -1.4537386748519343, -1.5669013245927175, -1.4546446241503896, -1.410554288640126, -0.9763896003892405, -0.6322544487556783, -0.43400805172131923, -0.595861468200397, -0.7158185266070786, -0.928733390219459, -0.8692905552998497, -1.4516885743886836, -1.5491359872665147, -1.6143070803796151, -1.938188296018196, -1.768685303181623, -2.0107301101339075, -1.9538401549978968, -1.362343195352133, -1.7046496284097221 ]
You are given two Autoregressive processes AR(1). Which of the following time series has higher standard deviation for their random component?
[ "Time series 1", "Time series 2" ]
Time series 1
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Variance" ]
The standard deviation of the noise component is related to the average distance between the data points and their past values. You should check the degree of variation of the time series over time. Which time series has a higher change in average?
Noise Understanding
Signal to Noise Ratio Understanding
4
[ 25.5437626101348, 11.074403317366427, -1.5072380609471345, -13.64843623817503, -3.3692103451752002, -12.826745095766006, -4.662916198910233, 9.865809583914343, 1.273867230842642, -6.6017455978969215, 1.4178069896705114, 1.6128526549736655, -22.338700158439206, -2.552195771008172, 3.4782224279005636, -1.0210910186715072, -5.025576318262002, 2.9822506470485974, 1.9370099567036578, 2.122097435091831, 3.204774005344002, -5.626687256817791, -8.108856128350354, -8.370339639710428, -14.30265506786331, -8.69487807983944, -2.1125991680165415, 15.174871045540364, 4.5301683565219495, 12.528705635987503, 24.27226976547822, 28.91370356187375, 18.15026950116034, 11.427479626574279, 24.32129745657772, 17.592140591160945, 13.772440728915862, 6.150870740495064, 12.658880176493508, -14.4810033352149, -19.684863997083824, -25.54684374179103, -4.553630948374035, -1.3207695911012332, -3.0741443411777585, -4.499441845139505, -17.415172473840137, -0.3701875104394361, -3.8098205991815006, 2.8833140706519793, -4.258456316616423, -4.006382799928931, -12.39382299364857, -12.3954787567757, 0.4914407484585581, 1.4513682733740958, 4.902340254823757, 4.548386018803493, 19.950284135763344, 7.794832895113794, 4.854878805109246, 5.762982362100515, -5.349277892713044, -3.0147843896044058, -2.1153775858676855, -0.5531804904748294, 0.7404125490734939, -6.123660957756285, -21.144666000216937, -15.084916357533709, -21.001713363855032, -17.725820416624074, -21.665080582519593, -32.13963866919178, -22.105369527791357, -10.680796961014508, 2.488246747837808, -2.4799119490536867, -1.58702953438612, 2.1366243138564944, 11.921522031241166, -7.963512221561535, -21.058006721591262, -2.963546860757763, -19.22148391051836, -6.203493925255328, 8.347318488649641, 14.711871108296293, 1.7372599830933044, -7.528276920223412, -6.598457733885062, 12.236226004428016, 27.22281273035761, 24.76758316171557, 3.8701929405183773, 4.719248130453983, 1.6979030395197796, 1.5857819032925466, -15.295680168287872, -9.798186054179583, -22.871670890628927, -43.59714896849643, -32.633693214481276, -6.920685545987357, -13.892898774449854, -15.842140848249151, -3.7162158266585106, 8.653378066200279, 7.9779273989657495, -0.7018161997497252, 12.699717860246931, -2.142807710536271, -6.92588531172946, 0.34209330360756773, -15.413192305874396, -8.447188847744052, 4.628446843893553, 20.46815088379169, 12.47383749715228, 5.577612507092895, 11.611690468491515, 3.1113148219818108, -0.5982890001768015, 2.7424101503448695, 5.916933747095197, -14.337607296181293, -23.134160494596788, -36.8374610987404 ]
[ -1.6529294894764361, -1.5446076092387506, -1.3611572429711865, -3.24068458579932, -3.5257221756920414, -4.338781515871889, -3.6712559788681274, -3.593264422598376, -1.6160766449598762, -1.4323281243775745, -1.752858174475052, -1.6645761248331312, -1.975301648261768, -0.23879918128828237, -0.526286343674327, 0.03501827913613903, 0.8176799545817472, -0.0068316405563884075, -1.809102514478607, -1.927989987638297, -0.9050920122977574, -2.4195603655083078, -1.6828404540107798, -0.5065400387738046, 0.9863815478246608, 1.4669263958866154, 1.466243323113972, 1.3590745981098942, -0.12065388092145679, -1.0430742684323842, -2.5666809097078116, -1.9814000692468903, -1.1443990016077015, -0.797810912963664, -0.35457085328246307, 0.4760093056029708, -0.9463070479671449, -0.6942002133550684, -0.3088562731395511, -0.7159977578691242, -2.698547065454938, -3.1830373943756944, -3.0546972963835497, -2.294160608877108, -1.801871142143613, 0.48182246285842334, 1.3291293393653794, 1.04028367623155, 0.9534067921102248, 2.0334025743010713, 2.9358041637806576, 2.682737731681168, 3.879503019710034, 2.205606418999796, 1.7356338682371184, 4.554747424614696, 4.354080475355284, 3.3422987411106595, 2.777775716580192, 2.4018643237200856, 3.5914303800943053, 3.677342703468273, 2.8631544892054928, 0.6144931754155594, -0.2350986755162524, -0.12801352010095537, -0.23201590558290258, 0.9102495841434134, 0.49684663116663363, 1.236146541142781, -0.48315735211393607, -0.9110093276469928, -0.03412786842294502, 2.039983777201288, 1.4899719011449641, 2.0207699982398086, 2.9527622218216045, 3.3154114410126416, 3.4006025146373737, 2.3665221374151275, 3.4126973965130714, 1.4121243633464169, -0.13723774974958225, 1.757605771134082, 1.7677045160178657, 0.17618363931181857, -1.292660993078662, -2.509914950712724, 0.02642449283602355, -0.060105397600266716, -0.565389675486068, 1.1764707094189986, 1.1924529041664815, 0.626535862925944, 1.5621018973500405, 1.8473898059603868, 2.07836948990091, 1.3924778476581863, 0.21863940310017294, -0.8355575201584116, -0.5655366821512744, -0.444902456774863, 0.12688641518894528, -0.32331062302824287, 1.021658231413933, -0.5082166187435543, 0.011475534665088716, -0.9003007600918324, -0.9634112063346423, -1.6914652218224933, -1.7208099512783264, -2.4469385190717436, -2.9583837307410024, -1.4029426773263423, -2.511784734782985, -1.3594699275561775, -0.23574538428264813, 0.5418179161812906, 0.4068247131486773, -0.7666244957687216, -2.1585179040288316, -2.906889129534232, -3.4993319918857244, -2.5244647051840197, -3.435104245089919, -2.954811862858457, -2.3236796169022793, -2.1620081154763153 ]
What is the most dominant pattern in this complex time series?
[ "Noise", "Trend", "Seasonality" ]
Seasonality
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
5
[ 0.11681606574585326, 1.579946338574453, 2.67181316740565, 4.114339617156449, 4.93448618140805, 6.168402682590406, 6.522535903226298, 7.081508214336502, 6.671025184769849, 6.497452139394053, 5.760875074868962, 5.088025114685672, 3.9459692513737377, 2.6320545285856154, 1.1358875352976097, -0.35181607908482515, -1.735252969348148, -2.9810398281845587, -4.618176533513837, -5.53706283936872, -6.3851919387369875, -6.737969986778071, -6.862495644570686, -6.591408788298141, -6.285545028062437, -5.56029589634224, -4.970855484598015, -3.4023198182167143, -2.499584504307904, -0.7011491495832357, 0.8993890628074144, 2.0491352433998986, 3.580819737716404, 4.47743630695248, 5.637460879874152, 6.300027613953265, 7.129513816976256, 6.964914095932833, 6.817872956650146, 6.1409097150002845, 5.657408066823015, 4.42812850422703, 3.1424607689552078, 1.7718209257468902, 0.33439423587044964, -1.104266530687216, -2.813667043217117, -3.5822507276391087, -4.875824810944584, -5.714822884057987, -6.4001643921862295, -6.729740955274168, -6.921391172935659, -6.505588834163363, -6.005089420740233, -5.105400389642313, -4.2057656331026765, -2.5615920713521656, -1.3671214503732614, -0.016026901602526268, 1.5649932150532986, 2.995979872063059, 4.3555520973124375, 5.054482789789271, 5.830302080583276, 6.758735199865892, 6.964579309304863, 7.07922683432365, 6.622356243267391, 5.915810849903995, 5.145277508214719, 4.056667983935315, 2.7928053799052397, 1.0210582564977764, -0.08991283272690677, -1.732728857792679, -3.223407115870659, -4.267984774800139, -4.998021623621612, -6.069907760698207, -6.529544886863574, -6.9779799061541645, -6.955851748381221, -6.28167418635158, -5.453674157800249, -4.593225945639881, -3.3616478298954773, -2.0199919134350672, -0.8933438578430521, 1.0407529672519236, 2.1561966866108495, 3.6664607145430193, 4.816474307513139, 5.547906633680949, 6.426068185906342, 6.734973433829863, 7.178171346449865, 6.9421184898475286, 6.191701776496545, 5.583500475242237, 4.3854449450117166, 3.3586831140881594, 2.127235165614056, 0.5049780068526833, -1.122537428964199, -2.340105383478199, -3.774424703579705, -5.0544835978974065, -5.512507775238806, -6.435309824458506, -6.427125601239022, -7.01216416362775, -6.668307950623735, -5.963006431789016, -4.94090681234329, -3.90221824156465, -2.7242385789064385, -1.3527215283883174, -0.03645013888756486, 1.5430795446094434, 3.291307408347715, 4.349261550574562, 5.345726822168405, 6.227492446597843, 7.0210100146445376, 7.1728655223476965, 7.17239683165099, 6.51353756891795 ]
null
Is the given time series likely to be stationary after removing the cycle component?
[ "Yes", "No" ]
Yes
binary
36
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Sine Wave", "Square Wave" ]
Cycle component brings the cyclic pattern to the time series. Assume this effect is removed, does the time series satisfy the stationarity condition?
Pattern Recognition
Stationarity Detection
6
[ 0.12123198602233552, 1.3073822317777242, -2.096207694886701, 0.10080153582772666, 2.7773161476321544, -0.7051497419555808, 2.2542165514258095, -0.6470041291359794, 2.660223000453069, 1.6825823844526977, -1.319113202004849, 3.500079613791721, -0.20778675335935692, -0.6630662813959245, 0.8136982225441088, 2.157738325042295, -2.1342716390498815, -0.5467780342723015, -0.21683182165721826, -0.030801154930434782, -1.2034190600034966, -2.359815643249363, -3.294096815645784, -1.6649711752411802, -3.7081357789561773, -6.926509238209592, -0.651934103284548, 0.4529852001192778, -5.1496090116748245, -2.3542111388890925, 0.962485244923555, 3.9410737850990833, 0.621682295932593, -0.3918366435443459, 0.8968516417509589, 3.965950407645628, 0.4960685657980015, 0.33519327144416877, 0.9485532610824315, 0.06017192199375665, 1.8947212908573694, 4.4291053005131715, 1.8265528680082455, 0.48533965891821085, 0.07402651279059869, -2.5922705972613502, 1.4591979258135874, -0.6494659788454322, -1.1832502844106192, 4.6102568192182165, -0.8895643808929501, -2.991874106722591, -2.5347513123231966, 0.2582875580617503, -1.5945392114441612, -4.305340557519025, 0.13038376159707554, -2.507702570393065, 2.3812606622821164, 1.2783725063823395, -1.1242969453498506, 2.3782160440113267, 0.5549972321135304, 2.329296049145913, 1.9836895283152496, -0.15176605353465766, 0.4299870089990787, 3.6054619518819973, 1.2086390413653678, 1.0797849842086196, 0.0006222721977948709, 2.3409994992160845, 5.085335826934811, -0.8581862021781557, 0.7927883046187908, 2.9480411762350647, -0.12502567778955662, 0.4636686781068485, -2.6365678295741515, -0.26751188082827626, -1.6656029817162443, 0.22901650466285872, 0.43213449692206596, 2.8807909933048244, -0.7686364092007756, -1.1628252320673458, -1.2609692526790177, -2.043635068199912, -0.5240343671819956, -1.3549171768096953, -0.16435217647104344, 2.286288211492141, -1.5444302020279077, 2.7033724817363236, 3.3603447935006674, 1.0578244883360037, -2.3277375330065713, 0.5885584688417551, 4.140270412246495, 1.7801091093508772, -0.03598662429855848, 0.734546479245505, 2.974823320873286, 2.1867291474518438, 0.4577728191172191, -0.11866265056369929, -0.5319508679526054, -1.8679536051687713, 2.3573906429394764, -1.4924130221150298, 0.9890155340868101, 1.286495582321283, 0.14941804460859132, -2.558461011332085, -1.091342346419112, -1.832902150221871, -3.315624962418946, -0.9128928442151981, -3.389479319357893, 1.191006104639981, -1.4609167838985868, 0.10850016973095139, 0.6325604430461816, 0.021700406021405994, 1.9014639536994167, 0.2941093645761579, 2.995071054802152, -0.8130254475240923 ]
null
The given time series is a sine wave followed by a square wave. What is the most likely amplitude of the square wave?
[ "17.92", "5.37", "1.63" ]
5.37
multiple-choice
24
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
After the sine wave, the square wave follows. Begin by identifying where the square wave starts. Next, measure the distance between its peak and baseline.
Pattern Recognition
Cycle Recognition
7
[ 0.019337875134129316, 0.5263825241014467, 0.9973064139606924, 1.3358394177412576, 1.8675268289910865, 2.170106141611915, 2.4171528134942255, 2.3275509163436094, 2.406763721915604, 2.3328576753828703, 2.0785478624159226, 1.4646124373565734, 1.281899101696567, 0.6893422971904652, 0.1640958766421608, -0.5939892131182323, -0.7312174950083126, -1.3438219550989294, -1.9304671342606317, -2.070627426278523, -2.3037131183801955, -2.3341074094049685, -2.488066598288128, -2.3391338544528244, -2.175933574458554, -1.7221965309950922, -1.4454629315771963, -0.976159097409708, -0.3709756710410202, 0.0532979412542242, 0.8677667629676848, 1.3981139193956014, 1.600219370070823, 1.8684172841268065, 2.3062545587059358, 2.381226550475988, 2.5875689710895076, 2.3139282779605894, 2.255218456262905, 1.9150484433797819, 1.4478710336895764, 1.0788781170887474, 0.631657557723495, 0.015415213800796326, -0.5209369622547892, -1.1299627648340718, -1.3904210265538879, -1.7905813441069363, -2.235664449974806, -2.401662168915127, -2.3281812145752703, -2.545232141376628, -2.217424006490296, -2.0707634697760806, -1.4777895037219082, -1.2107759801234814, -0.5944025894339421, -0.26544099120316467, 0.22602391545980915, 0.8508567012314805, 1.3821480394085521, 1.721564442948854, 2.1804574828271703, 2.3149757682387757, 2.1278274088431584, 7.763387716397564, 7.619852812563548, 7.671946780310612, 7.863419638832199, 7.885387690890373, 7.6505571749689825, 7.765885181541448, 7.652879069436, 7.679419220588404, 7.647528976988409, 7.535672150438615, 7.717612040851635, 7.736923057172881, 7.64100634394715, 7.816885689621975, 7.664498496768742, 7.644385335992363, 7.760756830289075, -3.190432467435879, -2.9454963652683452, -3.076381184178062, -2.937235660799217, -2.9073512158557104, -2.9721489242029118, -3.117361597711457, -3.161247439087066, -3.1795715347721494, -2.9258731982684947, -3.049644279658644, -3.096086447891711, -3.049372483592515, -2.928102147543209, -2.9582902899026706, -2.9923136528677405, -2.972375662695985, -3.018147032888931, 7.738317824207906, 7.730209041593368, 7.708100393915508, 7.783443906861392, 7.744234729098303, 7.620035015367568, 7.7609939570305295, 7.732831225116194, 7.769247865369774, 7.697685827116761, 7.78928054985498, 7.701965663391648, 7.780494487138318, 7.662459366883213, 7.6693811130683684, 7.768311770799277, 7.674929179103789, 7.92868478795308, -2.979519769760723, -3.0336719198232056, -2.954174190762741, -3.0842323094362776, -2.943862786515324, -2.946640746772273, -2.910810862660671, -3.0802452215734837, -3.1584375938524003 ]
null
Which of the following time series is more likely to be an MA(1) process?
[ "Time Series 2", "Time Series 1" ]
Time Series 2
multiple_choice
50
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Moving Average Process", "Stationarity" ]
MA(1) process is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. The other option is likely not stationary.
Pattern Recognition
AR/MA recognition
8
[ -0.7909328420989361, -0.8904654210399249, -0.4849101798874821, -0.3634868239199933, -0.2959709966387569, -0.1419510638774289, 0.3268358027066576, 0.7514866360187838, 0.4256668247081739, 0.17725663852862278, -0.15567229200177315, -0.3068759896920422, -0.28983760963896715, -0.2335519393982054, -0.5490841563718538, -0.9352825905599705, -1.090195774030611, -0.8924916726376435, -0.6582472083780246, -0.2948966509017667, -0.29616069965678554, -0.11692017856324353, 0.10044443995357596, 0.0017357052554519414, 0.08861223127646832, 0.23230739258038896, 0.047110354785685454, 0.39709247901481354, 0.3944686877048722, 0.41824405970833023, 0.22503717424449177, 0.06705403167705466, -0.38819322024208636, -0.3711052130247766, 0.1600337215661904, -0.048125238429141876, 0.5817125898920033, 0.8838994505671462, 0.7900721407825785, 0.8013093879094219, 0.778487157355516, 1.1419088511410327, 1.2558816804874573, 1.5093435082724829, 1.5899954906180769, 1.5720248000774923, 1.646016870674554, 1.5661696568875678, 1.2670572051272986, 1.4432634060677185, 1.133880479228445, 1.0830047558339715, 0.9962518681161219, 1.136726793342426, 1.4704744040049547, 1.7287602522254815, 1.8753334498000265, 1.7487225208687573, 1.7157539072228585, 1.6521997206712875, 1.5590661938335166, 1.4801615076048416, 1.3956586770458566, 1.3018654735732658, 1.5070608664344107, 1.2913464904102032, 1.1438418504926533, 0.8172068765272531, 1.1196520786084505, 0.9580867257422947, 1.1022161353386186, 1.2074421688945178, 1.4896142204697753, 1.4510767007298724, 1.257828195151062, 0.9369948053995709, 0.3583767900830432, 0.3977419258072644, 0.5659315159320848, 0.6703959222303788, 0.35501357408201784, 0.5784471171858231, 0.4374995159764779, 0.25277532789728085, 0.10712545562144193, 0.12909127851400354, -0.17683821352194884, -0.17908937405805236, -0.08348566710843719, 0.15431672053009526, 0.19674523324355897, -0.07875212923605512, -0.042001369619035556, -0.25889494944118174, -0.4878895666186196, -0.7682274179590197, -1.1636351896460146, -1.2770916959577958, -1.0347656279646191, -0.5559027262908441, -0.670706380212643, -0.43735499201883066, -0.5146090338989576, -0.8553676819242353, -0.7028123927042805, -0.6480372957410474, -0.26115152909443884, -0.5775647296455342, 0.014479862802322607, 0.35389396367840315, 0.3556520186256896, 0.2985243598978561, 0.15388608044722618, 0.18242271198406168, 0.1493561348819824, 0.26265343507725525, 0.20642173589779256, 0.5087580435213493, 0.5405069812289028, 0.49215210765800593, 0.712535671431447, 0.37769510272625395, 0.45474248584616006, 0.46562451331960847, 0.17518683102812205, -0.1776897781973451, 0.03976924607546273, 0.24725275271031766 ]
[ 10.579014925568757, 12.623131540574995, 10.773099132673536, 10.72403468992698, 9.278728418314273, 9.175916092615644, 8.896852727606106, 10.880404098184496, 10.564221741531888, 11.42084154992798, 11.485945554387806, 10.791638970286575, 10.957945537158087, 8.923247571047032, 11.348707661747138, 8.342560631267961, 11.999866335911886, 10.818400813489708, 10.200793028542689, 11.89788431380465, 9.102981165899823, 10.404740536830026, 9.96868325117794, 10.00044672705216, 10.244530103017018, 8.893290055779675, 9.909394572796373, 11.211048315743643, 7.118838459610506, 12.692523422779137, 8.829921550314692, 9.337444632896577, 10.376261033275501, 7.912604666627733, 11.478414246584242, 10.302451540423107, 12.634597676314236, 11.00306743941702, 12.233232249321428, 10.088281213733758, 12.408831187010271, 9.844714322238117, 10.408084185055008, 11.691993127042167, 9.435757705964111, 10.54996030482309, 9.07368709397792, 8.374381400386987, 10.11673523303739, 9.175874184539552, 12.973512856820577, 11.107087880687947, 12.095505310891637, 12.35284008705758, 9.710203167605695, 9.26833222879932, 8.614011073249674, 8.663379186042157, 8.985792081769068, 10.942181651753142, 9.697353040919618, 11.407567036567693, 11.401280605489514, 10.470731930158609, 11.755922593162552, 8.143056478936149, 10.320222252228337, 7.36421240179379, 10.0461115941369, 9.250433256080512, 10.348857779617273, 9.708677215545572, 12.48460994806587, 8.347880416519898, 10.50962926222635, 10.64056116642213, 8.232404207680894, 10.379292013052837, 11.739488593251199, 10.22997016679442, 11.247864970040268, 11.006086079152412, 11.470299646317105, 10.865627005505717, 12.84284548296859, 11.358099723494501, 11.959172110038695, 10.683584238897472, 10.75555115573905, 10.298843742076794, 10.743531590631276, 9.930324992446149, 10.709616180463245, 9.463002131377925, 10.213327969596934, 8.500727176253365, 12.698525324555142, 8.266262816435647, 11.723321248808185, 8.594383511422098, 10.326540169356996, 9.148585853913827, 9.528759489234414, 10.500081261230477, 10.020603139845017, 10.458630368502208, 9.969693366956156, 12.137564945977903, 9.80916686941957, 10.47878381949445, 11.686094565422954, 8.124970062624769, 13.873110709072131, 9.395038057997528, 13.206818708271287, 7.983708725175168, 9.52651194475432, 9.669845571083194, 9.290502358357166, 13.109484118522644, 10.739427157732898, 11.779213377912297, 12.101714075005876, 11.126373991018276, 11.174597993381475, 9.714005498881908, 7.471375375813475, 8.687051049798537 ]
Based on the given time series, how many different regimes are there?
[ "3", "4", "1" ]
3
multiple_choice
40
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
First identify the different patterns in the time series. It might be helpful to identify their individual starting and ending points. Then, count the number of different patterns.
Pattern Recognition
Regime Switching Detection
9
[ -0.04207401948519687, 0.09231675752437826, 0.23225853953270997, 0.06741278828357439, 0.19017141127316278, 0.14532821334199886, 0.04275950114618929, 0.10396686129862523, 0.14889917735711536, 0.03380782262492009, -0.14058620220982954, 0.04896497336914554, -0.0714076988556985, 0.08129491965784193, -0.002270325970318565, 0.2685188653943892, 0.0742821112459733, 0.25898653654712567, 0.2932698003016101, 0.29879433768574026, 0.053843708242723776, 0.36497563252185916, 0.30677889591924623, 0.3572054997668014, 0.4718004188993855, 0.38027987202214947, 0.19461526154899045, 0.3902427350612764, 0.1865865679309564, 0.34268556175754206, 0.31069310999575506, 0.37406491034238215, 0.23412950545988878, 0.25767968133432595, 0.36421621380169567, 0.3989330108976023, 0.39063968008038696, 0.5902983041029057, 0.49965113307920644, 0.5089399329418408, 0.4431234191621604, 0.35420533566277057, 1.4929764411467235, 1.703845558197147, 1.5761704417163276, 1.6965757920441789, 1.7416569203536056, 1.7070983151568566, 1.7075917110629877, 1.6222346021952923, 1.7366602073388355, 1.7589976315332918, 1.8667862659387038, 1.7322301438845058, 1.8609425744821555, 1.997328039972598, 1.930226013096834, 1.9536811489405224, 2.0122372915405426, 2.1116461771653334, 1.949738698572082, 2.1635671140760335, 2.385331150063796, 2.3758586814138014, 2.440477705699826, 2.272342998015058, 2.4720143415763998, 2.561902378117671, 2.68176795705421, 2.810097411328461, 2.8600577255432382, 2.7735704078897485, 2.8453899095583792, 3.114437090866292, 3.010954388251699, 3.0146198066127115, 3.1803409614400553, 3.4164891388679517, 3.2739582939789527, 3.40691406753037, 3.451345261981127, 3.7238431843339463, 3.7501873461583424, 3.909958938650913, 3.9738728023703977, 3.6542254106596843, 3.717585125664005, 3.738212745563216, 3.7765134475474453, 3.808284046707503, 3.6966135975150767, 3.6646294817505396, 3.8175542521774184, 3.764562735330279, 3.729605835775253, 3.47150643563809, 3.7948146561723277, 3.6806085947665674, 3.6340784366149017, 3.556407765185545, 3.56311426509004, 3.5253789690823596, 3.4027775648948166, 3.5088475466321616, 3.418760611357476, 3.560682345286773, 3.4397176630466944, 3.615851833004593, 3.364491029250787, 3.6384622676983196, 3.5907139367820227, 3.3884935495019177, 3.4737550810308546, 3.3858086863291983, 3.5171710790420256, 3.6273615011491556, 3.5535468942870327, 3.3547323553241597, 3.423033303347547, 3.551860748594279, 3.4401262671203714, 3.476775137877943, 3.4289513944073726, 3.359519037536551, 3.333011334441871, 3.206932172050913, 3.239505766607787, 3.213971412923804 ]
null
Are there any granger causality between the two time series?
[ "Yes, time series 1 granger causes time series 2", "No, they are not granger causality", "Yes, time series 2 granger causes time series 1" ]
Yes, time series 1 granger causes time series 2
binary
105
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
10
[ 0.16642151163387248, 0.9818983267075138, -0.9338378472586594, 0.3417409934029134, 0.4099641775518498, 2.0939461156605836, -0.21342625212427768, 0.530995570730492, 0.9305505859209419, 0.40373383190067946, 3.333191294762026, -0.31946250308641255, 2.2517217808711734, 1.380649704967704, 0.6537999369830095, 2.2075855417009373, -0.06470599793778642, 1.1691934491155558, 0.9285707900337896, 0.8479894015893701, 1.2470244954237473, -0.7203511087231982, -0.2004840022961355, 0.7695814576806272, 1.3040553148867504, -0.33947173306236433, -0.46514533599259866, -0.29209092669851466, 1.0091080004435946, -0.4607744918812948, 0.3080483963394939, -1.2859712943101018, 2.998590253787539, 0.20148221602035948, 1.8397414955338767, 1.1892781478009853, 0.4140525309630898, 4.211660309090345, -1.131598305248179, 3.7798939453185945, 0.009702809012198332, 1.421017757509429, 2.3792800258111724, -0.18890008657211055, 1.4549655568151718, 1.3728025952231624, -0.418130689481947, 1.4034168086500394, -0.7895246765963547, 0.39955162619103285, 0.8298614310732726, -0.4032959131525423, 0.7210075184150313, -0.47042426002247084, 2.3162319241775156, 0.9739445487222108, 1.9409208693638484, 1.4231971358957458, 0.8261207349392169, 3.2542972745525898, 1.2203557806848382, 0.5564671668300947, -0.1121720184613435, -0.6825117573006004, -0.6071655650172949, 0.10953710141223158, -2.35769541484876, -0.27410867878350875, 0.7379491321322513, 0.10744555285735927, 1.0966099367085715, 0.5734158639710826, 0.5450574873225122, 2.927499320043221, 0.8886155469824848, 1.7133602623430095, 1.3370090849042617, 2.9969220505277376, 2.68262649948387, 5.021834250564172, 2.1179211583752093, 1.9577046949798993, 2.437553178160143, -0.2578827594219453, 3.0164955720166993, 0.3777756460920172, -0.2201659202008912, -0.11411669042778527, -0.33529586194503624, -0.09068740451873158, -0.002883944050462217, 0.6312970629056764, -0.05196716853583069, 1.0284560895081962, -1.9296547609205035, 1.1444668592631393, -0.19739122573202594, 3.5814773360372105, 0.26733439112449064, 0.979733437434322, 0.7966715878455662, 2.476664766405966, 1.8369978535356515, 2.0947236991179294, 0.08989995741812733, 0.36710879740393176, 2.2041379968782127, 0.40100318087058406, 1.823095800919901, 0.2988137231226676, 0.5700532512663814, 0.3440475987174681, 0.37512346584742096, 1.09188456697, 0.8895487273171377, 0.8934561051876945, 2.2683517790446945, 0.28751489517885687, 2.3935429315122057, 1.5981537876376688, 1.5581185196695708, 1.662112664406381, -1.5363752456557045, 2.2913792422774826, -0.30896103703352606, 2.2383373684950603, 0.07075545921524234, 0.7978182300206222 ]
[ 0.16642151163387248, -1.1054670898501258, -0.4819140090909162, -0.9641079741253968, 1.156738007574173, -2.144738860039181, 1.8951049217431666, -0.4707252627176918, -0.26072890911131924, 2.252187132429495, -3.472209904653933, 4.8348898299312335, -3.9051657516683123, 2.572468345153372, -1.3125277332266405, 0.08294698840768167, 0.5493265126598924, 0.34874894777129406, -0.28685389863876665, 0.08246249581580861, -1.8587771209827544, 2.221255661640043, -1.0359322297918319, -0.07647135087475587, 0.3558834293874648, -1.5701779282032042, 2.3312689700095017, -0.6970395645673617, 0.4936792744447382, -0.5354719631289223, 0.46052820592263755, 2.293471627115995, -2.037348848630409, 1.6526585147523174, -1.133840778275312, 1.9267747950480758, 2.1807448612040927, -3.603702925466047, 5.585686250051658, -4.451215251814094, 3.357739180755872, -0.39566854961294173, -1.517938595189397, 2.6860698070080513, -1.749574607862629, 0.900040151009969, 2.4951359669287947, -3.0295670502318854, 2.5218097546828258, -0.48621897359490984, 0.7528349864538095, 1.0792086293967604, -1.105771288254577, 2.283754589342787, -0.20476805804735543, -0.16917478938519048, 0.02374307251495121, 0.7400222710415745, 0.2773078844891236, -1.286151333151195, 1.4948523998461258, -0.08763869647558975, -0.3197927007654987, 0.056029186581344925, -0.5119578730800372, -0.8611675507986842, 2.395744807286829, -1.4570561599518368, 0.2009927513701173, 0.515773204471361, 0.5436584306557652, -0.8957494760876166, 0.4022458031008025, 1.3659393317428863, -2.0344345413044755, 1.3386365876930175, -0.001628747592921087, -0.0163827542629002, 1.1584687299665972, -0.9971211590809557, -1.4118680307642038, 0.22954536091712696, -0.922245079095766, 1.6170657892224212, -1.9362204416160111, 1.5720250186601021, -3.358643847170466, 3.860335672131969, -3.5206104166463987, 1.990159969373638, -1.1333463702118451, 0.8219588091985277, 0.9242231235546491, -1.5232040801428874, 3.413916099966597, -4.023454476357836, 4.847756443526957, -5.956390261033242, 5.186474027123789, -4.195211841221532, 3.9767787328823916, -3.3117464478275833, 3.660379165627235, -5.129693827931303, 3.366852749497444, -1.9626670181977397, -0.0829476460599059, 0.7202289629269036, -1.051420878429353, -0.42027322162651237, -1.1461871408269664, -1.6405298055515027, 0.42904923843565457, -0.2898700871036676, 0.517983170335776, 0.42200544427508563, -1.6430050000002714, 2.1910536287737923, -1.4177573186254102, 0.032143575310177974, 0.25246673457940727, -0.6146512052233755, 1.3715945574638977, -0.8094366951667507, 1.1640427094067698, -2.427910589626288, 2.789827390157557, -0.5362127071764458 ]
What is the direction of the linear trend of the given time series, if any?
[ "No Trend", "Upward", "Downward" ]
No Trend
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
11
[ 9.901424393644616, 10.001894946442674, 9.98412340318394, 10.001154978801644, 9.865234265039811, 10.04382999407754, 10.096841029845905, 9.998019875756741, 9.834298502447748, 9.835001046744159, 9.877318796237047, 9.858580298183137, 9.907487174689425, 9.97723941240149, 9.943283116616538, 9.934591699096895, 9.890621545741636, 9.907214197632126, 9.993512441327502, 9.715059381956458, 9.913406372315379, 9.943088311276437, 9.992224301329163, 9.814394313409114, 9.809153118731642, 9.972432104741076, 9.72571808158903, 10.04661604311843, 9.937001222268936, 10.069075649202508, 9.806757499802602, 9.871272663215652, 9.675806714065189, 9.835646732986156, 9.896308113845073, 9.719942335144776, 9.875410262335867, 9.71750012754138, 9.889009696537132, 10.028266499712569, 9.911067598622632, 10.07893924000784, 9.992492935162504, 10.048198277876017, 9.838694909600607, 9.836295950127608, 9.948801643904881, 9.758113841653678, 9.961247393594766, 9.882420532646877, 10.046398689408447, 9.981906163297914, 10.023269028751606, 9.839759647399136, 10.018460859509247, 10.057772214132374, 9.910697382596393, 9.841232497482153, 9.84297382883921, 10.0373780635817, 10.18067609479284, 9.81721012770987, 9.809588330403137, 10.005889616116987, 9.83978865257437, 10.015500886330424, 9.96067259083042, 9.912158440217036, 9.95828570215682, 9.952230581386436, 9.896728528124136, 9.740400637304118, 9.932248068653653, 10.070497309664562, 9.755033735331141, 9.818782578029333, 9.95685359112625, 9.918361882427483, 9.955302480343235, 9.845201525207104, 10.029788019998957, 9.91918565174666, 9.9836385567141, 9.946289696608595, 9.931935189640258, 9.976683324998369, 9.933025093159944, 9.796532971143089, 10.022342058865352, 9.99564920011795, 9.705651244685653, 9.849674757775544, 10.017880878379597, 9.733404195867992, 10.0080859535838, 9.9005341197445, 10.047418472055435, 9.914421979615877, 9.84294598963986, 9.945080941184006, 9.911523098229388, 9.834143553434606, 10.134474134521165, 9.81825580274218, 9.692157067516401, 10.071353786947652, 9.856678069758885, 9.885111987585443, 9.879050953955018, 9.858057383745617, 9.838571252499078, 9.815705871323116, 9.920956308107385, 9.874680478599329, 9.986947698370328, 9.962392552393053, 9.822577151079075, 9.9252950590628, 9.873108948704765, 9.81621715003415, 9.98288961746499, 9.902506840323941, 9.874128986270678, 9.829710159519795, 9.812620521499628, 10.111712793720095, 9.947661991153769, 9.80635530073676 ]
null
What type of trend does the time series exhibit in the latter half?
[ "Linear", "Exponential", "No trend" ]
Linear
multiple_choice
15
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
Focus on the pattern of growth or decline in the second half of the time series.
Pattern Recognition
Trend Recognition
12
[ 1.0287865898322812, 1.1086809882162731, 1.0217166496047014, 1.1448587028996267, 0.8556731126127428, 0.8133262733310047, 1.0410204799745775, 1.0451348357107564, 0.6860579264273643, 0.9601793127767874, 0.9242059383755026, 0.88841907947938, 0.9290573622284247, 1.09229447101643, 0.9335356735842408, 0.9395307955024583, 0.8785356754530319, 1.1698867478783044, 1.089044993189632, 0.7989385209534294, 0.9525489454045519, 1.1062299972676235, 1.1841291786214054, 1.142691989963739, 1.0256645047691357, 0.8707262990421151, 1.153526597532337, 1.039456265896888, 1.0786829614608795, 1.0567120974866167, 0.9415651612908537, 1.116213707380376, 1.1051117855237649, 1.042570832136798, 1.1349507846493683, 0.9531374088728897, 1.0663409322354485, 1.098564507162503, 0.9251762671585028, 1.095683376911914, 1.1774883141114032, 1.0765382390562173, 1.106194160582527, 1.1685911783154332, 1.0763347081181374, 1.0880997616296983, 1.0029807876307109, 1.121935970768067, 1.0927301985102338, 1.1789163307812653, 1.1881525742567502, 1.213733650624552, 1.0865998370485628, 0.9225878637707459, 1.217237039248051, 1.189019262689005, 1.0852191342765436, 1.2070904873779844, 1.0095927215211409, 1.2603380365952337, 1.1268209704000889, 1.0801671888815765, 1.103773451131097, 1.1456859143810294, 1.1676332056511043, 1.1808292299085654, 1.1402072463603863, 1.2103587369899207, 1.1983294959646902, 1.139911057861481, 1.1320160838643685, 1.2798384894835528, 1.2786013276814336, 1.2390491484853434, 1.3329218484558114, 1.0515363251276018, 1.1983964154812692, 1.146370957286049, 1.4947966839208726, 1.3476582283342602, 1.2755968368164081, 1.3691688819544252, 1.4094641793328953, 1.415566570997365, 1.4043405392425672, 1.2930829472918999, 1.2763672265592847, 1.2374516393971855, 1.3910820729557287, 1.3321105616375242, 1.3133238210062566, 1.31527157677277, 1.514523764896593, 1.4719393320048655, 1.5668774652210888, 1.4439064984850574, 1.4038671014089104, 1.4027982011965021, 1.3104750804324214, 1.2935301248710025, 1.4775729151230044, 1.3405377307729656, 1.4623181660955886, 1.55988584790596, 1.3889605751809233, 1.663720920830745, 1.3707700341647513, 1.57602581079572, 1.5266487421475454, 1.6107494379164986, 1.3868869406734883, 1.7363755823923925, 1.494962771206315, 1.5876718624021078, 1.6716226062544037, 1.473874439497806, 1.6240800714296197, 1.4715272595003266, 1.6955371709558338, 1.4869897286747504, 1.574025288934774, 1.607953449673968, 1.6629381454326078, 1.7885225881905749, 1.5536448472740454, 1.7198820125504288, 1.810201168874056, 1.6369154489847082 ]
null
How does the noise in the given time series influence the detection of periodic pattern in the time series?
[ "Distort the pattern", "No influence" ]
Distort the pattern
binary
58
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Sine Wave", "Additive Composition" ]
When the noise level is high, it can distort the pattern in the time series. Can you check if you can still detect the cyclic pattern in the time series?
Noise Understanding
Signal to Noise Ratio Understanding
13
[ 1.5591680930425154, -4.665622296788548, 1.8047866793925156, 2.131058513284418, 8.456594507023153, 3.25806884460796, 2.195271733195069, 5.399878062790664, 1.8071157813687124, 2.6715726641310282, 2.6150190365128494, 3.5820947649172643, -0.43523316932213096, 3.3744469178371, -0.37283395824616394, 5.341497030758326, -3.785560225346723, -2.4855566802361766, -6.041352627509112, 5.535820300571853, -4.9404944937629125, -0.4611174790871917, -0.7542127274294435, -4.800155126079203, -0.7673859279472057, -5.107887951795779, -4.297511865323162, -5.810999788809535, -0.06814627975559207, -5.96025085145893, 0.18961797437728456, -0.5390890269255905, 4.481104266150339, 0.8774204775271733, 3.323356539845224, 2.9446562465279245, 1.8287235186025586, 5.042733638527379, 3.460342399069097, 4.795601745535645, 0.379465052560755, 3.7628481635506006, 4.1998794309465275, -0.6642196231060051, 1.3904458229732737, -3.0689897322076334, -3.200840577147742, -0.04482899460553223, 3.9089798427040736, 3.587195161402332, -2.1383927743303657, -4.110146125153198, 0.07041643339319448, -7.242628442780208, -3.549884722678897, -4.438555737262857, -2.7981391081313487, 0.8709212294625468, -8.42556116982465, -1.1123005207305798, -0.625132739198232, -1.132685159101358, 0.22062712377491633, 1.2813031082530049, 0.946629387380326, -3.83450997944819, -0.618229366985158, 5.7662535355919164, -0.5696078859502158, 2.665941120747548, 0.8683547045766933, 4.066958547972846, 2.071864412243016, 3.9593816506150983, 3.0336332381419395, 0.8173948570294977, -4.036512051286671, -1.2337216969975875, -2.5641962018161824, -3.107981206171641, 0.5086940235362593, 3.6807819264800252, -7.572255609380127, -5.641173096886421, -1.7533398837965293, -3.1280315571215014, -1.5320268429409067, -2.737454801429613, 0.6505321876448593, -0.9452442799141492, 0.08850032696429677, 0.803871563712387, -4.077177114104171, 0.6974235230205287, 1.3492962801377533, -0.4955300447258347, 0.001809868118423097, 0.5485317698263026, -0.3714337215704884, -1.2202282785572804, 7.543355428604455, 5.157255736885961, 2.6967275644397057, -0.9260223132622594, 3.79052708455822, 1.3704374772067824, 1.5515805962494742, 6.945699700242031, 5.647005494370519, -5.116152128300552, 0.9358418439720969, -0.06931945375604376, -0.11849612502476192, -2.7836208716073223, -1.8432231013761835, -4.820086229884296, 0.062573123645838, -0.1633490193742042, 1.3137908270217924, -4.444795694165904, -1.7744899535020062, 2.750641500927167, -3.4547467554773013, -3.845750515484588, -0.22269648014531218, 2.3667939080562848, -1.5200458236129388, 5.261220000199819 ]
null
Two time series are given. One has noise and the other does not. Do they have similar pattern?
[ "Yes, they have similar pattern", "No, they have different pattern" ]
Yes, they have similar pattern
binary
82
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave" ]
Noise refers to the random fluctuations in the time series. You should focus on the overall pattern of the time series. Pattern refers to the general shape of the time series. In this case, you see both time series have cyclic patterns. Do their behaviors at peak and trough look similar?
Similarity Analysis
Shape
14
[ -0.10684805439258527, 0.42336608992325386, 0.7750586302004001, 1.351085750851552, 1.8954826261122264, 1.810247161279825, 1.6167990444176956, 1.645570759037724, 1.8650620578384103, 1.2147161388401115, 1.2685758442609483, 0.9957007956960436, 0.8181895247183825, 0.44608071096914514, -0.2202957694250616, -0.5452763536654508, -0.7406069130215045, -1.3139505404665155, -1.1780954033807394, -1.4896077125331761, -1.686350060632969, -1.6631394017388719, -1.7657837053822123, -1.642690715271653, -1.3693264306222448, -0.8852521869159238, -0.5952116828643427, -0.3374323807665788, 0.29256411310737673, 0.4960559987303052, 0.7530667761214191, 1.2575982462868203, 1.2570345163282761, 1.3000024550601499, 1.7299805973232192, 1.6040068804236811, 1.5998497846287958, 1.2875917004785813, 1.476782802280512, 0.7932109625327226, 0.4820020185818278, 0.2576246327884405, -0.4889958109599838, -0.8885096036678101, -0.8761459906485924, -1.346261891670644, -1.6778160625645893, -1.5400345075107964, -1.90083618648497, -1.7816474998870477, -1.8054171488639073, -1.381276323222173, -0.9171270661953066, -1.236431376391909, -0.47790557323776695, 0.060416125090910544, 0.2000447145846913, 0.43874329924629774, 1.095541857241905, 1.5060397215014671, 1.710989955100796, 1.7543714772770713, 1.7625732661313234, 1.5353058588062911, 1.7720267892426314, 1.5625654998012557, 0.9024942936607279, 0.8743857547528897, 0.5621989365014818, 0.2159921561791172, -0.36952926806512687, -0.9019037072298853, -1.1690911049636217, -1.5534087568328458, -1.5758987492827095, -1.7482313850521627, -1.315602618455845, -1.5216636902882885, -1.3751768521241567, -1.2625682380948668, -1.1482403604889255, -0.7924918295566669, -0.39888214130240707, 0.0694756878438327, 0.5019625930912148, 0.7947470286930663, 1.0660770125269465, 1.2771210701532296, 1.3173356421689453, 1.970349477199271, 2.184413208061149, 1.923108943929099, 1.2847539931213767, 1.4682341228353275, 1.2224028553647959, 0.5914152554568181, 0.3897613654480322, -0.19443476542992, -0.1872297591990305, -0.784415370063972, -1.3612737636006487, -1.3036299647713987, -1.4116151717870256, -1.6859964743780493, -1.6431965373538482, -1.6770155342137816, -1.7283303138505652, -1.2929741639841372, -0.8542060064143063, -0.6312714423534935, -0.06120144708128272, 0.09591016915704732, 0.4957585835497813, 1.0851616231968007, 1.2738863944189742, 1.3944868793786407, 1.8549193609525456, 1.5969346301215825, 1.5865599266855832, 1.0742129318223936, 1.3530728465130482, 1.4740526165749588, 0.4839158464682052, 0.34783090325595967, 0.2381761187785983, -0.6942001512134186, -0.7303379328370934, -0.7506739498713804 ]
[ 0, 0.676025912971673, 1.3264285190043223, 1.926555707448731, 2.4536609491306414, 2.887765454572275, 3.212415426998817, 3.4153057080848077, 3.4887461784909464, 3.4299532352830044, 3.2411552984087377, 2.929508347236922, 2.5068246885641776, 1.9891252365543892, 1.3960322744758142, 0.7500257142950079, 0.07559104400661179, -0.6017087420787639, -1.2562020536040066, -1.8630817305343341, -2.399345305155624, -2.8446668610953245, -3.1821674434266223, -3.3990548191193377, -3.48710833909488, -3.442990524232845, -3.268373565332429, -2.9698759423199372, -2.5588115650148824, -2.0507609437339305, -1.4649806435877573, -0.8236734058344592, -0.15114660076837122, 0.5271090908240507, 1.1853858470452507, 1.7987331045339223, 2.3439032558577493, 2.8002328000276084, 3.150425548019895, 3.3812081975876906, 3.483833429208752, 3.4544114544015176, 3.294057449783883, 3.0088492887041642, 2.6095971725357554, 2.1114338932653864, 1.5332412575894727, 0.8969344126784473, 0.22663119970039464, -0.4522619810295621, -1.1140131449604487, -1.7335400387861317, -2.287360829261959, -2.754484131544103, -3.117204642443631, -3.3617742218293443, -3.4789229862835995, -3.4642106640778465, -3.318194894113833, -3.046410089821481, -2.6591576691318513, -2.1711156014064845, -1.6007820706062852, -0.9697743414497914, -0.30200940352992406, 0.3772025506901053, 1.0421174542364038, 1.6675331390633563, 2.229744569980289, 2.707442332980141, 3.0825203227042888, 3.3407620153888273, 3.472379315593714, 3.472383552889424, 3.3407745666703823, 3.0825407122423836, 2.7074697879532303, 2.229778049766713, 1.6675713746838863, 1.042158996452154, 0.37724582493282305, -0.3019660374772579, -0.9697325272840543, -1.6007433932034092, -2.171081526750164, -2.6591294887485772, -3.046388871828022, -3.3181814427325564, -3.464205489154399, -3.478926283962315, -3.3617858671188086, -3.1172241939542213, -2.7545108482178966, -2.287393698460949, -1.7335778146740883, -1.1140543957236477, -0.45230514314664294, 0.22658776219657026, 0.8968923461929471, 1.5332021565618843, 2.111399239735981, 2.6095682799719615, 3.008827252216417, 3.2940431046178205, 3.4544053442797726, 3.483835785722334, 3.3812189314180268, 3.150444252324256, 2.8002587658596, 2.3439354990384125, 1.7987704029548817, 1.185426786990172, 0.5271521205524572, -0.15110311220570685, -0.8236311067778832, -1.4649411372919658, -2.050725727600008, -2.558781973834576, -2.9698530976832407, -3.2683583331161135, -3.4429834817812797, -3.4871097533370317, -3.399064636451402, -3.1821852917437625, -2.844692063895503, -2.399376907180948, -1.863118533978061, -1.2562426635108384 ]
The given time series has a decreasing trend, is it a linear trend or log trend?
[ "Log", "Linear" ]
Linear
multiple_choice
8
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Log Trend" ]
Check if the slope of the time series is constant or changes over time.
Pattern Recognition
Trend Recognition
15
[ -0.0008542674321323052, 0.053535430684782497, 0.10500614433980744, -0.3368972736064882, 0.06687838884650224, -0.10495931732559274, 0.03931498649472892, 0.03776488609071538, 0.16360455360867365, 0.10786463561486956, 0.09354126016708159, 0.09661237783906737, -0.10932180848835384, -0.1658534042793661, -0.03839965764054118, -0.07511494180652943, -0.2624562818417781, -0.15620474084611366, -0.24296924086117536, -0.3931211320518789, -0.04756646996100686, -0.26738039326373575, 0.05293339994945584, -0.5748805849140164, -0.4092720236496163, -0.3238428967244407, -0.1522072320416532, -0.28882156080001636, -0.31688155495268, -0.5705666948045058, -0.5887034555463128, -0.35438513654082787, -0.649703400435389, -0.52365548294702, -0.36405556584016613, -0.6253530587964704, -0.20564281030760306, -0.28262104327607834, -0.7634168052800847, -0.6696850884877878, -0.9092629188440711, -0.6709732624199545, -0.4250229235747422, -0.6356397903881992, -0.5024882549367133, -0.8474102798072697, -0.47242736773980193, -0.7119514125402614, -0.6302257774117467, -0.6609703026386822, -0.8713179396660526, -0.8646726700735652, -0.5230517102045743, -0.631376421917649, -0.5356359147168182, -0.6701556705268299, -0.7137182114924439, -1.0395478472924529, -0.8092112894872354, -0.7817358853813897, -0.4635997355233692, -0.6885809636340933, -0.5597098784329275, -0.7298837204453559, -0.9620064441088837, -0.8365943468648199, -0.8298428104290593, -1.0396392733597186, -0.9600065045386563, -0.9432979531394888, -0.6534506305548995, -1.283298783289276, -0.7466759945909062, -1.1182771218514982, -1.2042660973609558, -0.7905210822349282, -0.8786446437217302, -0.8043897077679176, -0.8934789594553274, -0.6960142222118183, -0.960302713669249, -1.093117894450968, -1.0227468146472907, -0.8852708446608148, -1.2368362755652091, -1.2286816601585424, -1.1844866694496512, -1.4980411234437598, -1.1360476865540108, -1.4878410710285275, -1.1766144138119168, -1.0539118459477326, -1.2916094190580882, -0.9444490331709562, -1.4825001318743636, -1.05206997896417, -1.1515822902900847, -1.5647634352971407, -0.8373898102877184, -1.314703222607188, -1.464002339727383, -1.5657695890016912, -1.3803617953759484, -1.378041373305298, -1.3527289715163129, -1.4328893276406214, -1.2903146989437586, -1.4742614663099518, -1.7462807601746233, -1.460746770953344, -1.8449784007056806, -1.4029241035051228, -1.6391001520498465, -1.461121287127842, -1.2817950948015444, -1.673505661220639, -1.3504323304016421, -1.6136375889771635, -1.2610250153478322, -1.6285667432286708, -1.721256592204218, -1.4788608111884423, -1.6798996849941321, -1.7609329555252806, -1.7132783095592208, -1.6539766091868384, -1.4351588984553576, -1.9964043696125384 ]
null
Is the two time series lagged version of each other despite amplitude difference?
[ "No, they are not lagged versions", "Yes, they are lagged versions" ]
No, they are not lagged versions
binary
101
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Try to shift one time series by a certain number of steps and check if it looks the same as the other time series despite the scale difference. If they are lagged versions, they should look very similar in general after the shift.
Causality Analysis
Granger Causality
16
[ 0, 0.5525243928351258, 1.0682751964925552, 1.5132900740305217, 1.8590142795232742, 2.084483599545038, 2.1779270167442166, 2.137666575741413, 1.9722456587728363, 1.6997758647154095, 1.3465524210175195, 0.9450439769552204, 0.5314104536730895, 0.1427387053899556, -0.18579268119418835, -0.4236027050400528, -0.5470457945713831, -0.5412194546153355, -0.4011035262303144, -0.1319439657540593, 0.2511481959110091, 0.7243520551793953, 1.2569578864323, 1.813714826503737, 2.3575257181839513, 2.8522830984513368, 3.265629526969674, 3.5714312343919365, 3.751775986021495, 3.7983424289704235, 3.713036239526006, 3.507844438792924, 3.2039190138290747, 2.829959899229898, 2.4200209363206353, 2.010906539086754, 1.6393580854557563, 1.3392451275336898, 1.1389761460020436, 1.0593267902590915, 1.111851630110987, 1.2980008367667581, 1.6090093207455751, 2.0265668018359615, 2.5242175858741067, 3.06938303878117, 3.625852144595425, 4.156549750342158, 4.626370872094814, 5.004864386362304, 5.268560945065895, 5.402767150618039, 5.402688830743941, 5.273797541393786, 5.0314122794816125, 4.699528382503492, 4.308983142835839, 3.8950983710782277, 3.494980128789701, 3.144682059540855, 2.8764491747838283, 2.716252800465676, 2.681805131773442, 2.781205178514086, 3.0123196153404845, 3.3629458693310212, 3.8117449772705245, 4.329872897942364, 4.883185569539968, 5.434849140874693, 5.948155830497203, 6.389330148091251, 6.730110949279661, 6.949911931977771, 7.0373954095567015, 6.991339049652321, 6.820729318527606, 6.544074487392104, 6.187989719689197, 5.785162406016817, 5.371853291921606, 4.985124431322147, 4.660005881839096, 4.426817741343295, 4.308852249571702, 4.320593152554256, 4.466608455148472, 4.741201208081004, 5.128845025984919, 5.605371042128769, 6.1398155600099384, 6.696787153302553, 7.239172255075619, 7.730972400508511, 8.140056222738584, 8.440615818392901, 8.615139699581398, 8.655751504927952, 8.564812128408626, 8.35473923469904, 8.047057958647429, 7.670755360609978, 7.260064435570926, 6.851847083207676, 6.482776104530027, 6.186531654656752, 5.991226476155517, 5.917256747650046, 5.9757428451370895, 6.1676792160513445, 6.483858356156575, 6.9055747010462785, 7.406054621445695, 7.95250320262188, 8.508611336550398, 9.037331465686956, 9.503709779424366, 9.877558348644111, 10.135762920117966, 10.264049945441567, 10.258077759398162, 10.123768489797174, 9.876855325080715, 9.541679749998021, 9.149330697780767, 8.73526787614915, 8.336610958145842, 7.989301872622892 ]
[ -0.9193667901471652, 1.0133537740869338, 0.43208970285707105, 1.3236120988351863, 1.5600492801819366, 0.5390552843877011, 0.5490617829402258, 1.3913930519712001, 1.209867565582826, 2.4836261327570015, 3.576894542357143, 4.562352691795462, 4.095997222615304, 2.9766560797501045, 2.3487040732415014, 2.5740387667964963, 3.167838778912926, 0.8996737059696764, 0.9106147945737071, 1.0969147249515345, 0.8246514666322995, 2.20516071951939, 2.6701216753225108, 4.071178084260291, 3.8650231238837254, 4.874130800220751, 6.61835047898445, 8.022286416717373, 6.894548950340035, 6.650326835077609, 6.310084891062731, 6.849106676771778, 7.596094662355597, 6.7368716160672655, 6.8330962069101, 4.730607019659564, 6.274960832992068, 5.76117437570977, 5.846316493589558, 5.54685256494176, 6.781087479427498, 3.8197911618944462, 3.8302197701195757, 3.747105021791338, 3.298054737823013, 5.145534715805743, 4.2405420970444965, 5.083589371667063, 5.489390594556638, 6.849189549311826, 6.177907682818224, 5.43781403498668, 6.6247682664194, 7.105698787448921, 5.511811605573584, 4.977683071480181, 5.419113407094186, 6.336513717802815, 5.656559374397677, 2.6229416997247954, 3.2106376177036307, 1.9623743241622733, -0.12484425300419888, -3.0699367919903007, -2.173719579061579, -1.9988236054518054, -2.196496365769899, -0.6927874224810795, 0.019753865153883776, 1.7640933405912333, 0.33958431335367045, 0.3463217919768664, -1.3128147691623866, -1.5099849913981185, -1.7267430561191013, -1.0209220395661438, -0.92644134404956, -0.22260403216845415, 0.566246435244893, 2.8847039229513602, 2.601955289672534, 1.6608616893924981, 1.9709290016137522, 1.1775009268841923, 2.7908917191080653, 2.545773948586422, 2.004045703220503, 1.5624198413838721, 2.374793004645669, 2.2651241676086187, 1.6465855152495008, 3.4589444891217203, 2.6162104678222113, 2.7136531370891896, 3.4616270510544016, 1.80511295950744, 2.3737205943467212, 1.3260400574575288, 2.2573430794335616, 1.308987372744646, 2.1053117141125144, 3.3377312451320624, 4.313744049562261, 4.648141436445947, 4.475239915261031, 3.9398859372687776, 5.562243213482885, 4.899436287476567, 3.8821762793321613, 4.6592613329481685, 3.898062956870895, 2.9758991695232817, 1.5350649496290893, 1.1073548587360982, 1.1024010110580154, 1.4418673524549712, 2.5285708037145285, 3.1695148320429025, 3.0557145471735727, 2.9355180573133284, 3.5627825474969392, 4.994470285125587, 5.2201607628677325, 4.820055564843541, 3.8697093827594817, 2.4443464601403955, 3.2445082263480547, 3.953156700852261 ]
What is the type of the trend of the given time series?
[ "No Trend", "Exponential", "Linear" ]
Linear
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
17
[ 0.04528010244213599, -0.22519403458311676, -0.6974427944004593, 0.04188750689354841, -0.4683837093683803, 0.23308255690288696, -0.39630572085937, 0.7293120596168503, -0.3272759923441829, -0.11413945287294948, 0.4054285187405751, -0.5199302955680679, 0.14628845278695313, 0.6404581500754933, -0.6803268386689717, 0.1375624268879941, 0.17533226329996146, 0.41607193001468756, -0.4976510110642669, -0.5320170186318074, 0.30871922654469014, 0.2100799867926576, 0.1925326279399286, 0.23971115607951604, -0.2231250849786104, 0.1949785351708265, 0.2261915210730838, -0.22798911882428938, 0.9479596754859552, 0.3190598956946887, -0.4339755623409765, 0.4092411383686022, -0.32839014475241113, 0.4757081587046592, 0.6480950722503847, -0.24768161516044418, 0.5665459213941069, 0.3199414629069375, 0.5094897126814824, 1.001410204734306, 0.03161271854741804, -0.19579525971885944, -0.25391305384999563, -0.2168451475842677, 0.12239090990294851, 0.3160170171971264, 0.2903046510130853, 0.5440180922065541, 0.17764399400142147, 0.835778291536311, 0.058635659019101796, 1.4184741636363494, 0.47034143511003923, -0.19985437471796066, -0.2933945264784711, 0.41600928933445963, 0.09882063936689404, 0.5283678867110826, 0.42254664535541964, 0.17799994511823222, -0.1701003483943778, -0.47007611842497055, 0.018936058611093487, 0.6145385784293746, 0.32626252514213894, -0.3334858875879152, 0.3148280192277969, 0.4147975138175808, -0.1583188643911638, 0.31672109114423175, 0.2768976971777833, -0.26532239806252716, 0.4201774611996596, 0.5159941989247379, 0.7568822856833191, 0.7471697229840257, -0.3540769949725914, -0.1506404193250303, 0.513095593946933, 0.5161057591318465, 0.5202569089653281, 2.040428766990938, 0.5527867321690516, 0.812944572722652, 0.7340224757741758, 0.6000985828051855, 0.16444022523703897, 0.6561360885615599, -0.03631074985456684, 0.21082053960422212, 0.10146324033689352, 0.36278546911874754, 1.3809074361308618, -0.5157188651627412, 0.6481430354445055, -0.3928997565805073, 0.12903341335480767, 0.8418530921518907, 0.3798358136601324, -0.1355054816234204, 0.03276020087415216, 0.6701605727363708, 0.033071504261094176, 0.4668726791562383, 0.39280211037639984, 0.07959524358543885, 1.3534270131136055, 0.6708718526824098, -0.5337884719311788, 0.4747061975461818, 0.09285600292113166, 0.7844728595821917, 0.04060795975347892, 0.35216092857311926, 0.6373320324750783, 0.8048374588447553, -0.1303679127282617, 0.26661440910369627, 0.20637654008002726, 0.12889936764884719, 1.231536542556352, 0.6169358373501397, -0.13643097978991753, 0.8571366824587573, 1.4079279656488766, 0.9163664004815526, -0.23957184613047605, 0.23435638835694933 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sawtooth wave with exponential trend", "Sine wave with linear trend" ]
Sawtooth wave with exponential trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
18
[ -2.9223440486986982, -2.7246326025088132, -2.5269211563189287, -2.3292097101290437, -2.1314982639391586, -1.933786817749274, -1.736075371559389, -1.538363925369504, -1.3406524791796195, -1.1429410329897345, -0.9452295867998498, -0.747518140609965, -0.5498066944200799, -0.3520952482301951, -0.15438380204031033, 0.04332764414957446, 0.24103909033945947, 0.43875053652934404, 0.636461982719229, 0.8341734289091136, 1.0318848750989986, 1.2295963212888836, 1.4273077674787682, 1.6250192136686532, 1.8227306598585384, 2.0204421060484226, 2.218153552238308, 2.4158649984281926, 2.6135764446180776, 2.811287890807962, 3.008999336997847, 3.2067107831877317, 3.404422229377617, 3.6021336755675017, 3.7998451217573863, 3.9975565679472718, 4.195268014137156, 4.392979460327041, 4.590690906516926, 4.788402352706811, 4.986113798896696, 5.183825245086581, 5.381536691276466, 5.57924813746635, 5.776959583656234, 5.97467102984612, 0.3276943786386082, 0.5254058248284932, 0.7231172710183777, 0.9208287172082623, 1.1185401633981473, 1.3162516095880323, 1.513963055777917, 1.711674501967802, 1.9093859481576867, 2.107097394347572, 2.3048088405374565, 2.502520286727341, 2.700231732917226, 2.8979431791071115, 3.095654625296996, 3.2933660714868815, 3.4910775176767657, 3.688788963866651, 3.8865004100565352, 4.084211856246419, 4.281923302436305, 4.479634748626189, 4.677346194816074, 4.875057641005959, 5.072769087195844, 5.270480533385729, 5.468191979575614, 5.6659034257654985, 5.8636148719553844, 6.061326318145268, 6.2590377643351545, 6.456749210525038, 6.654460656714924, 6.852172102904808, 7.049883549094693, 7.247594995284578, 7.445306441474463, 7.643017887664348, 7.840729333854233, 8.038440780044116, 8.236152226234001, 8.433863672423886, -0.005502344891639495, 0.0051543307245040726, 0.00473860833744823, 0.01368450123265755, -0.009168268438183719, -0.0012414718027276839, -0.020109628897446278, -0.0049280342496342815, 0.003925797504024593, -0.009291846669305591, 0.0007983181221570495, -0.0015951650165707519, 0.00022221826611982997, -0.004277929136033454, -0.0053181741021822776, -0.0011747550177134997, 0.0022207890156474303, -0.007679765019430772, 0.0014246460238665488, -0.00034652184227599306, 0.011343392655025437, -0.0010474554830443177, -0.005251228511300091, 0.01912771271359207, -0.020267196157300917, 0.011194236115618372, 0.007791926345150047, -0.011010977563498335, 0.01130228193897037, 0.0037311891472941866, -0.003864729505645555, -0.011587702419250825, 0.005661128267810409, -0.007044534503765905, -0.013779393038224825, -0.0035311665200706828, -0.004614657181741833, 0.0006665727850862436, -0.001762856619257587, 0.012008927719495284 ]
null
Is the noise in the time series more likely to be additive or multiplicative to the signal?
[ "Multiplicative", "Additive" ]
Multiplicative
binary
60
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Additive Composition", "Multiplicative Composition", "Gaussian White Noise" ]
Additive noise is added to the signal, while multiplicative noise is multiplied to the signal. When a cyclic component is added with a white noise, the cyclic pattern still remains. When a cyclic component is multiplied with a white noise, the noise is amplified. Can you check if it is the case for the given time series?
Noise Understanding
Signal to Noise Ratio Understanding
19
[ 0, -0.359677943405946, -0.24230937165712196, 1.5502833397061255, -0.27417661004549654, -3.240314891748005, -0.15498507649271867, 1.610943429358519, 0.010136472933079106, 1.182175330381937, 1.6113308582372172, -0.6212788633738786, -0.9093618845860854, 0.263719485039306, 0.29416118733280183, 0.08435096399727104, 0.13664808187299113, -0.9622888759347838, 0.8336887287641117, 0.5489708199106641, -0.940631800626119, -0.1863748706370112, 0.022791869298748012, -0.003346499791589087, -0.14815941428733168, 0.031224115857769068, -0.1170945049682304, 0.36280913075148147, 2.195404816162115, 2.618264901193074, -0.8424341317661961, -0.4147971509599361, -0.7239833333434185, -0.23077362230350235, -0.37548018492241403, -1.69697433950119, -0.7647249059497355, -1.7244954061656057, -0.26794247003471794, 0.4324370121220086, -0.25048256403446717, 0.9331746691861701, 0.35001375711550164, -0.1260389986471795, -0.07968375626370859, 0.026717939333494724, 0.017388797314446893, 0.143983933423569, 0.3844204836670987, 1.1289040046195271, 0.39761895608505654, 0.001602980655910393, -1.289264186815744, 2.126357144362382, 0.384423902654431, 0.3187365202936855, -0.43566037769373245, -0.5562778845726288, 1.205570474387889, -1.7580863691468953, 2.69622248337773, 2.2035293083872523, -0.5109803773146446, -1.1178725044954265, -2.2586957656381528, -1.1597906115386303, 0.5222641362045327, 0.1548175391337936, 0.12699783107161694, -0.03467701657982479, 0.08709202377457632, -0.6217855591713416, 0.06539876566419056, 1.1382767151447264, 0.12183155735634413, 0.9779291221031661, -0.47432224212424895, -0.0318084211513228, -0.8943419895164474, 2.0868883589479545, 0.784794122100786, -1.9104012461954907, 2.3325987587290617, 1.6659732551809656, -0.31256830708050887, -0.414826319592819, 0.63465347103587, 0.3134146418327948, -0.49701772619778767, -0.6127833733113506, 0.5313618330309513, -0.09598176489826343, -0.037878921459243674, -0.02477965280639166, -0.4845360001433566, -0.7604118054546146, -0.14293910049302694, 1.1257043391473582, -0.05151644913777253, 0.2682952537233044, -1.5395926123297754, 1.61620617934141, -1.961505178918556, -0.8820914372367121, 1.1038005993036486, -3.515114002018718, 0.28926528686779385, -1.6325410627535781, 0.02400133781338725, -0.45853965970768895, 2.380510388164385, -0.36851066020008966, 1.3394903095006894, 0.29521640808784494, -0.21610973400776937, 0.010359117874966524, 0.0631950929178162, -0.10719185569521163, 0.47793650596230514, -1.493890180830468, -1.0011170147140636, -0.04003440740451799, -2.4451624686444426, -0.11455852687542424, -1.8020367525842302, -0.06552227442012272, -0.688484265197258, 0.14273095916875844 ]
null
Is the given time series likely to be a random walk process?
[ "Yes", "No" ]
Yes
binary
53
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
Random walk is a non-stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is correlated over time. Does the time series seem to have these properties?
Noise Understanding
Red Noise Recognition
20
[ -2.225598971225282, -2.198196347184803, -1.1207026634133717, -1.9746122570963427, -0.4656303127967202, -1.3658301460664524, -0.9108786170807586, -1.4555970058338579, -1.3491371035153048, -1.2370272445215613, -1.8546736757598659, -1.8243575674731813, -2.1941810064568217, -1.7744029185541788, -2.4217305148628374, -2.153874806561538, -1.3807481933172332, -1.5845989837007421, -2.5841383910151103, -1.2293135263995936, -0.7756422001786301, -1.340016405942487, -1.0907047377275425, -2.384815615525135, -1.5826200716159526, 0.20688602163649966, 0.5797319808207692, 0.17345582625073605, -1.4102717192200303, -0.5422485423357799, -0.45559112485894104, -0.8185587412912384, 0.05047615833599881, -0.46746423209104354, 0.18842290853959906, 0.009339673227402034, 0.34323032132591397, 1.4955864748623053, 1.1666764706773642, 0.6896907311470512, 0.5425545343049891, -0.17045053334948376, 0.2624256943926024, 1.0515411551433265, 0.8905613262674477, 0.44004463653356024, -1.7161001463081054, -2.527003852931509, -2.527075415603908, -4.059938213856098, -2.0896246257706927, -1.9323235254505915, -1.2665062346724227, -1.7022736757945056, -1.0280192900013077, -1.281982894658281, -1.2578026630415051, -0.2872052176525285, 0.5702577829072825, 0.5163026303200546, 1.9662754760869474, 2.018511877878615, 1.53028415510298, 1.5729526818631194, 2.0452725725792833, 0.9610446857789183, 1.5976745394476022, 3.1858121308208887, 3.8478934304139103, 4.145704556914164, 4.833125488143765, 3.634468964770362, 3.031207765582822, 3.325632682404649, 2.995402085332428, 1.7582746214507237, 1.488271507738694, 1.884603404958717, 2.334337908440746, 1.6691286759605333, 1.8473039122339014, 1.925408168728259, 1.1855787214335725, 0.49798062846559177, 0.5493759209589775, -0.3865543349375358, -0.38115895326149973, 1.4943077072995732, 0.19369690665353095, 1.4176787695005932, 1.4421240436401015, 0.621123207997277, 1.2961873904966503, 1.1935782049156107, 2.092817111229785, 2.7569632629712935, 2.5689653276395927, 2.515837060109898, 3.4070434768639104, 3.0388170249304816, 2.2017470080153045, 0.545976052305801, -0.3833195408043052, 0.0637382770910071, 0.14857772337483816, -0.5766519531035865, -0.9028984720225158, -0.2669993788003517, 0.3504571158439699, 0.5143859532497335, -0.2717154070549095, -0.43879778218819177, -0.6056496673680091, -1.188050288797857, -1.2579953243505058, -2.133561634061171, -1.6494209765583756, -1.3712057017535442, -0.40712166347505485, -0.286034666032663, -0.2884569920081729, -0.6845662490570431, -0.9158090778474763, -1.6747816981829362, -2.8664210137474346, -3.062881584818984, -3.588988587519059, -2.9680950677737297 ]
null
What type of noise is present in the given time series?
[ "No significant noise", "Gaussian White Noise", "Red Noise" ]
No significant noise
multiple_choice
62
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise" ]
Observe the pattern of fluctuations in the time series.
Noise Understanding
Signal to Noise Ratio Understanding
21
[ 7.269603315338118, 7.344749865808445, 7.229006067179327, 7.429899555662993, 7.30610629392447, 7.32345297033087, 7.316592060981821, 7.384564064907563, 7.255060070810203, 7.226577981707385, 7.328478077237161, 7.305222210096106, 7.284994817318016, 7.383713243930359, 7.288688448251416, 7.21264422161829, 7.532851468935047, 7.26001611363895, 7.3590594422322555, 7.305422879747739, 7.131183147020334, 7.25733688886861, 7.299688779373104, 7.128364091354939, 7.234102395679657, 7.268737400468152, 7.290953115595671, 7.407963990973144, 7.296478113464691, 7.271555557432961, 7.380262278850498, 7.251863482153488, 7.445971458616336, 7.2600863775614, 7.285640718593482, 7.2971090029024275, 7.3592318078225425, 7.378160098124398, 7.337755881481338, 7.27533654724075, 7.228380954307399, 7.340177647008066, 7.354215721482978, 7.379476185332832, 7.217347026568148, 7.316625468147092, 7.224238113392852, 7.325318448036395, 7.272882907600929, 7.263634988461329, 7.410405970366833, 7.396992305849263, 7.329852086148159, 7.271272953771532, 7.367642924479378, 7.380481446123868, 7.313156836122728, 7.373761516445515, 7.315520584077328, 7.275429235868083, 7.336422462229157, 7.232963883160605, 7.244248424731362, 7.196481979906203, 7.426343799313335, 7.275694155036998, 7.41071012109517, 7.172703263865947, 7.496585596997588, 7.298524460963451, 7.335683714086211, 7.225562475558212, 7.302616349207569, 7.266754060085734, 7.247152397853066, 7.291933401467277, 7.190523922499228, 7.456624102866994, 7.294741412852928, 7.4012351750815855, 7.527041424537943, 7.263475345651299, 7.340541436437957, 7.349315884213259, 7.222728415749785, 7.376681562400277, 7.41409176696252, 7.283491711539239, 7.3471480782480025, 7.323661233481552, 7.29985301702663, 7.389795557715394, 7.264274853269641, 7.286981885368855, 7.211791068538153, 7.2798293425349545, 7.3850017954819975, 7.306128126204858, 7.269420583299264, 7.177295720272995, 7.202287252961374, 7.215224711272212, 7.318125142309243, 7.446070006367984, 7.359737806419193, 7.30523280257004, 7.371581046752873, 7.276239805882753, 7.108438329529505, 7.367606781624138, 7.380836664798515, 7.229819831159732, 7.322056839121589, 7.392223217366291, 7.213096368084314, 7.403870642897449, 7.3788049916680905, 7.407494185277679, 7.464945230224739, 7.252875529432495, 7.375290258034256, 7.223236518422465, 7.269779595946943, 7.454928519074571, 7.369804120029732, 7.268879524077406, 7.248573414046683, 7.313635308799471 ]
null
Two time series are given. Both of them have a noise component. Do they have the same type of noise?
[ "No, they have different noise", "Yes, they both have Gaussian white noise" ]
Yes, they both have Gaussian white noise
binary
87
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Additive Composition" ]
When a white noise is added to a time series, it is expected the random fluctuations have similar amplitude or distribution. Random walk, on the other hand, can result in very different noise patterns.
Similarity Analysis
Shape
22
[ 0.5995786278137535, -0.6314813172814403, -0.15027652589564977, -1.4145238981243515, 0.5858515697177442, -0.014448741302437673, 1.3289099421129777, 0.45501310663975647, 1.6446822659012839, 1.5049433368710767, 3.4048863271249914, 2.285678998739827, -0.024045185025857396, 0.5489185919925539, 1.8383417066314796, 0.7942120640016326, -1.3308411840725798, 2.874459919001688, 2.108236702282529, 1.7499817794191408, 0.44309973614537235, 1.2827873585827947, -0.05818126569571547, 0.6318131443871996, -0.7196507160986543, 1.4879973764404517, -1.827300720488005, 0.7505410267954955, -0.6598329997679228, -1.394092884870365, -0.9290920650129517, -0.5367585863728023, -0.05714249280306749, -1.241850577408383, -2.552027694365168, -1.6855794873604555, 0.023437845930819767, -0.46926033726497174, -0.9028196225009203, -0.9816876982972165, -1.0154080220044035, -0.46627414984226134, -1.9659468267012596, -2.7246542749303924, -1.1390017818639568, -1.8447840586856374, -1.8850601764249437, -1.33993491990846, 2.0859099173145137, -0.03666573470819068, 0.4184831359275001, -0.9373229131341811, -1.3347882972339582, -0.09426948729610196, 2.3672536235708015, 1.4528112919041944, 1.8887937994521913, 2.1798786516532944, 0.978121370204789, 3.06059753167704, 1.116345559301228, 3.2040479894134557, 2.2601464721803035, 0.01987506534426786, 1.023175988153299, -0.07969745055610566, 2.7754194705363675, 1.4686216823367924, -0.8775502502191319, 1.562460108724095, 0.4665692360387246, -0.6790385353209497, 2.2709494595226536, 0.47904134918842195, -0.14882500333973336, -0.4842706103321679, -1.8262261884232471, -1.8406122105154352, 0.5342747555321702, -1.4271481518794251, -1.1186381903835578, -3.3543089691232075, -2.776479120210266, -0.9737554442521845, -1.305815617731387, -0.0032980745867408068, -0.4588843251847845, -2.049021120525963, -1.3328658729045317, -2.0811709078285734, 0.35959856905163634, -0.4498407310731729, -1.3073495645917583, -1.1312943874997168, 0.279716393770421, -0.4004436953968049, 0.7793276156675785, -2.759815279380161, 0.11721129659429397, -0.6318222877247914, 1.869473807391206, 1.8871764741359913, 0.5958679999305528, 2.311950167276106, 2.7603562806593107, 1.2370064882138851, 3.8013749324625055, 1.4437673593534528, 1.38276087994326, 2.5598878505610165, 1.409977403887743, 1.890769272148809, 3.227770230049064, 1.821500357557255, 0.06250449803807956, 2.052090430281402, 0.8888928887167744, 2.325625806520711, 2.0084534973502586, 2.614672854118001, 1.863604645109398, 1.8438891147730576, -0.12988273346928192, 1.1201816634502886, 2.0565915615649923, -0.8299683407353357, 1.4312119321218484, -1.1392148638641193 ]
[ -0.8519712450499742, 0.5366848501896297, 1.1828130397227141, 1.5777613306706701, -0.13559833853260717, 1.3725338345528528, 0.3094045642989933, -0.4951939454414783, 0.005636938584766882, 0.06946534100834201, 1.1799692528484513, 1.610087136509199, -1.2426152844985507, 0.3417827571873752, -1.4270508245440414, 0.1532018420010302, -1.2963101376191601, -1.8832061758002863, -0.14185285921040303, -1.5830098388993237, -1.3083588364268883, -3.150645386378753, 0.13206873080546389, 0.17023951864476583, -0.44333920451269043, -1.748255417192887, 1.2297247614858537, -0.4060683640436698, 0.03146192633322692, 2.9931224171899538, 0.13386789960088386, 1.6871537645140071, 1.559204749253145, 1.3811311896713014, 1.2088437977355282, 1.1849040225068581, 0.9148373232588085, 0.38775592800041897, 1.7220179462231275, -1.3431913084087392, 0.7514475627544566, 0.3286451690220415, 0.009892276222054575, 0.27393436859557174, -1.0408720613839568, -2.8670088669029363, -1.061713453747171, -1.914128734506931, -1.534324022919186, -1.8774777581810307, -0.9078509877381794, -0.7973971044347132, -2.3368670700960816, 0.9800200934547041, 2.7228497676902115, 1.3021014359667675, 0.645574775178661, 0.8967572272675789, 0.5778681819316717, 1.0778220194818218, 0.8819223934224016, -0.044717117732997136, 2.3100422568874794, -1.06586071276879, 0.909122812543249, -0.15206819689398293, 1.6112748805679036, -0.17044220548519723, -1.0630553304669448, -1.1015719970691367, -0.914729644462799, -2.1423608741865006, -1.7529076160192911, -2.6997755496204356, -1.7130924910755634, -0.5252784175249764, -0.11186236961449875, -2.160119124437515, -0.07617857600385913, 0.8626957414882483, 0.35712071503071063, 0.07657409955107697, 0.4469815607262326, 0.41690713580815997, 0.3634525457648885, 1.158017465030585, 3.2183264466203716, 0.04011837802473972, 0.293009368204135, 0.35104083346690873, -0.5165855109613295, 1.0270464205638616, -2.679869119499317, -1.059764490132354, 0.10081138243637544, -1.1584262165879076, -1.7814447239326232, -0.5599360092713076, -0.07590493727558845, -0.6957153906055454, -1.5786604293465651, -0.14685268320851796, -0.7954478451111877, 0.584456096080657, 1.5645971735781983, -2.2869269559043413, 0.648390616560637, -1.01116605514969, 3.311220455464424, 0.4953173250161973, 1.747472344905625, 0.94488413086394, 0.09888529318004446, -0.151071472126038, 2.180576912665464, 1.3399557594194051, 2.094260140484324, -0.03602546131515486, -0.04036333219393046, -0.813077055123673, -1.018640802685733, -1.9163289974973878, -0.8821682882303601, -1.790648675915982, -0.5361436823471695, -0.7274855664655027, -0.4767614346335666, 1.0884518848875122 ]
In which part of the time series does the anomaly occur?
[ "End", "Beginning", "Middle" ]
Beginning
multiple_choice
77
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Linear Trend", "Spike Anomaly", "Cutoff Anomaly", "Wander Anomaly" ]
Identify where in the time series sequence the unusual pattern or disruption occurs.
Anolmaly Detection
General Anomaly Detection
23
[ 1.904233952080261, -3.8555252725666045, 0.9431119684560556, 7.652381592030459, 1.6128588001157182, 4.709865015309469, 2.327914105028443, 3.897017820143048, 2.3596834391546477, 0.3349450855935383, 2.2679629727003014, 2.1006610845344142, 1.9307104222875915, 7.015403024110755, -0.06013908201789975, 0.7819088926955307, 1.379308820133586, -5.443336213813978, 2.6254677614517856, 3.2368696521002738, -1.1373630883618082, -1.6484101450129631, -6.379833733099237, 3.955270751929693, -4.782950539310699, -2.3091530929890705, -2.4098569358413497, 4.167781549228087, -2.1260896191939196, -4.917842917522139, -5.849421253587017, -1.2144676308199225, -0.6325246016473576, -0.2981138594081842, 5.545739260576988, 5.042713470453232, 1.142369154022031, 1.3120388424765996, 1.910241671474034, 2.1423616503168903, 2.4034754166362684, 5.546452366889847, 1.812734147689466, 2.6478054385214853, 2.2076003956473684, 2.5142932562365754, 1.8491665874679126, 1.6738907358986845, -0.8503400643891141, 7.725571989577567, 2.6911242822102404, 0.09861668778390212, 0.8776255732799836, -0.8871783116516577, -1.2182948019883162, -1.5501484559130798, -1.9866176973263607, -3.68902262711054, -2.1670246662383437, -3.3296981588372176, 0.9927128066395832, 2.848170708563038, -0.7102583925626278, 0.30380485546942815, -1.114392627169214, -0.6696755967161876, 1.4739675911987289, 0.1638742755792365, 0.5481237155758325, -3.2342377068595534, 1.3960449953206069, 5.804899493770394, 7.283523531924303, 0.972766721666487, 2.2170478686077226, 2.6616313831142966, 2.647021267910432, 2.502255455111315, 0.6299514891072207, 5.169056053583958, 1.0465472278663612, 1.5648133260107473, 1.2847960655199706, -1.4074964046938074, 0.1917860454710683, -0.21955044248669758, -6.553089929790321, -2.4709851695717804, 2.6610003684084607, -5.63927545623725, -1.8770363355729942, 0.3011108099325188, -4.556301786652593, -2.156776593780896, -9.130414937968158, 3.955246334014396, -2.6463198433032886, 1.4116408681674248, 1.1064095527855622, -0.5845419830135729, -0.26913345895424845, 0.9656879174042732, 2.618529940572637, 4.059540192243192, 5.472220511453556, 0.3745841595995387, 0.18687758263720644, 7.073776711314851, -4.23050341680374, 7.979236127320891, 1.4640589989392407, 2.5631402005339665, 2.4131313039206583, 2.406373599243736, 1.8294681017583303, 4.115457601235326, 1.0752543804396346, 0.5302058797331379, -4.5598137887042, -0.15931632048893746, -1.7326166030793049, -1.1293030568247935, -1.2351098241275176, 1.525851547674049, -1.8022499344855714, -1.7733259718307637, 5.538106024705947, -0.6951907578480228 ]
null
Based on the given time series, how many different regimes are there?
[ "3", "4", "1" ]
1
multiple_choice
41
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
First identify the different patterns in the time series. It might be helpful to identify their individual starting and ending points. Then, count the number of different patterns.
Pattern Recognition
Regime Switching Detection
24
[ -0.16436062447256977, 0.19475737280306293, 0.07299919375184595, 0.0030822132278847877, -0.422737557685149, 0.026073280003916663, 0.1283591046203743, 0.2582345422657948, 0.4100025108227019, 0.5134585501966131, 0.38058349400745506, 0.05690058288546668, 0.11978500704168799, 0.3298436048839467, 0.30353886060812146, 0.525763878791432, 0.6997648159317092, 0.6747872381743669, 0.5448172446802888, 0.3787676099286342, 0.5472252254284049, 0.6203705550470193, 0.29661582983495743, 0.23923447886793914, 0.21003671380046804, 0.20438063378986007, 0.12449553600403845, 0.44462644458152706, 0.22549998224752815, 0.2807012035349639, 0.5733000136862214, 0.4907882182834569, 0.5519377747315579, 0.7417484786626225, 0.6627975409231519, 0.7999902524294904, 0.5454462509287343, 0.8468475065011152, 0.6272720328538464, 0.606257868864667, 0.8629334425094135, 0.44094103613010294, 0.9975918573545333, 0.580835533828731, 0.4204053037766502, 0.7853964003383193, 0.6072222700791801, 1.0716824758856522, 0.6262921593203928, 0.7808877158074226, 0.46998944575705187, 0.9036422518596959, 0.6207661329372974, 0.9107331789299307, 0.7155579203881678, 0.4273884854860649, 0.8497411775696444, 0.8560999748094172, 1.0195460658967845, 1.1605887095997136, 1.242023068793317, 1.0605867407018321, 0.9657444788383981, 0.6612257538313033, 0.9808808546182066, 0.9980341143059868, 0.9353716624326738, 1.1057354051876411, 1.211971458520269, 0.8635948804426187, 0.875414676655232, 1.0201558587608404, 0.9458238822524312, 0.7685479275187903, 0.9039260780321559, 0.8745470884594987, 1.346051865051064, 1.4533056747988264, 0.9443710439494689, 1.2663003691833334, 1.3423140064931598, 0.9143133669603818, 1.2384398742037794, 1.6971751679293852, 1.3645072966936305, 1.2066148047673961, 1.1624221621418303, 0.9035056086893172, 1.3847723477920315, 1.6759798347770498, 1.173950704123417, 0.9787060170710352, 1.2313656413872633, 1.5353887152449204, 1.304950450552743, 1.246332560884593, 1.418196259638277, 1.4723336227632238, 1.1842574888669872, 1.4181554367133598, 1.380494413100043, 1.36834958159486, 1.3126952185079932, 1.6939085859983165, 1.4119044590302279, 1.1738947172012189, 1.61142800110194, 1.7124172836043974, 1.4424705309857226, 1.5014375519387586, 1.4994443334323981, 1.5707714743404404, 1.8575175893522782, 1.6437705335058486, 1.8369739031843488, 1.5132783583786165, 1.6375179968778375, 1.9025932760290556, 1.588031343750182, 1.9429414994395524, 1.6506678485307713, 1.722803667698242, 2.110291991993476, 1.7309113508846499, 1.8544068346251905, 1.9573028942908768, 1.8990668319184862, 1.9191442620528891 ]
null
The given time series has multiple trends followed by each other, what is the correct ordering of the trend components?
[ "Exponential -> Linear -> Log", "Linear -> Exponential -> Log", "Linear -> Exponential", "Log" ]
Linear -> Exponential
multiple_choice
9
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Identify the different components first, and then check the assignment of each component.
Pattern Recognition
Trend Recognition
25
[ -0.04858626884043041, -0.08471983199047571, -0.14712338959800905, 0.24232272224171966, 0.2775535251621048, 0.1929036565996457, 0.08321757373846156, 0.26640214522428474, 0.31387861599058664, 0.2209591016301667, 0.2778967597014891, 0.4243127187807093, 0.16446575065627922, 0.4557301592042975, 0.3523484862865887, 0.2993820277512951, 0.3349852011531262, 0.37891962556081127, 0.37176075753275983, 0.6972827175119416, 0.5966401044533002, 0.681344076494217, 0.6585086208251879, 0.6357705430406974, 0.6644993050604033, 0.6446484993630138, 0.6801975161401431, 0.5983414069330311, 0.8747103499485065, 0.6125803967743356, 0.7154186568518803, 1.0498591195310212, 0.8896489852716029, 0.9211787319983001, 0.9945175328022131, 0.8041259192434607, 0.8461563224387579, 0.9684222149610356, 0.9499515443913111, 1.0601680341753001, 1.1435945507366139, 1.2613319165236199, 1.2309004362456795, 1.0777399216279848, 1.167047175532261, 1.1672250567322386, 1.1576394764861253, 1.162254043649737, 1.4804787842201343, 1.3424877603011054, 1.3463765058475254, 1.4446012736975904, 1.4769261179424775, 1.5628100634691224, 1.4039373272919637, 1.5459517008460824, 1.4419380720538773, 1.5414156658452474, 1.5934817074654857, 1.6306318408513465, 1.6535915423943195, 1.7501185205942524, 1.637612573772343, 1.7428548306904275, 2.6487969194480403, 3.063624133101896, 2.7293199155125145, 2.8018974579777436, 3.0139905426757285, 2.939061646107327, 3.1292326760790923, 3.117911298976436, 3.126861550655566, 3.159502292797558, 3.2266592333636925, 3.340392006135158, 3.4397372463630407, 3.4551757627973037, 3.6124321958998933, 3.60291829074914, 3.881063793340531, 3.997718621392307, 3.9346279739718497, 4.035904829707253, 4.241583152119847, 4.467439778812635, 4.612169260716734, 4.4515735504562866, 4.826837666649143, 4.860707488373067, 5.009890821024105, 5.218728206413064, 5.281531965458024, 5.608230589080127, 5.817806006907599, 6.006674877900383, 5.869967418839554, 6.234287955110893, 6.27613335630073, 6.61548464633712, 6.685038944025315, 7.2134999078442394, 7.445508031759572, 7.647375322348223, 7.891093735133062, 8.294286029734314, 8.46813013110236, 8.782073459657916, 9.105556076352961, 9.556926681794202, 9.88706551690514, 10.292102313569393, 10.78598926883753, 11.25231873643558, 11.743001844190136, 12.066643269674055, 12.579745958161471, 13.070926864486324, 13.415440192485057, 14.101580435079589, 14.683772213296812, 15.278193461439797, 15.96271181503374, 16.612264338450174, 17.23426202184639, 18.049215689346962, 18.766112418248753, 19.36967414971007 ]
null
The given time series has square wave pattern. How does its period change from the beginning to the end?
[ "Remain the same", "Decrease", "Increase" ]
Decrease
multiple-choice
19
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Square Wave", "Period" ]
Base on the definition of period, check if the time interval between two peaks remains the same.
Pattern Recognition
Cycle Recognition
26
[ -0.08063769291180499, 1.3100980629258612, 1.3710875435551935, 1.288363710324339, 1.4191656234922772, 1.355626135121761, 1.0847074369522087, 1.249581872574651, 1.246344358990182, 1.350464664268294, 1.0400468632879405, 1.557429539797124, 1.3556311784147728, 1.3174162493171209, 1.4206853405672666, 1.5368939742066143, 1.3896032333841921, 1.397409878572514, 1.31559757137179, 1.288375993588657, 1.2549490245248618, 1.2199173697538976, 1.2338271589554022, 1.1674729724910535, 1.2949414238568495, 1.1340618112027132, 1.321620221339723, 1.2988955081211178, -1.287835039086683, -1.354741725927351, -0.9948425319073015, -1.1665169789073206, -1.426982818933824, -1.279241760182662, -1.3633291832190841, -1.4039765415960932, -1.4365357760377453, -1.2593068998494266, -1.3706665924323091, -1.2057459665228314, -1.203150347472308, -1.1651371304042069, -1.3877672455327623, -1.2549920078561507, -1.2392831472611219, -1.3499463864357484, -1.3797057646646393, -1.1415765023477547, -1.2797789813521465, -1.238931793854178, -1.3847361701081446, -1.4244570155775713, -1.3594735463745629, -1.3149307076643515, -1.4089505696070868, 1.3015440880603135, 1.1336780501185018, 1.1905238266783646, 1.3696196937530394, 1.3629076209531412, 1.2633408923866651, 1.2007521380176565, 1.1997882137727507, 1.2652017443312205, 1.366980418089881, 3.1472955819180624, 3.004817839235433, 2.9391217701851517, 3.0812553765702635, 2.9721175157210453, 3.00264574889751, 3.1869986218273336, 3.137182555640207, 3.070268444008775, 2.9272791126723576, 3.075610669530696, 3.1607367418623826, -0.48697724150947996, -0.31430246593425487, -0.3201393459811057, -0.28304059171857904, -0.41888956227979113, -0.39067470495232515, -0.3079951460998174, -0.40467448122602884, -0.49953728571194767, -0.4942681585857125, -0.4255583795555525, -0.5784700171275483, -0.46373976646934567, 3.1641257246066554, 2.835345627667102, 3.2079192229630817, 3.166708434653946, 3.0084945512005823, 3.108810095570811, 3.054785785474263, 3.1774700496274986, 3.1527393270606243, 2.914463940465329, 3.1131972541300477, 3.0339082274193054, -0.4411306178811164, -0.5222310650299079, -0.27460016802084286, -0.3454076929426688, -0.5233909913302232, -0.5828749356239497, -0.4879811380307112, -0.4059636103237958, -0.4253932905383041, -0.324100592456102, -0.37042190271484116, -0.35245697235763573, -0.41672833487188266, 2.915541139762531, 3.03490115966894, 3.160479986774497, 3.0493187199311653, 3.104780049646005, 3.0225961812590167, 2.9514898279294455, 3.042136606379019, 3.0853757570868954, 2.988902240837486, 3.0308998882979634, 2.960524688585032, -0.3374893831765168 ]
null
Is the given time series likely to be stationary after differencing?
[ "Yes", "No" ]
No
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
27
[ 1.5117131833080868, 0.5731849185440578, 1.2182113806305055, 0.8003689123394899, -0.11823975602093273, 1.314702207618734, 1.1548504751455306, 0.15272858552036694, 0.7747898963707227, 0.23714474156757348, 1.5232857241196098, 1.868484801661257, 1.6165320063721702, 1.7039050675980112, 0.9682366060850286, 1.5186899764010722, 1.2590320238285098, 1.3748340919531497, 1.7797771646778981, 1.907967888024861, 1.1447909654789932, 0.6555781335393476, 1.2857202653120892, 1.2901027782956294, 1.5626544874785266, 1.8577732787911834, 0.5052122267313066, 1.1485869797459465, 1.0239574674730685, 2.153528196981638, 1.4464022717928833, 1.3169838363035287, 1.8657507390234027, 1.323612312385923, 1.6363800450138157, 2.5752264308006945, 2.585906018158071, 1.514000600904982, 1.651810978307134, 1.4591493651810703, 0.8317808215341359, 2.3392416514300156, 3.0586408843590043, 1.6534630158785049, 1.494409659961402, 1.7944086989423589, 2.0017934704829323, 1.4203625964610176, 1.7881706507408524, 2.5545720225384927, 2.1409648640038847, 2.7430627946544126, 2.321299564150557, 1.6259601207996153, 1.9143788794087702, 2.35902984121821, 1.7064448768504077, 1.6749801542482405, 1.7389321907820863, 2.62732629459612, 2.2212022649558687, 3.0309552595245592, 2.0274579936115833, 1.2834310439754177, 2.4837786582877275, 3.41045372941234, 2.642058902426092, 1.977386679970656, 1.890523503465324, 3.3414190373312196, 2.3791422620596743, 3.5947458028092254, 3.1924860407585327, 2.522858714053361, 3.5340368482821827, 2.5319759595766866, 2.314352135386258, 2.649393622592394, 3.512539310753031, 3.7432278898614237, 3.0229827686764112, 2.3342813383452703, 2.5381930881257566, 2.8316018797967883, 2.7679940382668673, 3.5980055398937267, 4.485386962746138, 3.966007741593387, 3.0565572437823256, 3.326812027540053, 3.4784672475899194, 3.9776293486549448, 4.624368050723283, 3.661579561990729, 4.7220402044493, 5.062823848629646, 3.8949891957518537, 3.9420646557943058, 4.010404512992374, 4.283682316558315, 4.135979994268631, 4.82071297382029, 3.668699371727818, 4.241244588332747, 4.739547441818443, 5.077384869448107, 5.808360104703842, 4.135586979746366, 4.524482303453441, 3.788741088252019, 4.439502955567812, 4.183535612887322, 4.8819938095936, 5.104203357787547, 5.529972514802288, 5.22393689536578, 5.687345164321526, 5.58971928785022, 5.097508966051789, 4.853722285760936, 6.0726065907913025, 6.68915935555694, 7.219996662974067, 6.507700293629659, 6.8576905686136005, 6.449933086035936, 6.461807748035326, 6.45925252054476 ]
null
The given time series has a cycle component and a trend component. Is it an additive or multiplicative model?
[ "Multiplicative", "Additive" ]
Multiplicative
multiple_choice
11
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Additive Composition", "Multiplicative Composition" ]
For a multiplicative composition, the amplitude of the cyclic component will increase or decrease depending on the trend component.
Pattern Recognition
Trend Recognition
28
[ 0.0027924442679475906, -0.06906609524239203, 0.15607374524703943, -0.06154403780309627, 0.09467887860477975, 0.21095135675897597, 0.41390996135992797, 0.22089960331195785, 0.3040153238492474, 0.35200981493305017, 0.48229311174010103, 0.5735822374036635, 0.6721202121414698, 0.6754623457790367, 0.5738826966160971, 0.7133241416294318, 0.6323777394501063, 0.6705334218081271, 0.6297245215856756, 0.6463264073423243, 0.362213685889606, 0.23874537184967343, 0.21620131235022, 0.15230410898396535, -0.11085092834422179, -0.1530598246185137, -0.3772288579259384, -0.6383990660423898, -0.7337536647116857, -1.0010765813522884, -1.0927614700416617, -1.370300182239898, -1.399402521480492, -1.401555930334243, -1.509469512424206, -1.5812527540525187, -1.6414827313826952, -1.648685703447038, -1.7517945751160409, -1.5712153904217792, -1.422815863355394, -1.409557019343408, -1.29529305138318, -0.7993634652853484, -0.6713414653931912, -0.3952925883489111, -0.08057928018170707, 0.060912005856396265, 0.423773470824682, 0.9234413410014617, 1.030893524126299, 1.3514289428637696, 1.5945193075398083, 1.8497830758036988, 2.269727159761539, 2.1140428802899778, 2.4805516705908714, 2.670734578520696, 2.893313678786794, 2.6359707226214075, 2.593022301326265, 2.558706473542551, 2.5828647001581198, 2.340929802386195, 1.9495241569439037, 1.821820559118576, 1.6418170445170945, 1.1496779307019245, 0.7439084016733094, 0.32853982943683596, -0.09206400849920596, -0.7100181545188782, -1.0581114125833175, -1.4976656378764286, -1.9572154468150023, -2.245166067640595, -2.749391977409447, -3.053504768786906, -3.4269283611118504, -3.491709033912238, -3.603442355505683, -3.8365625357122686, -3.7537068414504593, -3.811953771708657, -3.9406320295339072, -3.511844385720277, -3.2729857798772213, -2.926937923948007, -2.5313024278796425, -2.1877732759572477, -1.4854038132734557, -1.110821936591978, -0.5634517223486321, 0.11417144743715363, 0.6367124603549722, 1.4875224056952663, 1.795724770461661, 2.416095580960203, 2.8375244677104994, 3.487651651210477, 3.8661791753182078, 4.173407021182335, 4.4210916559419875, 4.6003967670598, 4.912469030337193, 4.783187230134071, 5.01337228119188, 4.625283807062924, 4.511907258817055, 4.1313732963735985, 3.8283760362091965, 3.3549946252703853, 2.853162046633035, 2.0504092608048166, 1.4692831442550696, 0.9449833876645614, 0.18807397179321259, -0.8683291740849619, -1.3225494933952977, -2.192850897793903, -2.8517128793363034, -3.4782052970497324, -3.9096419284851676, -4.714260957467414, -5.218457335441086, -5.414602014244234, -5.748979521594453, -5.810137960269593 ]
null
The following time series has two types of anomalies appearing at different time points. What are the likely types of anomalies?
[ "speedup and flip", "speedup and cutoff", "cutoff and flip" ]
speedup and cutoff
multiple_choice
69
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Cutoff Anomaly", "Flip Anomaly", "Speed Up/Down Anomaly" ]
You should first identify the two places where the anomalies appear. Then, you should check the type of anomaly based on the given definitions.
Anolmaly Detection
General Anomaly Detection
29
[ 0, 1.1672544934495594, 2.007000416163153, 2.2861211400622787, 1.9330790195662289, 1.0585334087765899, -0.0765527066364464, -1.136125407299505, -1.8058946559230658, -1.8839164982831924, -1.3387957603426868, -0.31873451822175836, 0.8911815377823191, 1.95114825713463, 2.5645787069594803, 2.5635831235972395, 1.9573567789386954, 0.9295297915305218, -0.21475730096289136, -1.1367987459687765, -1.5619426822869562, -1.358749137924566, -0.5768726243480913, 0.567248896014212, 1.7527740558654799, 2.6469284567955995, 3.0009142873470966, 2.7216168701129075, 1.8984414412155282, 0.7775454768003687, -0.3091068773986434, -1.0394208994756402, -1.1940028971091823, -0.7193921308627511, 0.25653115224846845, 1.4614023570927397, 2.5568713204317906, 3.2361189320424018, 3.312286123897726, 2.772328920111743, 1.78077786900875, 0.632318343394794, -0.3331413583217795, -0.8284357067075685, -0.7019065301103931, 0.018887260706807574, 1.1351124849283407, 2.333967826178038, 3.278836966076014, 3.7063054902411614, 3.5020801176460186, 2.7339294105488747, 1.6321520528405127, 0.523201975899553, -0.2643996242098636, -0.4947480802978599, -0.0925458405790911, 0.8351958635681682, 2.0299989524963244, 2.305154021467495, 2.5803090904386647, 2.855464159409835, 3.1306192283810055, 3.320738889020097, 3.502061783280008, 3.683384677539919, 3.86470757179983, 3.929099080907678, 3.966506424211204, 4.00391376751473, 4.041321110818256, 3.969104186788865, 3.853990810324855, 3.7388774338608446, 3.623764057396835, 3.435420951485662, 3.2031400079061907, 2.9708590643267203, 2.738578120747249, 2.4807731113214535, 2.2004468673253696, 1.9201206233292873, 1.6397943793332037, 1.3747474748653732, 1.129345435505294, 0.8839433961452161, 0.6385413567851371, 0.43020523721341447, 0.292631328146734, 0.15505741908005402, 0.017483510013373553, -0.08267672883319514, -0.07059595701942836, -0.05851518520566158, -0.0464344133918948, -0.011174120144435154, 0.14925558884497045, 0.30968529783437604, 0.4701150068237816, 0.6370626677102446, 0.9017796070525946, 1.1664965463949446, 1.4312134857372947, 1.6959304250796428, 1.9898732719830328, 2.2847588900980695, 2.579644508213106, 2.8745301263281426, 3.123351498972918, 3.365592265121944, 3.6078330312709697, 3.850073797419996, 3.998341518410148, 4.120296786755818, 4.242252055101487, 4.364207323447156, 4.380797438939562, 4.349494303135032, 4.3181911673305, 4.286888031525969, 4.1712365454248586, 3.997873030173455, 3.824509514922052, 3.6511459996706486, 3.4328230692986366, 3.1695407238060125, 2.906258378313388, 2.642976032820764, 2.3748749190417504, 2.099730990074937, 1.8245870611081234, 1.549443132141314, 1.2960536767767543, 1.0905240633371547, 0.8849944498975549, 0.6794648364579553, 0.5025972752297411, 0.42809418618504747, 0.3535910971403538, 0.2790880080956602, 0.22391933150387755, 0.30409154208247463, 0.3842637526610717, 0.4644359632396688, 0.5487876981101304, 0.7627046860284015, 0.9766216739466725, 1.1905386618649436, 1.4044556497832115, 1.687998313901383, 1.9761826897662151, 2.2643670656310473, 2.5525514414958796, 2.8351546106645373, 3.116724223037607, 3.3982938354106773, 3.679863447783747, 3.8972402152641683, 4.093219367780378, 4.289198520296587, 4.485177672812797, 4.589348797277505, 4.6454300022866635, 4.701511207295822, 4.757592412304981, 4.727113220568759, 4.6293092758083505, 4.531505331047942, 4.433701386287534, 4.277997073421412, 4.056672343368815, 3.8353476133162183, 3.6140228832636216, 3.3711145661258755, 3.092233603846218, 2.813352641566557, 2.5344716792868955, 2.262621045942761, 2.008736808767196, 1.7548525715916317, 1.500968334416067, 1.2658988453139113, 1.11235993119653, 0.9588210170791467, 0.8052821029617633, 0.6655031746335457, 0.6587374422672755, 0.6519717099010053, 0.645205977534735, 0.6384402451684648, 1.2284867476386843, 2.2751267430611253, 3.485614222045448, 4.519980343022694, 5.08901657609567, 5.037628109359923, 4.389534054943596, 3.3404313131871315, 2.2015923522259686, 1.3101527070412908, 0.9319444289349921, 1.1848800638891608, 2.0049688265735472, 3.1647595208649926, 4.338894733478278, 5.19788278695362, 5.503061237726261, 5.175382287258873, 4.3181953164038696, 3.1874603402476467, 2.1179772270519304, 1.426892315208168, 1.3222929916323487, 1.8432343828241506, 2.848483193683901, 4.057222856273672, 5.129988270909843, 5.766503765491956, 5.79222618644731, 5.208650352741764, 4.1928782309220445, 3.046576000168441, 2.1090302003432457, 1.6593612357682836, 1.8360774890605764, 2.597155525200896, 3.73215175523674, 4.922854831230129, 5.834998016532369, 6.214598913831904, 5.961160272782525, 5.15663451655182, 4.041804059408264, 2.946884894317482, 2.1963543383580477, 2.015432734136254, 2.4651722151981272, 3.424860740599169, 4.626812769302, 5.733519480040963, 6.434922907482, 6.537778408733173, 6.021350113420148, 5.043387253047391, 3.894658919032173, 2.915150883624702, 2.3960775764297146, 2.4959505534591977, 3.194893543996534, 0.006476885381006925, 0.015230298564080254, -0.0023415337472333596, -0.0023413695694918055, 0.015792128155073915, 0.007674347291529088, -0.004694743859349522, 0.005425600435859647, -0.0046341769281246226, -0.004657297535702569, 0.002419622715660341, -0.01913280244657798, -0.01724917832513033, -0.005622875292409727, -0.010128311203344238, 7.2741365273730825, 6.82719777066729, 5.891361031278795, 4.745254141581277, 3.7281073417752415, 3.141983009910974, 3.164717620617022, 3.7986671160142382, 4.870027894619752, 6.07892911747494, 7.085859121267933, 7.609516797865209, 7.507885985765538, 6.819166250454114, 5.750763306281501, 4.619512173824617, 3.7603614838517903, 3.429837219118469, 3.7321088145612293, 4.58896626260805, 5.762361186022174, 6.92301526767047, 7.745322255558942 ]
null
The given time series is a sine wave followed by a square wave patterns with different amplitude. How does the amplitude vary over time?
[ "Remain the same", "Decrease", "Increase" ]
Decrease
multiple-choice
19
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Focus on the amplitude instead of cyclic pattern change, check if the distance between the peak and the baseline changes.
Pattern Recognition
Cycle Recognition
30
[ 0.07134290260171423, 0.8691063047421467, 1.4780502909639524, 2.194957595505989, 2.9577982345248333, 3.623666505705083, 4.153438446686791, 4.454006817424519, 5.179915102669839, 5.2407090219714485, 5.434553854292249, 5.5765614782500235, 5.13735085508076, 5.127032609740282, 4.836544028280257, 4.435772864967645, 3.9518642967321944, 3.529954395539308, 2.7971599684150568, 2.112570559197981, 1.265862611096146, 0.3389767886563491, -0.5214008964172627, -1.2521014263775103, -1.825712744349586, -2.581744944880121, -3.2746090151881706, -3.8904450783757323, -4.171069435785667, -4.880898006812893, -5.030903980208835, -5.340423465342111, -5.450909220238188, -5.316424263732239, -5.1624063973223935, -5.095131980017365, -4.646733260339681, -4.245971906669953, -3.746933863928382, -3.11346360385997, -2.522752174713598, -1.7528260547945584, -1.012192370766704, -0.07576439221632274, 0.6163064216216142, 1.274573942216334, 2.0808778734514686, 2.5367217345876423, 3.4503281466536353, 4.072798719538419, 4.538789306500454, 5.13769605530437, 5.2801834447010325, 5.448510988897281, 5.290025758356223, 5.361646241211638, 5.179260023502008, 4.8687843178807215, 4.4824422173685, 3.9003532294665555, 3.386171252894439, 2.9595894919425683, 2.1556870207015817, 1.3713332383470616, 1.4214323467092242, 4.379717800311846, 4.263399784529311, 4.3170161455348355, 4.178318248202906, 4.20111573736706, 4.298376420948099, 4.452244103275443, 4.405956218393219, 4.321261539387345, 4.278122108457803, 4.403085668004449, 4.342446564746244, 4.033612530204666, 4.15758564765621, 4.296792764977525, 4.084281975886634, 4.173219831966046, 4.192997238075934, -1.4446483627173248, -1.4477747929153622, -1.4479438148094241, -1.33650102036871, -1.445554158637795, -1.4574947852998648, -1.5539489825070931, -1.316597151894159, -1.48618152348749, -1.527734804892869, -1.3977227146058444, -1.4957258983310477, -1.4716270460721708, -1.3931857546608346, -1.451680034470697, -1.187870834562678, -1.4265146264246613, -1.3572479502048194, -1.613201176842036, 4.176913819250259, 4.15428736295006, 4.167540760111469, 4.304532531825432, 4.3665352392194725, 4.2974417829051825, 4.240314270085101, 4.19989322857049, 4.374338707560383, 4.470104277857218, 4.2764843029201005, 4.356915038848889, 4.297315767421279, 4.33852922308829, 4.14652405463072, 4.2141651044275195, 4.30252567644629, 4.38422782684993, 4.181165310277964, -1.6223616831967542, -1.4688582147368663, -1.3180187006579165, -1.5774213312015264, -1.5367237613059, -1.4034399134876303, -1.4306288973688879 ]
null
Both time series have a cyclic components. Which time series has a higher amplitude of the cyclic component?
[ "Time series 2 has higher amplitude", "Time series 1 has higher amplitude" ]
Time series 1 has higher amplitude
binary
84
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Amplitude" ]
Amplitude refers to the height of the peak and the depth of the trough in the cyclic component. You should check the height of the peak and the depth of the trough for both time series.
Similarity Analysis
Shape
31
[ 0.03142473325952739, 1.3037998313623274, 2.674277627191942, 3.748634612630412, 4.950622496859455, 5.710441468773274, 6.374145959607847, 6.727737766366269, 7.096106184022496, 6.7681863579081485, 6.26624874954303, 5.819216374210287, 4.770640774733654, 3.8971277511732305, 2.5355313661019103, 1.3749192730467936, 0.27712467945025177, -0.8919871223078548, -2.092483633869261, -3.136283715017769, -3.9973084332327953, -4.748050409967128, -5.067425108351415, -5.180450282069637, -4.903283043753135, -4.587693693456051, -4.163373568500666, -3.095292355967989, -2.1153124081400976, -0.9427728742667852, 0.49175804932874034, 1.8921715822203924, 3.2401901682143284, 4.367359549522724, 5.619729832973028, 6.731514880305381, 7.65147678493493, 8.136636894456984, 8.548233737663992, 8.576714649649288, 8.423989314627455, 8.225074123448394, 7.642332152452442, 6.653515926834566, 5.743204848581064, 4.533319948616184, 3.208400109335208, 2.058756818118174, 0.9536411443677558, -0.3465713376515493, -1.2002337833198886, -2.4593911768316374, -2.746166378125895, -3.2126190812967157, -3.387772998235638, -3.22088408028993, -3.0395317875008314, -2.2255821284059465, -1.3066214820499802, -0.1420723290735751, 0.8612057204312079, 2.1385740158476443, 3.52796751440865, 5.027421908465677, 6.272243548253628, 7.384579426509798, 8.535034994306175, 9.347028089534847, 10.06263695817874, 10.275463574030592, 10.431029536891995, 10.278451572538362, 9.769251830617595, 9.306048916421242, 8.454799843068013, 7.4099623450446, 6.239349009142392, 4.896547031479651, 3.74573373585416, 2.5312440132052823, 1.3434261021088836, 0.39520853392171273, -0.38721258043090934, -0.8678764871643854, -1.4297275906934532, -1.5555808991547406, -1.4585477002022842, -1.251350591394214, -0.42279290714996254, 0.4490743386445229, 1.7434175466724977, 2.681918746904506, 4.038415457141359, 5.363743548244027, 6.607828880923216, 8.14172901821009, 9.299640368901633, 10.348115002940991, 11.029760757745617, 11.887249174153782, 11.984331059469142, 12.29890689067675, 12.310738885863849, 11.588311580848885, 10.989518352712924, 10.20662243814694, 9.125692184098305, 7.873386203819273, 6.810110279062486, 5.446751257128206, 4.378559433405656, 3.098364838826577, 2.3343803468277984, 1.263873633096843, 0.6831803092666289, 0.4083262928138202, 0.07213614018356115, 0.35062186863231826, 0.8525630170795322, 1.2026023616998143, 2.2469147750016583, 3.3100492723424484, 4.567467878403133, 5.673407349300794, 7.024240446830701, 8.565701236541155, 9.845214629821118, 11.036375178151186 ]
[ 0.034644820949697584, 0.6069656292401214, 1.3373727117902028, 1.9131375861655184, 2.2829164631641494, 2.8883903438866305, 2.9568564060108375, 2.8495916501964738, 2.9452362355612367, 2.553233247403276, 2.3775709270124255, 1.9638537515971792, 1.245718064455296, 0.8682988755354928, 0.25759116359036444, -0.2211685697304171, -0.5637301779782754, -1.12868918101652, -1.4071045820975645, -1.508399402243019, -1.4403135299957177, -1.157358735032884, -0.7667740213021076, -0.30160196890481444, 0.3239622271087766, 0.8822419504168397, 1.7014383899515177, 2.2044088362360763, 3.141548814411947, 3.5009468198828246, 3.8220863917167214, 4.14687451662503, 4.508446684155604, 4.49563548036387, 4.49881738415895, 4.24456438777333, 3.837023034783081, 3.3079277563294642, 2.720397513071404, 2.2712323096464697, 1.8460557785039982, 1.2626611003144508, 0.6674791927366853, 0.4597306216251802, 0.25466414238751833, 0.04145462347686368, 0.2073949011001328, 0.40835007936159506, 0.6382879620477864, 1.2610764954221891, 1.8527202575649484, 2.5451601595790017, 3.2175501356351104, 3.64901052342052, 4.3311272307206785, 5.04442378892431, 5.512619421756133, 5.857605941680445, 6.396184632654891, 6.124316291453489, 6.088796921967081, 5.8391681978284105, 5.454879005132496, 4.905686494760812, 4.491871701970461, 3.7825238767013927, 3.2808403605910614, 2.7373484165150397, 2.345712613274748, 2.2204531568705903, 1.577282728253227, 1.747769002257694, 1.5815199707711178, 1.9075272233051463, 2.414966067147777, 2.786304062196327, 3.244271858107822, 3.921241316694496, 4.736214585441203, 5.26964022717435, 6.001926681828247, 6.55200802872455, 6.949507588898748, 7.572619509617573, 7.6250011350612015, 7.413944189958609, 7.541695387979384, 7.224104975897603, 7.020407687556922, 6.402561023331359, 5.9485903183754925, 5.454227804454641, 4.93520758990513, 4.210494939816927, 3.8495568117229233, 3.488079432151109, 3.2465666522796166, 3.405005317042103, 3.3340731674660007, 3.38083663533198, 3.951355003290161, 4.546679447955485, 5.010703990947089, 5.396754688612991, 6.17591618125814, 7.025263891866741, 7.46487818562079, 8.146353750174, 8.645545924523892, 8.817642490311169, 9.106340150860387, 8.84154865393451, 8.96840737855848, 8.811530632387818, 8.355801055711176, 8.18964732262839, 7.36113567865419, 6.903647425426917, 6.405819537460834, 6.0192985125066425, 5.2849120887148855, 5.198488912574786, 4.860826706420356, 4.679640235218087, 4.890583049007066, 5.07904902739907, 5.3530566879578245, 5.896041246129447 ]
Is the given time series likely to be stationary after differencing?
[ "Yes", "No" ]
Yes
binary
31
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
32
[ -1.7269309737575353, -2.35563068247083, -2.579246222726851, -2.8279685581767264, -2.979318302417806, -3.187071884502339, -3.1592600874260603, -2.941876683856995, -2.6763010032915715, -2.469693422485337, -2.6912097840502516, -2.676674215431855, -2.290421767833936, -2.681503336358384, -2.3487864200053257, -2.594605322961075, -2.522109771463244, -2.4202424441460186, -2.3733756055349704, -1.8234318977817419, -1.897671351708254, -2.302265027986556, -2.2143008340116395, -2.2562633904820126, -2.1193492578004927, -1.9016653321088108, -1.9099792869333643, -1.802306370389008, -1.7667112579425202, -1.3245083361863081, -1.4159557596006735, -1.5855113028443333, -1.368164069386887, -1.5974675507747034, -1.5006906421627604, -1.542541942309231, -1.5675459138962513, -0.9660666025080494, -0.6615180293765375, -0.40941209720205807, -0.2784775967161, -0.449129813710917, -0.3846012261349991, -0.2406481497234191, -0.19154242107650488, -0.16815988567931495, -0.26624263175569446, -0.1987583629929239, -0.3284591363158383, -0.15486799572033663, -0.6523210682844026, -0.31700961946074047, -0.640703217567003, -0.9040809712664019, -0.8031837212454763, -0.6699365936143539, -0.15705806632372912, -0.08394081503381123, -0.09392426336933583, -0.046715302560156095, 0.3457861000165717, 0.9440807992302922, 0.8984756846963421, 1.0324213457777083, 1.014063543874604, 0.9908004468181633, 1.4545135437252639, 1.2260609841582566, 0.6500058451024397, 0.7283449302551348, 1.0247299503204532, 1.078996154893783, 1.2029302102357486, 1.3886062428149888, 1.4159769355887029, 1.5532628222092955, 1.6864285291224785, 1.2030830610081662, 1.2311831926682875, 0.8430510215754563, 0.8336310375568448, 0.711405345652362, 0.9665791844569355, 1.0268954931595553, 1.143670271500838, 1.0964239630704846, 1.3560818060227422, 0.9618930220619689, 0.7409004580048046, 1.0583360030398086, 0.9508264383001341, 0.4212768924163842, 0.7797604673230851, 1.0455273149421722, 1.2209807173989833, 1.2442782812294708, 1.654118300007499, 1.9647208149969653, 2.346701546175844, 2.518337518933847, 2.548641143406649, 2.4501350275181415, 2.1369893372126447, 2.2608844170895797, 2.405339206688102, 2.3190199864398298, 2.47046451190759, 2.388489492683302, 2.602553752575442, 2.3848668528652897, 2.124485875755169, 2.065115731475035, 2.269643825363899, 1.9836781416066522, 2.24272045381791, 1.8373616938862558, 1.776469617500603, 1.427749950908259, 0.7836776191623004, 0.8741107874342793, 0.8302304689369352, 0.48545366271340257, 0.3579634243192251, 0.4669972851790694, 0.37614511758086866, 0.32711448784313035, 0.22878316677022834, 0.08508234185811304 ]
null
Covariance stationarity in a time series means constant mean, constant variance and that autocovariance depends only on time lag, not absolute time. Is the given time series covariance-stationary?
[ "Yes", "No" ]
Yes
binary
36
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "AutoRegressive Process", "Linear Trend" ]
Check if the covariance between any two points depends only on the time distance between them.
Pattern Recognition
Stationarity Detection
33
[ 7.849151583288315, 8.112245256970924, 7.2143466110412, 0.6228861071576588, 9.343094850241371, -4.446572954773801, -22.76371131248101, -21.574227461414626, 3.2406342979498257, -1.381763058634244, 2.070578660683152, -1.7611163366139073, 4.7983747718094065, 3.1459529647832523, 0.9276634468374642, 6.548416280476784, -1.5209069851030883, 3.058188135918338, -0.1595326095349222, -1.2872238462284322, -8.789742507128741, -6.41573953600329, -8.807716067542481, 6.927144071764357, -13.214243970422173, 2.226891507248, -16.389618003795533, -2.79705519369718, -9.692886646089523, 0.755132908506357, -0.7660901376553688, -14.712958717594969, 6.249664372741764, 10.941595515510697, 10.439992443896173, -1.2634108930691252, 7.573805786178419, -9.08257351444325, -26.85593889924743, -28.976184051319255, -23.60655694526981, -19.430972505901792, -14.05534806840504, -11.050605579239436, -11.986866712414905, -27.123317302763542, -11.653533907486604, -8.508707866607677, -11.127097820121612, 8.386172688017286, 2.027412626364249, 1.4903554083104058, 8.418642973474677, -10.663164953776596, -5.4488695052035885, 5.110106843606878, 1.6158068580284195, -12.320383908845502, -10.970658158742888, -3.5522332228150213, -22.816008329253762, -25.055895466508492, 7.3389566200033824, 8.355973372204497, 19.11605635865443, 18.233012066420148, 12.946054307716086, 3.3236211210663096, 5.5648441247460125, 17.206961197106047, 16.867814021626465, 10.180268608338, 3.3802105373999205, 6.55778983383759, -2.0010918492618712, 3.8934056188391426, -4.899122445450646, -5.878615358649208, -13.377697716223032, -11.047341243691765, -12.26764275037691, 10.741880586168893, -3.519077300871808, 2.065899674425071, -8.544134043687544, -3.738373967970468, 1.1367491486230763, -17.967597139906363, -22.81416062828666, -21.21214632661476, -23.51196196587765, -10.998882134483985, -3.1288016965467547, -12.017896983035264, -4.8591855503896095, -6.692783190157482, -4.289217079189056, -8.661272075214269, 0.7890438036550094, 16.86651420562151, 16.172889087793056, 22.01579633249373, -3.06260669455877, -8.385086830531952, 1.6329819102265632, 15.931363675487955, 14.469280651138009, -3.0167434519706666, -5.841567277260025, 0.34563743457919877, -1.1973627802352245, -8.740026762750142, -7.300947057141101, -3.6614378752879033, -12.738882885264433, 3.4752101198310643, -2.5161365027042417, -1.9866974585090171, 9.396189400385273, 3.2698660623750966, 11.549460858173978, -4.637865982570217, 2.0154071509829743, 9.441240959924555, -3.590462548513913, -3.5116948772143526, -3.2882442350302568, 0.49829845531811867 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Downward", "Upward", "No Trend" ]
Downward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
34
[ 0.15128609002876245, -0.10170483074844683, -0.08170879269423675, 0.07349558735341727, -0.13443536349522356, 0.004508704544300239, -0.021534847538441794, -0.06254941033704896, -0.26954792223153834, 0.07961427752081238, 0.2189731800754583, -0.1309781710474876, -0.30421604320547163, -0.15194011268709082, -0.017187776681446082, -0.27443258275596305, -0.21216839402888224, -0.15246096179538016, -0.03273638199263662, -0.11009741685241792, -0.11579539196806989, -0.31774831979795154, -0.20324967606138056, -0.38698324651030097, -0.15953595320671335, -0.12486259764477528, -0.22823123345693325, -0.3809344654744192, -0.3679570458684356, -0.07286694603235522, -0.4144722182490673, -0.21250588100557646, -0.33317602607504393, -0.448029243287079, -0.614442481371396, -0.38871240932173606, -0.41915173508355, -0.1691018793548827, -0.5885473629225761, -0.11857019226933663, -0.42331506790118084, -0.435494708875807, -0.5958562458973742, -0.4691979040830048, -0.4570361384587077, -0.39813490616636027, -0.7028326403900784, -0.3504724336990776, -0.5222103859563891, -0.49653259158493246, -0.6352409525036894, -0.7553149306223937, -0.6144347171875117, -0.6089605848609277, -0.8612670134080194, -0.5404384481462873, -0.5214177995021931, -0.7971702841502051, -0.8539516803242393, -0.7560390954209931, -0.7181325212649784, -0.7741722411211042, -0.7551494614742486, -0.7240355161672866, -0.9789426472391358, -0.9734070389532806, -1.2098640761134396, -0.6619915459151083, -0.8156945614463063, -0.6699626186943684, -1.0159010366044436, -0.8503811735222584, -0.8333191410771635, -0.9639971906960376, -1.1275279348618774, -0.635499198214955, -0.7004797419483678, -0.9846390119593895, -0.8603668283317703, -1.0244128935157182, -1.1144527454458817, -0.6952429323544184, -1.2393399856506782, -1.0420852170286936, -0.997613636062479, -0.7702544457720202, -0.8975773384755348, -1.3020676012642822, -1.0590354656416485, -1.0674274870218312, -1.1175596742587548, -1.0000116034838595, -1.3220139084190883, -1.1811942331131788, -1.057640906445852, -1.038999495970999, -1.1320251208333512, -1.2109425841580976, -1.1972368030364127, -1.0778247019429548, -1.197792646637076, -1.3741724352980167, -1.4154819556257467, -1.4666440619633951, -1.0287108958419942, -1.139758570202508, -1.2914191822809364, -1.3565092074111063, -1.3868932290894365, -1.1442174343014033, -1.0323146489440143, -1.427789210300154, -1.173404349922182, -1.3550785299072319, -1.4038423372739006, -1.153607711311542, -1.3970005216087873, -1.3621993495279525, -1.3815762129024416, -1.6798914865110457, -1.3995035904918964, -1.5415626685906914, -1.6847458742718313, -1.55866233956952, -1.5719527459622675, -1.346372090134711, -1.6782676689126392, -1.648445205246097 ]
null
You are given two time series with same underlying pattern but different noise level. Which time series has higher magnitude of noise?
[ "Time series 1", "Time series 2" ]
Time series 2
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Exponential Trend", "Gaussian White Noise", "Variance" ]
When the noise level is high, it can distort the pattern in the time series. Both time series have the same underlying pattern, but different noise level. To tell which time series has higher noise level, you should check the degree of distortion of the time series pattern.
Noise Understanding
Signal to Noise Ratio Understanding
35
[ 1.005662845181217, 1.4076107701172462, 1.8131383513335848, 2.2360381397816105, 2.5197263390679607, 2.8937064788069007, 3.164066856116919, 3.345125896559652, 3.692315202026587, 3.9666332095002947, 4.162830233091375, 4.221308014553804, 4.370564047449261, 4.301758246692916, 4.322200178425487, 4.259441678548666, 4.028693154200799, 3.9665845663733634, 3.603376478956664, 3.4998801698524056, 3.2581362537436407, 3.0137411517697137, 2.676593958979912, 2.369889054691531, 1.911232060374418, 1.538901434818605, 1.1987387643960024, 0.9121013392882725, 0.37614488765653153, 0.3797046869371455, -0.03622550612457813, -0.34087934597798575, -0.7781533301421772, -0.7176239939450512, -0.8820065932315142, -1.0566619848164682, -1.0934441885748372, -1.040880166689821, -1.0612557674127259, -0.8615867917657684, -0.8628549762702348, -0.5960427198998471, -0.2735256757709722, -0.13456582707729556, 0.20248663962544214, 0.527066333399384, 0.8580656298359086, 1.2335795041486706, 1.5843444588190263, 2.0703355903626557, 2.447389043775394, 3.0516200803155074, 3.3943196437165475, 3.5731979059766914, 3.9674765686094684, 4.460943674338319, 4.774338292132364, 5.103948838585902, 5.46025336796055, 5.660574004086785, 5.851575622321312, 6.113623873913983, 5.9326266507655685, 6.138214292558609, 6.080031470314893, 6.246171843061239, 5.8024566410122205, 5.685885920146904, 5.773100948642054, 5.660143748467609, 5.3984776793486215, 4.988052693897663, 4.944189784692436, 4.379593676946743, 4.332150866280123, 3.7854692924069147, 3.555479892234569, 3.3570931454420343, 2.8621430622749235, 2.890032571906412, 2.4658717042158687, 2.3031407590984734, 2.227195113739758, 1.8911325535230772, 1.9774235773702868, 1.9806091614834835, 1.7427427549149894, 1.9850211942763214, 1.7606165243197731, 2.113065686907856, 2.1368013590271, 2.586150544088133, 2.8546922398989465, 3.2948270386142573, 3.5858887806129194, 3.8180491024857184, 4.146966596861327, 4.756891684718345, 5.158756261694872, 5.798160371573322, 5.912530611584155, 6.836113026019236, 7.154767013618041, 7.494850605288791, 8.108845422950269, 8.603857069581531, 8.898614880208742, 9.093612637013333, 9.589477564360209, 10.033942020603288, 10.250372185800353, 10.413177354241364, 10.743767742078568, 10.826260937934835, 10.928690380188872, 10.856842345971561, 10.85566513417713, 10.704789136944079, 10.780023050997443, 10.797016536142564, 10.551039392492926, 10.45906028563076, 10.348839821967989, 10.083802419155822, 9.893661177641237, 9.508101545340711, 9.412071611528145, 9.426592989155097 ]
[ 1.0518985905480467, 2.342664739973105, 1.4214384844624346, 2.277245578554883, 2.3291386567191044, 3.1542370645673827, 3.616066648824218, 3.7480923100855796, 4.210001129763634, 3.8851377308138244, 3.956687211011999, 3.2884799451613977, 4.556354482436614, 4.3459638180720965, 4.201854827477336, 4.070293860893515, 4.032588427617278, 3.7758661573676378, 3.433424049439103, 3.5846933759596036, 3.4425132305432715, 2.5233476825066905, 2.394150243988086, 2.1611667607256253, 1.9235767470754528, 1.5093480154927263, 1.5560892400127608, 0.0592894583915049, -0.18049900994930168, 0.34331368952447894, -0.3419557660213699, 0.1427419651424316, 0.05971876721264413, -0.5970690551157678, -1.3981463998610282, -0.4396605836384132, -0.9266881729869723, -1.7816844885088634, -1.7016919454865498, -0.16030120352928157, -0.11240866077521838, -1.8700751339000474, -1.0704256602810276, 0.4395215069897872, 0.1576426330329435, 0.8487258374053706, 0.8262895668251335, 1.5675264633786234, 1.6443986542967344, 1.8364302329283906, 3.0050877096167454, 2.9980383715048595, 3.63939967592734, 3.7972014580459095, 3.86401392165637, 5.278184316920852, 4.991352967255171, 4.944743908222018, 6.0343019570546765, 4.96858852725957, 6.93915452467349, 5.8794295285327305, 5.437508702491188, 7.080791083372501, 5.906352918573223, 6.224250549405117, 6.382237172314286, 6.494520342548277, 5.892524600868032, 5.2238563883701765, 5.430648508883913, 4.8584930005635725, 4.91805345067454, 5.316815324684593, 4.579365043147685, 3.9987153364918986, 3.959907725771461, 3.6982065176109353, 2.4698267938801775, 2.7639915877601844, 3.7829299170222574, 2.895823638046578, 1.8592572552550832, 1.6688411399809813, 1.5530793471569468, 2.249715779525275, 2.6121211152060564, 2.139165949256721, 2.0152555586783425, 1.8520279686120134, 2.424347783389244, 2.081832829186409, 1.800763861451107, 3.9055018841113576, 2.9408541471366147, 3.6722100354112044, 4.583320070905857, 5.417556411424433, 5.293394728942732, 5.046189373283337, 5.978495471079958, 6.278064647577834, 7.082462439121199, 8.192144053095646, 6.766752202173469, 8.268420012438815, 8.645155372884865, 8.641724002979997, 9.911607639869727, 9.22251457936105, 9.550758572729453, 10.85436266433521, 11.363221843470757, 10.714281969545626, 10.238358405100405, 10.545128769280517, 11.410404475974262, 10.933004229344077, 10.755442838150207, 10.860002185719324, 10.552618750431765, 11.18736254980747, 9.86314825395586, 9.61453956155835, 9.15488294243083, 9.37388997368162, 8.898340352605265, 9.3629680928318 ]
The given time series has a trend and a cyclic component. It also has an anomaly. What is the most likely combination of components without the anomaly?
[ "Log trend and sawtooth wave", "Exponential trend and square wave", "Linear trend and sine wave" ]
Log trend and sawtooth wave
multiple_choice
70
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Exponential Trend", "Square Wave", "Log Trend", "Sawtooth Wave", "Cutoff Anomaly", "Flip Anomaly" ]
The anomaly only influences a small part of the time series. You should focus on the overall pattern of the time series without the anomaly. Can you recover the original pattern?
Anolmaly Detection
General Anomaly Detection
36
[ -2.46398788362281, -2.0817374692063297, -1.704586899340528, -1.3318782823670798, -0.9630733537033078, -0.5977261228545567, -0.2354629173866843, 0.12403245386918044, 0.48102991762811365, 0.835761743721878, 1.1884292395133538, 1.539208019782328, 1.8882522010385245, 2.235697773389535, 2.581665336206365, 2.9262623364097995, -1.6583908531488558, -1.3162563318725558, -0.9752319933191022, -0.6352473780466553, -0.29623852853868815, 0.04185278696855599, 0.37907973818683993, 0.7154910030127164, 1.0511312596628288, 1.38604161320265, 1.7202599666919003, 2.053821345358259, 2.3867581807572344, 2.7191005607025343, 3.0508764497986425, 3.382111884629875, -1.2151446202231295, -0.8849188489747486, -0.5551653504619869, -0.2258642460019773, 0.10300311382812133, 0.431454248501002, 0.7595056370184561, 1.0871727987051136, 1.4144703663091345, 1.7414121522724706, 2.0680112089225426, 2.394279883242361, 2.720229866794726, 3.0458722413060846, 3.3712175203551293, 3.696275687558856, -0.9069195356422224, -0.5824075888182301, -0.25815564641443056, 0.0658444785094976, 0.38960059219791354, 0.713120143442747, 1.0364102450797354, 1.3594776938926616, 1.6823289890650102, 2.0049703493044166, 2.3274077287528563, 2.649646831784442, 2.971693126782874, 3.2935518589818322, 3.61522806244375, 3.93672657124544, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, -0.015832942135368875, 0.007737004168336819, -0.005381416616629597, -0.013466780973613462, -0.008805912660471066, -0.011305523046815669, 0.001344288826280219, 0.005821227947130392, 0.008877484595933573, -0.17311353790509276, 0.1431102494779828, 0.4592710675825393, 0.7753699040156035, 1.0914077233305028, 1.4073854677388504, 1.723304057795258, 2.039164393056015, 2.3549673527129147, 2.670713796203347, 2.986404563797711, 3.302040477165157, 3.6176223399186074, 3.9331509381399603, 4.248627040886335, 4.564051400678176 ]
null
What is the type of the trend of the given time series?
[ "Exponential", "Linear", "No Trend" ]
Exponential
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
37
[ 0.7706903615285006, 0.8682347029878075, 0.28150679215723307, 1.4650556933350996, 0.5196387554219519, 1.2466001498511157, 2.5286445737639016, 0.355798915705707, 1.1121018931802942, 1.0082648627944049, 0.9371810807328811, 1.6450265528797303, 1.8453784422496358, 1.7059356132106176, 0.9869521452364174, 2.594666382448964, 0.5223702053695731, 0.9215690984297165, 1.5537963564484545, 1.5453471733295747, 1.777075647421549, 2.356223732576799, 1.5400490941890859, 1.6913873787605547, 1.372558710721448, 2.000037186558936, 1.5834684200543327, 1.6208092820259705, 2.0905220296775906, 2.3755136660012437, 0.7941206885408796, 2.1195502623376705, 1.8459315064350397, 2.4976178908969446, 1.9424480413592153, 2.7626790864225024, 1.8195538708970238, 1.0891877371752907, 2.7777475843840125, 1.8788047430211092, 1.5601273958088724, 2.409028865595171, 2.333257429077886, 2.9173633313115657, 3.0061239829451445, 2.663004868518475, 2.2292563180041043, 2.872823906476877, 2.8708851255047185, 3.1329635026258913, 2.472599087320347, 2.7726514070939006, 3.2917190999946815, 3.726271863476879, 3.6525636595941537, 3.2790710127685507, 3.0642648249661875, 3.5813011249732933, 2.9066664845286354, 3.1184074937097446, 4.3579500552716155, 3.8818822578708287, 3.5865822109543335, 4.256111696121291, 4.567979885820596, 3.7869148071959273, 3.8821006056193523, 3.907921999666547, 4.75652003818686, 4.8536745136705, 5.154141406224611, 5.061821256377219, 3.83982082269905, 4.8969470631307495, 4.329978084843548, 4.707637200522716, 5.156580696658159, 5.598570027010688, 4.847233893023857, 4.244579529875217, 5.613956296745111, 6.964749186885337, 5.663388244593507, 5.912748082268101, 6.907539047578007, 6.441507323277853, 6.387518501588254, 6.635730051295252, 6.678305066869374, 6.124808131234287, 6.168520455337913, 7.930336199329086, 7.229731748873269, 7.341963400382087, 7.404255472445419, 8.000759444467581, 9.043895161813705, 8.204401037385606, 7.819881294099026, 8.222427464613327, 9.003612458810107, 8.359565090584093, 9.263888089317277, 7.8682291537391364, 9.10861168923426, 9.736784730771964, 10.261241259042125, 9.42479851215513, 9.294998485662292, 10.132943938817352, 9.922216703921903, 10.636807865314479, 10.939288095210344, 10.51932511651019, 11.822502042607887, 11.588272588844786, 12.45903126405462, 11.253710226202301, 11.930485460053806, 12.966012076498238, 12.582517778229839, 13.180125874459375, 13.549116838391091, 13.92045248296797, 13.801415758420088, 14.520170084044006, 14.366175803642177, 15.41324402121794 ]
null
Is the given time series likely to have a non-stationary anomaly?
[ "Yes, due to trend reversal", "Yes, due to cutoff", "No, the anomaly is stationary" ]
Yes, due to cutoff
binary
69
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Linear Trend", "Sine Wave", "Cutoff Anomaly", "Spike Anomaly" ]
Non-stationary anomaly refers to the anomaly that changes over time. You should check if the time series has a constant mean and variance over time. If not, you should check the type of anomaly based on the given definitions. For example, spikes anomaly are stationary.
Anolmaly Detection
General Anomaly Detection
38
[ 0, 0.981557912099604, 1.6785687752849967, 1.8946991266599817, 1.5826952233776237, 0.8590323673308653, -0.03219407612741626, -0.7949416735302435, -1.172998240155985, -1.0294112197462282, -0.3889449025580687, 0.5695968528122163, 1.5688023296536278, 2.3186534858495986, 2.6064356247132707, 2.362681941821089, 1.6827092111174164, 0.7970682447967058, 0.00006989987906846906, -0.44145542560395, -0.3708789677499711, 0.20966928413629637, 1.1399609141760774, 2.151342141719817, 2.9500202707369043, 3.3081435564375727, 3.1344384498518396, 2.502505681355786, 1.6280029993968486, 0.8017882362338928, 0.29974929034999365, 0.2972749988194834, 0.8148821317719832, 1.7118549051775598, 2.7298688524207844, 3.5730750411053025, 3.9998174018606654, 3.8975495076360533, 3.317725548537486, 2.4598488094267794, 1.6096228465118885, 1.0503793678068596, 0.9752414198810426, 1.4272525280290533, 2.286032598218831, 3.305097438837789, 4.188272325767061, 4.681510331203153, 4.651650443286675, 4.127699352080236, 3.2918389678023927, 2.4229474671034543, 1.8101431371560364, 1.6631536415033903, 2.0472974954992806, 2.863234408141767, 3.8777621690512403, 4.796112612612095, 5.353333893881487, 5.396429285859178, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 7.302895712492914, 6.605973495904034, 5.717578879501671, 4.932876390548718, 4.514884538842628, 4.612936380524108, 5.216384170986148, 6.157900315414057, 7.165351275876432, 7.94616279439914, 8.278022026657949, 8.077797649533801, 7.427311740142114, 6.547973781473149, 5.732140609551959, 5.252481683607013, 5.277447719858804, 5.819048601001569, 6.7291301437038955, 7.745303978553407, 8.572291633868566, 8.97346501366304, 8.844204434494799, 8.244332198331222, 7.379566837811728, 6.537747478637999, 5.99959966346382, 5.951706486549836, 6.42866521110372, 7.302361631233313, 8.321687277114348, 9.190386571329695, 9.658900223350255, 9.601732118510562, 9.056354878084765 ]
null
Is time series 1 a lagged version of time series 2?
[ "Yes", "No, they do not share similar pattern", "No, time series 2 is a lagged version of time series 1" ]
Yes
multiple_choice
99
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
39
[ 3.4282390744125766, 1.7728300371008434, 0.19392640970115083, 3.4854235206086828, 3.4451525078317418, 1.5198132690492219, -4.635382080311568, -0.34401997635009784, 1.0462373057375498, 0.4072709750849617, 0.9856795466490558, 1.6291693148621964, 2.105778729773081, -0.8920889454751408, -2.0067380459262836, 0.2513498098621123, 1.5902553638985046, -2.247114031552961, -0.09987920417369, 3.7001399984318364, 4.800446145973537, 3.065785112556836, 1.887412742807808, 1.373689445124179, -2.6156428713246926, 1.562486418192075, 0.4950652245261131, -0.6480854757075803, 6.218263597823894, 5.069790513257041, 2.1219446490229346, 0.1924854705305763, 0.613427822814541, 2.2395936301231276, -0.06386866295132336, -2.226519535598164, -1.5332162892323007, 0.6372091566608259, -0.7981926515786543, 2.135290089452468, 1.713488957516661, 1.7542080479996556, -0.806461725069002, 0.0305559869441277, 2.013197379324736, -1.370259613007674, 4.038478455925843, 0.7894800243270059, 2.772026745213984, 4.698505161077303, 0.7597937266466859, 2.4783042509867537, -1.5348668279305677, -3.864683628117534, -1.758901105462738, 1.5524659341693423, 0.02345012903623167, 4.587906370769391, 4.709334033344963, 0.4304539878299978, 3.5020643038140866, 0.1419054651241951, 2.368226204902236, -0.8406114554451006, -3.6720862996257586, 1.5939834712583434, -1.1614623555885117, 1.290577395197868, 2.6124743698973836, 2.7212948187640937, 4.72478688370803, -0.12759316419233524, 0.9071800350253034, 1.2963987916022885, -0.46150537061731334, 0.3299354124974353, 0.44305180949827117, 1.0237310721865973, 0.02224696551934935, 1.212584783052451, 3.3809103040025237, 0.027307902305520715, 0.3331952404581474, 0.5815293276544455, 0.6964826170852123, -0.014758046690254822, 1.846953462188762, -0.5236067375488462, -0.3323423893264785, 1.699359000259419, 0.6248579286539617, 3.7027195599341716, 1.050648318185021, 1.2427275970549891, 4.170053748484531, 1.2984812000845791, -0.012645559225720415, 1.596720395751745, 4.749209982835206, -1.3149162872336237, 0.7918166892317067, 1.4948679795963755, 2.239673823372634, -1.0318822818832794, 3.1994290822729234, 3.365891930286075, 1.6013646536837252, 1.8906645011861984, -0.941956354497854, 2.792628324295927, -0.9679097019350701, -0.07609318041659335, 2.4830547685810975, 0.8570928578241366, 1.104661910155254, -1.001950219659241, 0.220750559542069, -0.821288796131985, -2.8069770241606142, -0.47277874213366944, 0.6239184060203529, 2.5369551694386123, 2.2986909594461893, 2.333354126689153, 2.6490529220002386, 3.401938354324339, 0.6146071905822331, 1.3131704259259218 ]
[ 1.599076031569918, 0.5193428962826687, -0.10222740778161121, 1.080378572421013, 1.967688939713514, 3.4282390744125766, 1.7728300371008434, 0.19392640970115083, 3.4854235206086828, 3.4451525078317418, 1.5198132690492219, -4.635382080311568, -0.34401997635009784, 1.0462373057375498, 0.4072709750849617, 0.9856795466490558, 1.6291693148621964, 2.105778729773081, -0.8920889454751408, -2.0067380459262836, 0.2513498098621123, 1.5902553638985046, -2.247114031552961, -0.09987920417369, 3.7001399984318364, 4.800446145973537, 3.065785112556836, 1.887412742807808, 1.373689445124179, -2.6156428713246926, 1.562486418192075, 0.4950652245261131, -0.6480854757075803, 6.218263597823894, 5.069790513257041, 2.1219446490229346, 0.1924854705305763, 0.613427822814541, 2.2395936301231276, -0.06386866295132336, -2.226519535598164, -1.5332162892323007, 0.6372091566608259, -0.7981926515786543, 2.135290089452468, 1.713488957516661, 1.7542080479996556, -0.806461725069002, 0.0305559869441277, 2.013197379324736, -1.370259613007674, 4.038478455925843, 0.7894800243270059, 2.772026745213984, 4.698505161077303, 0.7597937266466859, 2.4783042509867537, -1.5348668279305677, -3.864683628117534, -1.758901105462738, 1.5524659341693423, 0.02345012903623167, 4.587906370769391, 4.709334033344963, 0.4304539878299978, 3.5020643038140866, 0.1419054651241951, 2.368226204902236, -0.8406114554451006, -3.6720862996257586, 1.5939834712583434, -1.1614623555885117, 1.290577395197868, 2.6124743698973836, 2.7212948187640937, 4.72478688370803, -0.12759316419233524, 0.9071800350253034, 1.2963987916022885, -0.46150537061731334, 0.3299354124974353, 0.44305180949827117, 1.0237310721865973, 0.02224696551934935, 1.212584783052451, 3.3809103040025237, 0.027307902305520715, 0.3331952404581474, 0.5815293276544455, 0.6964826170852123, -0.014758046690254822, 1.846953462188762, -0.5236067375488462, -0.3323423893264785, 1.699359000259419, 0.6248579286539617, 3.7027195599341716, 1.050648318185021, 1.2427275970549891, 4.170053748484531, 1.2984812000845791, -0.012645559225720415, 1.596720395751745, 4.749209982835206, -1.3149162872336237, 0.7918166892317067, 1.4948679795963755, 2.239673823372634, -1.0318822818832794, 3.1994290822729234, 3.365891930286075, 1.6013646536837252, 1.8906645011861984, -0.941956354497854, 2.792628324295927, -0.9679097019350701, -0.07609318041659335, 2.4830547685810975, 0.8570928578241366, 1.104661910155254, -1.001950219659241, 0.220750559542069, -0.821288796131985, -2.8069770241606142, -0.47277874213366944, 0.6239184060203529, 2.5369551694386123, 2.2986909594461893 ]
Are the given two time series likely to have the same underlying distribution?
[ "Yes, they have the same underlying distribution", "No, they have different underlying distribution" ]
No, they have different underlying distribution
binary
94
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Moving Average Process" ]
The difference between AR(1) and MA(1) is that AR(1) is a linear combination of past values and white noise, while MA(1) is a linear combination of past white noise values. You should check if the time series exhibit any dependency on the previous values. This could give you a clue about whether the time series is AR(1) or not. Check this for both time series.
Similarity Analysis
Distributional
40
[ 2.701719404820066, -8.371687734598572, 11.244319685351027, 12.685773045922122, 16.595244385483717, 2.4744486607336356, 7.083085387205786, 23.448795778483014, 15.98453593894246, 0.22963433936792832, 2.0234694080354534, -8.740193525674588, -22.570141785249895, -25.40377037560777, -25.248994248246245, -30.07169334410658, -10.79268685389966, 10.261950563275022, 14.39044061269434, 15.354307411186074, 10.862964801837744, -0.2729562996604429, 15.810737271007998, 12.020054845902957, 4.990189156057363, 14.139717564877918, 10.575932153098202, 18.233688153393352, 10.489463457359244, 18.567940020424132, 24.652024185752943, 32.969903568503284, 19.281674458867695, 14.594945203304256, 31.153656952005893, 22.4588047705602, 26.07730179677293, 43.76749161363756, 16.52358133223543, 10.423308686072593, 8.357348787776838, -11.30290756251749, -13.60203822981942, -20.5954433543962, -7.899500000008519, -23.646073551282797, -0.023632621220773586, 6.880068035602831, -5.034161373788122, 6.23686544968928, 10.959289094926536, 8.379755028034483, -0.5107648033310772, 5.068020977409977, 5.283620439407274, -2.6655087711260244, -15.564957957862552, -20.957856574661378, -21.79926381610135, -5.814538210966335, 3.955958928799345, -1.3359082001012763, -5.180666157004951, 5.768989869913034, 7.2886593901830565, 8.365075110889443, -0.34169396623163006, -1.5075437434667613, -1.1634183225825314, -1.842652127803134, 5.866557416316121, 12.346784327213395, 0.6878491147753465, -4.4518658656884975, -10.435228024753762, 5.537075241299135, 26.964565490697705, 16.93543864118905, 11.877398457382414, 17.925067077879245, 7.267942870006166, 14.4634375718297, 11.36205742684164, -8.34775108802632, -19.682536674138003, -19.12457001181832, -3.0701704615461995, -11.381482353126742, -14.446191895581041, -9.445711248638858, -24.244218559521165, -16.40984203704046, -28.565274490623388, -17.18037749788085, -21.83208282067863, -26.886157658691058, -18.78095988163491, -7.084862810297269, -1.9052916876659451, 0.5522016483708025, 2.6597834128689497, 5.951045607911778, 9.241198446814465, 3.450148256782041, 9.305148093233035, -0.5377837772255756, 10.483705614433285, 16.21140097943145, 34.77813082939224, 32.96098917656949, 35.45978820673149, 12.76244768525915, 19.62692557126455, 27.46610068065428, 37.02009347840794, 30.820738306141344, 21.237656883832976, 6.094977754300171, -5.104377415230251, -4.339568677741365, -20.986034914231404, -24.47101401219811, -18.681590702151976, -14.273238034619467, -21.112527961403874, -29.228655473709466, -34.22804894282774, -29.590960742310894 ]
[ 11.478155212951759, 10.812495009903667, 11.893416230018776, 12.429155146267394, 9.52870413823885, 7.762595228324234, 8.396829758600942, 10.476903738961324, 8.88082272650068, 7.211897935162934, 9.187245888743398, 7.509040655750052, 7.044835739092935, 10.41142644960196, 12.749374699578219, 10.03992152453296, 7.154052153464831, 12.049667426676296, 12.526381964157958, 9.273732953374637, 8.60816442975437, 8.317817089745907, 11.762345022663427, 8.676640632486922, 8.60420014506315, 10.553668146671825, 10.05400117662899, 10.275465383806878, 8.109223949995057, 9.60014445396336, 11.829046654493107, 12.436195007115971, 12.059738502814994, 9.805316208284777, 11.421943890446085, 12.592221148949577, 11.074841293487106, 11.21825300745131, 10.668729511308939, 10.476088831022793, 9.255920162667438, 9.418963093718778, 11.52996613694967, 8.101284816488624, 8.397414138284176, 9.157484591226204, 9.566521288291382, 10.325199297651968, 9.008076478708274, 10.436208331280369, 9.67157267528921, 10.831109708062908, 9.360658181726704, 7.761195021884027, 7.493241518664662, 6.473930702109701, 9.36883786191354, 7.23662700907708, 6.919731522137081, 9.323155312840179, 8.89887136790483, 7.933405433342026, 7.7089956797323005, 8.42284790105789, 8.799666409468797, 8.917084452917255, 7.106093147443119, 10.573930834115602, 12.143014020863538, 8.728069445555589, 10.82360398298167, 10.762685143573533, 8.98576279186052, 10.414044825231999, 13.763223501252199, 11.950875746988794, 10.268298881545073, 11.137975308269148, 13.258337083414672, 10.845513443372523, 10.016801787858565, 11.320853830281132, 11.559351492356901, 10.632030032040948, 9.034754582841577, 7.281214089857112, 9.234430670560082, 8.456190597478088, 6.89901690887882, 8.181712129955153, 9.404737703717881, 12.105408038284368, 9.74199366122985, 10.12544789779888, 11.940453821149672, 11.895648910751044, 11.11449211652284, 10.600255398344862, 9.848241624749823, 10.74503016557771, 10.842181980878744, 7.70583534814695, 9.33174216693734, 7.831448807679493, 6.200932067378894, 7.164434504923115, 8.164483857429692, 11.032683517918912, 10.259257642296802, 10.804278167803222, 11.198067868653109, 12.04858857860809, 10.445112898756912, 8.68324732727552, 13.324330779008552, 11.911224349861769, 5.379512508675214, 9.038896470570567, 12.397306632421943, 11.699644329907628, 11.850795497082617, 7.9760601714505475, 8.764448723547828, 12.488276611409388, 10.47639525415143, 6.928979423862413, 8.823939739917472, 9.6486615959485 ]
What is the primary cyclic pattern observed in the time series?
[ "SawtoothWave", "SquareWave", "No Pattern at all", "SineWave" ]
SineWave
multiple-choice
15
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave" ]
Check the overall shape of the time series against the definition of provided concepts
Pattern Recognition
Cycle Recognition
41
[ 0.014942137069267468, 0.3003909071718347, 0.7726099957013647, 1.1142215543938636, 1.3722979430955211, 1.5510686647270915, 1.8269213068181935, 1.9092137441293215, 2.0019414847161547, 1.9409236731655528, 1.822902297415402, 1.9117603079523304, 1.7423391641557215, 1.583340419059823, 1.1835529445508486, 0.8440901423485007, 0.3836900507520433, 0.16278397568865824, -0.16056309598726543, -0.7355279426349445, -0.7857475220773256, -1.2741235192175924, -1.4939548542341456, -1.6383829314103424, -1.8678691085051042, -1.835485422279255, -1.957820983202406, -2.0151619045881763, -2.227385666288564, -1.6689227898826926, -1.6825677537222132, -1.2249713383605885, -0.9643767624119688, -0.7037873382323321, -0.23700772533725206, 0.0820709129809285, 0.4241392654634889, 0.5683703556167177, 1.068791580566664, 1.2309428541128493, 1.492287130497073, 1.7606938037689257, 2.0800539886752927, 2.0447116347783467, 2.060911339107632, 2.0392803459329127, 1.7558577785860918, 1.5072478634573825, 1.2572906210574049, 1.17733134719051, 0.9371562215525278, 0.5869483175017753, 0.053748396216668076, -0.09083671878426786, -0.37801098285039114, -0.858676708685832, -1.0781458333557872, -1.4073736539748563, -1.7372093414008392, -1.9448879673115278, -2.143270914523403, -2.065970658736126, -2.019430282002685, -1.927025481680598, -1.7650819439220942, -1.7748296929009284, -1.2092868328340984, -0.8978446907063914, -0.6185299962767546, -0.41967555113891425, 0.09662586673343204, 0.4229214033205568, 0.8152577172119108, 1.2452764724543663, 1.3594682444091017, 1.6381420438606402, 1.7239146178772564, 2.034419407199604, 2.0817068048344587, 2.0373168895010543, 1.8494852565268656, 1.7624807205187527, 1.4645769231296575, 1.3418762537339117, 1.2004301716457988, 0.850702661031547, 0.4825352407432119, 0.2553698459098406, -0.22568692529094037, -0.6686638919678601, -1.0160215494578941, -1.2737297890719732, -1.5597247381940726, -1.6346408210626135, -1.847164394604037, -2.019636557954967, -2.0500034856378373, -1.9204029641013325, -1.7942319355351761, -1.9230610094583305, -1.5430896159013068, -1.2547898198163203, -0.9062803112642037, -0.6159142176210528, -0.23235865867531094, 0.06617856564410247, 0.3693392664704021, 0.873866660229887, 1.196872773535842, 1.4642856216569793, 1.7207212694124936, 1.7263230210311151, 1.8996211063491888, 2.126238494704885, 2.048717670847079, 1.952546301217978, 1.7927048161759926, 1.7569446289224273, 1.2127306821175137, 1.1339217850025756, 0.7769265314768073, 0.3121054315638121, 0.23866731708912037, -0.5548978963702389, -0.6273219163137629, -0.9195621524559646, -1.37147412883756, -1.506662469624919 ]
null
The given time series is a random walk process. What is the most likely noise level?
[ "3.8", "6.88", "1.91" ]
3.8
multiple_choice
55
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the past value.
Noise Understanding
Red Noise Recognition
42
[ -1.1116201882204884, -0.15813306043809633, -1.4030470004139541, -0.9335009965859863, -0.9477795842671954, -1.719903659869488, -3.991567342440568, -2.2711836610417646, -1.7572853662538146, 1.4510271399594754, 2.4541279307347157, 4.06930459523538, 2.2131926713677452, 0.21970866692641614, 0.15719019205444035, -1.2823190895766725, -2.1175618078508225, 0.9021411966319931, 2.4521153174316366, 1.1979101268756014, -1.4412132054435152, -2.678279269156956, -3.2263672064678226, -3.7549415021909884, -5.281704215167347, -3.8403767807751708, -4.879023470374413, -4.068379155337916, -4.128706658937284, -2.984237007209116, -2.94581867728571, -4.154986194712209, -5.064111831660128, -5.493824994828414, -3.2596102601246186, -3.0353176928667622, -3.031371829170723, -1.8918531842158788, -2.112207248400006, -0.8154543494605989, -1.4472063240288267, -1.7465978450641189, -2.8128639745334154, -0.6269885827798245, -0.6699300117773401, -2.1446773167757187, -1.8920774456869072, -2.6989965145056503, -3.092508710865955, -2.891810997251292, -1.1533865784371433, -0.9761386604581938, -1.7067578252389726, -2.4510023992702865, -1.6135247191341577, -3.909692344061467, -4.9956337444885905, -4.7581304671923546, -6.820957118418603, -7.149838377224313, -7.7094150042985286, -6.762610294959449, -7.074364284083673, -5.473106188699166, -5.783079791891971, -3.52249845581571, -5.097849978293495, -3.1227464038880646, -3.547910937507343, -1.7451679802620454, -0.5483830324114081, -3.890219079034808, -3.2888748754471813, -2.206904637885033, -0.712264966852225, -1.9850007942574788, -1.2076944519118618, -1.0774805942171546, -0.5053110212258712, 0.43935306158832815, 1.9862123229394588, 1.1740944377789504, 1.3985656618889108, 1.6400978295324664, 1.4779081114456016, 1.223527498914483, 1.4600225879584157, 0.7190858772587622, 1.7492904128292883, 2.9950452512348806, 2.1987231809974133, 3.8102865557277843, 2.851300944605493, 3.9794568722789614, 5.294774371071901, 5.347772691801868, 4.228905179769732, 3.6230442056205487, 4.0628877837567225, 6.462116705174834, 4.4628528908409075, 4.518088517322706, 4.187442843748259, 3.911110391383789, 3.7450102176691646, 3.2743445275258383, 4.710149382012545, 6.077270816713213, 6.33277350798568, 6.169023411747486, 5.58285758454437, 5.67590008923083, 7.868566188246615, 7.83390099583652, 6.643004849820326, 6.140534543560938, 7.194064782042406, 6.084735074484333, 6.29889806125326, 6.836419661127817, 5.800539900402028, 3.8998005687484425, 2.8630772323585902, 1.5514516801007678, 1.449753644653408, 1.3800178718498008, 2.3767528185097686, 1.1983113362420919 ]
null
Covariance stationarity in a time series means constant mean, constant variance and that autocovariance depends only on time lag, not absolute time. Is the given time series covariance-stationary?
[ "Yes", "No" ]
No
binary
37
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "AutoRegressive Process", "Linear Trend" ]
Check if the covariance between any two points depends only on the time distance between them.
Pattern Recognition
Stationarity Detection
43
[ 4.516671255104299, 6.074126156781673, 4.5374978503566386, -14.247792348177969, -2.761789659672134, -22.377621169950878, -18.44571245175289, -4.055884267532828, 3.9931918464267646, -6.150806502862464, -7.704749358057187, -9.64881010975285, -5.764019968322344, -3.0142829233693114, 4.945139273619761, -2.713765560718513, 2.580985142356506, 6.173932350161801, 5.299296805460817, -0.00035127133735438076, 1.7958875141610013, 8.494362270258474, 12.52812273084202, 24.602833277887022, 2.565766357584343, -3.076291871062712, -17.70121516492049, 0.3592799429490313, -3.1957470691068535, 0.4502702764827314, -5.707303305729064, -6.06157080442612, 9.330930842936336, 11.434889260053545, 4.874735298650165, 10.172449702251981, 12.972358408977817, 2.5253003657665754, -13.1862586496194, -15.618253425496151, -21.14097737596503, 1.1751264414119194, 13.921595388423116, 22.906832840484736, -8.575169928140998, 6.527370289588891, 25.493980507498133, 23.783444373457396, -9.514248757504653, 12.971746586174865, 7.040273452253056, 1.285098694777873, 5.230382288554029, -7.556481945740985, -3.8217164978195295, 14.349738234090449, 13.38757001104561, 7.2673424439096435, 4.571577381180572, -9.450565569767914, -5.9683084319133535, -19.297309010349593, 0.6859896813695104, -21.43907009216894, -2.0333797641589557, 8.996642977276519, 17.515226605805754, 9.947964823714644, 13.929549943160199, 5.599058307405794, -8.745009912640628, 10.999414870851595, 4.641721576345116, -11.483637331191984, -10.469824341242385, -9.317587773826096, 0.10778393322201135, 23.558189997249276, 17.102433450357957, 10.704900005881166, 30.06552362765118, 24.99286574979113, 15.146252453147888, 2.9676053613289404, 4.538702643018482, 1.8088405132180745, 1.85556710900544, 14.282859933576185, 1.8829966321777727, 6.18365415926469, 12.772166794217949, -0.02516967548818004, -8.157662941493236, -5.545841455026055, -7.354730973601791, 8.070135130794496, -5.81725945982453, -2.1885132046747633, 24.633202137416703, 16.512378870685154, 14.055265894959687, 18.99326760567687, 5.070538512059053, -8.384394017441117, -2.227797984876958, 1.6643512204750743, -14.998190038456132, -3.6810913630112942, 8.873998299503878, -4.367341049120149, 2.1683152736791094, 10.20738304187528, 11.073071781043256, 12.497073214998617, 4.091788721240614, -8.952898972258149, -8.978963594861714, -10.049798873517762, -5.75666725539058, 8.197721710012805, -8.757043451426547, -2.8835198626780536, -11.796023300711992, -13.06622797059056, -0.841219735852767, -11.980006396039016, 1.3459968799000392, -12.461796664497832 ]
null
What is the type of the trend of the given time series?
[ "Exponential", "No Trend", "Linear" ]
Exponential
multiple_choice
1
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
It would be helpful to check if slope of the time series changes over time.
Pattern Recognition
Trend Recognition
44
[ 0.9427300773736911, 1.6421142810077933, 0.24973694488343479, 0.7715589333625861, 1.0987277736258776, 1.1450325917524165, 0.9225362098415872, 1.485624540176405, 0.6676379814253425, 1.1581394106514056, 1.3180049350383174, 1.544266525778122, 1.6727219239068127, 0.7851539211211978, 0.6116875542202067, 2.049578371015672, 1.6096347739417232, 1.102732025221867, 2.2868261545753903, 1.6041577442697483, 2.171853124309679, 1.6526806091677497, 2.686864222579504, 2.572601401433059, 1.6097816862007794, 2.26029477756177, 2.1383767615923794, 2.542139666551798, 1.418475050902641, 2.288075887793407, 2.51939947835299, 1.1570020255057054, 1.4919988102385902, 1.11236491110168, 2.0467526003875576, 2.5908502865804204, 3.035055592743746, 2.3739243936480987, 3.20541463612449, 1.7565444590407604, 1.651679962282726, 2.53369087713469, 2.81293912173478, 2.665380104741517, 1.7102389319138114, 2.763076640570903, 2.2205562774281438, 3.274293649843332, 3.1909699138250107, 2.607527282005868, 2.8919498045164, 2.6923498809224675, 3.2653862218739644, 3.8508011611517965, 2.9586465748591166, 3.78362901902902, 3.3484318369050166, 3.3009809700844492, 3.7297049363579124, 3.3533928341273773, 3.6840205773975487, 3.453822153374825, 5.129172546886867, 4.260673147258956, 3.991643165808102, 4.54924540432617, 4.489178959437685, 4.54033798207337, 5.065833706787879, 5.2479363675129616, 4.716926796819243, 4.809885281241988, 5.07856860720288, 4.186179213473381, 4.703398598099077, 6.27115977542208, 6.539875888656768, 5.725552526414777, 6.274106496197839, 6.280360965204735, 7.806307678896946, 6.972084435852997, 6.497142749788537, 6.235589067970137, 6.065927183096477, 7.130288522812236, 6.813486897847514, 6.647426029449069, 7.206029940332601, 7.163268637941025, 8.726394433950098, 8.506573285250024, 8.24894196806368, 9.18441884382495, 8.679093815783714, 8.410277988144411, 9.807645624325485, 9.525463154173504, 8.952181137082794, 9.595415541850018, 9.477656678472641, 9.454165478799581, 10.84409337583633, 11.57661581294545, 10.169117019038811, 11.40209889217552, 11.053359354418843, 11.399173032580316, 11.6167215431523, 11.757375796630892, 12.49650006700856, 12.346196538229188, 13.193048955869237, 13.335722904277727, 13.551421304456355, 13.534362002997625, 14.024368783359092, 15.02259363068712, 15.235207945907613, 14.843709696570164, 15.737961089291913, 16.42805303192871, 15.590169890431621, 17.077710272591496, 16.864721134309924, 17.880385640063597, 17.621770500063775, 17.518748181024822 ]
null
You are given two time series which both have a trend component. Do they share the same direction of trend?
[ "No, they have different direction of trend", "Yes, they have the same direction of trend" ]
No, they have different direction of trend
binary
81
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave" ]
Trend refers to the general direction of the time series. Are the values going up or down? Check this for both time series to see if they have the same direction of trend.
Similarity Analysis
Shape
45
[ -0.04101262451847562, 0.5196031547774996, 1.076198168104769, 1.4797427375817134, 2.055594688672651, 2.366122241618876, 2.794177929126308, 2.677304627200189, 3.1848848733304984, 3.3319737554924007, 3.478864918099358, 3.474524446990768, 3.595243121410732, 3.3140809423195923, 3.416410783111508, 3.1264178656190564, 2.933201055908647, 2.7657363878341927, 2.4352239738647907, 2.2135985808430627, 1.676673811989418, 1.4250437067577313, 1.1852065853722233, 0.8089552531742141, 0.5144497326940419, 0.3130339690964295, -0.06876069901853152, -0.2737919162665422, -0.2860731473929151, -0.4329351041514205, -0.3193913114755113, -0.34547038436906174, -0.3322155540218163, -0.06092160599590221, 0.05034365990193394, 0.5272364942413502, 0.6363070509976311, 1.287053364585641, 1.623851135243701, 2.032179304713579, 2.602964808024458, 3.06756326032307, 3.6414767136699266, 4.1251157491735775, 4.4958994568154464, 4.8151626988089, 5.255387945971173, 5.667423199875755, 6.098956361154965, 6.20691883390405, 6.41830497447806, 6.781796594179278, 6.664697589849086, 6.626570937655212, 6.72078970630176, 6.531603836436601, 6.237574973621638, 6.27065336417364, 5.839221083505357, 5.630598151891098, 5.305119735872195, 5.00306233555786, 4.420940341984778, 4.26805103232427, 4.0866811760374535, 3.793849487705923, 3.290627530114126, 3.241805172596727, 2.8784511538379007, 2.7731326645456993, 2.6906196583945374, 2.7059648994004544, 2.829924002565391, 2.854339898002503, 2.9762390420300338, 3.3074587198913656, 3.4098575647265132, 3.8146015637933584, 4.300963293451833, 4.673212385945513, 5.024431780265695, 5.393740740483472, 6.064062665202582, 6.367464566438902, 6.991198286646344, 7.602688420003538, 7.992853548933388, 8.14660089225433, 8.744325679689254, 9.020262755553164, 9.199450648921665, 9.57710354073215, 9.650077288110978, 9.743369234963875, 9.833631744129814, 9.725656397523736, 9.705072913264766, 9.487567352407448, 9.293804129271031, 9.203421589480461, 8.933206243654775, 8.343875093058644, 8.260762219837064, 7.986919796728143, 7.663112804254733, 7.228669534521542, 6.758516296776992, 6.642247056426209, 6.24305087340553, 6.089678517836999, 6.006088448320942, 5.78629572162276, 5.710409987252173, 5.891919065175454, 6.115658142551708, 6.199976963109089, 6.354572084180562, 6.648387198935312, 6.934850084626172, 7.284999352137169, 7.7403313290335065, 7.957867119617991, 8.584121268552174, 9.04165944395577, 9.549841591919273, 9.984976601318598, 10.559710884247997, 10.880516035422342 ]
[ -0.053385492939203444, 0.25979337384000045, 0.72948328921413, 0.9454218142642973, 1.1827771595407435, 1.446134479034014, 1.7049803370124814, 2.0492439920282584, 1.9027286800074081, 2.186674067812256, 2.209846636510226, 2.067093926351967, 2.2434215120435312, 2.0410753603939313, 1.777337954092021, 1.4361620050048345, 1.3954613436748542, 1.0792668799079501, 0.657706967001202, 0.30507415827899653, 0.12291443312592111, -0.548114060501872, -0.717859719463628, -1.1656462385041457, -1.4883908937658081, -1.9451772729645347, -2.2436166463670584, -2.67750807890645, -2.905600665608432, -3.111119822309269, -3.361690147565819, -3.50925736821207, -3.7616441645392125, -3.798814116284369, -3.816603690430795, -3.7554024671385267, -3.510699893946449, -3.5534622719760653, -3.4598816232622482, -3.0790371818119584, -2.751409612563332, -2.735965710547504, -2.1135206765267163, -1.9541756915062427, -1.5682014974395537, -1.1990386461933966, -0.9281847522730189, -0.728922044504193, -0.3081615024260939, -0.14269910294366203, 0.170499550398289, 0.3735372490684414, 0.29445309485243276, 0.5871142538234841, 0.5449619505223103, 0.5819203272120088, 0.5344186113845429, 0.4328811609158557, 0.42911672165786197, -0.05495195414985518, -0.3300614015097402, -0.6310263786430493, -0.6460930286805185, -1.1754767128681902, -1.4536304631622607, -1.8639277424555671, -2.3365512204516588, -2.560836020069761, -3.052121435144912, -3.4446646138244645, -3.7602868844955752, -4.04876829256142, -4.522536567884126, -4.608229804758876, -4.777818856224343, -5.247247264826707, -5.21024790354487, -5.351662909364321, -5.283042754268372, -5.455214273370041, -5.101141001219658, -5.307340077782029, -5.008615187936399, -4.737509924181474, -4.610260151405144, -4.356132910373328, -3.955374327601277, -3.6579159690275946, -3.3424879070906615, -2.9311206557098632, -2.7341550268453383, -2.351492922358943, -2.1408767392132164, -1.906564290904116, -1.6123070503510395, -1.432206901868486, -1.2667926886179415, -0.9900002615455765, -1.064651845100364, -1.088409086671656, -1.0534261963987255, -1.1312041151783447, -1.3959908554121743, -1.4910953604879502, -1.7243723296049465, -1.9783734257795489, -2.1959421255404417, -2.593380836264108, -2.8479320165268893, -3.354095783329232, -3.569079797038614, -4.190875402392973, -4.616922317439833, -4.870230227207908, -5.1563452711258195, -5.774544047284709, -5.970190001479804, -6.289718828411891, -6.451951704173979, -6.658218338093432, -6.6698915934222, -6.910507242857455, -6.8062604174394785, -6.967993883481303, -6.786125227357246, -6.749628894150943, -6.447526407256062, -6.574320267303016 ]
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "6.12", "7.25", "2.62" ]
7.25
multiple-choice
23
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
46
[ -7.304375957516479, -6.712619785797003, -6.405897716620924, -6.23073830768437, -5.4623754824929, -4.974863332076787, -4.576345015163984, -4.1239729732520765, -3.5943818999989894, -3.3395092434394336, -2.71005962323854, -2.4608583800897454, -1.8962850135813483, -1.5867201997171752, -0.9321775749412848, -0.6347453924999088, -0.2726833609467103, 0.053446589492057245, 0.6304971899009038, 0.9644191509113473, 1.5269178740571805, 1.9851856730721877, 2.4597959825717903, 2.8460015631898656, 3.236707700573717, 3.7976298923258995, 4.245690690630709, 4.432844205604283, 5.15079370982195, 5.533961551139944, 5.762216541078809, 6.096085530177331, 6.840917194785014, 7.177565523741228, -6.945326925548132, -6.431928871176727, -5.908222682532486, -5.793537235902801, -5.1412901815623435, -4.711697093401785, -4.131320878982473, -3.761642201023393, -3.326101657781433, -3.015939160317467, -2.468124617133277, -2.147125880542614, -1.6730144841182073, -1.1682806886749109, -0.7806602044043421, -0.32110370416173517, 0.21504801561918394, 0.48371797492430224, 0.8529256197323142, 1.3024803891803771, 1.717179954660733, 2.4268418629345927, 2.7679936895023696, 3.2460939775638233, 3.664639929938512, 3.9921423339375526, 4.61144242561929, 4.815834475408537, 5.522632795848578, 5.770237882473553, 6.373206630120915, 6.5258982759510955, 7.0241357779655536, -7.149742982664618, -6.448758016649396, -6.091189884714935, -5.478379545240166, -5.291968120588605, -4.673390457462612, -4.3626362585835174, -3.943535681689154, -3.5266240701430402, -3.145729475756698, -2.5873189524350333, -2.1671335644804555, -1.9090700088576729, -1.5664519925949285, -0.9101593777771116, -0.32618918662028046, 0.01628940447235058, 0.3002816683136116, 0.6896397117995713, 1.4189749441508681, 1.5746620960411097, 2.2523713530057, 2.669812525751287, 3.212845438518084, 3.4229354167746493, 4.0162518815245605, 4.498779542517327, 4.661550742919281, 5.24504056355144, 5.664166709219341, 5.9982984602363185, 6.567578365778367, 6.860719255932464, -7.040898822116716, -6.4252681432970205, -6.226596426491311, -5.779191202169947, -5.191580235761782, -4.7708112667902665, -4.522053589036667, -3.9549964902148496, -3.882610002531932, -3.2512878666481657, -2.607416897945713, -2.3289565138188983, -1.8614962037052643, -1.4974240535620478, -1.076993627406146, -0.781667999690641, -0.13189403870257538, 0.38745304927780744, 0.8020480513244655, 1.130632419778902, 1.5074058596756506, 2.0493883730065874, 2.3903502101498786, 2.8829609871902706, 3.4090996322050993, 3.7455094284388526, 4.397762557440661, 4.601020444856483 ]
null
The given time series has an increasing trend, is it a linear trend or log trend?
[ "Log", "Linear" ]
Linear
multiple_choice
7
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Log Trend" ]
Check if the slope of the time series is constant or changes over time.
Pattern Recognition
Trend Recognition
47
[ -0.07974803986236183, 0.07600677972487446, 0.09161130865620315, 0.11582013679410719, -0.1818397485697192, 0.18460987925204922, -0.012822035993658581, 0.0254907650932662, 0.4308116562942862, 0.13322411677690096, 0.05287636692255314, -0.1765475351286763, 0.3077886630896516, -0.04239658762736159, 0.013041579033057332, 0.11202701961278683, 0.35282468015437307, 0.2784126877401553, 0.166044573937956, 0.2378776160123602, 0.1284625777329319, 0.2364065903998527, 0.2380444078622239, 0.3664747982339925, 0.3766456754474804, 0.3246418623751387, 0.22212877124972497, 0.3780780186543026, 0.2785357268734585, 0.15840668152180887, 0.2582543210551633, 0.3329462373790954, 0.4521818631735565, 0.31836857458516105, 0.1935297625201411, 0.37080607129870624, 0.38866375225932914, 0.4085869268190828, 0.5157392034468353, 0.5391784421986495, 0.3368912178128786, 0.34438045875310397, 0.29885575372865353, 0.5384998940456996, 0.6477576524008257, 0.42559389974299244, 0.4456844753313672, 0.6812679236115181, 0.5649253449444303, 0.5661669706084764, 0.36203166660293096, 0.6188974723747683, 0.4173049806067133, 0.4006747948417407, 0.5148426481396203, 0.49371196242364657, 0.552106173768695, 0.40172936898393097, 0.7284880810106151, 0.7611318286647945, 0.36611534372489296, 0.7622197102969059, 0.536748949369489, 0.766965522049468, 0.6553429981848137, 0.6785410222627336, 0.6607257208295411, 0.8553102139424379, 0.5424681688528942, 0.7964050929817351, 0.8718451810525137, 0.831470642640706, 1.053889775026194, 0.6880593872954713, 0.894380478960078, 0.7645681924493157, 0.9515418173476828, 0.7983024561917892, 0.7585611618430467, 0.9922639622392164, 0.7656531285670929, 0.6545919868898054, 0.7830811395091014, 0.9432108800516483, 1.05550102957366, 0.8970127393115118, 1.0665275500979325, 0.7240680849738641, 0.8550664028289218, 0.8858405102506316, 0.9191626428120477, 0.9557329491001106, 1.0461134976784663, 0.9067665770587684, 0.9941174137480467, 0.9802204719229649, 0.8744850536668584, 0.9919454405666257, 0.9983720556821675, 1.0059287370231136, 1.0422599212912844, 1.0584300749822226, 1.001842616331031, 1.2370037687831352, 0.9254170397265418, 0.9949272694197495, 1.466854503683127, 0.9738941493947724, 0.9426461394239661, 1.2283293984377064, 0.8680425618296672, 1.1212435278256456, 1.4455370383781354, 0.9693453554165156, 0.9221103106193043, 0.9961388989038227, 1.3226000362483747, 1.3628305291162208, 1.157348751244454, 1.3253782412779909, 1.4289721572380698, 1.4917034925592378, 1.233973268650155, 0.9734145534214167, 1.178989617033399, 1.241323289826263, 1.2738345971382747, 1.2935860967102155 ]
null
What is the direction of the linear trend of the given time series, if any?
[ "Upward", "Downward", "No Trend" ]
Upward
multiple_choice
4
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Check if the time series values increase or decrease over time.
Pattern Recognition
Trend Recognition
48
[ 0.05091851046423075, 0.03141784784430655, -0.10022316595790726, -0.06593013531323708, 0.20799771106644116, 0.2534757563561078, 0.03245679135787436, 0.082715100682186, -0.03804735960469907, 0.26059261501405606, 0.20122784663687165, 0.38884339628994036, 0.00921896814142005, 0.08942311368053954, 0.18474390023648182, 0.25313720072308565, 0.14462720410375723, 0.06449259545356498, 0.3183939310921703, 0.30710104644846403, 0.09121193854919829, 0.4167704619786125, 0.40201875081800253, 0.26944357190868073, 0.2727735296166804, 0.3493964979107121, 0.16420763094204133, 0.2986267267405791, 0.007249660063297192, 0.437676133886221, 0.11090543146014248, 0.5463284453378181, 0.30327358153751366, 0.3305865457985762, 0.28386388662733364, 0.34182076014719665, 0.5891016061386023, 0.05894609927382344, 0.5913058813404064, 0.47216053908478667, 0.2690646860660929, 0.29821374014239027, 0.6902548026874921, 0.3380052988197374, 0.32012335712155954, 0.6483063625138137, 0.5485771893028965, 0.38268013138025814, 0.5535015045065987, 0.39232769988770877, 0.6977826941530895, 0.7032246589229129, 0.6408092739592862, 0.6281211961480825, 0.8328739236494191, 0.599796959886506, 0.4470468615353733, 0.6839087883550391, 0.9214944362612428, 0.5029122433828697, 0.6043056494500643, 0.7229589003870307, 0.6687174453474003, 0.5510324233392689, 0.8533830733954648, 1.030247897353695, 0.7469743818633953, 0.605493440960726, 0.5270765076329369, 0.7882589478428842, 0.9163297528987375, 0.8401542542202803, 0.7849126700691919, 0.7145326187053936, 0.6557839422238328, 0.9335844303043215, 0.9554356101779898, 0.625679695529438, 1.0708891336399373, 0.9411027499159361, 1.066351035271218, 0.6975050862056194, 0.7051291191924445, 0.8845801729945694, 0.9857598616962148, 1.175837510253977, 1.0357302754647075, 0.9152250161821645, 0.8175836849776774, 1.1410165000795474, 0.8479370276688112, 1.218020121981238, 0.9639796863023334, 1.2345848966781752, 1.1192196096615037, 1.0171129205718294, 0.9750532978111348, 1.0106816790189388, 1.12813208868857, 1.0903995697305657, 1.008370931924314, 1.0785837344051445, 1.123314893454401, 0.8284895026986046, 1.197703902727882, 1.0094500483985795, 0.9963095958233755, 0.9332505367478141, 0.9293988904496991, 1.0010334833243566, 1.1014753102182053, 1.4811301959201488, 1.1486543316926994, 1.2570192989804128, 1.298775686631811, 1.272365414336472, 1.2543913621612552, 1.1104656676680098, 1.4878962737338275, 1.5481487975913093, 1.075679999653976, 1.17781212428276, 1.2917989433377608, 1.2078644897273723, 1.4224480432675715, 1.2624016852661857, 1.6740587308967856, 1.5499872514402866 ]
null
Based on the given time series, how many different regimes are there?
[ "1", "4", "3" ]
3
multiple_choice
41
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Regime Switching" ]
First identify the different patterns in the time series. It might be helpful to identify their individual starting and ending points. Then, count the number of different patterns.
Pattern Recognition
Regime Switching Detection
49
[ 0.05277647609316608, 0.1085535680701791, 0.15712696701028184, 0.11712439267062243, -0.05296226209999099, 0.02247661714918752, 0.1388518286553897, -0.0173126796011637, 0.19118567306070264, 0.11083901898308332, 0.11237520679937005, 0.23593901313011192, 0.22425507621379975, 0.15871785723872073, 0.3257331829124865, 0.11667959857150495, 0.301365220781354, 0.314067514639199, 0.2387884736663946, 0.31734214857743837, 0.17460321747012925, 0.40710300578478265, 0.3111958189752266, 0.29239945932305456, 0.46455841271408044, 0.30420884983154856, 0.24878281800490146, 0.24895175904430003, 0.48020140028668734, 0.3065431986579281, 0.6250512808614259, 0.2563646506300501, 0.6491889570028592, 0.5156307956495502, 0.4998434664976821, 0.4700085977592593, 0.5793998466307944, 0.5507084937085354, 0.6797878809081054, 0.5958661863280902, 0.6144593263635069, 0.5780536577513665, 1.6087203166006454, 1.6746517688693823, 1.5031791636631395, 1.5705951291372897, 1.8118773190685724, 1.7877213492035324, 1.7862949103014298, 1.8415983254389263, 1.9106075929509792, 1.8590311697076998, 1.873428924678534, 2.0102229680380543, 1.933340187312493, 2.113735909543884, 1.9456147644262245, 2.26301671322401, 2.252891734602935, 2.278106985457876, 2.399025831893984, 2.51697826598689, 2.5030051514389804, 2.270124382659797, 2.380448479184675, 2.5017150761595928, 2.624240209370121, 2.732522998690704, 2.6690503650095048, 2.822962033341711, 2.7932534498502277, 2.874046495083113, 2.8628948161579175, 2.98161399066712, 3.0112183012581477, 3.1233830056179395, 3.4031150664622762, 3.2818532566033976, 3.721401935784974, 3.5912630131386427, 3.6466498441920843, 3.6311056624811098, 3.8783626629609262, 3.844850182827006, 3.9146149469153197, 4.129971138465718, 3.8359054138544293, 3.9319874556435175, 3.7182911996904164, 3.7566587123413644, 3.908786344142667, 3.640558293988395, 3.8560485747549196, 3.7171276316888298, 3.561654479741911, 3.6526906504249452, 3.6582540406701214, 3.5947283111172235, 3.3470735620945136, 3.402931035689128, 3.4224416089045193, 3.411298848737721, 3.452358120590849, 3.3796097301171617, 3.1998539133408817, 3.3429568535005436, 3.337544362116385, 3.304013551569162, 3.3276612985195753, 3.274524160607059, 3.208598672263068, 3.127212812382415, 2.9396820093647364, 3.1202886438176494, 3.069644309808757, 3.047582144000039, 2.864298121886526, 2.855416044615786, 3.040385703177958, 2.9026636216470574, 2.946317925958041, 2.8525484130218803, 2.824240908546464, 2.8866423943825446, 2.7127582601512628, 2.7455235298551544, 2.661232642478607, 2.635559267793935 ]
null
You are seeing two time series that are random walk. Are they likely to have the same variance?
[ "No, time series 2 has higher variance", "Yes, they have the same variance", "No, time series 1 has higher variance" ]
Yes, they have the same variance
multiple_choice
95
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Red Noise", "Variance" ]
Random walk is a time series model where the next value is a random walk from the previous value. Variance refers to the distance of the values from the previous steps. At a high level, you should check the distance of the values from the previous steps for both time series.
Similarity Analysis
Distributional
50
[ -2.6386917490137227, -2.785727484910249, -2.6946905935565026, -2.958553737380337, -2.3598215643193905, -2.2415522486245707, -2.1116063965280056, -1.886436656336286, -2.077908571878755, -1.7180672556334298, -1.6802220219419668, -1.3662656738574315, -1.4316752796559788, -0.9964073400624383, -0.8637914582698913, -0.14262616738115783, -0.26472710970722313, -0.19713790009699653, -0.5380014006067035, -0.7128972947405782, -0.508464841921366, -0.13530242939121206, 0.8444252549185379, 0.8124961876664087, 0.504134697356998, 0.753055954011954, 0.38038826656122104, 0.5668423132929477, 0.40088207323084035, 0.4707993503229976, 0.8313134613542202, 0.7947238400107576, 1.1029748599439144, 1.3914924370840556, 0.7754618016578055, 0.47754607580789593, -0.038521403945102055, 0.6229121235704477, 0.588087494039649, 1.1765264787327117, 0.6369504345967234, 0.4476906966322311, 0.712199145395068, 0.7714368114452288, 0.9475095825047629, 0.5332140179884778, 0.988150877498944, 1.2449001261907398, 1.3776091490197961, 1.1510631025166491, 1.2580563037425634, 1.1617393374449396, 0.6163679088947963, 0.5997066976701146, 0.547918308458459, 0.898967393488828, 0.16064638128105604, 0.23836340629587105, -0.14347067639996897, -0.03798978131798101, 0.08568349082465118, 0.056987391216506214, 0.32374107161136106, -0.08789711898217802, 0.2781266930383157, 0.04415635715653315, -0.4699588738343066, -0.5599666113243988, -1.2522690266492404, -1.1682824062592476, -1.2539464700012166, -0.8462995860901635, -0.6318757093965838, -1.0918327369359329, -1.3688609215931964, -1.1968178976164268, -0.9169177763914188, -0.5129670820157359, -0.11165705995313012, -0.14123799533861497, -0.021405782009629077, 0.407736081274029, 0.3075139363929481, 0.43298677246136674, 0.3249756320837106, 0.1429259741299773, 0.15891385756711013, -0.068270965936912, -0.11152950052058676, -0.45350939688240716, -0.5162891982675917, -0.3681276973216366, -0.5626726963295305, -0.5596024246911847, -0.5135594837297649, -0.3640284841579832, -0.4081672402053179, -0.04936467617020575, -0.7435708093320773, 0.22715018405660206, -0.060698343982837806, 0.07259372807518646, -0.23750400629912832, -0.024618627459140018, 0.06676805362481897, -0.14824706992175798, 0.20633293327142127, 0.15215537777096386, 0.33297181353782085, 0.029914911370441704, 0.019708717097026894, 0.6816941167319907, 0.9998865936525443, 1.1015336486818017, 0.9531968435110155, 0.9755003690986219, 1.0407820535074535, 1.1892205012904749, 0.8334598187510371, 1.0543217065917396, 0.694287711293009, 1.2332602491617095, 0.9782912811678626, 1.0763061081880703, 1.4084351360504228, 1.3250412566982235, 1.4375856421823763, 1.9118123493289587 ]
[ 1.4347870823038311, 1.5762397211206098, 0.9059629165046358, 0.534489867242929, 0.9509976788649408, 1.177747311565093, 1.4647762175121233, 1.7175632055149361, 2.230681307814346, 2.126685685010145, 2.174625516149444, 1.7653766307305943, 1.2569267735046699, 0.6029792275153206, 0.2508248442352246, 0.8684976801076346, 0.2507591000747918, 0.1300000223168051, -0.38446628187976134, -0.6235583993789267, -0.5560472414293417, -0.8345820814127943, -0.4010686582368043, 0.20921082089141588, -0.6855718039528721, -0.9572941955241457, -0.9337650310045357, -0.48574944151655286, -0.6664664647058911, -0.6743975834496776, -1.1345979302175369, -1.744407054359729, -1.1693736796920073, -1.89506356887787, -0.9686433180071928, -0.6801483177925267, -0.40962710976007194, -0.18068204602043553, -0.28121078757183277, -0.12522346330181117, -0.2003743214941757, 0.019660936165757, 0.006259052647298316, -0.37182847434595917, -0.7181780053948567, -1.1097619689139246, -0.7234977941407403, -0.9691434079336736, -1.729856553268507, -1.5719778384417156, -0.969440568408284, -0.6618763342112878, -0.9019032199437705, -1.5332020723234887, -1.5866194366697115, -1.649965232850832, -2.0355526315980694, -1.816327368067877, -1.0816635265477368, -0.9932303349748891, -0.9293863109379047, -1.3022541098279483, -0.7463051653687636, -0.7762006002234294, -1.0065359544321268, -0.9811980964953428, -0.7934325001627943, -0.7380468946449139, -0.2581895511445308, -0.10542990229205977, -0.21839361285146902, -0.058782876894771845, 0.1399932762223335, -0.37575829155396534, 0.08152806965957338, -0.03818390387348774, -0.14771878650906217, 0.15120943142940552, 0.44846243503243005, 0.16964281816718116, 0.48907004770405327, 0.2661007619491996, 0.9900016286447441, 0.6605120585952874, 0.7557860254181527, 0.4446673010801941, 1.3289468826285087, 0.836490888149844, 1.045103918491188, 0.7527263813819747, 0.6118478225284011, 0.7922837943202639, 1.2794737630592616, 1.9253275695722962, 1.3138665664827827, 1.4203889969660735, 2.001035476832792, 1.3305495892589156, 1.4556242512704198, 1.4547952310993275, 1.619716985274317, 1.3124627344484734, 0.7413146204039683, -0.019797664579921152, 0.3686479608492042, 0.8078840378095861, 0.9283046974098079, 0.7157985526387785, 0.0700842565855242, 0.294206211621236, -0.14372898330361242, -0.4267127810015003, -0.6600720552215297, -0.7386596784798429, -1.0406371333494047, -1.027325860485784, -1.2747107112783531, -0.9956757088445599, -0.5854765478887554, -0.5422938147783691, -0.35824206387659463, 0.48432798861572546, 0.0178182678479694, -0.47290598704139913, -0.19640728662550702, 0.5780073760304125, 0.47437035244263964, 1.1613757558747246 ]
What type of trend does the time series exhibit in the latter half?
[ "Exponential", "No trend", "Linear" ]
Exponential
multiple_choice
14
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
Focus on the pattern of growth or decline in the second half of the time series.
Pattern Recognition
Trend Recognition
51
[ -0.022304411329846785, 0.024751794069824907, 0.07535853294516605, 0.02380196191425455, 0.043962013321957184, 0.009911312959337091, -0.08503695368593674, -0.060437940482073904, -0.11043587078116185, 0.17444351173092884, -0.1196193025205905, 0.12524400819061882, -0.11318378293849862, 0.1122400949195996, 0.13543947096483475, 0.15615568991491566, -0.060459035608648425, 0.06284596087428786, -0.010915773708062432, -0.036782183200996195, 0.058995020876867574, 0.13872926801613772, 0.0005554843909378465, 0.09571803999942749, -0.02524358172733862, -0.036062452033821676, 0.03855207244414991, 0.04727546158461503, 0.1432314716092694, -0.04596868431653901, 0.2977777582438473, -0.09458187836270122, 0.11018190453634852, 0.061598119035799204, 0.02800205046731928, 0.07805346887312907, 0.16551387821764296, 0.18377901702087374, 0.08200170247751037, 0.13966734982940307, -0.023810213417686896, 0.09352255046452074, 0.15411735786372083, -0.11089058836266617, 0.12823244698787756, 0.1060508709272986, 0.2525832689268295, 0.14504401102369707, 0.17904566380849307, 0.1066421839015003, 0.19972862547933906, 0.19548314511261924, 0.011323926212609359, 0.17581283893468977, 0.265669718974457, 0.2485553307392775, 0.15564387896862236, 0.18780604366267606, 0.24985840256566771, 0.04721256103463549, 0.21126683721884945, -0.030532099989943745, 0.2555251008783711, 0.13354435966564304, 1.1633742179294138, 1.1209315950637835, 1.176831885138369, 1.2109631332424158, 1.2653642852320175, 1.324411110772302, 1.2038641775365686, 1.0374188211162438, 1.3387313265342973, 1.0655780200879017, 1.1751800377905173, 1.1730204077973483, 1.2278829041469164, 1.1050704747414288, 1.104926742310119, 1.2387131895669308, 1.1658409500971574, 1.3850052284474137, 1.200104981816366, 1.1571792606352718, 1.4320349121139184, 1.3167063669967891, 1.5462910903968623, 1.0872691335162143, 1.305203724119181, 1.3379368939068437, 1.2971284373331773, 1.2631387188813539, 1.4289154375042235, 1.3560305229992093, 1.1455262050958257, 1.2325955288972255, 1.2082365267753061, 1.3176485846087103, 1.4298010947366433, 1.302163070455599, 1.3199716069374092, 1.2526007696034558, 1.4318796537218774, 1.4842759247307238, 1.3630560888632406, 1.5296149407581063, 1.3225412762766988, 1.2426112293085338, 1.4681302672128997, 1.3835141592501983, 1.3404093025538348, 1.4116564389359592, 1.2510313430553384, 1.240167685077238, 1.4297600218264581, 1.469493746225149, 1.5710218813133647, 1.5259032588049806, 1.5064041117824292, 1.5755643173815963, 1.5031889571609662, 1.4254830118857977, 1.5568709269462548, 1.5589473462612753, 1.4763854441063997, 1.3629923139625826, 1.3102977083033749, 1.5789020893695769 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "0.99", "9.73", "4.19" ]
0.99
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
52
[ 0.2847181015853972, 1.0833618318278724, -0.9329952181652084, -0.07243700973710712, -0.17297131999604642, 0.30435839826488137, -0.5360297080763693, -1.3974508998813093, -1.1395830471659691, -2.5081614477910694, 0.652575673875295, 0.297918629277328, -0.11212763431567467, -0.9738494011775669, -0.004240534144200531, -0.24660317827549916, -0.5758092268395605, -0.41472871418794244, 1.3613398063873967, -1.3909870249802523, 1.1081453822825604, -1.500239911941289, 1.580897403706426, -2.3738871558053996, 0.37148779270691584, -0.6298749007887435, -0.1434978306111327, -0.18315134219236306, 0.666880886740747, -1.9177612094811336, 0.2907048689235753, 0.09403987839427311, -0.5244180957798409, -0.19568424809273371, -0.6077732869409682, 0.29181487082693164, 0.3107390964723977, 0.2630104052327664, 0.6827788705488406, 1.0398959394704994, -1.0273082700402874, 2.3577271049977586, 0.49388167157946516, -0.4023756890212589, 2.522326550534481, -0.5872885735825087, -1.2439477017159026, -0.5039457149172126, -0.6279385502148408, 1.091527301082702, 0.017922524766906076, 0.11057637981528806, -0.1571569524227931, 1.2274821626582706, -0.3223180469224288, -0.42183813843673307, -0.7464872271733441, -0.5919873600778013, 0.4935205952878379, 0.6743029027127325, 1.5380778838376004, -0.0783915549015414, -0.3706032109277772, 0.5274074997259965, -0.4494911905404284, -0.6633281412248961, 0.44724062818382226, -0.3636695915962136, -0.2532906564737218, 0.5958958754419212, 0.27706224636581, 2.030075537491454, 1.0692109410085022, -1.1051321427127956, -0.21076035286406836, -1.4661718321314348, -0.9484600999694289, 1.0836600227906152, -0.1271088519779919, -1.5168493974978354, -1.8243926725490427, -1.487808124400637, -0.8144424797386919, -0.12222176205398809, -0.2724710895493583, 0.6799389623606115, -0.8589768690236146, 1.0131599636108581, -0.2247277643884819, 0.4808794691490248, -0.675152486496251, 1.0475354406110493, -1.3862031098093193, -1.3050138868726031, -0.912973521201854, 1.18662035604053, -0.3481921643970456, -0.830921737826386, -0.14479128428195548, -0.03038434671035825, -1.101514247714918, 0.19602255923645281, -0.14647552262300542, -0.8354528970819703, -1.2531050809915942, 0.9594703239090051, -0.4743925951753887, -2.9132020657769413, 0.4560756641437147, 0.22042815095293508, 1.0014978187859802, 0.44494572284487155, -0.024699637793306584, -0.41445375035408466, -0.30073472535471935, 0.705560811773528, -0.10047923508997647, -1.5360063651204272, -0.4041828524182012, -0.15574257992905277, -1.940248851986716, 0.6909193203343676, -0.057330647063041584, -1.285014878365058, -0.12885083567445846, -0.11048963192272722, 0.7833105850098238, 0.9161936853065705 ]
null
Which of the following time series is more likely to be an MA(1) process?
[ "Time Series 2", "Time Series 1" ]
Time Series 1
multiple_choice
49
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Moving Average Process", "Stationarity" ]
MA(1) process is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. The other option is likely not stationary.
Pattern Recognition
AR/MA recognition
53
[ 10.05309145673361, 13.050129661742748, 10.810210767614729, 12.07388908514022, 9.376871458160362, 9.964394248134447, 10.59678228936202, 10.716253728654868, 10.807638201809993, 9.576611851547696, 11.373107504949312, 9.984292803908732, 10.183394048616709, 9.708765994051134, 10.918012065897763, 8.576744572877226, 10.977006949261453, 8.91338190856026, 9.96360213823035, 8.055304936373986, 10.521971959128411, 7.4730424307949, 8.790373388470226, 7.508975295683515, 7.5530626383944455, 9.629856259794458, 9.660951422597043, 10.4151887090623, 9.946591113568187, 11.25163542861773, 10.189590183682279, 9.926752281622715, 10.906431774546586, 9.356037768956138, 10.998898863247959, 12.98819682744094, 9.75632856367616, 12.753629377798056, 10.841273894117384, 12.161782055794777, 11.3773652204245, 10.066951868883494, 8.349543012771393, 9.780353516091665, 8.906611625323693, 10.789302860749391, 10.556668820062791, 11.081018768248594, 10.772459937571483, 11.169468090555487, 9.843492003463563, 11.348803373652816, 8.947833383502427, 11.799329672710927, 9.145504865979616, 11.363626280891928, 11.44948831758429, 11.132116214842865, 12.827239503830254, 10.157024420580163, 11.22924056751514, 9.348238844166293, 8.417228418139356, 10.785018992189434, 9.241117698885372, 11.352890212576487, 11.686868142488084, 9.262926052758607, 9.61004735024229, 10.333037955275477, 8.829366301265605, 11.207944278472263, 8.476625153720667, 11.644005336074999, 9.49757408218765, 10.602099581626504, 12.622706447066683, 8.176052502768211, 11.33914482851563, 9.89618759249049, 10.889743774223502, 9.296434638626339, 10.639253188455742, 9.551290692086727, 11.246365109181381, 11.985562533111258, 11.87888266024487, 11.200825538359217, 10.380972075179741, 10.569868874690362, 11.290518795786204, 10.184474817039924, 10.87404478352665, 10.974036649320718, 10.843072645442803, 10.416307269901452, 9.53052975123693, 7.886639966737301, 9.075159815832981, 7.524647660569252, 11.000393426753352, 7.399586653960257, 12.330638662944917, 8.289815515928375, 10.49217272198919, 9.189405953362359, 8.496247338087345, 11.081778579175214, 9.979815774148685, 11.308614671340022, 9.334424381516005, 10.022438035184338, 8.267073756091287, 7.3250154432889065, 8.689896029979916, 8.50047959332235, 9.018975934349609, 10.339202252364187, 10.700082552373447, 10.745959775867078, 12.793712462189271, 8.496012026857992, 10.72644603014383, 9.153302421881872, 9.757565195862348, 10.825979639603062, 9.740324896469545, 10.30602449387434 ]
[ 0.3160127421148851, -3.3916882578196916, 0.5470757316201795, -0.7464397927550137, 1.868427441646391, 1.0132408545705367, 4.101797800454209, 0.5155341032422448, -1.4526688172826507, -3.993646381065946, -1.0189818166387712, 1.5164221751475075, 2.0682048879874673, -0.17475020325461266, 0.2265057925898155, 1.2358717139276418, 1.8898145061256293, 3.1610716418861857, 0.22656688065858255, 0.01010483399386608, 5.262038989409412, 4.883703759213752, 0.6300455750117007, 3.83221206133972, 5.893358969067457, 4.305911439497278, 0.4878321082619246, 2.1851385353016646, -1.2152181074167796, 0.33079217697015717, 2.181389564382118, 2.6948841962179313, 1.0606650663755692, -2.7177726305683114, 2.866875297325137, 3.9408762605527814, 4.085556578213998, 2.3405122495166832, 2.5464517703423146, 3.3342759959661965, 3.711806094113709, 2.8455037038356688, -1.252621098430856, 5.781782827795613, 2.3725170992496967, 1.0249302685776742, 2.6541134434295284, 3.671347333333952, 2.3963492118440675, 2.599206078230335, 3.075925733873955, 4.434039567928563, 2.3356737401792067, 4.535775494568496, 1.3953266582417356, 7.805018532463462, 6.1318366472188455, 3.6850912829559794, 4.899074205418048, 2.1605533556692307, 5.471294257362112, 6.075595417754336, 5.065714435373789, 6.329353249188177, 4.701553306839808, 4.598674009835667, 3.627332191919195, 5.975892217760158, 3.4440528918304345, 5.858375396792328, 5.724089842980377, 7.745177482536182, 6.395871256753844, 2.090474468364856, 4.209840233894841, 4.234918815819312, 4.229253495293837, 7.481042739423018, 1.6232365363081582, 8.485087838892824, 7.761797548932937, 6.314630353384012, 6.6941270511933775, 6.25474642554425, 6.484789719914285, 8.369283415141373, 5.91680875593542, 7.532385026820452, 4.852483354597661, 7.552852310891201, 6.119728739830851, 7.50455430651239, 5.159654330893128, 7.691670789868003, 6.837216209616778, 9.926475976084973, 7.556601165550533, 8.068645432787482, 6.393248718101618, 7.877037413979891, 8.253678059051037, 6.777564906904384, 6.705293355946524, 6.078425203378915, 7.519100642945918, 6.512913112656666, 8.355596093151371, 6.403439579918652, 7.726873388751444, 6.260097467542514, 10.244739583999541, 8.223574395703103, 8.280538912115384, 9.438643670373938, 11.719829197140601, 8.623487746890872, 5.755731531154774, 10.830659263642215, 6.1530083087900245, 7.837501645569343, 11.071466349530057, 8.286497215782903, 7.9166131679784515, 9.587442073308823, 9.152875670785562, 7.9109957228602505, 10.92420278682181, 11.653481408352713 ]
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 5 to 20", "Lagging step is between 30 to 45", "Lagging step is between 60 to 75" ]
Lagging step is between 60 to 75
multiple_choice
98
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
54
[ -0.3830774620826344, -0.6700229330744468, -0.49930150686273966, -0.6118808783366156, -0.7463032161893529, -0.6518737582455219, -0.6971867071060898, -0.9950593403726521, -0.6777426700265595, -0.6304032016749231, -0.6346560829548782, -0.6411487271053137, -0.6379637580042472, -0.617924988611705, -0.3812613296817591, -0.05330330473727057, -0.11342739085076514, 0.02690319859008656, 0.15699465159136305, 0.30002994945886113, 0.5638218473540607, 0.7405607208840811, 0.8271217848810695, 0.6954714044783428, 0.758396821378834, 0.5413928034079555, 0.6370704566280496, 0.7033123535458051, 0.40631671342610576, 0.30896968349081494, 0.1551425413406034, 0.3009606785488609, 0.23995238291623838, -0.055299231249732156, 0.03720201098427647, 0.08007773158016811, 0.10590849261786532, -0.12280542539806157, -0.0008663660302252687, -0.02432976486178282, -0.06023919127078578, -0.321220337347744, -0.5747091197115055, 0.2757988706719883, 0.03655648211481077, -0.4006128420495624, -0.480578880033632, -0.5200983870379103, -0.7103229321419445, -0.8808135462724523, -0.9054646051726994, -0.8298526441066032, -1.1203096121568334, -1.2023958679957747, -1.2027588593806418, -1.2523361718219403, -1.394798240779324, -1.6074653196876838, -1.2485884677602699, -1.7334326288391502, -1.5207085285639879, -1.7577425624860166, -1.707877603963944, -1.6916514025544933, -1.9073071003431497, -1.9471935358767245, -2.029586016644497, -2.023836845830942, -1.757872051014412, -1.4626637208514552, -1.6218588362406252, -1.5501252014074534, -1.3387865173086366, -1.4286307161272265, -1.3042315312657649, -0.8104177128066808, -1.0469747631200401, -0.9476708584579197, -1.1567578786426178, -1.2864476707555006, -1.3851281222957603, -1.2932492327158094, -0.87288172115621, -0.9967514145092514, -0.7874730737588443, -0.9745661173621385, -1.0657262930121676, -0.7933662896895531, -0.5948471502842448, -0.6802879030880152, -0.8059274851571248, -0.7087157233571852, -0.8444121939638695, -0.9439785991541838, -1.0272677643287413, -1.0642571724412784, -1.1852768755478726, -1.5244253265378915, -1.20241083366501, -1.0320945146228508, -1.0502076324966616, -1.2034341217569975, -0.9538499128903666, -0.8568385237233969, -0.9914257273499584, -0.8861360630124218, -0.8693889579741675, -0.8415233550627661, -0.6626892265650972, -0.5587393320033291, -0.3815789935113963, -0.0013231676238073743, 0.11975751753739236, 0.6076008209812133, 0.8553708198716031, 0.8043860933784984, 0.49029929558245633, 0.7401392273408363, 0.47212231020107887, 0.5043321412124997, 0.6542204157694174, 0.43163957516814466, 0.30097161854002813, 0.08021323242282888, 0.5085637239005325, 0.6609355093440165, 0.5108102268686657, 0.19127128697196502 ]
[ -1.5501252014074534, -1.3387865173086366, -1.4286307161272265, -1.3042315312657649, -0.8104177128066808, -1.0469747631200401, -0.9476708584579197, -1.1567578786426178, -1.2864476707555006, -1.3851281222957603, -1.2932492327158094, -0.87288172115621, -0.9967514145092514, -0.7874730737588443, -0.9745661173621385, -1.0657262930121676, -0.7933662896895531, -0.5948471502842448, -0.6802879030880152, -0.8059274851571248, -0.7087157233571852, -0.8444121939638695, -0.9439785991541838, -1.0272677643287413, -1.0642571724412784, -1.1852768755478726, -1.5244253265378915, -1.20241083366501, -1.0320945146228508, -1.0502076324966616, -1.2034341217569975, -0.9538499128903666, -0.8568385237233969, -0.9914257273499584, -0.8861360630124218, -0.8693889579741675, -0.8415233550627661, -0.6626892265650972, -0.5587393320033291, -0.3815789935113963, -0.0013231676238073743, 0.11975751753739236, 0.6076008209812133, 0.8553708198716031, 0.8043860933784984, 0.49029929558245633, 0.7401392273408363, 0.47212231020107887, 0.5043321412124997, 0.6542204157694174, 0.43163957516814466, 0.30097161854002813, 0.08021323242282888, 0.5085637239005325, 0.6609355093440165, 0.5108102268686657, 0.19127128697196502, 0.010421381660975275, -0.11991439679579119, -0.235045523195665, -0.07075244034552, -0.3634547387176733, -0.13786846561026858, -0.5126641866806625, -0.5282224995588259, -0.6726508157223235, -0.4663019164330746, -0.16745493598156164, 0.00034155434840993045, 0.09216622761583022, 0.0364346665888102, 0.3147073199218644, 0.10710770748912837, 0.1998749769366821, 0.4248977232150978, 0.6149683519071169, 0.7246725054641389, 0.8287338721430363, 1.0138393024621273, 0.986273297114251, 1.282268874646297, 1.7090289087866903, 1.3255184489052387, 1.2437886704822798, 1.0123097602260698, 0.8769294560296982, 0.9026239349374127, 1.000344774154465, 0.9660815069947656, 1.0979638044216269, 0.9451339522562877, 0.861154583540412, 0.9951672916118546, 0.9265555808543091, 0.6591204665754051, 1.1221388253607822, 1.316789431885732, 1.3506197785219631, 1.5357473056397832, 1.6223299313349164, 1.292832479532167, 1.324619505648182, 1.1745394503246882, 1.1979633791656177, 1.2818567761266237, 1.4793900438162488, 1.2748664386648187, 1.0779493092921641, 0.9795719474774827, 1.28334515556073, 1.207937860762481, 1.3189157535090223, 1.3073273938119876, 1.2253236258517683, 1.2532158221025198, 1.417500142347404, 1.5572972091390183, 1.3065097689473675, 1.3760185636757671, 1.7143060992358783, 1.777565586934112, 2.0121868637885254, 2.373279076811254, 2.4072989023734466, 2.3944439573381335, 2.4836157831168326, 2.750685925714045, 2.717673100862402 ]
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "No, they are not granger causality", "Yes, time series 1 granger causes time series 2" ]
Yes, time series 1 granger causes time series 2
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
55
[ -0.8344270183354059, -1.0195911593562976, -0.9179162934121335, -1.1069791654456749, -1.21788630590078, -1.5191490138172912, -1.5501299760836447, -1.508672199369233, -2.138388323631353, -2.0775054329794314, -2.0882244066559736, -2.2676530083214343, -1.7918387833852065, -1.567028439489532, -1.8241892701003057, -1.6275810947980374, -1.3356844939006074, -1.3047190313563684, -1.219942924394687, -1.14058382862561, -1.6298112296548417, -1.6736414301048919, -1.7296783560187112, -1.394235837376308, -1.3159600803659584, -1.3857646304134965, -1.4069033577919647, -1.1668686173289162, -1.2101628873782277, -1.3739244124444678, -1.4385902681208944, -1.2179503072002038, -1.10157499717025, -1.0911919590617958, -1.04626648145481, -1.1775538884573389, -1.223044654434503, -1.3786224577410313, -1.4477628387187007, -1.132017184365461, -1.3848316515039654, -1.5463701461632833, -1.8405655183016187, -2.185566667540887, -2.2293739565573705, -2.3742339803085377, -1.9610304401464014, -2.0273720014518593, -1.7249444052225638, -1.4978988154171735, -1.5469089415302584, -1.051977357696222, -0.9889928024085785, -0.6341169931305841, -0.30654566672092426, -0.20929012269627745, -0.03311263754922706, 0.1132631008312168, -0.15512302912501452, -0.141685595953152, 0.11027872778004663, 0.46824520997692026, 0.29921941979480154, 0.4232566219581993, 0.4586431792224609, 0.43099585742399016, 0.5144961531525108, 0.5656273717569902, 0.6926143330862702, 1.0307685095263566, 1.2146853695468167, 1.2875344437882634, 1.724881617337148, 1.9852152269388441, 1.9635432045579186, 1.6780680277174571, 1.4463726771350118, 1.6652620308104054, 1.517422452957925, 1.2809833833003874, 1.1031747274945853, 0.9419489706408652, 1.1414680921013343, 1.1047042914816219, 0.7828142952623045, 0.7900958654845849, 0.8422283113327069, 0.7298000133422651, 1.0009124671136922, 0.9021813944936563, 1.162141622323234, 1.3021168205318152, 1.5194518276181759, 1.2617871011530024, 1.2848457233403696, 1.2724549328163126, 0.9389237855432074, 1.1981154042606994, 1.0063943016129453, 0.8634203744675255, 0.6257474895144189, 0.7902105040576699, 0.4323042069726792, 0.5772265314911894, 0.822216932078303, 0.9482119497650419, 1.1153587185270548, 1.2935100849014634, 1.0708229316463609, 1.407339533658029, 1.2994288045675022, 1.2838576114177722, 1.2058376414161165, 1.3211286788604946, 1.1949322262872883, 1.210627286671735, 0.9208778140831778, 1.1940496430280971, 1.351371704008349, 1.2828222761530863, 1.1727835305596035, 1.3239808667131572, 1.1580854445964934, 1.187489836814828, 1.459895527807546, 1.269615446148359, 1.356070645381902, 1.4301238994701346 ]
[ -0.8344270183354059, 1.5554632154153603, 2.4783902020113273, 2.585230132998709, 4.083066423740819, 5.4086655106969115, 6.399667246131802, 5.181524617713991, 3.300119121251842, 2.5829679566091386, 3.385005625869943, 3.317068721621307, 2.798915974764187, 3.278338117546541, 1.577449361783264, 1.726109432195583, 2.8288597473865087, 3.1187024851237246, 3.4136235373316386, 4.741232190300907, 4.13483886526432, 3.1183387106129175, 4.025179758790423, 4.7056821507401345, 4.6644135418317285, 3.943953878789963, 3.431757542795236, 1.7510017623700747, 2.850861775979598, 3.738310425035322, 1.9842677120176109, 2.7238583463950796, 2.8565355563505976, 1.5057915459146747, 0.2883187992382479, 0.8906277793338335, 0.6523311580192539, 2.7342363796273688, 3.3820185004058576, 3.511771169807485, 3.6877920667470794, 4.707850225855168, 5.158046699489721, 5.161784095808529, 3.7826863741508245, 6.550979320767636, 4.671377883522493, 3.863849726444127, 1.7929715115586027, 2.408308364726233, 2.327597313964763, 2.906545897548307, 0.7655267550295763, 1.8005058295642045, 0.7000014348585093, 0.4288933411976681, 1.2136611814637546, 1.2805709214736967, 1.4174998159741041, 1.9356239607734944, 1.8323936070700697, 1.0696574006800184, 0.5846459730700115, 0.5624858870873162, -0.5420726437977101, 0.43823336694038895, 0.5115868400470118, 0.3449359559366121, 1.2228358132579231, 0.5604970953665133, -0.007520899004840376, -0.9024801433425237, -0.8789512920823007, -0.9081050299448687, -1.8215472831949975, -1.9607556839728537, -2.6613652162209283, -3.228121263758171, -4.639208465270986, -4.225421266628149, -5.288388955694538, -4.985225793318315, -4.905953265282946, -3.054570685844286, -3.6480505890605333, -3.9007765155856866, -3.649720221537097, -3.765850119889075, -1.8351091831533808, -2.886743177525348, -2.9913141342166543, -2.469758754304661, -1.3947969864940248, -1.8148050291950488, -3.718387970940774, -3.3180033747241238, -1.6263436164308798, -1.2757985975635426, -1.0174825665009777, -2.0061290389216704, -3.008486973164044, -2.468352396952723, -3.5221563506055067, -2.2336625769693517, -2.853714172039173, -2.569137138021667, -4.289194370017405, -4.046288885639893, -4.792086964629875, -6.474025003455589, -4.961537565986385, -2.610550293018874, -1.3016550682789931, -0.6483805355394848, -1.2623195921051398, -0.3926527925634037, 0.6231814024428354, 0.2899482603869755, -1.2779664321218147, -1.791256788978232, -0.07906114203291326, -0.4149202666036646, -3.9215441183942708, -4.994924655731783, -4.717984348741139, -3.0677713413777616, -3.084631405639333, -1.771860316557765 ]
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "1.46", "7.01", "8.59" ]
7.01
multiple-choice
24
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
56
[ -7.051067403459223, -6.4050092705562855, -5.968309282964608, -5.29024055773758, -4.6251697324983, -3.992275542229928, -3.1320198743500978, -2.8361883616625, -2.333520718491575, -1.423466556257634, -0.8836895860119072, -0.5050829143669605, 0.2592361800499337, 0.8983722824833306, 1.4333758185887266, 2.0517171663669145, 2.558051024589595, 3.273797241726125, 3.7764245476341403, 4.163162228111232, 5.049469906975623, 5.464390045402625, 6.335476060291537, 6.723186296690616, -6.832870506766545, -6.162357534871763, -5.387434417526614, -4.762494303385372, -4.320267099152042, -3.6841005759068546, -2.9755269721328883, -2.275355640458811, -1.8914449672412867, -1.1303775558273323, -0.7400224778886593, 0.0675771257680847, 0.7137091272916019, 1.2926922473466342, 1.9418530314315303, 2.53732916050402, 3.231389769134525, 3.659700096533797, 4.435969060285969, 4.758711679795982, 5.43472908152087, 6.045904605677386, 6.555268144150753, -7.000357693560291, -6.075220303569338, -5.653001888052392, -4.9979497063020455, -4.197266612008304, -3.696374963849717, -2.9774206588351193, -2.537247033810618, -1.8916091974020985, -1.3690839587935173, -0.8277447658327683, -0.0855541734532089, 0.41781807723858705, 1.1280020619343847, 1.6086446305995672, 2.2502948742182127, 2.860446616045084, 3.5798130361680824, 4.031823336629318, 4.79509887979953, 5.188056360888584, 5.907668961183984, 6.414064806346517, -6.829438945579279, -6.420738210268427, -5.808403468008715, -5.260218769887646, -4.522142798001143, -3.871200321876435, -3.2798506069039135, -2.7404456541783224, -2.189934304249973, -1.5496065157786543, -0.943649809213008, -0.29219414708891156, 0.30307175830458705, 1.0608000518040757, 1.492933417942166, 2.127191575368914, 2.7003987262512963, 3.262721456702612, 3.932943929888917, 4.457612087481055, 5.09599808883554, 5.81988833490042, 6.257567205311779, 6.946979208804708, -6.763728491927872, -5.931986305656558, -5.360522120471646, -4.697142536983886, -4.130650590958935, -3.4907334687299265, -2.9406102077517833, -2.2619684421490276, -1.8699244451209251, -1.0851773482758171, -0.5878848357771413, 0.22475141062029896, 0.6147850247932721, 1.4117701588716491, 1.9132364934385484, 2.3336551423308673, 3.0310463568166615, 3.805594861236081, 4.402057308396487, 4.795163015726861, 5.683525332652539, 6.126925006475667, 6.820007659685128, -6.813499437597932, -6.135768537172548, -5.44644154144108, -4.917206646678052, -4.575827738737188, -3.7006852009010216, -3.2759351145559137, -2.5843928871840363, -2.015468745211158, -1.159784753139911, -0.5262631212654731 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "54.39", "18.14", "31.26" ]
18.14
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
57
[ -2.5184113197982674, -2.3007010250940363, -1.915033187214433, -1.740165420515582, -1.3968999078447082, -1.1225364126718544, -0.9358945631887651, -0.684502812976014, -0.22669156171358207, -0.10607450722145793, 0.23297590104106275, 0.5169235726852941, 0.8772360558281704, 1.1950698486818687, 1.2588063002775831, 1.628922154971828, 1.9111864139346795, 2.2525748408137747, 2.36312526550073, -2.2435494014660526, -2.0639189266331224, -1.7964170222108273, -1.420519864354388, -1.1572931200138403, -0.8714017631079592, -0.6366684301129221, -0.3376632728339558, 0.023267358684615616, 0.27901203483113013, 0.685605511941022, 0.8137624412505466, 1.151789002190042, 1.3613912795585204, 1.6930318727037168, 1.9852119891580906, 2.190212523216374, 2.456929589880279, -2.333588971643221, -2.0652935096852323, -1.6770059375538524, -1.5363386493198592, -1.3492663972191976, -0.9616988652649197, -0.598930185534264, -0.6010616913813354, -0.10255652366897462, 0.25166979155815555, 0.49547917495104304, 0.7231390924016204, 0.9256747456842896, 1.3317226663021435, 1.497455145602833, 1.9741652716585854, 2.1999517061654696, 2.6302952650168216, -2.633813247513896, -2.1855068927029113, -1.7912017913692964, -1.4633023495026742, -1.2132105950915992, -1.098934892201449, -0.7647766057158396, -0.6532616453434702, -0.13817223804118936, -0.02638678582986488, 1.3262389522340885, 1.3832051672779475, 1.380541028531498, 1.2938507237855847, 1.0823511711037996, 1.4596263252966808, 1.3687363881525767, 1.2004631362596876, 1.3626241554453586, 1.345542548406417, 1.456645199515024, 1.3727442731574246, 1.3731024212416163, 1.345469250669273, 1.248564142012603, 1.3928108845284783, 1.3229945366377167, 1.2302577295764436, 1.2596324629721203, 1.211920664175122, -1.5049980051940741, -1.4130875893328876, -1.4954500287518249, -1.5733431714497315, -1.617511560602448, -1.6400597047094072, -1.7095957946614764, -1.4162873159753913, -1.7143685295069389, -1.6959131999955754, -1.6305163461677752, -1.6222581757919932, -1.5507622655799327, -1.6783090617618346, -1.8098255093021596, -1.6341085821516865, -1.6273719193954763, -1.6354936654510677, -1.636823719281608, -1.6460285996296984, -1.7434040204845749, 1.4717563735044372, 1.4660969675455247, 1.465078915719798, 1.2069808533859696, 1.3659172176696408, 1.283251795261515, 1.2778157628813338, 1.232671949553274, 1.582092587120227, 1.3006624285550161, 1.2333369748837968, 1.3393540915809976, 1.4018499492648644, 1.3114028725199613, 1.3499621318473345, 1.425724003527097, 1.2300767475298646, 1.3433154922769082, 1.2616343429335357, 1.248102636156276, 1.5007337041462843, -1.619905134768474 ]
null
Does the following time series exhibit a mean reversion property?
[ "Yes", "No" ]
Yes
binary
46
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean Reversion" ]
Mean reversion first requires the time series have constant mean. You should check this first. Then, see if the time series tends to revert back to the mean after a shock.
Pattern Recognition
AR/MA recognition
58
[ -2.7919197877045665, 18.762154163105155, -11.45502508235483, 12.8176877614735, -6.791521828149934, 19.02744813714546, -9.845564017218086, 2.5789138600044685, 2.171185891251653, 2.597525716727658, -4.201360248284184, 13.586920767232563, -9.95467765098548, 15.016612310925668, -6.915687071925676, -1.7251870588719633, -8.415351336082583, -0.42035386877082814, -0.47529781905123814, 16.2955086241194, -13.510524485708864, 14.545966127781671, -2.906615150088225, -1.263238545432909, -3.136131482791133, 13.024696381463844, -4.7380544375573335, -1.8494449645577782, -2.643900075564055, 2.9682871122240426, 0.9215788663376285, 11.7025140372393, -4.042061117378531, -6.601416271153691, -2.581652459950816, 5.162547169429459, -2.702227953083332, -6.2779372674861165, 15.551320389983509, -34.9203716183572, 31.292538688468227, -40.503635567334236, 41.20989302174531, -35.61781469768055, 35.97151767406248, -32.68715611144479, 39.40716063734798, -50.183728928183115, 48.94187965558241, -45.23198638321251, 39.93658842539892, -27.778371479122942, 8.298485165380797, 3.3353618416764865, 1.268735269638554, 0.15442235582172548, 3.728243660882035, -1.7302795822661898, 9.731013111564902, -12.499032359713706, 18.36106320509517, -8.965872708773725, 5.4525215530776165, 14.100427996662702, -6.764326039301424, 7.361461599857431, -0.1495611036566018, -0.9280240061662001, 12.753424119563016, -10.416315192630833, 16.527334965024576, -23.904668040830945, 1.1655304418507129, 3.0939109345076314, -6.313193689305119, 3.123924968929053, -25.91317380194767, 37.736794429040785, -29.143865723778628, 36.66083785792504, -43.25446053820817, 35.59005777570241, -24.39685232906169, 20.857153063803587, -14.350745349519288, -2.418554056348679, 5.104957754175489, -12.51076982512031, 3.8314710900495816, -2.900099256443216, -1.1990384971667436, -1.984950051282672, 12.827717999582049, -11.822673166093885, 5.489187972747811, -5.62155802986374, -6.61762940185983, 6.919726620955936, 1.6826239832650032, 1.7937375549026326, -1.06842190753704, 6.869511992734976, -11.03673267718758, 9.221864206290771, 6.605589190528863, -8.22522880311997, 12.659043626106913, -3.7982495617322733, -4.538178247600559, 10.509959161084012, -14.47644995279369, 15.871788865511025, -18.927035956267247, 17.9522317357256, -13.069547094282525, 11.575019240505789, -6.540403513407938, -0.07423038484263156, -11.604106070574813, 10.099349509621657, 2.948453286500266, 3.4736767343066313, 1.6935354492540404, -6.463697812813292, 7.035870373187838, -13.933653606941498, 6.911044105345869, -1.9578492435386394 ]
null
What is the primary cyclic pattern observed in the time series?
[ "No Pattern at all", "SineWave", "SquareWave", "SawtoothWave" ]
SawtoothWave
multiple-choice
15
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave" ]
Check the overall shape of the time series against the definition of provided concepts
Pattern Recognition
Cycle Recognition
59
[ -1.219961429657372, -1.2445803548683039, -1.0672569430353576, -1.2329737384264718, -0.8533946180667206, -1.0623008562529708, -0.9251735611585048, -0.9231003495265155, -0.9777220488931669, -0.732799662447867, -0.7888248309350508, -0.656089997238404, -0.7354435527253854, -0.6271803833357675, -0.576912050708651, -0.43867398568826765, -0.40921947483380927, -0.4039316035649493, -0.3695350281012679, -0.24731797312138926, -0.2053058248984711, -0.15845340716894918, 0.07931991919832862, -0.00868885655500718, 0.18225248337705138, 0.036630162339415975, 0.0924710553564277, 0.10050200171245643, 0.2349663663116209, 0.22594093096698323, 0.2654231095541417, 0.17594041753747924, 0.5662866408178907, 0.43510728002626964, 0.67466251595828, 0.5712722421459776, 0.699087109987929, 0.6957901408985852, 0.7835619199598247, 0.6949198761348967, 0.9677901296409563, 0.8666027086083313, 1.049586027883771, 0.864682950011212, 0.989030697521942, 1.1553914461514712, 1.1555815605189663, 1.2713628096611225, 1.3001664691741306, -1.0834856032897826, -1.1585138350423105, -1.2020847524058984, -1.1444087145820363, -0.930940680628658, -1.1504559889509753, -0.8879707077235042, -1.001736618536652, -0.7255042053203175, -0.8259186202066595, -0.6763401108479056, -0.6715127592307224, -0.7601700405792294, -0.503736843662707, -0.5861238402551532, -0.3801205431064524, -0.5067739492088015, -0.3286357813154605, -0.2952042684371732, -0.30563747688833004, -0.053672465242174755, -0.13456163830714646, -0.1263497004686656, -0.0005770718515710413, -0.12228914852802941, 0.3221805156617473, 0.022172698812290448, 0.2396530078577763, 0.2443172501623489, 0.40997997955769727, 0.36346086878113576, 0.3355710992024048, 0.26733441316457884, 0.328853315881877, 0.5367933015227894, 0.7513611684258773, 0.5008436078627326, 0.9067270145121001, 0.88421554929902, 0.6943816110585822, 0.7744671019631713, 0.8382738390639434, 1.020376969851169, 1.0385581977844844, 1.088548724340787, 1.101179927959605, 1.223193678020462, 1.342819682750454, -1.2994015077274799, -1.2991174648953994, -1.0799076936464809, -1.1475216286601835, -1.0164582515425094, -1.0279133218673315, -0.8556877582030609, -0.7871360178114754, -0.7368986481929402, -0.8581846732979977, -0.8054772034466957, -0.6081599384896523, -0.6482599842237445, -0.591490831561276, -0.6038302262334482, -0.3396646615811695, -0.322826436824222, -0.385042195801883, -0.3839517621753825, -0.3346470005231068, -0.19862537617729464, -0.11954059059254314, -0.19072812892885094, -0.17524148815953883, 0.010942713264579216, 0.1431751916517089, 0.11782379678573611, 0.13923537891146626, 0.10490374907734573, 0.2082366156302144, 0.41320833251798933 ]
null
Is time series 1 a lagged version of time series 2?
[ "Yes", "No, they do not share similar pattern", "No, time series 2 is a lagged version of time series 1" ]
No, time series 2 is a lagged version of time series 1
multiple_choice
97
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
60
[ 2.22920421662272, 2.3248839848386593, -0.9915723657499635, -0.13067762972934627, 5.040821546972048, 1.1562075082435364, -0.06090382403383299, 0.0789968070292606, 3.3335564497654113, -0.49253267004403767, 2.0026375157444214, 1.7836405942513656, 1.2341448820803396, 2.2145534223932697, -0.06266914776007915, 1.108573997778196, 2.5600374432633237, 0.6495951702230474, -0.49214720664728, 0.7531217681179383, 1.2942428238822448, 1.2506475332435871, 2.2724148694258917, 2.01350228138864, 0.05514608350942185, 0.5817848262144814, 2.169772208243246, 0.6084415993311281, 2.344970378321453, -1.0322647919595842, 1.359570273216569, 1.1836546086680295, 1.69541220598669, -0.8575871417348305, -1.7061642518416935, 2.1697481938064507, 3.766062343372949, -0.3559501240622732, -1.2674901706305168, 1.3933699955630603, 6.242883161847219, 1.5641017484491007, 1.1868647586849783, -2.553949756313193, 1.2619525039190047, 1.4482249908450084, -0.8859403939698991, 0.293143403377361, 0.3105053808201209, -1.0421755504521122, 2.6210730610987056, 2.248384756241975, 1.94931956079357, 0.9631216491510375, 2.0286772915550646, 3.8543873605928223, 1.5648680636923842, -0.9886044782184377, -1.2151201926926491, 2.6108738160568064, 1.0243150962013516, -3.7728769318789697, 1.7672003332363664, 4.364401917795412, -0.5506210547431962, 0.16342302127399344, 2.5528791707791263, 4.241400243554199, 0.06493223641584622, 0.22929070198054627, 2.284751108548802, -0.7133535701535177, 3.4457789135373718, -1.6425464164737993, 1.1463628377848956, -1.7033206764635036, 1.8646872217904846, 4.530398205970024, -0.7910172967012681, 1.0397805028625382, -1.590394261300256, 4.609390191108091, -0.025532809800916656, -0.631397861533407, 1.366446352851242, 0.6400033872676408, 3.072873240795973, 0.9647767177425014, 0.994658330624798, -2.897747102225804, 2.28807457500088, 1.5097037518489418, 0.9900718826920711, 0.8339855201525981, 1.25499904422406, 0.05516977905583742, 1.2409015942203596, 0.8023915514256732, -1.0532633465855739, 2.6985378098990376, 2.0507094263513395, -2.185655747264245, 0.6049559332545695, -0.822893623401602, 1.7027412786307108, 2.2677336974739792, 4.073636810289582, -0.8218297818326408, -1.041643371491769, 3.7068304177976943, 4.826399543763977, 1.36923504478254, -0.42193471063806975, 0.08776090657750374, -0.6140042424609147, 2.3329466141266804, 3.296079792458639, 1.9796646625403052, -1.1230765427345741, -0.6947792815342133, 1.9720555508093662, 1.388705843813752, -0.1922006250248369, 1.0914997427244577, 1.5633456550553648, 1.2288080474135858, 1.572138333695578, -0.8288925965452177 ]
[ 3.3335564497654113, -0.49253267004403767, 2.0026375157444214, 1.7836405942513656, 1.2341448820803396, 2.2145534223932697, -0.06266914776007915, 1.108573997778196, 2.5600374432633237, 0.6495951702230474, -0.49214720664728, 0.7531217681179383, 1.2942428238822448, 1.2506475332435871, 2.2724148694258917, 2.01350228138864, 0.05514608350942185, 0.5817848262144814, 2.169772208243246, 0.6084415993311281, 2.344970378321453, -1.0322647919595842, 1.359570273216569, 1.1836546086680295, 1.69541220598669, -0.8575871417348305, -1.7061642518416935, 2.1697481938064507, 3.766062343372949, -0.3559501240622732, -1.2674901706305168, 1.3933699955630603, 6.242883161847219, 1.5641017484491007, 1.1868647586849783, -2.553949756313193, 1.2619525039190047, 1.4482249908450084, -0.8859403939698991, 0.293143403377361, 0.3105053808201209, -1.0421755504521122, 2.6210730610987056, 2.248384756241975, 1.94931956079357, 0.9631216491510375, 2.0286772915550646, 3.8543873605928223, 1.5648680636923842, -0.9886044782184377, -1.2151201926926491, 2.6108738160568064, 1.0243150962013516, -3.7728769318789697, 1.7672003332363664, 4.364401917795412, -0.5506210547431962, 0.16342302127399344, 2.5528791707791263, 4.241400243554199, 0.06493223641584622, 0.22929070198054627, 2.284751108548802, -0.7133535701535177, 3.4457789135373718, -1.6425464164737993, 1.1463628377848956, -1.7033206764635036, 1.8646872217904846, 4.530398205970024, -0.7910172967012681, 1.0397805028625382, -1.590394261300256, 4.609390191108091, -0.025532809800916656, -0.631397861533407, 1.366446352851242, 0.6400033872676408, 3.072873240795973, 0.9647767177425014, 0.994658330624798, -2.897747102225804, 2.28807457500088, 1.5097037518489418, 0.9900718826920711, 0.8339855201525981, 1.25499904422406, 0.05516977905583742, 1.2409015942203596, 0.8023915514256732, -1.0532633465855739, 2.6985378098990376, 2.0507094263513395, -2.185655747264245, 0.6049559332545695, -0.822893623401602, 1.7027412786307108, 2.2677336974739792, 4.073636810289582, -0.8218297818326408, -1.041643371491769, 3.7068304177976943, 4.826399543763977, 1.36923504478254, -0.42193471063806975, 0.08776090657750374, -0.6140042424609147, 2.3329466141266804, 3.296079792458639, 1.9796646625403052, -1.1230765427345741, -0.6947792815342133, 1.9720555508093662, 1.388705843813752, -0.1922006250248369, 1.0914997427244577, 1.5633456550553648, 1.2288080474135858, 1.572138333695578, -0.8288925965452177, -0.27285644460203606, 0.8472370170663125, 2.12305884377849, -1.3703448058649912, 0.3748071005400465, 3.1988453818981455, 4.143621682221902, -0.8702840151683024 ]
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "51.95", "12.52", "34.34" ]
51.95
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
61
[ -2.321818540761135, -2.303824642952798, -2.1645602887482425, -2.239598575927878, -2.040661323841996, -2.109067818279572, -1.7032979759758264, -1.9819961998950744, -1.7222398899292595, -1.686103907616088, -1.431631346905653, -1.2128751340626358, -1.2459465590166263, -0.9214780394199948, -1.261568767000765, -1.1600615028274885, -1.0254228529659228, -0.8301553005045434, -0.8511403477922099, -0.7297827259241386, -0.49873643833065834, -0.5908703192645198, -0.48644107247989915, -0.3191436867116473, -0.21590245872632333, 0.009375079849989254, -0.08785880689970552, 0.0240088292562661, 0.24803549906650538, 0.3638395795871919, 0.5204042536917614, 0.5182755022358267, 0.5782315325157833, 0.716530626964465, 0.7261171654712437, 0.8192133463927994, 0.7631107343727213, 1.123695021039779, 1.1493309796462692, 1.2997206715481737, 1.0342673552338626, 1.4049698936624868, 1.4179235735843272, 1.7474796344743622, 1.7525967353109715, 1.8084302446138933, 1.8356450663689838, 2.0123908540864996, 1.9736831199057736, 2.1503608078452565, 2.19632866368534, 2.5746456276525, -2.286012874713069, -2.232871242163621, -2.394375433007071, -2.0650969597930007, -2.0389143437369635, -1.8415033375292935, -1.8377781821979653, -1.7768577985442406, -1.6589759425365054, -1.7690860415621668, -1.571431379846443, -1.3635258389890872, -1.286920557018756, 0.36038291894430907, 0.41135154258912754, 0.2553329861079819, 0.561363311910897, 0.526806403798833, 0.4806424924322408, 0.45611284933860996, 0.5706871370902007, 0.3349311314440492, 0.32411607494285505, 0.5215842092011638, 0.5148635687463334, 0.29608267196660576, 0.3622962424178343, 0.5843415436832599, 0.4565989633971113, 0.49414838237733816, 0.29952757632258525, 0.48109668302923875, 0.2734780759984329, 0.2174500940154524, 0.48811462659360777, -3.0737064993309007, -3.2425296238692667, -3.2718060844797954, -3.046066150669713, -3.2366293532058106, -3.2237278886500755, -3.047755293650316, -3.252509497597171, -3.2825537772288365, -3.135600193880641, -3.2883366317322613, -3.231611170106568, -3.3490668764655696, -3.1986113074566984, -3.2103412675740404, -3.1203489888220353, -3.1314253626281765, -3.1619992154473917, -3.1777254470162486, -3.224476427669584, -3.1561954193947694, -3.3283842336612484, 0.18053562339009, 0.5316239976968102, 0.4828482768003123, 0.40273358714752944, 0.5228880914201195, 0.3422824888808682, 0.34488297736720586, 0.3310184582061042, 0.4721944280871094, 0.25713642285404564, 0.3387360698973168, 0.4444037328991345, 0.2950171229832598, 0.3494011900094024, 0.19427547286406457, 0.47601289551567466, 0.34664871124129304, 0.3055041055614055, 0.28592995797966336 ]
null
Two time series are given. Both of them have a noise component. Do they have the same type of noise?
[ "No, they have different noise", "Yes, they both have Gaussian white noise" ]
Yes, they both have Gaussian white noise
binary
88
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Additive Composition" ]
When a white noise is added to a time series, it is expected the random fluctuations have similar amplitude or distribution. Random walk, on the other hand, can result in very different noise patterns.
Similarity Analysis
Shape
62
[ -1.0442397471178835, 0.9719921722349518, -0.42061344553781155, 1.9019947888695696, 0.3034680191557586, 3.4124360040570414, 2.4981664787260978, 1.9993690788205378, 3.726646628158597, 3.0291313224059073, 2.2756914898903915, -0.11559509158555215, 0.8235077577460863, 2.3326625533654086, -0.3757076344253478, -0.19755531260978965, -0.8307184200178717, 0.21002961597204553, 0.3945302699493637, 0.03933421634160306, -2.1008207754506625, -1.1369667590324544, -2.6479834718273327, -2.1179345484442624, -1.477554920327457, -0.9544709275043477, -4.110497657583855, -1.7368304721208112, -0.23618793363028723, -1.1598692933785504, -1.0077616892963386, -1.312253459915092, 0.9997190813179211, -0.5158319402990147, 0.28275438733157277, 0.2808010098405615, 1.200172433813132, 2.819118860788252, 0.7384792037666362, 1.9488093580782035, 2.3526139369876535, 1.2036045223168577, 1.9384359090857317, 3.758103072187586, -0.021340887363570316, 1.1031772386257241, 1.497063778918298, 0.5476289402184205, 3.4535017245692092, 0.7391222185108803, -1.2376441732594543, -2.906754349783861, -0.5858349270125986, -2.004368640279645, -0.2373499181226788, -2.0234420412149348, -2.4760486005741837, -2.5831051364691007, -1.0292912206689064, -1.5452925828637571, -0.07911236171785552, -1.858035555982272, -0.5291197767883139, -0.21019753192846025, -0.07454866514444325, -0.8899566325344748, 0.4753123396583663, 0.28659615563269625, 0.6283816065980896, 0.2869672507153016, -0.7261832753238606, 2.8935137980975605, 2.268209315212718, 0.6185749486191943, 2.7336916413313905, 3.265450964220692, 2.6841182147400637, 0.8550334711691004, 0.7917619229071562, 0.6978792871775042, 1.783810010947145, 1.045300280221456, 2.9797751757309077, -1.835107829147996, -0.6235066577083653, -2.854711930481567, -0.6528494708749811, -0.4599766090301096, -0.3069455958476537, -1.71948535360836, -3.9113018656038223, -2.0659026469766584, -1.5238602509815382, -2.839818853708447, -1.9073539402246689, -2.6677589795164396, -1.7014765574227115, 0.16498880799825133, 0.3009992908893148, -1.3923630455474152, -0.32021181946332816, 0.8098733844194703, 1.3201022348119649, 0.7319480032058312, 2.122146220589647, 1.8017631686964157, -0.6146333037067884, 1.4443549282712458, 1.3969530025759678, 2.5844118593884984, 2.442253707870056, -0.1489734559940028, 1.6834778117684313, 0.8479144491479906, 0.6918508701661046, -0.42529143453459084, -0.25700040399632457, 0.5785053018396792, -0.8156165870916878, -1.2926716622419956, -2.006697065286816, -0.6972706238656434, -3.1891053250098125, -2.800096167082379, -3.3539186909459056, -1.7597390558472488, -0.6545280977488188, -1.9706171656222455 ]
[ -1.0694055347748608, 1.9027442652769677, 0.9777025696552459, 1.0518564848898468, 0.8140959832738649, 1.8799633568816527, 1.6513826025578109, 1.0546101242797126, 1.3328068719714228, 0.6992649694476432, 0.6072577574619686, 1.4472131073354477, 2.849678291176755, 0.5735765740360141, 2.3190990066594463, 0.5243954080080411, -0.6533626096213756, 1.4634679613586807, 2.3079997403965162, -0.4298929270061267, -1.4072945175234952, 0.35045485884913186, -1.2922477053290358, -0.08848088254245856, 0.2847963305722211, -0.7575211855650363, -0.47458934305246436, -0.6341772499179533, -0.5936272890170378, -1.6344210954996514, -0.9576587582371067, -1.5891578649223232, -1.338394770210689, 1.3859571281829148, -1.3215602336779055, -2.9220739500512884, -1.449853325548548, -1.362033196099517, -1.090987450344282, 0.3717235116333487, 0.8068388211801252, -0.16391291161584315, -1.1833255162320047, 0.5696341799496246, 0.17822675896074824, 1.1663611824484068, 1.0471647069740329, 2.5695627965249095, 1.781707852435964, 1.0854543053591028, 0.3211573644438106, 1.7001370392485506, 1.7046317796012858, 1.4469613654012263, 2.405453402103981, 0.13025222752008858, 0.5982970486233743, 1.2300080592095817, 0.40653214398811954, 0.37587632246746494, 0.42188904061188176, 0.906478240928593, -0.14680165951468133, -2.2815816416498182, -1.1731297581014015, -0.3197567048602768, -0.2791612949723823, -0.42610845260125363, -0.31606960772185744, -1.4392217122987805, -1.3987800133748796, -2.741595205378912, -3.927934595865607, -3.155950042308696, -2.3848964327649407, -2.9484208350042236, -1.7504546291525047, -1.754623924248059, -0.1597397391669767, -1.8462792242665287, -0.4957938383079534, -0.8006174454752479, -1.123069530247202, -0.5771419354502378, -1.6371217587545406, 1.4164483862725035, 2.30883160912192, 0.8565475755339224, 1.344450645554471, 1.180398686920849, 0.7827954190761774, 2.3972450922444395, 2.061616766534134, -1.159793448590558, 0.686881842413378, -0.40234238685852297, 3.097075500895059, 1.2250199957013814, 1.4603417957957372, 0.6608502931633075, 1.887826975673943, 1.3986112606514527, 0.06272746010660293, 1.730047999751647, -0.06905819471586619, -1.9750331187896097, -0.6634791069626519, -0.4769397105029196, -1.3354256688837784, -1.7936226959032477, 0.23433793955185234, -2.828284788200536, -4.480443543072966, -0.132168151350597, -2.971147158675249, -1.9851224904192226, -1.9899490581394648, -0.2573828750620666, 0.10364694428674337, -2.434789139951842, 0.4297869017571403, 0.6480806649172902, -0.41817129743508996, 0.7579669731228824, 1.1252538385609614, 0.10485197701629129, 0.4562830705430695, 1.4455108854541643 ]
Does time series 1 granger cause time series 2?
[ "No, time series 2 granger causes time series 1", "Yes, time series 1 granger causes time series 2", "No, they are not granger causality" ]
No, time series 2 granger causes time series 1
binary
103
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Granger Causality" ]
Granger causality is a statistical concept that determines whether one time series can predict another. While you cannot perform the statistical test, you can check if one time series can predict the other by shifting the time series by a certain number of steps. Do they look simiar after the shift?
Causality Analysis
Granger Causality
63
[ -3.4520787524080387, -3.415245144638834, -2.365141005063052, -0.9272174727852726, -0.555707640099539, 1.1703996200989533, 0.3275598342937789, -0.02254651475040914, 0.1822049575548751, 0.6721553166535666, 0.7316218134842937, -0.8410340528964436, 1.9063990570902827, 1.6790837883178118, 1.5519844821358002, 1.7942091826150408, 0.7851044845746835, 0.772729713414411, -0.3717958307283934, 0.2569453689961416, 0.0059961714805885635, 0.16605431786776548, -0.9228510617515813, -1.249220729463916, -2.2256368021251913, -2.316362860917407, -4.302125065244768, -4.001628063687473, -3.936406417408419, -3.116957833488187, -2.752933556354371, -1.0891981245903408, 1.680728611773486, 2.488153725787803, 1.528073468183415, 0.5315951590249852, 1.2530367948258552, -0.8104990759452533, -1.64468875095346, -1.891621472293624, -1.006136146487672, -0.17544031325935017, -0.505161359785211, -0.30926494503874913, 0.28290483625230034, -0.8477733983404556, 0.43499733704881594, 0.85283373246381, 0.7754861123638456, 0.8357426805198853, 0.07479036778181308, -0.7702864911903158, -1.0133126287674292, -0.3806486643282507, -0.1554232850017823, -0.7919220561910685, 0.02446652494834034, -0.3203504100604348, -1.0861599090269658, -0.49015702935683686, -1.4265208583143696, -3.12335294700057, -2.610571399043802, -2.9110561507640376, -2.805463557854051, -3.258879977619813, -1.195325607941968, -1.5509180907552722, -1.7634183516730215, -1.006703248446257, -2.20945174900296, -3.2309652491499348, -2.095553162851203, -2.228248502466482, -3.4315306547018203, -2.7228254397774334, -2.922772163007946, -2.552351101691572, -3.0722960837409587, -2.0648270415184484, -0.30103761835368203, -2.5569715667965585, -2.4565629957674076, -1.197447382265504, -1.3368314010961995, -1.961310017277873, -1.1390336454075396, -0.06285368669912295, 0.6515558321207966, 0.7197933677482242, 0.3392998243843416, -0.8127761311756865, 0.2735481912828519, 1.114091251389406, 0.21045978695831602, 1.136039620337056, 1.6420869972032397, 1.7846046783313785, 1.1772203210411176, 0.21795643176769353, -0.3547361046665497, -1.4268215061386766, -0.9011729216092121, -0.7513181448056935, 1.705419303783148, 2.243748923498906, 2.7371769270525403, 2.6915835228849136, 1.7386120253798347, 1.3525365030033738, 0.8920296158304788, 0.9217442865535461, 1.2261622335609916, 1.1431693097178406, 0.7372716652486897, 0.23115077628058323, -1.1571724095186506, 0.5734058832278373, 2.8921602689326837, 3.388527587653826, 1.5496613798364895, 2.192551693932397, 2.5980455541359087, 1.710624216263465, 2.2323083132786676, 1.7963476745171192, 3.1495638505439927, 2.9730044833686016 ]
[ -3.4520787524080387, -2.690983724756943, -2.7663098996110764, -2.4062147642093956, -2.462719618616255, -1.5100242367169054, -1.2100214210430225, -0.8747733019118633, -0.528108094135828, -0.8679216148727102, -1.1514939924941339, -0.6805993776002017, -0.6032156167148669, -1.3240915677772394, -0.17746851094152039, 0.42125932267078575, 0.4442923206699808, 0.27686837586676105, 0.3984880336315626, 0.7152885655552875, -0.5292152044628831, 0.763862132366208, 0.2803335318158287, 0.2791669963605437, 0.30051079929484376, 1.5228849882057176, 1.4689398762157964, 2.441346468027922, 2.6903251625425004, 2.1015062229644115, 2.1839675565793697, 2.111422304447115, 1.4478072935139854, 1.6667877038102064, 1.6803179278938922, 2.0209321234587874, 2.139293252863046, 1.7407198555264733, 2.2110564044816616, 1.8288302694220828, -0.06863665409409629, 0.010118397954718956, -0.3290584800032006, -0.0951368463232118, 1.1284748167290701, 2.369758033435103, 2.2686778441287436, 1.76272561865947, 2.120640171195838, 1.8940061435976963, 2.1338325984094224, 1.7292859125090176, 1.8827475671859168, 1.3856966434175633, 2.110638752414052, 1.7494832213383342, 2.1541779091735442, 1.37994914255126, 1.8581456294163887, 1.2665724949908401, 1.4264521818095255, 2.052805850293636, 1.930386085840848, 1.3003803618246517, 1.6045047171555196, 1.0896969735129827, 0.8422375587733245, 1.0047408352084888, 1.8376802567239023, 1.8539349232029942, 1.8679271744975359, 2.31939655197818, 2.350231767240337, 2.739272319845827, 3.3994978872133768, 3.198873208664449, 1.194071631742451, 0.6933766080234222, 1.4332727098031943, 1.4126035595141901, 1.2050045688734154, 1.9192533624742878, 1.8572271968992324, 0.5762805559307341, -0.34519185530456015, -0.08891598138286771, -0.1298633492485587, 0.7606063098229942, 0.31173503032992744, 0.12227377811337539, -0.4191758090423593, -0.7378581417171187, -1.8959893200839657, -2.132086636738838, -2.163838222154239, -2.247293306277648, -0.931441770351538, 0.1909279506878808, -0.2687360357138381, -1.5199342657701944, -1.5806598774457683, -1.350178757502166, -1.8769250860088231, -2.3733647655944776, -1.4046018964943248, -1.5622623909745659, -1.1568651678781636, -1.7263528851896175, -1.7612090533681368, -1.9670989685834896, -2.380529483935987, -1.6733109903979506, -2.5235136707281045, -2.339833535243348, -2.557221670583771, -2.3032863803836263, -2.5123829139398484, -1.9815296702807783, -2.5567697111237715, -1.8481721755888427, -1.8658037787063826, -2.6790481503534407, -2.2626534661593456, -2.38437956843412, -3.4298345455864876, -3.2263138205867192, -2.610125080185522, -1.8252641922590216 ]
Is time series 2 a lagged version of time series 1?
[ "No, they do not share similar pattern", "Yes", "No, time series 1 is a lagged version of time series 2" ]
No, time series 1 is a lagged version of time series 2
multiple_choice
98
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 2 is a lagged version, then it should look the same to time series 1 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
64
[ 0.5415565244023074, 0.5592282398330545, 0.5284845911977027, 0.3638684690700308, 0.3775021709425698, 0.5169956539725745, 0.300956240769347, 0.3174848281465307, 0.3615194170936377, 0.22583761519188317, 0.11475933294092228, 0.1583343643482933, -0.055831000091886775, 0.010288772519652817, -0.1588927519474762, 0.041938576253887874, 0.4836823969602243, 0.3210382504730444, 0.4219794009244684, 0.2846580151366279, 0.481351323623848, 0.24227464874364213, 0.33308383315319307, 0.1681283600953917, 0.1290176243296743, -0.06579957090073198, 0.08958751426400856, -0.06856395791166138, 0.035732349329780186, -0.02928663164602855, -0.05091673804864857, -0.0229975471691583, -0.16694799083669812, -0.1271981107739649, 0.16196598129843967, 0.014941221136594672, 0.2363603957756785, 0.5194331643804062, 0.3652167453764886, 0.0902771644527064, 0.14733413197690887, 0.04389884207266266, 0.39698042690949703, 0.40355747945758064, 0.2519780347474816, 0.03521671588916786, 0.24115951119789542, 0.13323154621591216, 0.14151320912662665, 0.3221167447380424, 0.23061379503917653, 0.22193532147401843, 0.21880464057912954, 0.3479221006207689, 0.4595460901742051, 0.41795453971620256, 0.4299813366713284, 0.35973190048734066, 0.08052991418048927, 0.12920483780938027, 0.4867435912903889, 0.3197606001738424, 0.1736929105790773, 0.009164701261784626, 0.14607981034839873, 0.23082329859673686, 0.2008668374707357, 0.027402710967144084, 0.044857750999118505, -0.2507851413629943, -0.2236840002462442, -0.059005266790078635, -0.2954253743755621, -0.5850020894455529, -0.28655968699653805, -0.40215461953242543, -0.1875117988283659, -0.2166103999286991, -0.24721254320404737, -0.1643723505064199, -0.3314081953198478, -0.30637222142660414, -0.378456485117909, -0.6279700859630041, -0.564201221296382, -0.6139545005366955, -0.6436250987233045, -0.8722908418978786, -0.571588071937277, -0.40592870070018683, -0.22374679920175783, -0.28146204795661756, -0.6081994895051144, -0.23918633711759896, -0.25073100574230356, -0.39222033637863046, -0.31346366991687363, -0.09293057155862244, -0.09728608523352256, 0.1443068554183022, 0.3489449138077187, 0.14555750034350176, 0.01824161224383925, 0.19917287452777452, -0.31338834406389116, -0.3416287176565359, -0.6119911697398219, -0.702038307486666, -0.7585018036069259, -0.8261938055329028, -0.9305462309917636, -1.1378568117677768, -0.7047891310023465, -0.35192318424067476, -0.5715011220784306, -0.27255253619437847, -0.3480334660233208, -0.3236228702600007, -0.33557878995991025, -0.46024147568098095, -0.2743378332364961, -0.2505509665171256, -0.34059765488891786, -0.5871061183522325, -0.7559552032786547, -1.0661018874934272, -1.0637921891034763, -1.2899079206351505 ]
[ -0.9652065594705396, -0.7714084280577655, -0.2721875432021922, -0.15917382504734337, -0.14985303036106484, -0.013343190344480222, -0.08236476913794791, 0.368853238708319, 0.4028785292145558, 0.3513064628327109, 0.19339899735410604, 0.40072404110572024, 0.5645832825603732, 0.4706057768579724, 0.5795290369861009, 0.29448011562640986, 0.329431197335594, 0.4149816923239247, 0.7375898890861905, 0.5919399610017332, 0.3503890701924819, 0.18119364105678512, -0.07135741927242018, 0.18121043109912957, 0.47383329025946497, 0.5343397560911166, 0.76510932266014, 0.790421404343608, 0.772449600077065, 0.7095205367318463, 0.6508706628416812, 0.35840609844940546, 0.4083383097280286, 0.40071702298561346, 0.5415565244023074, 0.5592282398330545, 0.5284845911977027, 0.3638684690700308, 0.3775021709425698, 0.5169956539725745, 0.300956240769347, 0.3174848281465307, 0.3615194170936377, 0.22583761519188317, 0.11475933294092228, 0.1583343643482933, -0.055831000091886775, 0.010288772519652817, -0.1588927519474762, 0.041938576253887874, 0.4836823969602243, 0.3210382504730444, 0.4219794009244684, 0.2846580151366279, 0.481351323623848, 0.24227464874364213, 0.33308383315319307, 0.1681283600953917, 0.1290176243296743, -0.06579957090073198, 0.08958751426400856, -0.06856395791166138, 0.035732349329780186, -0.02928663164602855, -0.05091673804864857, -0.0229975471691583, -0.16694799083669812, -0.1271981107739649, 0.16196598129843967, 0.014941221136594672, 0.2363603957756785, 0.5194331643804062, 0.3652167453764886, 0.0902771644527064, 0.14733413197690887, 0.04389884207266266, 0.39698042690949703, 0.40355747945758064, 0.2519780347474816, 0.03521671588916786, 0.24115951119789542, 0.13323154621591216, 0.14151320912662665, 0.3221167447380424, 0.23061379503917653, 0.22193532147401843, 0.21880464057912954, 0.3479221006207689, 0.4595460901742051, 0.41795453971620256, 0.4299813366713284, 0.35973190048734066, 0.08052991418048927, 0.12920483780938027, 0.4867435912903889, 0.3197606001738424, 0.1736929105790773, 0.009164701261784626, 0.14607981034839873, 0.23082329859673686, 0.2008668374707357, 0.027402710967144084, 0.044857750999118505, -0.2507851413629943, -0.2236840002462442, -0.059005266790078635, -0.2954253743755621, -0.5850020894455529, -0.28655968699653805, -0.40215461953242543, -0.1875117988283659, -0.2166103999286991, -0.24721254320404737, -0.1643723505064199, -0.3314081953198478, -0.30637222142660414, -0.378456485117909, -0.6279700859630041, -0.564201221296382, -0.6139545005366955, -0.6436250987233045, -0.8722908418978786, -0.571588071937277, -0.40592870070018683, -0.22374679920175783, -0.28146204795661756, -0.6081994895051144, -0.23918633711759896 ]
What is the most likely linear trend coefficient of the given time series?
[ "7.1", "0", "2.87" ]
0
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
65
[ 6.4848722785346276, 6.410171522745857, 6.407383517819316, 6.317123710733672, 6.397431713087338, 6.351721398266947, 6.385943433307267, 6.3452465793683865, 6.386902326977992, 6.389648121472242, 6.421910463813013, 6.312105401009602, 6.322962805121629, 6.438922300215179, 6.364541694804644, 6.48464159516213, 6.430155591864504, 6.454631012855562, 6.506208784547383, 6.395832829943953, 6.378845595111784, 6.471628804199747, 6.4483918324314775, 6.403684399426963, 6.504974765563632, 6.402085991191396, 6.4178056148843385, 6.417064537887839, 6.3557421875126625, 6.42068060377743, 6.505314939635709, 6.444250801012298, 6.4176958928166, 6.405324447411976, 6.436930401371739, 6.463805755395463, 6.454789909331366, 6.394411491902318, 6.436539977983731, 6.4464944638091914, 6.351084317067061, 6.426496127454028, 6.277040118336897, 6.446660885134008, 6.458068604520012, 6.463663294537934, 6.390357923080149, 6.43553048257998, 6.507059604606488, 6.5064062167625165, 6.4138313219244765, 6.424641289317516, 6.4869757147983815, 6.319415956399353, 6.394975375679077, 6.501389188841671, 6.478268925627392, 6.439393822747832, 6.31909322151505, 6.4125008633546035, 6.377855736137951, 6.436941428323396, 6.363777676473149, 6.349895589482808, 6.283227333000437, 6.49409031493733, 6.390054867132524, 6.425784962340682, 6.415559364746213, 6.34721956526443, 6.334925090913652, 6.351204923398787, 6.369306616746686, 6.439223323476264, 6.364652073993869, 6.527752606722382, 6.4816019150197945, 6.467564903171188, 6.4080259959083286, 6.512854709569471, 6.401716361931674, 6.4136973161791255, 6.426608017221546, 6.460729837206577, 6.4565650861003725, 6.385220329118782, 6.381507661840353, 6.456757228586302, 6.461590410303605, 6.390466715909651, 6.313873683752897, 6.402402170751857, 6.455706518755515, 6.531533137628573, 6.338845531253652, 6.3883354111751895, 6.390719979844804, 6.5026873988857785, 6.413461212773325, 6.357491578763945, 6.4515471854304955, 6.389742550161029, 6.337149905165557, 6.358425272188819, 6.526953936573118, 6.440352678040246, 6.422616520713678, 6.399670515856518, 6.434446357549714, 6.433682061521476, 6.434447639797786, 6.423071075502368, 6.4714424763203136, 6.417185261860251, 6.352961304873988, 6.376411722138387, 6.288734994839893, 6.54573752127057, 6.471054727506921, 6.362448098361004, 6.397620627317878, 6.37484285287149, 6.514668202683439, 6.3246078544562545, 6.423047399540147, 6.4087401316478605, 6.468750466119867, 6.409030032553715 ]
null
The given time series has a cyclic component and a trend component added together. What is the most likely type of the trend component?
[ "Log", "Exponential", "Linear" ]
Log
multiple_choice
10
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend", "Sine Wave", "Additive Composition" ]
Despite having a cyclic component, check the general trend of the time series.
Pattern Recognition
Trend Recognition
66
[ -0.20638850467544914, 0.42769083456627605, 0.6942734431767182, 0.8609556537211156, 1.0819179934475194, 1.4778816216513393, 1.8230235223444842, 1.8518833581206597, 1.9572538845864518, 2.2044929659402257, 2.4849811835415943, 2.438102245462612, 2.5156415571797854, 2.625744500249185, 2.5682057133927505, 2.437063816775655, 2.3129597853247668, 2.347176938478569, 2.2623809618785518, 2.3560602874555006, 2.273416934639636, 2.1033773655018773, 1.8427381166076784, 2.026477356246384, 1.6817670480144007, 1.6596172346479572, 1.4833077365946106, 1.384401439276625, 1.31426161153658, 1.093011837231334, 1.211877953312265, 0.857691972464145, 0.8634025264228333, 1.0668299424730865, 0.9866804198060749, 1.1922577160727468, 0.9763391590343108, 1.1914954748497957, 0.90784933314506, 1.0437462329343778, 1.3843082711583448, 1.2470000542891537, 1.5423620547665733, 1.832545834769171, 1.9299794722828256, 2.0527742226047776, 2.1836273014322676, 2.4279120579743894, 2.6440022481048406, 2.695373427117053, 2.9676340809233355, 3.1984317999276954, 3.2170703204043156, 3.381129111903516, 3.5418703798942377, 3.6501634960751588, 3.7652697891409708, 3.6380700234568666, 3.7275772127498104, 3.750685374820463, 3.707271474691664, 3.594322260932012, 3.404630429664409, 3.786018097999131, 3.4293689781142978, 3.6433165842215613, 3.4481559759123837, 3.2091105313680317, 3.1771863774375206, 3.016976291450306, 2.7190325792406864, 2.681132939190646, 2.439606931569315, 2.462337978197229, 2.1918651203380954, 2.129936679046596, 2.0140277174288865, 1.9429930167508738, 2.0163007034141662, 1.7632088412669, 1.8657482503763025, 1.7689884288042539, 1.8608689956305717, 1.7044777841625867, 1.848343201937129, 1.8338092702854496, 1.6215132480197139, 1.9106513229264235, 2.1939471022763435, 2.318419687106536, 2.2812379997883876, 2.5871902589895233, 2.7777994544905575, 2.8915124681189655, 3.137740869681093, 3.2935131962596715, 3.3968116501860957, 3.5091902923086757, 3.8156685873996605, 3.8975394280181863, 3.8392291812598343, 4.1098679064209245, 4.065533910367347, 4.1579988215964, 4.24289237472342, 4.3452142764484805, 4.389416137979659, 4.300873795916891, 4.273954808000203, 4.208479405573708, 4.292595548459531, 3.8137278404520565, 3.9632161862840927, 4.029561046280556, 3.7959649614683166, 3.7308004953036136, 3.2539180255873736, 3.1824750204164958, 3.2064362476776025, 3.160262124071631, 2.7459068250524794, 2.6834923569170157, 2.6346689793001095, 2.333971537287846, 2.4307390965499787, 2.026941599071561, 2.277909310104395, 2.0829036704910786 ]
null
The given time series is a swatooth wave followed by a square wave. What is the most likely period of the swatooth wave?
[ "14.88", "33.14", "53.75" ]
33.14
multiple-choice
25
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Square Wave", "Period" ]
The sawtooth wave comes before the square wave. Begin by identifying where the sawtooth wave starts. Next, measure the time interval between two peaks.
Pattern Recognition
Cycle Recognition
67
[ -1.6525636818976437, -1.3904525658525537, -1.3654147146201394, -1.4462326103647591, -1.3014933927534786, -0.957400945623583, -1.1590211510004704, -0.692072436085343, -0.881139309658783, -0.5697523236130579, -0.6622209158814412, -0.4555048994418186, -0.29982266675464087, -0.20416132117338495, -0.30542397819555933, -0.23655695728095127, -0.062770070440928, -0.08852755374398844, 0.1616161037456889, 0.15177929878210522, 0.4382992191893722, 0.3691862780384909, 0.3481409005375261, 0.7586275529276817, 0.7330421534691622, 0.8137881200032071, 1.0164833872810446, 1.0903708368414629, 1.0231971100358286, 1.1505735816594789, 1.1804254950813846, 1.241445092400061, 1.5419188292293056, 1.6194472845671586, -1.4342335767983256, -1.285986675975759, -1.2405304628075622, -1.1354627168443798, -1.3334355124668957, -1.0601686330169575, -0.8368431815322355, -0.9539524267945321, -0.7317951370650103, -0.5928465534622122, -0.5043383703144901, -0.4155748110772851, -0.2963938921433337, -0.24204149672984565, -0.310239429136545, -0.01708177703187068, 0.05686660330837827, -0.020413620007317584, 0.35870402401210877, 0.37028355070347935, 0.27503422645615333, 0.427515819981908, 0.549002410029729, 0.645100548149506, 0.8270511887366385, 0.796280272574192, 1.1028984002174356, 1.190834348467265, 1.2443550121156484, 1.2830167365202985, 1.372337310496067, 3.4425466564189597, 3.39769254256104, 3.589152393261335, 3.501895704401262, 3.4017356646412216, 3.428367191995203, 3.396498630322834, 3.6723589145822215, 3.470551272444413, 3.4859185598247278, 3.542263333485555, 3.34860533043866, 3.5797961553279833, 3.4093568156205754, 3.6531430573108756, 3.4388755556979014, 3.5739054301756794, 3.220461616987452, -1.0304696183461313, -0.9423170266372969, -1.1160346105500234, -0.8528678658533938, -0.8816604981939093, -1.012039075723522, -0.9145521737239841, -0.8323085877452218, -1.1232612624245317, -1.040305212361, -0.9464651406598686, -0.9105839480742867, -0.9188174528976886, -0.8240268321939632, -0.8652351861719946, -0.8432928266804283, -1.0519438840179707, -0.8984739252575963, -0.9436705616613286, 3.6163486168662375, 3.4875809924371506, 3.4032360352277577, 3.555391556294865, 3.5264712082858254, 3.387981261435313, 3.435292458422443, 3.436996782738525, 3.5928875379273144, 3.490465616087205, 3.542819676555378, 3.4208142565863526, 3.503621457813305, 3.6004775189923266, 3.434033752174296, 3.4816569090831386, 3.3338108030756, 3.3935856197083583, 3.4366971394995787, -1.0190402416327062, -0.7807589429853495, -0.9967570127616856, -0.8342764515258096, -0.8942726869843866, -0.909871115886488, -0.7643399462410185 ]
null
How does the linear trend in the first half of the time series compare to the trend in the second half?
[ "Different", "Same" ]
Different
binary
6
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Piecewise Linear Trend" ]
Check if the time series is a piecewise linear trend with different slopes in the first and second half.
Pattern Recognition
Trend Recognition
68
[ -0.15746934270466748, 0.041643638967619495, -0.06175544711694889, 0.07278830535235219, -0.0498703021660659, 0.16565995840726666, -0.03610877627891363, -0.16100797716750379, -0.013391612345570333, 0.03769562052771218, 0.15754959309633615, -0.03305377025863558, -0.0247532029448857, 0.16719293169306643, -0.02299201267121534, 0.08444068360920196, 0.0927887372280842, 0.1311255564447797, 0.05624283944149208, 0.047950937824692064, 0.1609152035272784, 0.06383256871674409, 0.031371997074285285, 0.2560577768349737, 0.20036349868583098, 0.31480388420541117, 0.23856395711577139, 0.07228348374204537, 0.19389507250863447, 0.10683059932727355, 0.059876265286887026, 0.167997259129802, 0.29502010992826133, 0.24211359762006274, 0.10838396434518861, 0.19157536001798114, 0.22681506281632424, 0.10315989287975041, 0.3122163638563319, 0.23948404656690858, 0.14821806597994197, 0.15008543502181232, 0.37140648944822274, 0.2532088848429463, 0.3922334273937045, 0.43103981685478904, 0.3913551259495049, 0.2668881618571557, 0.10799713510158065, 0.35147962795461113, 0.5079814023755267, 0.33539347437444605, 0.1773442206830932, 0.2947784406672298, 0.3427982015901505, 0.272395909292769, 0.1555053433003, 0.36993928734846515, 0.31868386539155413, 0.5408248214871729, 0.4066021425582394, 0.4442913810413899, 0.40132401977484683, 0.42589145561100417, 0.285401829096529, 0.3436162775713243, 0.5296267323190283, 0.46218225689457787, 0.41758831217417186, 0.49876800011843353, 0.507061992029767, 0.6388288395601049, 0.49144693262695555, 0.3948122669889734, 0.4812274087790734, 0.5488058351701771, 0.5881422278692308, 0.37479464432970777, 0.5388933690149781, 0.4485456930313604, 0.4830395084730365, 0.6086921962673155, 0.6069352525342285, 0.49354699177824934, 0.5440242763903353, 0.5187877981229474, 0.8142550895718355, 0.6006838793754472, 0.5131271246232817, 0.7019070846789248, 0.7115158651779108, 0.754738087344723, 0.7863417088221967, 0.6766712790902389, 0.594193267275107, 0.6132344153545723, 0.6123312620242705, 0.6095556749162352, 0.7546915071608502, 0.6569073390298548, 0.7453354919647907, 0.7271209538744269, 0.5841760191016483, 0.53869287127109, 0.5858167977075794, 0.6607002871578479, 0.7146090654567713, 0.655297934332515, 0.7758016935717998, 0.6787308515647561, 0.7514813320683371, 0.7463720467208208, 0.8892462188389487, 0.6675581047788806, 0.9424549210703912, 0.7129224293484259, 0.6567223735126365, 0.7579955262671852, 1.0559291160844835, 0.8649747832355096, 0.8469847345201746, 0.8698166493334856, 0.7445997263650267, 0.8435553282767216, 0.8229277950334706, 0.9817875934262728, 0.8268283145538718, 0.8107469973877071 ]
null
The time series shows a structural break. What is the most likely cause of this break?
[ "Abrupt frequency change", "Change in variance in underlying distribution", "Sudden shift in trend direction" ]
Change in variance in underlying distribution
multiple_choice
72
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Gaussian White Noise", "Sine Wave" ]
You know the time series shows a structural break. Can you first identify the place where the break happens? Then, you should check the type of break based on the given options.
Anolmaly Detection
General Anomaly Detection
69
[ 0.06858512086868482, -0.24942098266869675, -0.18553717043493687, -0.22655100908920256, -0.12233422009116664, 0.16096853343760098, -0.3204558436391266, -0.1904723385387817, -0.11870451829235289, -0.00200745516706979, 0.08204876389956409, 0.6071527048849309, 0.17009002002082443, 0.1771673106614465, -0.07926267142140395, -0.2913090386927455, -0.15703529765563884, -0.21117817948675474, 0.11660815342603165, -0.4909174360807606, 0.17615721357345593, -0.034854724233977216, 0.21802064081603428, -0.21521416464408805, -0.26797255939580583, -0.12090050916123601, -0.12802979794204788, 0.23972321670282398, 0.2368859602639516, 0.5663535206443238, -0.14730725465988784, -0.9952094975863877, -0.12171921572568721, 0.06857340949582218, 0.21242628290613766, 0.09025998131481017, -0.14754074662466174, 0.5096122074193575, -0.3073243128256354, -0.08165049455524466, -0.3210516164533388, 0.005820070228235146, 0.47240320266092356, -0.041896549096940516, -0.040075299598886276, -0.5042007430906917, -0.08532129412232402, 0.3420338561110022, -0.07439391923241521, -0.09447738876818916, 0.3287232308463266, -0.09322099079189032, 0.3841208696091437, -0.38191671476059674, 0.201522484662758, 0.4894451678703591, 0.29963064863231775, -0.5551307798391865, -0.1897642559544049, -0.07193093826500592, 0.30025455134780654, -0.3958831862921557, -0.30292460788428655, -0.47720322735543813, -0.24550614794558265, -0.3720961928307064, 0.4750491568327534, -0.19246191796067663, 0.20540851976125826, 0.005342241658701422, 0.0011776683533607577, -0.1758331919200914, 0.2289237071880692, 0.04588574296218557, 0.028761465500068036, -0.17642088156404281, -0.1277701624555736, 0.17508023271111406, 0.06839434475564188, 0.03670768119735214, -0.22417293709574823, 0.5779731762410134, -0.14261433531880444, -0.008993960033941572, -0.05560413157592722, 0.5811255401468889, -0.08645768189648047, -0.11366828372477279, 0.035173293093643504, -0.20618612333492053, 0.033178019267243716, 0.7050654917566656, 0.08909794032144674, 0.07826165249841581, -0.2134294156857964, 0.5081384565596889, 0.5764644041495626, 0.2534974704546536, 0.1943812392595185, -0.06979452609357528, 0.1163426409828403, -0.248288041176362, -0.33478786705589464, -0.4421844189622972, 0.12209125055300195, -0.40978360940190145, -0.14853902403437183, -0.01820317691276271, 0.2958946937202916, -0.1719018682259537, 0.33097010697932633, 0.2792070928172639, -0.3184944310207665, 0.3338102183785451, -0.08430720252222124, -0.14833559130799975, -0.08305028553262603, -0.0010422344534048386, -0.12339061542815198, -0.24963599245144177, -0.22334440672661254, 0.04130697949236717, -0.047704984938040214, 0.15676644756056538, 0.015567218811421176, 0.0228958631216911, 0.1762400147174836, 0.4218370120965852, 0.4337598062698209, 0.3984959036386541, 0.2587800410848683, 0.6199818039050018, 0.13016274373622022, 0.09678308899885535, 0.667106202236329, -0.8104164557184451, -0.06359032100143899, 0.3723605093958397, 0.2914271114241876, 0.7627549580439493, 0.03195494874687244, -0.12807984741858627, -0.09872707950717712, 0.09456002155471546, 0.48210745221364093, 0.48582167933313564, -0.016652872542552787, 0.07521811594898495, -0.18182598972519504, -0.15079256183018228, 0.31104686418286404, 0.47632916822225213, -0.2072988357647734, 0.07222966828156788, -2.6589285005084156, 9.778453989093197, -4.293029480486931, -21.572888075280986, 11.349422389038427, -3.337628910261537, -2.168665057666025, 4.966375672606499, 4.036571420324376, 5.197087149689492, -18.23900384660102, 6.3227646902494055, -21.37740231430641, 8.718851921047381, 12.638054094089929, -15.304086183691851, 3.76241240050907, 11.950403544988466, -4.9726514920087475, 7.641022560057835, -31.22382446920684, 12.411259145695986, 0.409236683002841, -2.8246702802850407, 11.128648729211847, 19.502052747493313, 5.529599244218941, 18.14729631067381, -17.380033658200592, 7.554647611652141, -1.4109293089204653, -8.783983357960564, -21.59790436513686, 6.946100651925916, 9.90674792142327, 15.150828116028196, 13.29095258008234, -8.598488082797697, 14.574241772979061, 15.761206095407694, -2.8488781958385703, 0.3916418189015163, -10.423670021904892, 16.711060647121624, -16.913794820244558, 6.083012975736013, -6.6335789052548675, -12.375299848586202, -20.991701565595246, -2.348014328666045, -14.136300799556539, 0.7061431246126637, 19.952017099920326, 2.313839104879442, 22.51312395205921, -10.964322390315568, -14.320068781376142, -11.467034955219907, -0.6592220764050896, 30.666532056691665, -18.60283401538894, 7.034593998345586, -7.792388291202147, -2.4423598464493876, -14.06253598097112, 9.949986031507244, -0.4213010420614325, 12.290558611928597, 2.041236459529121, -21.630965961101584, 12.39268287150957, -22.5452916719438, -20.937482477949057, -10.233207328718738, -10.083242555853825, 15.757541692599304, -1.850836409149592, 14.087507660693015, -6.308734890416452, 3.64121688787321, 5.39843867423466, 7.893029211135902, -5.151552929051392, -4.1732439164908, -3.2774835064143613, -18.49382138035081, -0.8704685865014147, -4.238741072517094, 6.589769131561282, 1.0980645099031856, 15.087447981258938, 0.8597244948056675, -6.244558875032657, 0.7204997843763898, 8.208773572710726, -19.85104096690849, -7.964105928573201, -7.727349172267727, 4.690002526872201, 5.996676174894279, 1.2095965710933674, -27.777066379752405, -18.488268605272246, -2.612342548898935, -5.562142821342139, 0.13256976752387575, -5.201798956222944, 17.28134307227176, -25.70186692947592, 3.4724704851033534, 9.375526811235451, 7.954522797372308, 8.917812387383504, 10.533991870557658, -6.713922186391196, -12.30373881353327, -22.788893877385334, -4.001876021077711, -8.663918617774026, 13.123746746912262, -3.1586941518643648, -11.505125736766146, -13.281827733447132, 22.418064680122274, -0.17592609115094673, -8.70853949387166, 1.4659292972503015, 21.38515440411711, -4.30611482978764, 7.791293007113902, 13.402979495406443, -21.179288861170242, -7.100796644460218, 11.99430712370426, -7.784951399290351, 4.730846593487066, -8.449860925743904, -4.933868950920829, -6.302513973138251, 7.225680371065436, 2.3371283779472254, 1.1829871967847143, 28.245756363955685, 19.61899115435526, -22.18847862401806, -4.909799440659139, 27.335308010555263, -6.383705850256443, 23.529569239169817, -4.717861143627225, -2.556902663050749, 9.775079896227682, -0.9413133346534134, 5.629696050265129 ]
null
What is the most dominant pattern in this complex time series?
[ "Seasonality", "Trend", "Noise" ]
Noise
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
70
[ -10.007723606184587, -10.277522815342811, 6.995153113253004, 0.03735174140137426, 1.577942867640492, -8.516774681361067, -3.043862572677332, -0.8744514975435544, 1.671721029046186, -1.3212921582446207, -4.4378069113755565, -3.1215836667983825, 6.822640336514858, 1.7967523361434088, 3.5659051936018757, -4.059737747770153, -14.34434499861972, -2.301232967911923, -4.200745333790085, 1.8862275121172736, 16.654378971088846, 3.3113793830725573, 13.413178776972675, 2.574307015539335, -3.623319392538272, 1.3081422584839284, 8.266968013922993, 8.716664273559754, -3.489171104179425, 0.542638820942742, -7.862083474012771, 3.4381412971246794, 7.311414120270803, -0.4621914079286439, -3.8640097014016344, 1.3720709273746088, 1.8128513568235418, 0.21444810599079478, 0.6954514074561846, -0.839349275907323, 5.158800740553151, 3.92414850439944, -4.429548096861398, -4.440422985781443, -0.6665818903613806, 4.399835414104451, 1.281192826083245, -2.453078349880563, 2.242823530609228, -0.8502000047337506, 5.167600413435356, 2.7061511855005094, -0.6249771819019208, 1.9136717511663157, 7.323268793435656, -2.524797844204396, 2.3815987315151412, -0.059194651793844, 2.3391723431372005, -3.2085630480787133, 0.2959897196137162, 5.466731328950219, -4.845431782930422, -6.79612231172705, -6.928184362317872, -6.401274025993399, 2.1945499636117396, -7.608676575264455, -1.9671882880894165, 2.46331484459225, 1.7502599733051367, -2.462993699926331, 0.5149741431453438, 0.01626771113317199, -1.3902026725000203, -1.4522942930096732, 11.15351043604574, 4.140164614482058, 12.678618250194154, -2.3279807929935314, -0.032420264111064856, -6.115192761398983, -3.409510988797468, 10.111879512521908, -2.0784388697685925, 10.46941324596374, -5.342745822661333, -4.401315294294214, -0.6921023527600678, 0.6106372583469899, 5.395030023961049, 2.9319028824327202, -1.3804503602148812, 0.3142409133163997, -0.8674312996317929, -3.9958602843196815, -4.005087360578164, 5.456095132654529, -8.797073228242956, 8.150472362590628, -1.6557520076516938, -4.001074983810125, 3.692661211423938, 7.214988388623654, 5.355756490154704, 2.0376523185944095, 5.087693152570497, -9.087452174289492, -3.0745161650775907, -4.852636034770325, 5.59308686906218, -2.2708722577364022, 3.9653357074303903, 2.5086919406464085, -4.48377321223416, -2.7477505695885855, 6.431076663944206, -3.5223228659634493, 1.0744605766578643, -3.2758966468518804, -1.1680362726418223, 0.34954295714286454, -3.0010284106087806, -4.141193958338191, 2.189750581751255, -3.2992954165954, -3.024095626207641, -3.507585212646512 ]
null
Is time series 2 a lagged version of time series 1?
[ "Yes", "No, time series 1 is a lagged version of time series 2", "No, they do not share similar pattern" ]
Yes
multiple_choice
96
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 2 is a lagged version, then it should look the same to time series 1 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
71
[ 3.955985672378865, 4.225472406100858, 5.129877530247748, 4.1659352237175336, 3.121151795697396, 1.60729418584357, 1.4009750049694714, 0.5885531811561312, 0.2809926446997078, 0.30388528010047805, -1.3519880108419282, -1.867994688986374, -1.5310930621892052, -1.4671815208559933, -1.8146772187299995, -1.8477551351031891, -2.100344283672961, -3.0258499134630985, -4.108091829277065, -1.611850906613287, -1.0278935905265372, -0.023468036173955528, 0.5373569992275069, 1.8313038414393883, 2.363834997724558, 0.40859984828598284, -0.37007301026124334, -0.15060775390972805, 0.04351932743263883, 0.16559158089486958, -0.8708257242963181, -1.3922449492679259, -1.162287208502467, -1.1285679866049458, -0.4082380955625842, -1.4066363786669374, -0.9552885540198656, -1.4874457973616564, -1.818206189050905, -1.8700218144890683, -3.478357516418181, -3.360267535906542, -2.1919898607592314, -3.321595959969597, -1.5959234468347607, -2.197417274875451, -1.6502677623348263, -2.8793869046655503, -0.8737478316271442, -1.858570447199603, -1.666193290959616, -2.164084336557233, -2.2104357014266123, -2.106308892458709, -2.409306480649872, -3.0407648590665546, -3.084618850555947, -3.148686629055258, -2.847873102573927, -2.3978515630412036, -1.644518030655861, -1.1228077960337162, -0.99998509966973, -1.238250394042982, -2.662171605941662, -2.517888459157403, -1.5012337495095558, -2.2137338864655995, -2.834373054028606, -1.6217398946596187, -0.10532220428173145, -0.8808370430036212, 1.489242534597218, 1.877050406143944, 2.73484740019356, 2.4077456460783258, 2.6475450628753765, 3.0430956871778454, 2.207519041765997, 3.743451049460551, 3.7070502780793335, 3.2425097604833315, 2.166088959451704, 2.688457831993655, 2.9261513735020546, 2.0198743477073062, 2.15000333986408, 2.6032155431309323, 2.2363199436949452, 2.583300847267102, 2.5876968468679227, 2.3836960430583605, 1.491958328960984, 1.676856165850014, -0.24971412794649062, 1.086137034847702, 2.188987066959895, 1.237322174198323, -0.09927936252357314, 0.9868133886222136, 0.8325026293211032, 0.8880861952685697, 0.9102724261448212, -0.31034150628868884, 0.41927012227664334, 0.8362309446471485, 0.8536689004971217, -1.2539072470603012, -0.786104645805271, -0.43479201875084783, -0.5224818179271674, 0.3741395867094875, 1.4228239327597132, 1.734642333809873, 0.3300714039040968, -0.8452905880622443, -1.49339388958087, -1.7243053814164488, -0.9426014088421993, -0.636578525666098, -0.7905487789262529, -0.20629132174157644, -0.9265527415688978, -0.3442037262847589, -0.13265689324134447, 0.3533531053622749, 1.1394319555420933, 1.0952363554316813 ]
[ -0.023468036173955528, 0.5373569992275069, 1.8313038414393883, 2.363834997724558, 0.40859984828598284, -0.37007301026124334, -0.15060775390972805, 0.04351932743263883, 0.16559158089486958, -0.8708257242963181, -1.3922449492679259, -1.162287208502467, -1.1285679866049458, -0.4082380955625842, -1.4066363786669374, -0.9552885540198656, -1.4874457973616564, -1.818206189050905, -1.8700218144890683, -3.478357516418181, -3.360267535906542, -2.1919898607592314, -3.321595959969597, -1.5959234468347607, -2.197417274875451, -1.6502677623348263, -2.8793869046655503, -0.8737478316271442, -1.858570447199603, -1.666193290959616, -2.164084336557233, -2.2104357014266123, -2.106308892458709, -2.409306480649872, -3.0407648590665546, -3.084618850555947, -3.148686629055258, -2.847873102573927, -2.3978515630412036, -1.644518030655861, -1.1228077960337162, -0.99998509966973, -1.238250394042982, -2.662171605941662, -2.517888459157403, -1.5012337495095558, -2.2137338864655995, -2.834373054028606, -1.6217398946596187, -0.10532220428173145, -0.8808370430036212, 1.489242534597218, 1.877050406143944, 2.73484740019356, 2.4077456460783258, 2.6475450628753765, 3.0430956871778454, 2.207519041765997, 3.743451049460551, 3.7070502780793335, 3.2425097604833315, 2.166088959451704, 2.688457831993655, 2.9261513735020546, 2.0198743477073062, 2.15000333986408, 2.6032155431309323, 2.2363199436949452, 2.583300847267102, 2.5876968468679227, 2.3836960430583605, 1.491958328960984, 1.676856165850014, -0.24971412794649062, 1.086137034847702, 2.188987066959895, 1.237322174198323, -0.09927936252357314, 0.9868133886222136, 0.8325026293211032, 0.8880861952685697, 0.9102724261448212, -0.31034150628868884, 0.41927012227664334, 0.8362309446471485, 0.8536689004971217, -1.2539072470603012, -0.786104645805271, -0.43479201875084783, -0.5224818179271674, 0.3741395867094875, 1.4228239327597132, 1.734642333809873, 0.3300714039040968, -0.8452905880622443, -1.49339388958087, -1.7243053814164488, -0.9426014088421993, -0.636578525666098, -0.7905487789262529, -0.20629132174157644, -0.9265527415688978, -0.3442037262847589, -0.13265689324134447, 0.3533531053622749, 1.1394319555420933, 1.0952363554316813, -0.7542643391874811, -1.3665108732773201, -0.6404385357092169, -1.1651374945060884, -1.7823386668089813, -1.7245199568756262, -0.7088765030426981, -0.28342870627511296, 1.3335796256355423, 1.7065419527293744, 2.0436038459878354, 1.8265203191610102, 0.38543749727891946, 0.5222624768860055, 0.5608263646233718, 1.1772097659918126, 1.4604008780381181, 1.710499250667901, 2.765322904808883, 2.522761290657783, 3.3017384932382363 ]
Is the mean stable over time in the given time series?
[ "Yes", "No" ]
Yes
binary
44
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
Check if the average value of the time series changes over time.
Pattern Recognition
First Two Moment Recognition
72
[ 0.9620717219446776, 0.955267885952906, 0.9398991792065646, 0.9663503043464946, 0.9638349080996998, 0.9588757497068533, 0.9570729400265385, 0.9396444419956455, 0.9640981444201528, 0.9709072635472091, 0.9460320445137308, 0.9695547243168657, 0.9675116151101575, 0.9457503020468806, 0.9529163832947642, 0.9433371323021981, 0.9560639342242645, 0.9609761005881281, 0.9440543559565007, 0.9603780296797073, 0.9628015380414702, 0.9629388503154075, 0.9610352717779006, 0.9449342924038824, 0.9555249780116052, 0.9600580114831673, 0.9706645480013026, 0.9567106945548475, 0.9607582029678584, 0.9477705239475315, 0.9456383819700045, 0.94441212001772, 0.9526664519003192, 0.9764144817466444, 0.9528404925586857, 0.9601754375891045, 0.9620167886099945, 0.9462445860564922, 0.9525244931524723, 0.9626608033934796, 0.9607848574175908, 0.937610814828608, 0.9623737514849535, 0.9514158502670906, 0.951666245844138, 0.9605604021563721, 0.971256835878143, 0.9547695720560258, 0.9679669256472015, 0.9429019819791361, 0.9579379090121751, 0.9515108969865915, 0.9593850287575966, 0.9538523695706485, 0.9438573426263972, 0.9481973733460161, 0.9409668114537142, 0.9441841487590698, 0.96128230563528, 0.9542854644338228, 0.9588957543221992, 0.974056499916797, 0.9538555803041525, 0.9627552168754148, 0.9569562730990799, 0.983117350938766, 0.9278176656064422, 0.9498213218356039, 0.9629440673025128, 0.9494841554566233, 0.9621026378719204, 0.9561123343913274, 0.9649619582740222, 0.9458562311587916, 0.9583406643785367, 0.9611454405922687, 0.9579479141635766, 0.9581165142575524, 0.9681906056956227, 0.9406156626412201, 0.9578826492810145, 0.9451193400232026, 0.9639350704163318, 0.9486707017571464, 0.9330335355107547, 0.9641633022583991, 0.9541196307212263, 0.9600989338294217, 0.9703391144312066, 0.9602402505764043, 0.958308000911916, 0.9562348746598935, 0.9457109711055073, 0.9546278557814847, 0.9755711374336952, 0.9530974302946491, 0.9551945417215059, 0.9687134733347775, 0.9419417944235151, 0.9626197511081838, 0.9414864949868237, 0.960506091258281, 0.9564727159791604, 0.9625458576470843, 0.947000892548698, 0.9515685117572397, 0.9630400132520059, 0.951809602343317, 0.9639150213504865, 0.9586882048870374, 0.952422654696898, 0.9536701515280924, 0.9567206345547272, 0.9545806503911569, 0.9636733095051419, 0.9531351228157047, 0.951204991307506, 0.9653953647358628, 0.9526486490060284, 0.951517438675851, 0.9329070792366875, 0.9467423096061147, 0.9486640633407895, 0.9515197445573204, 0.9497784915216745, 0.9660918182831646, 0.9492713667285166, 0.9499843021488543 ]
null
The following time series has an anomaly with random large fluctuations. What is the likely pattern of the time series without the anomaly?
[ "Sawtooth wave with linear trend", "Sine wave with linear trend", "Square wave with log trend" ]
Sawtooth wave with linear trend
multiple_choice
67
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Spike Anomaly" ]
Spikes anomaly bring constant large random fluctuations. Can you check the place where the spikes disappear and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
73
[ -13.821519358271045, 0.7110704596545191, -2.7233858389173133, -0.7003478003649297, -0.5765022179554116, -0.45265663554589336, 0.7032830684029956, -9.915725287984916, -4.609493788313238, 0.0427256940921793, 0.07749395027893263, -7.745424231149802, 0.41426244132073364, 0.5381080237302518, 0.6619536061397701, 0.7857991885492882, -2.25561940707525, 1.0334903533683244, 1.1573359357778428, 0.03737675090793413, 1.405027100596879, 1.528872683006397, 1.6527182654159154, 1.7765638478254335, 5.584818414667899, 2.0242550126444696, -1.5749113745497114, 5.984416986639476, 2.395791759873024, 9.165409476609238, 2.6434829246920604, 2.7673285071015785, -1.3374904639877174, 3.3842541391186614, -1.374269878785507, 1.1189417415526832, 1.2427873239622014, 5.561438005658852, 1.4904784887812372, 1.6143240711907558, 1.738169653600274, 1.862015236009792, 4.561241292702384, 2.109706400828828, 5.213302852560118, 2.3573975656478647, 0.6168736266911321, -1.6469680764684709, 2.7289343128764187, 5.523167739463628, 7.989039473624864, 5.628371916219331, 9.773432331276249, 15.54072376412199, 1.9138658470360843, 3.5958533897430462, 3.7196989721525644, 3.843544554562082, 3.967390136971601, 4.091235719381119, 4.215081301790637, 10.18306223427463, 4.462772466609674, 4.586618049019192, 5.549977477520975, 4.834309213838228, 9.996915240740652, 5.0820003786572645, 6.589006974287441, -1.3973862663878411, 3.3097680306988506, 3.433613613108368, 7.254739517331494, 9.77186258601674, 5.843450080177448, 8.44526342177731, 4.052841525155959, 4.176687107565478, 4.300532689974996, 0.7184384274617259, 8.767441961825565, 4.672069437203549, 4.795915019613068, 4.919760602022587, 5.043606184432104, 5.6176949789256, -1.4619850061063229, 5.249338292924526, 5.538988514070177, 5.6628340964796955, 5.988259717927547, 5.251372908895837, 5.438311449503302, 9.713187883823473, 6.282062008527285, 10.137148358879172, 6.529753173346322, 6.653598755755841, 6.777444338165359, 6.901289920574877, 10.434940852289257, 7.148981085393913, 8.154553896257468, 13.718183258223302, 5.3767487374354985, 5.500594319845018, 10.70198027498882, 5.748285484664054, 5.872131067073572, 5.99597664948309, 6.119822231892608, 12.879782969843832, 10.71373159160706, 3.591528583010646, 8.077109545325461, 7.974110087922544, 6.862895726349717, 11.173501336923987, 14.012490173960686, 7.269516243002613, 13.74890926236849, 7.482123638397308, 7.605969220806826, 7.729814803216344, 7.853660385625863, 0.7711103821918686, 8.893758672850572, 8.225197132854417 ]
null
Which of the following best describe the cycle pattern in the given time series?
[ "Amplitude decrease over time", "Amplitude increase over time", "Amplitude remain the same over time" ]
Amplitude decrease over time
multiple-choice
28
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Amplitude" ]
Check the distance between the peak and the baseline, and see how it changes over time.
Pattern Recognition
Cycle Recognition
74
[ 0.1451657301518739, 1.9495570187826863, 3.815465191865882, 5.388580378385409, 6.8915131713605415, 7.239126575367211, 7.141735157199378, 6.562482996064356, 5.426467277942394, 3.743557329183387, 1.8468165868427375, -0.1823430631346497, -2.2904717821426632, -4.126804696130045, -5.584979958245807, -6.791226812334873, -6.951735098345538, -7.065787920652282, -6.609527875860458, -5.538899691137632, -3.733550792718533, -1.6688299627899388, 0.3821086928826775, 2.3649288235037638, 4.163526714945337, 5.6337536030955535, 6.713910566234578, 7.127779099619075, 7.0697938377166425, 6.539066207648603, 5.098602582665032, 3.5811551271465123, 3.596409380139734, 4.958817325416055, 6.410419572947622, 7.801282334648875, 8.481006661390152, 9.059103177190812, 9.334480851142677, 8.863420387491402, 8.006261089598357, 6.970389568099161, 5.510897136326413, 4.095232676791006, 2.22936759676676, 0.9440231140541825, -0.5300512037734044, -1.2897622342844635, -1.9435373669569838, -1.9802751381648405, -1.808922079307362, -1.2819333266982869, -0.2545852481041768, 1.1261048220191339, 2.519469564963307, 4.134593137070734, 5.7831832329400115, 6.918665790661471, 8.039623167086516, 8.786084979815087, 9.458474392164765, 9.097718794028204, 8.620836968825959, 7.672314713912783, 7.679041529323475, 8.874954800675253, 9.98065320809809, 10.695287489538044, 11.468026962954792, 11.653411335919865, 11.569161889771044, 10.990300855272327, 10.237388250799256, 9.178108180716501, 7.576315069539547, 6.582042525049348, 5.28858323910079, 4.546066193895431, 3.8282189329937135, 3.6805288058603653, 3.6322553815238914, 4.003246194136113, 4.91831223442901, 5.825205769573474, 7.002860503562787, 8.338573817063207, 9.641053842644352, 10.568920478891554, 11.273176201327296, 11.884859740894845, 11.553281102639605, 11.189711205628797, 10.574196898384834, 9.727573230460397, 8.31256186842429, 7.336757067088093, 7.017387558390948, 7.612171882159124, 8.076344667476004, 8.350588909902656, 8.678522730012595, 9.025603374293867, 9.18634644267199, 8.812055736025677, 8.909082685530414, 8.641580123736228, 8.334363431826489, 7.891640579099904, 7.347401806761665, 7.164557403352447, 6.669362438764908, 6.12327391967352, 5.72787408363752, 5.443394241656078, 5.074648162688968, 5.3091688802965304, 5.407721861929255, 5.511295871052854, 5.75834793605468, 6.134990320860843, 6.454523458217053, 6.946056169054496, 7.445643321162738, 7.979819179019563, 8.450156543030783, 8.621149440871983, 8.780780555058493, 9.024682746930006 ]
null
You are given two Autoregressive processes AR(1). Which of the following time series has higher standard deviation for their random component?
[ "Time series 1", "Time series 2" ]
Time series 1
multiple_choice
61
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Variance" ]
The standard deviation of the noise component is related to the average distance between the data points and their past values. You should check the degree of variation of the time series over time. Which time series has a higher change in average?
Noise Understanding
Signal to Noise Ratio Understanding
75
[ 9.4742332354162, -5.943301657716139, -11.48720963841173, -13.540007747725392, -37.401390013746386, -29.089827290649296, -17.14650024428046, 5.785235329605015, 10.595384976474445, -1.7845729611020698, -5.946192190235991, 13.854857109153158, 15.62270421366174, 22.97948335330967, 12.64982177523968, 7.958541650090348, 5.677040125325325, 13.745101712312424, 6.711370667964159, 11.396181354194571, 9.110060748901933, -4.84323518200298, -3.9033837658487824, 7.919627784955445, 6.396722307303342, 1.8309572668299108, 15.701948100861117, 16.460467058295166, -0.6478567761719525, -3.4068406534740383, -0.046879856311751844, 2.3158421059085033, 6.962295438750966, 3.956536686818466, 1.0464117374540192, 0.9779376001808922, 8.727180592189747, 0.13767945465126985, -0.6104626356192664, 1.9910432893383543, -3.78856321589205, 1.5931012841836631, 4.763598712073839, -16.877593906795344, -13.162966220807146, 3.642210778975805, 17.87825609025092, 21.12737226757774, 29.60199619534429, 22.151675404815634, 23.416704692895095, 20.37165430095461, 22.98428060656248, 36.835678807839074, 39.491727532362844, 28.168568038854982, 38.3382948247094, 33.150252506152746, 33.03846346076314, 24.06998149253172, 26.629702313484067, 25.29353255495855, 31.551757922907456, 20.217727089636, 25.680452344999825, -3.8427826423545177, -9.233500422542663, -20.840097216806118, -13.297975766673929, -1.0247107859749853, -0.9115976798717638, 12.827922469805614, 2.518871115837751, -11.999340431529582, -2.3680202960483543, 9.809896867938807, 8.90237378143938, 25.34387674158136, 25.35896796920286, 24.26403808276376, 15.10802488469681, -0.9453958626286969, -3.4234010800717685, 13.070258329306844, 12.3653734045016, 5.980073126176926, -4.2659109790341905, 1.9752102800453946, -9.669824201894784, -4.1661928268127095, -7.944829653627604, -8.96248033011923, -0.7487848744719567, -10.098347853502245, -8.013317447111607, -21.682659648432896, -18.47669564712846, -9.811449986638603, 0.06482440690756786, 11.39443915414518, 15.701280598981784, 8.493132170387813, -11.30927730170737, 0.8591472426140232, -4.5586671832692, -18.11309955580951, 4.225146116342234, 2.774589707737926, 7.109396835688614, 7.968676325546287, 6.230804930917389, 1.1144451781467621, -4.946335952303543, 18.297826330068048, 0.0623089801621326, -4.280574584770506, -12.327218665632342, -4.683700595154427, -7.886746606898203, -11.299098426764374, -2.6215528270867763, 17.253976258240478, 5.499060270552166, -11.114089894834262, -8.265901845608703, 1.763404245333927, -0.7422679787125923, 5.7350737032831685 ]
[ 2.7532710566168053, 2.8168863224447094, 1.7690423153206858, 0.6632099868143315, 0.800942763634247, 1.3145531181189605, -0.2560091350768907, -0.19368722439152303, 0.5879152925946025, 0.8040862910347922, 1.267187887348817, 2.504667265406251, -1.1056553333657937, -0.6661138809506615, -2.8842941297091746, -2.3524984898768624, -0.5829006377691994, -0.5949136665707535, -1.4103624483011614, -0.30271768436405244, -0.1023286098124288, 0.10723145326380223, 2.2432049409970656, 0.2875447831118114, -0.4063217883837555, 0.051053516444705016, 1.25984530161055, 0.04741236127320303, -0.3729334288560284, -0.3668104484105427, -0.4455896016025723, 0.3410013594815563, 0.2226480449939245, 0.8277065510568997, -0.5407218317705018, -0.2879256087161658, -0.19576648221859977, 0.6870654713744657, 3.069456775474343, 3.411854764314823, 2.025941319383164, 2.2540189118979708, 1.753036961112181, 1.0637291582841681, 0.32210931116896835, -0.3242946800373887, -1.4038292102390217, -2.4185250886776952, -1.2797872192200392, -1.3801126830278143, -0.9220243850313491, -1.607423726201071, -0.7068788467170386, -1.2691541751662911, -2.3542014960967004, -0.3152411180233372, -0.04444764313119029, -0.34778025405768354, -0.4703891131319176, -0.7355427789847647, -0.09519584974271245, -1.6235837464309182, -3.1040870693620746, -2.3707139883180037, -3.639101270024801, -4.817880561856282, -2.9513593980756254, -2.1943026571926243, -1.5751610983892663, -2.378958513673115, -0.5130049234620677, 0.5955471497635539, -0.8826861249063285, -0.8149044007925285, -1.0615305034979579, -0.8938639343035514, 0.37257839476189236, -0.08282392583998344, 0.9174649835410926, -0.9965905072271951, -1.412426394149239, -1.5316855304468242, -1.765912844959726, -1.3883677191951094, -0.9527879917908308, -0.5318044611609571, 0.4608151507267512, 1.1021090206571635, -0.6203847399308619, -0.34638945312959213, -0.889167297676533, 0.10828253016400191, 1.3821601541551167, 1.9473486388810088, 3.4639098017340277, 3.5241736598491813, 3.818236076214076, 2.26054702670901, 1.7835591185627133, 2.116767197855089, 1.9819707241182853, 0.6720191282977247, -0.38589664976808935, -2.1191888009370503, -1.3232921300215184, -2.089068546733597, -0.9995908469240704, -0.07554976816743098, 0.1613835795990108, 0.5240299204224304, 1.4377660073730176, 2.300270076572343, -0.3904446976360274, 0.39286125103768926, 0.8013148972981785, 0.9369685080880062, 1.222611821389261, 0.6625868994308692, -1.8671602719205955, -2.0993264336929682, -3.5075838955419254, -4.457899589239808, -2.496723221552048, -2.5420507426330774, -1.7648219749201661, -1.4074798192213132, 0.21284603368648947, 0.24498635235023247 ]
You are given two time series with different underlying functional form. Are they likely to have the same variance?
[ "No, time series have different variance", "Yes, they have the same variance" ]
No, time series have different variance
binary
94
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Variance" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
76
[ 1.5284837965498062, 0.8288368852020385, -0.5066378425708846, -0.578090936575649, 2.9441160089826006, 1.9739459014223524, 0.3034714567058414, -0.338372182784285, -0.8700115198177398, -0.6197872470460756, 0.710308329943784, 2.3129106297608737, -0.11879900747216757, 1.198476536099397, 0.8984874386942965, -0.29248033511841115, 0.9990723528538664, 1.0301398560825816, 0.9168088958838817, -0.4126085743479162, 0.7171100948669109, 1.1890440542288008, 0.9557564862616222, 1.0778164403875683, -0.20302247797353354, 1.0725465119446485, 1.2900650358766779, -0.4569154333691609, -1.3840662037493898, 1.6355859989762787, -0.4625307901256981, -0.7425865972230673, 0.21229132147923174, -0.26997506575898067, -1.9262319517224968, 0.8918181780704721, 0.8667877755870735, -1.031367801247887, -0.025461110764491424, -1.017215174123941, -0.8587658325831028, -0.6019056933471514, 0.5285755070751296, 2.0111876832108386, -0.4132526939537446, 0.8389588711543634, 0.7976298955390789, -2.129768262533495, -1.3850107360038229, 2.0462816562890795, -0.5062087175539033, 0.45307722675239415, 0.3367964522784419, -2.128063299348509, -0.6820469728137909, 0.7266615021191012, -0.9377966243554279, -0.3780968541848281, -1.204089515841476, -0.8405207602940196, -0.5267391908819098, -1.859163037191152, 1.171559010470227, -1.388591230776271, -0.17242656183794594, -0.7448772437373951, 1.0768531989502246, -1.2323820034826898, -0.7820632812396645, -1.3371319506794825, -2.408098781648478, 0.5090893310575455, 0.03230140103754173, 0.2190833153632252, 0.8104862476292712, 0.10810126312516541, -0.4440135952568882, 0.2596361653183601, -0.5064881748116418, 1.1123510774232184, -0.36207734255891316, -0.11923541737752813, 0.6365710776701781, 2.3361141438503115, -1.0221830814366792, -1.2183571553815016, -0.24500300515808401, -0.748229340764418, 0.699963066323442, 0.19744197623386037, -1.1194522185932698, 0.7494605396908268, 1.8476691021185547, -0.7990297240388818, 0.3252652041761747, -2.194671679382774, -0.3681076650607013, 0.3096630599655818, -0.14135817711595133, 0.11258725990706078, -0.7780486325372323, 1.2600177394213699, -0.41065670273846405, -1.2294607847229264, -0.03880283825484976, 0.9229052090193991, 0.5544762598169899, -0.5177322087888763, 1.7731600995871857, -0.07473746585634566, -1.7123468399337898, 0.5943823707738919, -0.13732762714836927, -0.07404767418586329, 0.8888158156776136, -0.2610242137334431, -0.29017553939790686, -1.2535245487700224, -0.5294424436870959, 0.24497690164503397, -0.5878859834269101, -1.6693749422543351, 0.6514911493209906, 0.6924792351503588, 0.7000063098720186, -0.9255423483832368, -0.020641213396210577, 0.23964557488965957 ]
[ -3.4789418794362374, -3.101071959265167, -3.9664223621306283, -2.9116045561408233, -3.65179874936317, -4.650891504447074, -6.447812535621756, -6.019960163363764, -5.13253830781517, -5.51992278556212, -6.602819693977832, -6.067162583398823, -6.862116678877944, -6.482983276249476, -7.0492326465132935, -7.318168641934316, -7.1226300684725095, -6.922558981527373, -6.857171862612575, -5.956684282908037, -4.906654039573012, -3.8088513732930016, -3.9166934274077776, -3.8517188105850417, -3.007517746372618, -3.406694109759724, -3.669920567622988, -3.657150125964132, -3.6689656493863043, -3.8443889291518247, -4.417066906640087, -3.893829442064419, -4.1311050456017675, -4.0353368263367635, -4.0396399165432655, -3.6259537263778197, -3.3465017837552535, -3.502865174863767, -3.7570309854801884, -3.824862292944366, -4.5046177065056945, -4.997236873025632, -4.672302564958842, -4.4889381932189085, -5.080637458730899, -5.154034791672788, -6.111441964575008, -6.028600052237046, -6.234489465197162, -4.9512647881761165, -4.591631373945269, -5.175441513045241, -5.767680874492845, -5.377067870713629, -4.838478479690578, -3.7001096450235096, -2.991836272535231, -2.6995839577417167, -1.8278896473037092, -1.7822115341892786, -1.7637957830637163, -2.506553762226048, -1.582672871489468, -1.5015830067517053, -1.5619861677952198, -2.0483163610249373, -1.2977697474218164, -0.6935191294392566, -1.246141303187531, -0.9334691069192115, -0.4459264005036961, -1.2092743878961407, -0.8165136224728399, -0.5464043001032277, -0.16470563884911527, 1.0521603512462916, 2.8661858063648764, 3.6233803438098944, 3.7829332075645414, 4.173858069926734, 4.439701190236336, 5.880154984206293, 5.964315234985938, 5.710578626944168, 6.04668094244985, 7.325415896046978, 6.732118045737034, 6.32057961349887, 5.875136502795328, 5.141922890550312, 4.559328261074263, 5.13531067754052, 5.269946640268802, 4.477455924254771, 4.897435891675663, 5.109027798834825, 5.6919101442531, 5.321956539009869, 4.570359832464858, 4.986789025938457, 5.492163878458021, 4.815689526663346, 4.961526433956189, 4.584063641432377, 5.178898563901435, 5.584482363571512, 6.33096496150519, 5.815709693475966, 5.393249662679721, 5.166261389687007, 4.841603775743367, 5.067281712619352, 4.407566914768241, 5.339308617368123, 6.40740831606573, 7.086945260269733, 7.393248006977069, 7.317810337195414, 7.433517393774855, 6.970286659299387, 7.066713821408098, 7.272114148215122, 6.766585998550504, 7.759703396122934, 7.708114459517452, 7.0780178332447505, 6.9522655020432005, 6.583222305272591 ]
You are given two time series with different underlying functional form. Are they likely to have the same variance?
[ "Yes, they have the same variance", "No, time series have different variance" ]
No, time series have different variance
binary
94
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise", "Red Noise", "Variance" ]
You should focus on the underlying distribution of the time series. You can start from analyzing whether both time series are stationary. Then, you can check if they have the same mean and degree of variation from mean.
Similarity Analysis
Distributional
77
[ -1.8821688290795302, 0.5135521968628918, 0.21673645419964271, 1.7042274944929616, 0.9270134448498357, 1.112836743549456, -1.1288409140151705, 1.1182243195810908, -0.1948963925084862, -0.691917185342424, -2.3454169345679317, 1.3133702511779946, -0.2845732452789791, -0.12221902904728252, 0.32103686786465324, 1.862299802347153, -0.22583585970728187, -0.015432719684975858, 0.9686490064537576, -0.27911453112993967, -0.8312240544639494, -2.1883722921684576, 1.3362840635003845, 0.2387283283560764, 0.5460577375638241, -0.4861731870638999, 0.6797437943734773, -0.5837963658540882, 0.1626706066442845, 0.10780395752861958, 1.1293376791865164, 0.6470066499113066, -0.6265411144106176, 0.6012751811297552, -0.36712099348696847, -0.8122284967914727, 0.5509796543035121, 0.1939913289490852, -1.1959299587973575, -0.5152036293576422, 0.7454097586955774, 0.38911495434451604, 0.43104563832533926, 1.845339877174641, 0.9959989643864737, -0.11678633986612308, -0.40394699351913865, -0.6801300148897855, -0.45978281176458946, -1.5991421051070394, -1.2160959049742, 0.657761203944672, 1.5347775976944225, 0.05523249851304367, -0.7026217584139675, -3.404486485931853, 1.7038626169752848, -1.338522522051017, -1.4721097063273063, -0.29745121765773147, -0.04232590964298583, 0.010363113109881228, -0.8549415617525271, 0.41571332369794867, -0.5217659458557397, -0.49695548156948743, -0.278713573434405, -0.6769143601514702, -1.254289598910707, -1.1890086802346644, -1.1051512326360382, 0.45607769747214266, 0.3991186820646895, -0.26875637403827246, -0.21910248419605943, 1.1675388736255816, 0.5142081526487404, 1.5648853801826468, -0.5773114607047838, -1.1649556604829516, 0.9969043313968593, -0.020566058960239525, -0.8028382337226678, 0.4887986414030439, -0.7050163757526768, 0.6889959462443455, 0.48595167095797087, -0.22596345769928491, -1.6866655687028371, -0.9231637797389002, 1.5183543175457233, 1.7454777437196378, 2.5932551460832993, 0.40038223340711926, -1.0900906960816756, 1.3390059979211761, -0.26416810625591164, -0.6823227785683134, 0.3347440268222954, 1.8969290449692906, -0.10530909933414562, 0.01700158298701464, -1.5321480320494418, 0.10775250334940593, 0.6654810515915741, -0.08764441013541906, -0.013495811686846262, 0.2251375425754161, -1.0491772178231749, -2.277721405935463, -0.10328818343115523, -0.22561837152864644, 0.5700019412929034, 2.397103598867367, 1.296023768716349, -2.0569961393503458, 2.520783372894506, 0.6640085992939947, -0.2646788306983342, 1.4763887095906, -2.553124804720991, -0.5445305733392659, 0.19708161698214768, 0.06732256957209698, 1.5140777947616753, 1.1804903685806785, 0.6821236353829301, -0.2769638541202617 ]
[ 8.547980406818501, 7.17566077675005, 8.94782802480751, 7.275115176736241, 7.950172895690184, 4.609650562014734, 6.985753215200241, 5.965633228745788, 2.824229376136598, 0.6130231322745737, -0.09017650160580376, -2.1833344053490364, -0.5308373623759187, -1.1681293093338343, 0.9772547637782099, 0.3281032332576427, 1.9735136090151388, 1.9941299685982248, 1.3989643342677605, -0.9888695275575508, -0.8331756944282986, 0.8542648074198312, -0.7233018811104563, -0.7519164914766243, -2.0175667385469818, 2.4252796982040867, 3.1411778886652493, 3.347563205040054, 2.232953415772918, 4.261205311792421, 4.25964820308184, 4.110710952956697, 3.9425438594310354, 1.4047673362773805, 4.837120330778779, 6.947252500349112, 6.967720048684802, 6.731140556572792, 4.708233546233959, 1.3213611772050515, -0.700067747655392, 1.9241040837219723, 1.0367861996725267, 3.5204373942861356, 3.451595868731224, 1.4589333093737893, -0.22531603107398798, 0.340531656955093, -3.375557381981907, -5.135598245449684, -6.17645244650363, -4.293620596059391, -3.6443795181398886, -3.2143744377862387, -2.1511014513233215, 0.22178400454359776, 0.33781742658186, -2.0354468287364695, -1.604309574085172, -3.532676937348382, -8.280366690979584, -7.846839867494885, -6.661152858027631, -5.865236101976416, -4.705689038055624, -2.147941906866395, -4.371571421180657, -5.2618854447516625, -8.215250154244739, -7.184188766178233, -4.364552759664795, -5.613906772795847, -3.9565021350521823, -5.721863090990765, -4.240731347412607, -9.3665338789759, -5.872682609101753, -8.374425829726588, -7.986768624315114, -4.763302462324906, -7.443452134083932, -3.405992913617863, 1.4197546394624134, 3.000697088599601, 3.039269663629727, 2.615217122934941, 3.932870039726643, 5.645079953595051, 1.0258821602762809, 0.3723065614961793, -0.9693729068734952, -2.643126366792829, -4.271631492424487, -7.24111036884514, -3.6847729503052307, -5.0324156147221535, -5.3647653789322405, -6.081839139022033, -7.341015571292795, -6.384229842350662, -7.100644296034565, -5.711553800019036, -2.108913180991802, -4.633371224464246, -3.892635331497111, -3.2197571995609615, -5.916809755689974, -4.434119087633359, -5.035986782341869, -1.4121310172912267, 0.880178599795829, 0.8790216392319637, 0.3824764361596347, 4.358077045161346, 3.028795909488396, 3.6356210338043415, 3.486184313942875, 6.227919886146526, 9.145985052316924, 10.390568428604823, 9.179466312711021, 8.820368810343163, 5.997510958635369, 6.568610853890214, 4.7178184183916505, 9.855046988066022, 8.598398099436727, 10.95217572055992 ]
Is time series 1 a lagged version of time series 2?
[ "No, they do not share similar pattern", "No, time series 2 is a lagged version of time series 1", "Yes" ]
No, they do not share similar pattern
multiple_choice
99
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
Focus on the time delay between the two time series. If time series 1 is a lagged version, then it should look the same to time series 2 after being shifted by a certain number of steps. Can you check this?
Causality Analysis
Granger Causality
78
[ 0, 0.4222074417867393, 0.8306502480547651, 1.2120821160761959, 1.554273889925573, 1.8464740719486694, 2.079813690278029, 2.247640276360641, 2.345768375956672, 2.372637160154601, 2.32936920126867, 2.219728200303609, 2.049977257837069, 1.8286430253916515, 1.5661946186125046, 1.2746493833682524, 0.9671203603813456, 0.6573224894435943, 0.35905614800977403, 0.08568747247813602, -0.15035496837952533, -0.33804819414597054, -0.46818990345926137, -0.5337450036786286, -0.5301105303004048, -0.4552889800938049, -0.30996353077695216, -0.09747231469722228, 0.17631728471197405, 0.5032295800987148, 0.8730884508104538, 1.27410054352513, 1.693299372767469, 2.117033597884757, 2.531481089510106, 2.923169427390393, 3.2794832292711877, 3.589139206431817, 3.8426110567763887, 4.0324881953461285, 4.153754813592544, 4.203978758918756, 4.183403121880735, 4.0949370821631295, 3.94404635804137, 3.738547384658035, 3.488312971710908, 3.2049005245564466, 2.9011168287502276, 2.590535786866801, 2.286987268110387, 2.004036319029066, 1.7544723466154997, 1.54982750954873, 1.3999424534448817, 1.3125957431586035, 1.2932109465467996, 1.3446523999969062, 1.4671173465462402, 1.6581285083308728, 1.9126273730622099, 2.2231646816565713, 2.5801809438540104, 2.972366418492324, 3.3870870027136153, 3.8108599924583277, 4.229861798605882, 4.630448499772342, 4.999669629387413, 5.325755849448722, 5.598562146696892, 5.809949861840256, 5.954093165812696, 6.027698442134671, 6.030128314129155, 5.963425646518429, 5.832236617577265, 5.64363575870272, 5.406859549858942, 5.132958602852868, 4.834381530122434, 4.524506169227169, 4.217135815649417, 3.925979434191122, 3.664135422566737, 3.4435983670282684, 3.2748073640510467, 3.16625291686201, 3.1241572098481547, 3.1522398007033643, 3.2515775536087945, 3.420564087921825, 3.6549702694081407, 3.948103466107791, 4.291059571761238, 4.673058306387501, 5.081849167651411, 5.504172746170917, 5.926260033084, 6.334350917525781, 6.715212349035184, 7.05663665252791, 7.347901230864491, 7.580172344063506, 7.74683776010748, 7.84375575076051, 7.869411055999896, 7.824971943932868, 7.714246217501769, 7.543537824626499, 7.321409471394406, 7.058360177536585, 6.766429916435194, 6.458746227672963, 6.149029875267316, 5.8510781669420435, 5.578245391004177, 5.342939935935842, 5.15615702959224, 5.027064693574958, 4.96265850443381, 4.967498162302343, 5.043535786961891, 5.1900424071632045, 5.403635411386161, 5.67840592632845, 6.006141326450786, 6.376634495570493 ]
[ -0.5008868035072074, -0.42045744138067165, -0.3397657981133404, -0.25880762603690766, -0.17757860869167197, -0.09607435971244982, -0.014290421696453448, 0.0677777349471731, 0.15013471316644478, 0.2327851904545628, 0.3157339200571805, 0.3989857321992216, 0.48254553533156797, 0.5664183173979345, 0.650609147122265, 0.7351231753169754, 0.8199656362123837, 0.9051418488076715, 0.9906572182437241, 1.076517237198203, 1.1627274873032132, 1.2492936405859285, 1.3362214609325476, 1.423516805575962, 1.5111856266075125, 1.5992339725132318, 1.6876679897349656, 1.776493924256777, 1.8657181232170417, 1.9553470365466514, 2.04538721863375, 2.135845330015427, 2.2267281390968123, 2.318042523898006, 2.4097954738293055, 2.5019940914951824, 2.5946455945274685, 2.6877573174482396, 2.78133671356286, 2.875391356883693, 2.96992894408496, 3.064957296489262, 3.1604843620862706, 3.256518217584117, 3.3530670704939958, 3.450139261248537, 3.547743265354476, 0.6441140885657834, 0.7428076971642845, 0.842059378132141, 0.9418781695050591, 1.0422732556906018, 1.1432539698386972, 1.2448297962505341, 1.3470103728264708, 1.4498054935535891, 1.553225111033535, 1.6572793390512937, 1.7619784551855724, 1.8673329034614534, 1.9733532970460113, 2.0800504209875803, 2.187435234999391, 2.295518876288284, 2.404312662429237, 2.51382809428644, 2.624076858981689, 2.7350708329108393, 2.84682208480912, 2.959342878866088, 3.07264567789103, 3.1867431465296283, 3.301648154532719, 3.4173737800779955, 3.533933313145489, 3.6513402589477435, 3.769608341415514, 3.8887515067399376, 4.0087839269720575, 4.129720003680646, 4.2515743716692675, 4.374361902753538, 4.498097709599559, 4.62279714962451, 4.748475828960424, 4.87514960648214, 5.002834597900501, 5.131547179921839, 5.261303994474815, 5.392121953005738, 5.524018240843399, 5.657010321634658, 5.791115941851809, 5.926353135372969, 3.0609666211222377, 3.19852223585729, 3.3372652968894467, 3.4772150350257163, 3.6183909925178765, 3.760813028106356, 3.904501322145789, 4.0494763818136, 4.195759046402919, 4.343370492701239, 4.492332240456162, 4.642666157929667, 4.794394467542347, 4.947539751609028, 5.102124958167303, 5.258173406900435, 5.415708795156205, 5.574755204063221, 5.735337104746281, 5.897479364642409, 6.06120725391916, 6.226546451996883, 6.393523054176612, 6.56216357837529, 6.7324949719700795, 6.9045446187535, 7.078340346001235, 7.253910431654367, 7.431283611617959, 7.61048908717782, 7.7915565325373874, 7.974516102476684, 8.159398440135297, 8.346234684921395 ]
What is the most dominant pattern in this complex time series?
[ "Seasonality", "Trend", "Noise" ]
Noise
multiple_choice
13
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Sine Wave", "Gaussian White Noise" ]
Identify which component (trend, seasonality, or noise) has the largest impact on the overall pattern.
Pattern Recognition
Trend Recognition
79
[ 3.1169223796998766, -8.270671867475288, 6.902542083286966, 2.491837155857492, 16.794874792075007, 10.747939127933627, 0.390322010996087, 9.455217629486278, 4.762819549649836, 1.5750493242568921, -7.717589161768779, -6.498659727871128, 0.5326080743768979, -2.120576374755536, 1.762314038512266, 7.35584876233861, 4.490678351974613, -2.881594041401486, 4.912005528724457, -4.055170830176547, -5.471170285399781, 2.017769613426118, -3.9988803186425, -3.3001203552688594, 4.881622572277935, 3.322765127695029, -2.1837148872632803, -8.370247002741987, -4.102788963580799, 9.289151776775904, 4.584974865504675, 6.693545802307441, 0.8558990373200779, -2.258311082258865, 4.284610930748291, 5.813234034743275, -3.037265008722599, -3.8475663494148242, -8.054606564387507, -4.012499982965073, 3.2113995204670926, -3.180475696129508, 4.7090225484395605, 9.749789338578156, 0.029367206300302887, -0.26352359987712604, 2.903207332394799, -2.8902993462536886, -2.9266367665612596, -2.596442117609305, -5.322621556285786, 4.979745672273103, -1.8827585029896148, 6.170286335301163, 3.337015256462646, 0.4766786914654791, 4.422941972692925, -4.00303831679969, -3.3430580165769452, 4.038853248524586, -10.419947316674662, 0.5735071673609456, 3.3080846429192685, 6.7978656824407455, 7.931674525280278, -0.4983439226704669, 4.0280772701752525, -3.8938332463386427, -2.105258482185174, 6.9913593679956865, -0.30638542404181346, 0.55743777160639, -5.260835121471962, 1.9005561381712146, 3.4215371863276363, 3.233282790711372, -6.49012705200713, 4.559390537685595, -5.467368480800044, -0.6957321862454062, -8.544737969711825, -1.155057794736034, -5.501355687712546, -2.63216906452102, -0.10067830639475156, 3.9982372666069144, 3.8578831617989087, -11.934538321680215, 3.14292386466292, 1.147143635611886, -2.828595534712254, -4.1360619933358915, -0.11783023209424902, 1.552296732153401, 2.3306542745542314, -0.5821965877985535, -12.197172382534403, -1.8613335215182132, -5.393393852932679, 11.008309032525377, 0.8513624249486597, 4.384835745702766, 3.7763209331555223, 2.1768703502287416, -1.5517745370023974, -2.1726568430879905, -9.838833312716202, 1.0978014048624478, 1.8519886693309038, 0.09730311737901731, 1.1202360462348195, -5.901091456076362, -1.2029718680832047, -3.2847205010434886, 3.190913168905858, -0.07815046119315677, -3.3003180305205606, -1.0149692106310706, -5.421941407533701, -1.954310410421399, 2.5470715645877746, -7.027864405198677, -0.5047036592611136, -4.220124889735343, -6.87377711229437, 9.002786361283698, 5.919259561509863, -3.2882285200715655 ]
null
The given time series is a white noise process. What is the most likely noise level?
[ "0.24", "9.4", "4.52" ]
4.52
multiple_choice
51
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
The noise level refers to the standard deviation of the noise. You should check the degree of variation of the time series over time. You can estimate the standard deviation by observing the average distance between the data points and the mean.
Noise Understanding
White Noise Recognition
80
[ 3.138458720835493, -0.9079746225038648, -1.3850108606336626, -4.362436582639805, 0.037390583615902966, -2.790883169698276, -4.2708021830424165, 4.5165681212828, -3.7186832435344286, 6.4667820948631585, -3.084930004238809, -6.843322785947343, 2.497364111800117, -2.237679657203353, -7.117957019258015, 1.3122322161958284, -5.894784243141991, -9.013211730023835, 3.0417021089294263, 6.879390722475776, -1.943834352645035, 5.439366819636012, 3.7106965163847043, 3.0487253373357763, -0.648635893092021, -2.627210024085581, 1.508772295328712, 2.988169682663816, -5.83192716802562, -1.6680140091478484, -0.9172316217837898, -1.267956218116583, -3.133681795413172, -6.008098372496056, -1.3698778036855368, -1.4417411199473213, -2.191572906568231, 3.030083168661713, -6.13961496373302, 1.1981625789509354, -8.04852577502528, -0.12401725812967188, -10.241228311810826, -3.94937937689855, -0.04087845290360427, -6.490980468951768, -6.527241611957617, 4.604737799759335, -7.105593810462624, -0.5651203634483416, 6.795326928812285, 0.6994518222600135, 0.25149006479741115, -3.40557720339397, -3.2516987719347945, -0.6012556325919786, -8.76228507664529, 4.540082792978722, 0.8978179627491162, -7.834384315258094, 4.67363181152681, 3.124552134378388, 1.7691277929861382, 10.087469643206152, 0.516122623586393, 6.683241333501096, -0.04638976154990494, 1.8682706141333245, -2.436886144444879, -8.617514722723119, -8.379064410325281, -0.3763324054103307, -1.1968215690733226, -5.290118002672658, -1.0118248587579597, 1.9984346057972258, 5.642634615437714, -3.174834622971402, 1.825583323129049, 7.902988352350556, 3.475008583208639, -3.538543009479921, 0.43047034695142966, 0.5902647411305771, 2.9437062779023275, 0.04560524251703463, 2.206758215992423, 4.523423629386131, -4.764532574411538, -5.875318995184544, 2.7091125021309495, -0.7670106145751793, 3.9028453089196775, 4.85370939015135, -8.460830349863308, -3.5980258635649878, -0.7513234560949741, -4.56335669701289, -2.1520869898593267, -5.864174628755207, -1.9483805472841949, -4.3645064210285405, 1.690282619089021, 3.9668750484902224, 1.7965430744941657, 11.846959043663981, 4.224610288704715, 4.1301608026528775, -0.24974952179049484, -1.3312483410983456, 5.695288476625256, -1.1791832136375304, 0.2802260930643457, -0.7630138921006686, 2.4210670262603458, 4.069436832119762, 4.6839725290984715, -1.3971021130759593, 0.8157887820245475, 1.488794598334914, 6.581018071593653, -8.107026135051834, 0.04035423600347519, -2.7616303144764545, -2.6281565143606667, -3.7756226550920697, 2.4289797672023536, -11.087275382899369 ]
null
What is the most likely mean of the given time series?
[ "0.66", "27.56", "-14.48" ]
27.56
multiple_choice
42
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
81
[ 27.310510405517082, 27.25258343853966, 27.146152976170363, 27.597164890088226, 27.876891048964126, 27.50587161967669, 27.141881593010496, 27.788279756685135, 28.021343531008657, 27.37873395087431, 27.42494344328287, 27.69891743064147, 28.003754563639827, 27.41356802224889, 27.189637012462164, 27.73081664519469, 27.77701550327323, 27.558507403118323, 27.40301400521487, 27.83083690534324, 27.702327690031087, 27.34506139541834, 27.57034671613602, 27.18433018910511, 27.745827353681015, 27.484554543647302, 27.436749730408632, 27.547758608528756, 27.567925289747116, 27.803432016734202, 27.719703511071145, 27.513716350562124, 27.767260410884578, 27.667248205233484, 27.43926048611426, 27.522449414903253, 27.515972259122538, 27.69605171809847, 27.45567801737985, 27.449233422433718, 28.09934463459922, 27.815778964724934, 27.34722043143839, 27.714150939772907, 27.58943128241906, 27.664716814339858, 27.59466466902919, 27.884645426431664, 27.652059739048557, 27.53970810107222, 27.844012328615683, 27.62110370415361, 27.590293401231097, 27.643352406820465, 27.53102210250939, 27.559360436140658, 27.395143411800735, 27.349819988631754, 27.281643548782107, 27.173231472756783, 27.31439566032305, 27.508795321373103, 27.585233694779085, 27.48205707097099, 26.907660852507608, 27.99072366374285, 27.856217118072756, 27.679655000389136, 28.082461499119898, 27.287487321686005, 28.0769871851762, 27.290835486269884, 27.6226063455168, 27.205788740115416, 27.560866995627386, 27.66323296863932, 27.514190037835874, 27.75353967686779, 27.584103001906865, 27.412856895789982, 27.400622057409514, 27.780279801090757, 27.37666727065216, 27.809073698937436, 27.89375823110425, 27.096973332337484, 27.8690162305176, 28.124604698807527, 27.62626198774441, 27.72190630772875, 27.84258343800194, 27.480903610911376, 27.607048399527184, 27.194666200976254, 27.595021172673412, 27.694081585427945, 27.699055874121726, 27.85041492005879, 27.343306946184565, 27.41004829712534, 28.079159275656387, 27.515392054479786, 27.61194071674428, 27.53835193540905, 27.330388682535226, 28.004210756591416, 27.41140005403991, 27.24617375297411, 27.432608093660658, 27.00521129529863, 27.377343670607708, 27.290032337000984, 27.726961453182707, 27.37124623565912, 27.801468283181947, 27.942195456014858, 27.772084834384028, 27.49746361223504, 27.595704435200112, 27.136580449512206, 27.519952432595012, 27.319708309822783, 27.748152026080987, 28.265786458085362, 27.694552707898012, 27.008122908092595, 27.457274224501777, 27.59057237158603 ]
null
The following time series has an anomaly where the pattern is cutoff at certain point in time. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sine wave with linear trend", "Sawtooth wave with exponential trend" ]
Sine wave with linear trend
multiple_choice
68
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Cutoff Anomaly" ]
Cutoff anomaly brings sudden disappearance of the pattern. However, this only influences a small part of the time series. Can you check the place where the pattern disappears and try to recover the original pattern?
Anolmaly Detection
General Anomaly Detection
82
[ 0, 1.258484865942028, 2.2694397844803613, 2.836079966156311, 2.852707868674072, 2.3263818415817274, 1.375469121307186, 0.20537982144481037, -0.9335434008312042, -1.7973471254722464, -2.198479117448618, -2.044237685662859, -1.3557760983986646, -0.26376603353623806, 1.018390917153062, 2.2383118836515865, 3.1563727545514944, 3.594832590114123, 3.47427160545117, 2.8298727137092055, 1.8042088130088323, 0.6180144675697665, -0.47506603227759436, -1.2404773058518823, -1.5108381742818513, -1.220255829147113, -0.4178342624915756, 0.7423923528245298, 2.03303761364221, 3.199978494287217, 4.01445212601254, 4.319953588672864, 4.064320379594846, 3.310426046669738, 2.2232907252731726, 1.0362509980273016, 0.00312446371976538, -0.6538244277530312, -0.7894499513247788, -0.3654808709436841, 0.541633722222616, 1.7563969425320605, 3.040242048191073, 4.140440087055484, 4.841910882445976, 5.011315788998081, 4.624392933065057, 3.770931045674896, 2.6363622217682354, 1.463747203011433, 0.5039464344486388, -0.035807865893786595, -0.03439558318211278, 0.51836092754787, 1.5196103617279537, 2.774557613741182, 4.036397968744373, 5.056913583488617, 5.637359667133078, 5.669208382771879, 5.156397719875555, 4.214524182287905, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 0.010919922643576711, 0.027783130415524406, 0.011936397242823174, 0.0021863831605386246, 0.008817610389486107, -0.010090853428651077, 7.451095475690363, 6.608111860742472, 5.478076271769671, 4.303120109463027, 3.3345837676586596, 2.7814903104947493, 2.7676944617962254, 3.3064916267763396, 4.297892252393563, 5.549120299214019, 6.814133512278291, 7.844063592967798, 8.438235727160205, 8.485308153370717, 7.986097906997133, 7.053413323050349, 5.888927635338292, 4.7418347261632015, 3.8577628515133346, 3.4284193415260544, 3.5522894215836396, 4.214446136850999, 5.289610469601573, 6.567834306504433, 7.797541089999897, 8.737100556154564, 9.204364421297285 ]
null
What is the most likely variance of the given time series?
[ "0.17", "varies across time", "1" ]
varies across time
multiple_choice
42
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Variance" ]
Check the degree of variation of the time series over time.
Pattern Recognition
First Two Moment Recognition
83
[ 1.4400660144422108, 1.3924147694941866, 2.924461028391785, 3.152119678955696, 3.972405521006856, -4.644579197409592, 2.967526622002635, 0.32109928135042376, 2.2843563304479186, -2.4954206198860476, -2.5213905905916545, -2.236280405734348, 2.722572268770104, -0.42134901541264147, -1.9604753921725342, -1.3000686987424144, 4.683041261402724, 1.8051412514193308, 1.7210553365823043, 1.0187683679422468, 3.9738351006003323, -3.9995061317335496, 3.283664881235888, 0.24084203160032802, -3.5045738039419927, -0.3280444778571585, -0.8919711713723912, 1.3591677770466801, 3.401149933839536, -4.162362847515771, 6.320118367935413, -6.491939043206419, -2.9721479220574674, 7.451701067704378, -5.567508724506952, -2.1882924406211273, -2.8315520916571186, -9.332315438923022, -0.5342315221265915, 1.603391354729614, 1.7238527863615503, -2.221347148033599, -4.082102834913489, -3.0931432569222728, -3.1512443339007383, -1.8784532028940144, -2.7052044499353567, -1.8429754154344677, -4.436733655626672, -1.5244047240781344, -1.691394041822139, -3.38087783969362, -2.900205350514924, -2.639418153370434, -1.2262479475017218, -2.528656392720858, -1.8844751990867479, -2.3062129065786126, -1.4036643622943072, -2.057976812846202, -3.5055629108649846, -2.7051283736006155, -1.1961979571457106, -1.861058091011913, -3.3857953383827284, -0.3668739318787248, -2.7526017572776382, -1.1902847147014257, -0.669254945917843, -1.2103942618364458, -2.944215077106775, -1.083854637053509, -1.973157634230847, -3.6490094705289478, -2.209514693838562, -3.108518546066349, -1.7584017035280988, -1.4395927122415575, -0.8724710781129779, -2.446808110136453, -3.2847663356968626, -3.658067493931949, -1.5551073708376015, -1.1032950421293237, 9.971228737758496, -18.815115683858657, -14.36690326823562, -13.035362564188988, -32.240083108694634, 8.949322739991501, -4.043035611440091, 28.12065467649268, -21.29595640855516, -4.387529386961738, -26.86417062150394, -9.010484032638956, 14.97377340605446, -0.0249529630352704, -21.280127385067082, -32.006476761704555, -8.134827037777745, 2.8786618680035314, 15.492915717396778, -16.637558564087588, -17.19637269480654, 42.47780028891332, -1.6555164173552372, 18.41650624866633, -27.18178736895824, 5.254546022407693, 14.022791285309864, 0.050810466664523296, -36.95467081465857, -19.875310700940947, 6.274383536638701, -34.0206061482092, 50.824065018130675, 22.316388532017104, -32.15421089665523, 4.175616654234103, 0.32106617218775835, 21.164454214498917, -52.54508136258968, 2.277702551118907, -26.043021695738297, 7.8405156048396085, -23.54413343179094, 26.82189865036419 ]
null
What is the most likely mean of the given time series?
[ "-19.5", "0.25", "23.67" ]
23.67
multiple_choice
41
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
84
[ 23.9219398213857, 23.806533296335395, 23.929978157936812, 23.30774045139507, 23.643778758501018, 23.94614463391103, 23.304160708350658, 23.57026863379094, 23.6731966446555, 23.925949621132578, 23.802196671056677, 23.850571909749757, 23.815872885383094, 23.58491866666673, 24.062298918836962, 23.514425000793327, 23.015510883336365, 23.24700441799598, 23.645579142262235, 23.59476360122851, 23.546276101471054, 23.708809281455252, 23.95743134071226, 23.780734250111752, 23.826783939502302, 23.417630198145233, 23.550280511305427, 23.83904799145083, 23.698820987893647, 23.78618713774065, 23.818539416346088, 23.712593614496114, 24.047739641936754, 23.54741915726574, 23.479345410030476, 23.25542552650684, 23.850469758043666, 23.538300645514802, 23.97295578108087, 23.731949426805343, 23.593038267375288, 23.423583964271927, 23.873647834760163, 23.660494115815816, 23.736648517462626, 23.81634193700618, 23.736163388857772, 23.472071384237896, 23.796652112154113, 23.86741920229087, 23.75852894579665, 23.822948439602783, 23.845010948351707, 23.579490068271596, 23.570613916781703, 24.200403890350543, 23.98710150587435, 23.661839121132314, 23.83489883456258, 23.451270538009513, 23.531476357228716, 23.378066969968472, 23.740876357746057, 23.743647024529178, 23.92982789636344, 23.62305569628375, 23.925747054188584, 23.827816832976843, 24.25543099822537, 24.06791157136239, 24.026493029604314, 23.871084265398007, 23.461558800847918, 23.742564884531042, 24.205320411784726, 23.793263690301234, 23.47870931961208, 23.75278591730049, 23.438979385313107, 23.4705620199183, 23.77099770058883, 23.848325584947233, 23.48435695086592, 23.540785814476585, 23.3355816659628, 23.642642926137228, 23.212563089660698, 23.602433674645823, 23.692089489656905, 23.257598593517585, 23.434800326670004, 23.659025368111987, 23.62671485821203, 23.637655228534744, 23.741433037693096, 23.27750932942132, 23.841013898424997, 23.597797878799742, 23.53211173789912, 23.23177910480035, 23.609906807110224, 23.79446522975497, 23.706765748805466, 23.713687977575837, 23.592988364136332, 23.658917218234684, 23.411078921633123, 23.67212274550399, 23.55699132651928, 23.406974483375016, 23.851917601833502, 23.300397295679073, 23.797366467693525, 23.812248075460104, 23.5484364500774, 23.917182322454927, 23.543441090620433, 23.528570522699987, 23.389087912801294, 23.671252183039226, 23.446305567768125, 23.485842619525453, 23.657774821422883, 23.66768606026695, 23.97057134312701, 23.893656765959488, 23.803688798217294, 23.638557963093984 ]
null
Covariance stationarity in a time series means constant mean, constant variance and that autocovariance depends only on time lag, not absolute time. Is the given time series covariance-stationary?
[ "No", "Yes" ]
Yes
binary
36
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "AutoRegressive Process", "Linear Trend" ]
Check if the covariance between any two points depends only on the time distance between them.
Pattern Recognition
Stationarity Detection
85
[ -5.760388711715946, -13.216771451336339, -12.909240672941268, -2.913192714439217, -7.631586348002336, -12.120909353893259, 2.9205251032260975, -30.882626277413973, -19.63849725659821, -23.14025385492472, -20.1767370337944, -7.643242635970182, -5.80897824514777, -5.863852508265073, 8.910113125292503, 4.3244537477935605, 20.142930360935182, 17.258773811422348, -1.2075341910665165, 18.922965930234742, 12.093575248663987, 24.827480443230176, 9.777240358734359, 7.7111360286465045, 7.950457185780941, 2.345603098328172, 13.96325924874608, 26.455075668933343, -9.798166900072394, 3.1916071154396883, -7.116818379771528, -29.507587099208028, -9.486375691370307, 0.25991139295141186, 7.04381739389149, 7.097798494683707, 12.222813342909966, 0.204358864503647, 2.7716140605258612, 8.28667615279011, 17.84020362075087, 9.250052698234956, 2.478523583868936, 0.6967680199535854, -11.61003938339961, 2.031096517080793, -13.725654249359263, -2.97653524660815, -0.7239489958590726, -15.623778067458408, -22.877977836730867, -20.036529338844062, -13.447989384812374, 8.180069118625513, 3.006606638160937, 6.877466506700717, 16.093587356542198, 18.652898853357406, 9.342498152642733, -2.2627081016082657, 3.734897958140791, -4.895599045156731, 15.610245051677994, 16.402648265023018, 10.411097606073898, 10.533017412274887, 6.986333492822775, -0.25868635187522215, 4.842512319812914, 0.20072399367190508, 19.402485053723556, 2.682267921123023, 6.461181507887615, -4.572048876943154, -10.181501426788508, -22.82390615888977, -7.245214123009023, -8.991237219013886, 6.324215118589658, 7.33673482036154, 5.069991354104501, -11.441579453810345, 0.05891567473221863, -6.532739960986821, -17.447976650427442, -4.449235561390654, -14.81211399286021, -28.380577904137123, -1.2008824369306361, -6.317462603939506, -20.49348934202702, -20.11275892796358, -17.06333670672241, 2.935352577234159, -15.188767297623796, -21.04165725200218, -0.6917738246680867, -5.019804874675692, -0.059293495560904325, -4.9964725325482675, 17.867179646405265, -3.9999242662371266, 0.8247384024405892, 15.470458199088776, 3.8677705312762716, -5.600179145843395, 4.906785321963119, 12.457136890392809, -1.8129914385762647, 13.716056211334267, 7.388771834700199, 9.011666609570316, 19.240168961325697, 17.256413358421995, 8.644313499774563, -2.2359683758425692, 26.04930174599126, 5.2507443140246375, 5.71530574335329, 8.018657197151358, 9.445341223808885, 26.019997077395377, 13.39186605050843, 5.848353781196422, 18.427135805104502, 7.875424769736453, 12.602025200216534, 8.37229025946634 ]
null
Are the two time series flipped versions of each other despite noise?
[ "No, they are not flipped versions", "Yes, they are flipped versions" ]
No, they are not flipped versions
binary
91
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
Both time series have a trend and a cyclic component. Then we say two time series are flipped versions of each other, we mean that the sign of each step is flipped. You should check if the sign of each step is flipped for both time series. At a high level, you should check if the time series are mirror images of each other.
Similarity Analysis
Shape
86
[ 0.0940539193629264, 0.3952974791423198, 0.9135135655220045, 1.3786189991367384, 1.7241541565314484, 1.8638175912165842, 2.150546968543713, 2.600575008799611, 2.6672020746797003, 2.7624730508051867, 2.781269010778321, 2.887316688342787, 2.5481429982261696, 2.5185397441564423, 2.182596869832629, 1.6961525512675837, 1.4230680142078636, 1.0555767342772497, 0.8076805626455856, 0.3852738203097189, -0.14463149348294418, -0.6702370458857428, -1.1311477848796772, -1.3217005209549832, -1.9224981491682358, -2.1169925845459967, -2.1286751432402955, -2.614945819106161, -2.822232457269366, -2.9345659443943486, -2.50982409474846, -2.6370130950914383, -2.6118914328314364, -2.3322307048796436, -2.108600913416631, -1.9052567648117813, -1.2725892643993701, -0.9458512878013633, -0.4522145332036859, -0.08212874176812185, 0.37239355500665466, 0.5686230753894713, 1.2954060275986552, 1.477403358669365, 1.843946455659479, 2.1658496267651266, 2.2473345479962554, 2.5665798458812628, 2.6639132285415275, 2.725632417205336, 2.556690407292131, 2.7130194241115095, 2.4862755939383394, 2.1235265851675718, 1.85854398283304, 1.6581112794887092, 1.1657604136286475, 0.654099350762978, 0.33647634886120303, -0.20611243388570966, -0.6077822989297547, -0.9679483942205099, -1.258554360302388, -1.5279391238019007, -1.9158184528215965, -2.328430840342323, -2.305127169431037, -2.619726453349689, -2.849575935690324, -2.747617196104742, -2.7575001517954223, -2.6822808396268205, -2.4749855835332832, -2.111879627249358, -1.7075290326610755, -1.3161836731686671, -1.1510249991468078, -0.6340935114115539, -0.11683420452628263, 0.2922124539733747, 0.7818943718850804, 1.0861068700482428, 1.6450265859015198, 1.8665343321015138, 2.2440602347072525, 2.375915374113268, 2.6036091890533783, 2.5553027349719963, 2.678717956003448, 2.7182699727592374, 2.655379757810008, 2.7519876959606413, 2.2204513643968227, 1.8378089083483107, 1.811875002685337, 1.3735502943760058, 0.7415864000437935, 0.47334370775799745, 0.06896862317570289, -0.43916571623067424, -0.8522757974229058, -1.3546935858765634, -1.6145682282320548, -2.044849913305828, -2.539823986651535, -2.476858848630686, -2.8212374419889303, -2.641374707239027, -2.8745270363337636, -2.9546253684279704, -2.764630083223728, -2.4038408381088, -2.131473856246243, -1.9866613727081124, -1.6005684981078052, -1.1037592788190913, -0.5870576454404226, -0.36906242252012267, 0.2324530189574216, 0.4582655935797777, 1.0851061718867638, 1.5234526493484817, 1.8575070966139018, 2.215432264199857, 2.465389977337695, 2.7530660634432853, 2.709103888594047, 2.9438807603262953 ]
[ -0.09440990900865827, 1.1138609671326, 1.1228948242007408, 1.0301166955857313, 0.8983292547833355, 1.2213249776859125, 1.0414017261144817, 1.094312240776453, 1.292853667981817, 1.1916036490520288, 1.3084162869782503, 1.146448244914375, 1.1899444142345184, 1.1103279857547226, -1.2192647713823996, -1.0792158460912162, -1.1779852624877964, -1.069942944880375, -1.1914420433035695, -1.1519334667732992, -1.143923392034805, -1.0266986390001815, -1.1768300056273213, -1.0156961295454858, -1.2248803155448076, -1.1074093823377869, -1.2031552042636264, -1.0228205592807766, 1.0525287919511954, 1.0627218671225307, 1.0087648981552235, 1.1446992029533496, 1.1935000119896826, 1.1827080598738273, 1.119971345511042, 1.0683410283510157, 1.106527149733958, 1.1103421892112273, 1.1596561842469475, 1.15278042255207, 1.3083670489631825, 1.1383587480128958, -1.0983150446582266, -1.1272495608642212, -1.1670684975012804, -1.098987691403353, -1.1764612008995894, -1.1402168666334827, -1.0184682876569773, -1.1829310843339953, -1.0956607479294407, -1.3825300517533738, -1.1529295325704358, -1.1836070144738993, -1.1223690980745165, -1.1580188191379421, 1.1485469190121855, 1.0965285129019524, 1.173028611416332, 0.9629309413560585, 1.1455363711127904, 1.04068721652309, 1.2511817958321543, 1.0390737429167514, 1.2339172099067521, 1.1332418773852744, 0.9515188591892181, 1.0467684065866352, 1.2191752439176795, -1.0552942590197887, -1.264330218777789, -0.978109568940489, -1.136851562205736, -1.0459105760846514, -1.2555792764590625, -1.179990043122054, -1.092804714478962, -1.1657114868043106, -1.426474245951823, -1.1534733752040331, -1.3308649559473018, -1.2414643956638, -1.2746819207792988, 1.247650687213068, 1.2790306519991297, 1.1685515346798285, 1.111388271307528, 1.137229019453107, 1.247580625006357, 0.9360523121734768, 1.0268849524569321, 1.2347993817839438, 1.2556222393145409, 1.1933672715060832, 1.029897984919568, 1.2333500396120913, 1.2705384106326327, -1.0625701147543285, -1.3837961058228112, -1.1219356606131499, -1.0758711350755659, -1.185956874536974, -1.1157274490949884, -1.1857410576403646, -1.2205544810934221, -0.9833360597794036, -1.112888274479521, -1.2449931061214172, -1.272055144658629, -1.2204933520389338, -1.2199524789805112, 1.1490481693068813, 1.18295081372363, 1.1828438264881427, 1.0593839427892684, 1.226458212963099, 1.2571795730183928, 1.108398804802813, 1.031188061792545, 1.144423392958922, 1.3504027663110643, 1.0285653847171923, 1.0817788112080646, 1.140138547534511, 1.1885615439563413, -1.332953140856807, -1.0038063720747301, -1.0051659466366054 ]
Which additive combination of patterns best describes the time series?
[ "SineWave + SquareWave", "SawtoothWave + SquareWave", "SineWave + SawtoothWave" ]
SineWave + SawtoothWave
multiple-choice
16
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Square Wave", "Sawtooth Wave", "Additive Composition" ]
Imagine the shape of the time series as addition of two different patterns.
Pattern Recognition
Cycle Recognition
87
[ -0.965339226732051, -0.6747711882070672, -0.3957151455528282, -0.1391295316208796, 0.08510772827961632, 0.2686742038835229, 0.4052031503169442, 0.4905896578348061, 0.5231880395073656, 0.5038909653196062, 0.43608653746056514, 0.3254953708697307, 0.17989551314553232, 0.008748431249959832, -0.17725595027880975, -0.36671328242447515, -0.5480531784314877, -0.7100955845940572, -0.8425883815855594, -0.9367003653622253, -0.9854459022819001, -0.9840208385756372, -0.9300335117114055, -0.8236197552939316, -0.6674363674031908, -0.4665333564514176, -0.22811110771312693, 0.03882585264097327, 0.32390184698817426, 0.6158689685514681, 0.9031479454951523, 1.174384938959632, 1.4189975009812428, 1.6276834394980297, 1.792868121283214, 1.909068703906824, 1.973157782356438, 1.9845137726700863, 0.014372347806586583, -0.0715517907132901, -0.19734518143689517, -0.3544987663325071, -0.5329955087378189, -0.7217920701360856, -0.9093498374323887, -1.0841897658821533, -1.2354443576305525, -1.3533802335576786, -1.4298661701674522, -1.4587640956128958, -1.436224243518434, -1.360870271904715, -1.2338654456325653, -1.0588566999332658, -0.8417992747725562, -0.5906703526374678, -0.3150854696893739, -0.025836145442755996, 0.26562903560406137, 0.5477549378043396, 0.809435511790867, 1.0405478372508206, 1.232438891197258, 1.3783416351171467, 1.4737004131310099, 1.516390014147873, 1.5068178642462438, 1.4479044352833075, 1.3449428117991413, 1.2053441690474807, 1.0382814010342105, 0.8542480349786198, 0.6645536421288072, 0.48078000848339014, 0.3142242158612776, 0.17535541318704106, -1.8573670539090785, -1.9152192272081785, -1.9236375069146943, -1.8797569058915684, -1.7832272681954378, -1.6362301065897318, -1.4433737028552196, -1.211471515078856, -0.9492145473738363, -0.6667534363804299, -0.37521035023392774, -0.0861441707066376, 0.1890053243553047, 0.43946755139288585, 0.6556590327822004, 0.8296442255967255, 0.9555171081845154, 1.0296851756815808, 1.0510421883225396, 1.0210213658155471, 0.9435264698897721, 0.8247440889632156, 0.6728461513644137, 0.4975969719845688, 0.3098837278186854, 0.12119293983407384, -0.05694186506884563, -0.21349475241160165, -0.3384775705275591, -0.42342023838125575, -0.46177803581446175, -0.4492463113597772, -0.3839674746587657, -0.2666203200978262, -0.10038738646725898, 0.10919807782097657, 0.3545181851637602, 0.6262367206477857, -1.0169303724665424, -0.7249912004422646, -0.44020214460450086, -0.17379731407522658, 0.06387320138751162, 0.2638410232755324, 0.41895073558701657, 0.5242039584111651, 0.5769996988026624, 0.577259421492615, 0.5274308253162819, 0.4323701437652603, 0.29910862933095606, 0.13651445041618254 ]
null
The following time series has an anomaly with short term disruption on its pattern. What is the likely pattern of the time series without the anomaly?
[ "Square wave with log trend", "Sawtooth wave with linear trend", "Sine wave with linear trend" ]
Sine wave with linear trend
multiple_choice
72
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sine Wave", "Sawtooth Wave", "Square Wave", "Linear Trend", "Log Trend", "Wander Anomaly" ]
Wander anomaly brings short term disruption on the pattern. You should focus on the overall pattern of the time series without the anomaly.
Anolmaly Detection
General Anomaly Detection
88
[ 0.04967141530112327, -0.00027611276004964325, 0.11831356974252553, 0.2703403798682781, 0.18044877154152977, 0.2833439444566112, 0.5794254580528597, 0.6188790230180823, 0.6152036257916613, 0.8290176754123592, 0.8268067106510345, 0.9041540854936752, 1.0256049606765618, 0.8285220252056498, 0.8291901696404591, 0.8874818959420048, 0.7427999055316081, 0.7338351604307009, 0.4290436306762577, 0.15788171035992188, 0.1910399809199261, -0.2609088241005456, -0.5354815115568811, -1.001474559541867, -1.2338896586978516, -1.4826381984159007, -1.9066843337600214, -2.0251122756514977, -2.35699772033319, -2.5139963926249873, -2.67791704731608, -2.5030541904877106, -2.691859924185348, -2.726010257385028, -2.392956288181222, -2.3773356318618983, -1.941478366854236, -1.796732143418746, -1.3096626549632053, -0.6793870656085451, -0.10399606224273464, 0.3918985670754339, 0.9336739584814991, 1.4888907149407542, 1.9328951318790535, 2.54288248041138, 3.059802649984856, 3.6445197270045226, 3.9341031683880914, 3.9998274764740005, 4.389657364847415, 4.3960217230016685, 4.334192243939645, 4.31711361738827, 4.099353893369406, 3.7184894590944397, 3.0649424003807253, 2.54442552635245, 1.9493731031182122, 1.2831913360010512, 0.35201239338756685, -0.4410535523721264, -1.3723184820721737, -2.2162912252089146, -2.8246637566841826, -3.5322868458864263, -4.368927555767867, -4.867233270903297, -5.431252152206492, -5.909872875040682, -6.067915376494864, -6.063860547607807, -6.183183563456058, -5.830531326303945, -5.9028422751045095, -5.064008085915776, -4.5031967190503135, -3.780592337211164, -2.869673398201801, -2.114645785322154, -0.9060995954097072, 0.2275071323622617, 1.4333379681807321, 2.317863827188078, 3.335529221790942, 4.3478861272442355, 5.379736379999918, 6.094818492764976, 6.64386723895826, 7.240554669256199, 7.517122040860372, 7.736418044493575, 7.5080237880557394, 7.2879721082620375, 6.830048718317933, 6.084546058870199, 5.447216480623419, 4.472080629988021, 3.337431791304376, 2.0917658555552676, 0.6674576972884227, -0.5930478094509137, -1.966241990296406, -3.380290434110155, -4.637151012708043, -5.8207302159383, -6.799449422111002, -7.954249474840288, -8.759202292389501, -9.41192029065403, -10.003203804615735, -9.994186738960897, -9.930502831867315, -9.397106962873954, -9.134500438026697, -8.330789720826482, -7.3986457013818265, -6.355039595933729, -4.8009726990878265, -3.381103291883907, -1.815948768569576, -0.35931872906654444, 1.5249058982612458, 2.8833948633818265, 4.666470974978457, 6.316294687646186, 7.3546346989756275, 8.584880644318517 ]
null
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "1.56", "5.04", "8.66" ]
8.66
multiple-choice
23
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
89
[ -8.597693943706211, -8.096507344723332, -7.331290462511693, -6.850605638874685, -6.0719504269161355, -5.486489191537103, -4.986106703961397, -4.254874097866927, -3.3570435068416606, -2.9187958236509357, -2.072832434379833, -1.8110736571593857, -0.9554103970257217, -0.6477217675930425, 0.24188473097596866, 0.9412264451123533, 1.5980901447266267, 2.070570590648734, 2.890603033184223, 3.3695189428618577, 4.042677121634862, 4.651951052690216, 5.217840767432422, 6.124648089127516, 6.608674339981015, 7.348800824010846, 7.980736538201218, 8.415667820477237, -8.059412427147366, -7.494487299679819, -7.012722482602264, -6.227550785141049, -5.7385362288822295, -4.839397175717783, -4.282467910143661, -3.7347650129751986, -2.9649733670545997, -2.6134560654668957, -1.893995003128771, -1.2081064174110279, -0.3230995492146611, -0.01751987956477924, 0.55499424422827, 1.2174827148322864, 2.0887392810824514, 2.57489489498778, 3.2546018834845802, 3.982990241968668, 4.527094942885203, 5.199514494011577, 5.868817776201517, 6.4084250501243005, 7.071057411207131, 7.748081085311975, 8.446899900264974, -8.412641947277477, -7.999266185162613, -6.993053850161294, -6.332044145345074, -5.76861589312729, -5.125593559564877, -4.572657442994772, -3.8300116835474864, -3.158516915852784, -2.6019875357995783, -1.722315909060923, -1.4916184229490117, -0.6827517192164638, -0.180286754654054, 0.6613295618531443, 1.0513938545330115, 1.7123456709452358, 2.418615559041863, 3.1447138979620974, 3.6947799699901736, 4.331979410476202, 5.008630919123277, 5.638692376589513, 6.44785775920729, 7.003900360222112, 7.539048002156529, 8.417403295136129, -8.436618772318694, -7.946484667455874, -7.1877406600455584, -6.523644351678436, -6.009761650191326, -5.4100536414860185, -4.659960413521395, -4.068432071776466, -3.2483006779205414, -2.685901456477819, -2.1878981384151928, -1.4450303720318995, -0.7247149409745076, -0.3546117719571714, 0.3186872764137944, 1.0560446666643943, 1.6969181530626252, 2.324334633605612, 2.934673094152908, 3.569341207666248, 4.27656948147339, 4.987734351034919, 5.462441250581935, 6.390572885947621, 6.978998522884361, 7.5520513701481145, 8.11757056852604, -8.437365948102164, -8.030979867369343, -7.44903234418865, -6.782172681050249, -6.1936733275390825, -5.445002487118962, -4.791003145057748, -4.1647057797226354, -3.5498364709291503, -2.899081455014033, -2.1025680990664286, -1.577998865307734, -0.9115567445313841, -0.34853220264341145, 0.10702636172087798, 0.7233934124005107, 1.7492590863480912, 2.1239922876838917, 2.7516958086715984 ]
null
Does any part of the given time series, composed of several concatenated patterns, appear to be stationary?
[ "Yes", "No" ]
Yes
binary
33
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
You can try to identify different parts in the time series first, and see if any part is stationary.
Pattern Recognition
Stationarity Detection
90
[ 0.34575616026615824, 0.12619639457253837, -0.013173578993711271, -0.34334101789127397, 0.045933289105736436, -0.07602989400447202, 0.20394293198491795, -0.2886502997737516, -0.17241646842888086, -0.17723684640629636, 0.1364690269679354, -0.01943099291577337, 0.32106389810462715, 0.205011428523462, -0.23031827029266644, 0.24949377747267282, -0.14763859563101966, -0.22300408766910917, 0.1929587507660464, -0.17380484495245663, -0.0426741886442589, 0.2540817598844327, -0.1372027166685951, -0.16101259369643856, -0.0629797343461275, -0.10514157433015453, 0.007785558949330768, -0.19813680764347744, 0.10411340919596881, 0.19772684172560673, -0.16712296869524218, -0.28900257488988534, -0.0018904931793510965, 0.24152458681367933, 0.10910719730744821, 0.13472891236161497, -0.3377952164476793, -0.14724473574774793, 0.028509699130266353, 0.06556006822233972, 0.044458592882146056, -0.3888560404334953, -0.1342657191481244, 0.25659921331321456, -0.04842812196956245, 0.025034519379668836, 0.25879256913820226, 0.22219846261201104, -0.2746509604136777, -0.1367956919892158, 0.2550118041445353, -0.005311474830293969, 0.021850497025097324, 0.030036798831194478, 0.04377353007415155, 0.0015669716550845425, -0.11594229368212186, 0.15895070944505704, 0.06450674594316282, 0.03292601007814752, -0.04281910534293325, -0.21233608874558393, -0.2363539897821412, 0.05557870587142113, 0.011019760721987439, 0.1673782334657077, -0.23547238730222736, -0.02217645736594387, -0.16246352255429142, -0.03867567690493273, -0.01443922112644774, 0.2201508461318616, -0.007051497402739814, -0.0021568925898882967, 0.11296195590966879, 0.01392378708998528, 0.20908058437028945, 0.09969424157855994, 0.12233601643099432, -0.14051076939279977, 0.2515268219368143, -0.0058804361749639, 0.06555235490649114, 0.008014896945873984, -0.02237992780129547, -0.03341171765385886, 0.10388920073556689, -0.09666472867631831, 0.0828046377386297, 0.21962164700213171, 0.1837989218482096, 0.17060815264168044, 0.04458607545900167, -0.01772507375165036, 0.25182377318448346, 0.10950829549038983, 0.15285634879010204, 0.14816465181633773, 0.24192332147874435, 0.3657755449053359, 0.33444127123716616, -0.03826007962272582, 0.17086979057008572, 0.07380925164921898, 0.3090864050611746, 0.22240178326764767, 0.2893785380608586, 0.19611081965362648, 0.13834602191839096, 0.16221502513357605, 0.10250174738988224, 0.1361995229675815, 0.12189354016896864, 0.1725124937405938, 0.17361486092086983, 0.3290119036288933, 0.33184867339365437, 0.34242284541605633, 0.4273818767574791, 0.30880846719679267, 0.24532071242819614, 0.5513024455315909, 0.4274865940710334, 0.3589138988631928, 0.3587292807440533, 0.3861671032369335, 0.34375153891356486, 0.3835440369014521 ]
null
What type of trend does the time series exhibit in the latter half?
[ "Exponential", "Linear", "No trend" ]
Exponential
multiple_choice
15
medium
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend" ]
Focus on the pattern of growth or decline in the second half of the time series.
Pattern Recognition
Trend Recognition
91
[ -0.23425234997416627, 0.01789110467997893, 0.0056283469074978, 0.035461002900419494, -0.010563907933671783, 0.05475557865985286, 0.0018141819596976666, -0.0405258337960418, 0.048884204657084235, 0.053755528074968494, 0.2580345888642235, -0.0029996611334569545, 0.0686769257801134, 0.06600632156092105, 0.05395632895418849, 0.1570868941380572, 0.33662443002497333, 0.0877971665906501, 0.17852109343482436, -0.057253796806691154, 0.1016822073047863, 0.3036110322795689, 0.1496406369887103, 0.21242443584959703, 0.10696707875090844, 0.20204966956463333, 0.34662333307275445, 0.07438917018239555, 0.41610347494204414, 0.0499065642502205, 0.16300255610623332, 0.13501277999198513, 0.19841015830837877, 0.1478177269678551, 0.1472878061661272, 0.12813686997941948, 0.31826865140136307, 0.23711924696684245, 0.21801576260610922, 0.3032442536494355, 0.13260676949732297, 0.319759333018173, 0.28679689653457324, 0.29692181164893455, 0.3621940277577113, 0.4816815115615255, 0.35667834289282163, 0.311445175932017, 0.22021994597006123, 0.10645435017943647, 0.36537631747425986, 0.23367632475504635, 0.11266507136307796, 0.33865613249352633, 0.4047431063947993, 0.4622770724873651, 0.5010235202093827, 0.4895214232235948, 0.49925946783965613, 0.2692467216355436, 0.40814591716889254, 0.4881407955841891, 0.44184645845441733, 0.4287458272967967, 1.4470697569462776, 1.473094028000949, 1.445149448176277, 1.3725274692293528, 1.29120805494883, 1.4454413637179868, 1.4759646024150146, 1.4792652449148365, 1.574309145659425, 1.5965062951192568, 1.4774909643124245, 1.4826733757892085, 1.554158450690368, 1.5440053583407753, 1.461618910392333, 1.5763196874158611, 1.5003438820539636, 1.507052797369289, 1.567527411764306, 1.4986712279629568, 1.5428967793330652, 1.5678454634999668, 1.6244903437215006, 1.6222880367550372, 1.578900039142218, 1.2960605386631774, 1.5860346091123303, 1.606270616316439, 1.631377872894308, 1.480506012747762, 1.3687450686763662, 1.6664345723057525, 1.4682506303338556, 1.7178268728202895, 1.5426723582648152, 1.5027689690927948, 1.645418360149889, 1.6770649398982798, 1.6761176636753807, 1.675654885124632, 1.5597703416782562, 1.4829355576657917, 1.6017589922775999, 1.5312753701410668, 1.6942436505878224, 1.743578206152797, 1.678609837073357, 1.6664546362274921, 1.6407370990570638, 1.775068912139663, 1.4992632244618957, 1.5669936885625542, 1.8756034948110907, 1.5727783742302988, 1.7567450136012908, 1.7827103303906953, 1.5218192701160371, 1.546450814496347, 1.851811527398804, 1.6335285839730744, 1.6417661116150537, 1.6897715482143854, 1.650364515414954, 1.8056168128028107 ]
null
The given time series has multiple trends followed by each other, what is the correct ordering of the trend components?
[ "Log", "Linear -> Exponential", "Linear -> Exponential -> Log", "Exponential -> Linear -> Log" ]
Exponential -> Linear -> Log
multiple_choice
9
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend", "Exponential Trend", "Log Trend" ]
Identify the different components first, and then check the assignment of each component.
Pattern Recognition
Trend Recognition
92
[ 0.8681429839241888, 1.1367572911502934, 1.1652147175157845, 1.2129203812262026, 1.3761582835884134, 1.3653048133787462, 1.2631926773711704, 1.4663785147530524, 1.7879435048633407, 1.8755857741873196, 1.8348709852250324, 2.043707605225419, 2.40074832289673, 2.25659158140443, 2.4047971390633878, 2.5807253317758794, 2.7881503498706013, 2.8690794959019392, 3.1525233023749064, 3.097591414708712, 3.5387087031201854, 3.7369748393485493, 3.951690148003577, 4.183065184640997, 4.443451363538181, 4.714554173137425, 4.874483639849215, 5.409960430769467, 5.898254707589055, 6.129711929100336, 6.625641190525288, 6.878801493968958, 7.3084289058001675, 7.845363809767387, 8.33048953310416, 8.86050979168498, 9.604887115629063, 10.356505802852876, 10.770664301677856, 11.369555134160779, 12.351187213311853, 12.937017836586488, 12.962281356378448, 13.207428482045977, 13.218718953274369, 13.24385339529939, 13.396727036045942, 13.42627202598132, 13.733488672754051, 13.554274431822169, 13.607834649614984, 13.730993584051387, 13.81254173823405, 13.990703262836409, 13.809306117105754, 14.128383480545212, 14.108973347800733, 14.318105190510206, 14.312979517054858, 14.446934332045258, 14.433245703168215, 14.59350914222148, 14.793404859527056, 14.630425235539636, 14.770950429271952, 14.810369146315669, 15.095610052419845, 14.97023871119581, 15.017684649069349, 15.110447175906236, 15.232024127173743, 15.243566361741223, 15.363392862702732, 15.493279045224025, 15.54333251682486, 15.715371713617737, 15.677586346241592, 15.766381201578227, 15.891270025103129, 16.165965508932878, 15.940045655398851, 16.28848928575218, 16.055090525846115, 16.27366588396653, 16.216830211425666, 16.700912977136642, 17.19762404899378, 17.443875907419578, 17.53951070983111, 17.547435996190778, 17.859467538447802, 18.041744123884982, 18.140167832303167, 18.316421438839807, 18.52577967690583, 18.457719813301175, 18.55051747340044, 18.580403187311635, 18.749855528708494, 18.748567103259106, 18.829439201216736, 18.991226921835416, 18.88588223845248, 18.886286426934493, 19.005810502652047, 19.12042382587498, 19.100569765821806, 19.19829438737738, 19.065458854868325, 19.084125564128808, 19.15357475446643, 19.1171543703874, 19.28949821950324, 19.26888575324523, 19.46724858443066, 19.24643102763798, 19.561420161034697, 19.337286816068016, 19.340218538079903, 19.409414087782864, 19.71409083654612, 19.541323701034507, 19.623967635637722, 19.57768320828971, 19.6115007003642, 19.593773828816133, 19.67273375263848, 19.739886428488468 ]
null
You are given two time series where one is the lagged version of the other. What is the most likely lagging step?
[ "Lagging step is between 30 to 45", "Lagging step is between 60 to 75", "Lagging step is between 5 to 20" ]
Lagging step is between 5 to 20
multiple_choice
100
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Lagged Pair" ]
You already know that one time series is the lagged version of the other. Shift the time series by lags proposed in the options and check which one looks the same as the other time series.
Causality Analysis
Granger Causality
93
[ -1.291170151953572, -1.2489607812434083, -1.0185196766775075, -0.2724234496832522, -0.3290137852877824, -0.27531383575346147, -0.5560281024777485, -0.2782354206891091, -0.4286122880167262, -0.5792623121859065, -0.32264438898242176, 0.16601704889097807, -0.8765906463291984, -0.7062409131839457, -0.8338235514011427, -0.3863846764166882, -0.5044857474139574, 0.1098357298135109, -0.20954805162999407, -1.2626490094654277, -0.7661154542286449, -1.1644143806253977, -1.9105662492417113, -1.9029862627595981, -2.015919906086961, -1.6272721838856876, -1.2059001321920042, -1.1607507653604578, -1.5785367228351355, -1.443050884616935, -1.3650506034301972, -1.0964142215285357, -1.5094740944269192, -1.6985192463492593, -1.458004791344273, -0.8690509724014864, -0.41296894242980425, -0.37422487003467725, -0.6043595083142446, -0.4136864533169705, -0.9290112539020215, -1.314777052628375, -0.6019042126833068, -0.4120744953071177, -0.5761671414032697, -0.18467046643619556, 0.42300401369617036, 0.21305828464636956, 0.011247910297251558, -0.2496963523723667, 0.20540748243635992, 0.665094758738282, 1.3194805113252386, 1.795715318081737, 1.0250264540866398, 1.1576901440927054, 0.6579494206749257, 0.4157652407815876, 0.49631517134473657, 0.8908463652850492, 0.47021443365517857, -0.6274547917825851, -0.5422130516372853, 0.7060093557584736, 0.6102309027603146, 0.6323830916873667, 1.4738721500023293, 1.7525837274216567, 1.8549795949491727, 2.0637350271050527, 2.181893387527317, 1.643732429417466, 1.0103386091882818, 1.9012473870129818, 1.9880720909992378, 2.035334429227867, 1.9927313869084493, 2.361532882801097, 3.560233587009421, 3.807629747418261, 3.5299511860696873, 3.4669629390209824, 3.972658263105479, 3.697475712991892, 4.099883263032335, 3.004094365136784, 2.895551500671194, 3.1921420846872577, 3.7918607294925626, 3.405399525262714, 2.6958348666634144, 2.5727228324526386, 2.041330668911221, 1.9709596193419057, 1.9678180395150322, 1.3449537242959513, 1.724787933791803, 1.6505558208110933, 2.1607195051439936, 1.289605564095, 0.8093151615669196, 1.053272318739551, 0.6759541001768533, 0.5982648495876159, 0.5985949538320969, 0.6733191121529534, 0.3533908247784907, 0.42387986877475553, 0.05438407233998303, 0.372760921011136, 0.31853470698525566, 0.39173877255858924, 1.6051881403813715, 1.0824436093697187, 1.7380942880247947, 0.4824211018499467, -0.49893167405744554, -1.084728084568101, -1.6407248656315028, -1.544542431813373, -1.4076868191197713, -1.528006472675164, -1.5987747611764769, -1.3495786340257003, -0.956153042316807, -1.5825085889535369, -1.753383636243356, -1.7862420528007965 ]
[ -1.2626490094654277, -0.7661154542286449, -1.1644143806253977, -1.9105662492417113, -1.9029862627595981, -2.015919906086961, -1.6272721838856876, -1.2059001321920042, -1.1607507653604578, -1.5785367228351355, -1.443050884616935, -1.3650506034301972, -1.0964142215285357, -1.5094740944269192, -1.6985192463492593, -1.458004791344273, -0.8690509724014864, -0.41296894242980425, -0.37422487003467725, -0.6043595083142446, -0.4136864533169705, -0.9290112539020215, -1.314777052628375, -0.6019042126833068, -0.4120744953071177, -0.5761671414032697, -0.18467046643619556, 0.42300401369617036, 0.21305828464636956, 0.011247910297251558, -0.2496963523723667, 0.20540748243635992, 0.665094758738282, 1.3194805113252386, 1.795715318081737, 1.0250264540866398, 1.1576901440927054, 0.6579494206749257, 0.4157652407815876, 0.49631517134473657, 0.8908463652850492, 0.47021443365517857, -0.6274547917825851, -0.5422130516372853, 0.7060093557584736, 0.6102309027603146, 0.6323830916873667, 1.4738721500023293, 1.7525837274216567, 1.8549795949491727, 2.0637350271050527, 2.181893387527317, 1.643732429417466, 1.0103386091882818, 1.9012473870129818, 1.9880720909992378, 2.035334429227867, 1.9927313869084493, 2.361532882801097, 3.560233587009421, 3.807629747418261, 3.5299511860696873, 3.4669629390209824, 3.972658263105479, 3.697475712991892, 4.099883263032335, 3.004094365136784, 2.895551500671194, 3.1921420846872577, 3.7918607294925626, 3.405399525262714, 2.6958348666634144, 2.5727228324526386, 2.041330668911221, 1.9709596193419057, 1.9678180395150322, 1.3449537242959513, 1.724787933791803, 1.6505558208110933, 2.1607195051439936, 1.289605564095, 0.8093151615669196, 1.053272318739551, 0.6759541001768533, 0.5982648495876159, 0.5985949538320969, 0.6733191121529534, 0.3533908247784907, 0.42387986877475553, 0.05438407233998303, 0.372760921011136, 0.31853470698525566, 0.39173877255858924, 1.6051881403813715, 1.0824436093697187, 1.7380942880247947, 0.4824211018499467, -0.49893167405744554, -1.084728084568101, -1.6407248656315028, -1.544542431813373, -1.4076868191197713, -1.528006472675164, -1.5987747611764769, -1.3495786340257003, -0.956153042316807, -1.5825085889535369, -1.753383636243356, -1.7862420528007965, -1.5570890745426578, -1.9219214272963867, -1.964049233212289, -1.949891778688645, -2.282523349553137, -2.6264139010781404, -2.5797888378278455, -2.641334261049311, -2.40502242517477, -2.902342469069291, -3.067924722906103, -3.1761542913735292, -2.791869949284877, -3.2359076870979746, -3.1251114095867836, -3.00576715196094, -2.228383273766214, -2.7039034067073264, -3.014231055753492 ]
What is the most likely linear trend coefficient of the given time series?
[ "0", "4.63", "7.89" ]
4.63
multiple_choice
2
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Linear Trend" ]
The bigger the slope of the line, the higher the trend coefficient.
Pattern Recognition
Trend Recognition
94
[ 0.04701810448106549, -0.48676128505991534, -0.7425957495611608, -0.36562863808000146, 0.2599847209356917, 0.22251329687037422, 0.543455066878513, 0.2997166689940692, 0.2407110535589824, 0.048408075091632585, 0.773429238081888, -0.024534239867896657, -0.0765643134667976, 0.7358076447741392, -0.1067600418180682, 1.6633703042939578, 0.6197745665511195, 0.7801275221750963, 0.28166329854382316, 0.5462076812213106, 0.5310573721621734, 0.514248455107806, 1.0941032616859416, 0.6297715906787889, 1.344828057102511, 2.142502197830474, 0.8102939151563925, 1.0538844715288704, 1.195389258067052, 1.8942303843114066, 1.0544660086880318, 0.7456375470470109, 0.579765824306593, 1.1751445635392919, 1.0309802423565644, 2.2045929501813073, 2.1299302437866734, 0.869184402875556, 1.0553027796907055, 1.4546300544816446, 2.1032510614193236, 1.5197251524494084, 1.230378202795188, 1.538961503593654, 1.3119006083997489, 1.9177360933774161, 1.3474871804003619, 1.4757767157929715, 2.285796402170658, 1.4293117158080773, 1.1522186961759309, 1.901526303487302, 1.727261819380743, 2.1669990402789505, 2.1137088256409213, 1.9885127811704295, 2.0114635437138255, 1.7357342235256445, 2.1511014286746373, 2.5566306770668885, 1.735101504383189, 2.2193201482266387, 2.73857272567862, 2.5284598337376982, 2.936815920719056, 2.1047013193839943, 1.5570652930312718, 2.5331727052284747, 2.6444956156297676, 3.146200414564648, 3.0992323724478794, 2.8343332796643947, 2.9765226991792266, 2.5701637545701015, 2.1313868703176273, 2.786196905707232, 3.22267914425179, 3.1082045866399572, 3.226710110756101, 2.679565844329382, 2.791022826518471, 3.173901913178947, 2.7339039560972864, 2.7845700167902883, 3.1973901850983877, 3.4479497819097147, 3.040100539079381, 2.630758395058899, 2.8648794829058692, 3.335880802920498, 3.366683225215128, 3.426104372829908, 3.5920750320018136, 3.3900479185693424, 3.546391621432465, 3.439378271584223, 4.0280051496191245, 4.195618595427695, 3.019469362187617, 3.4878262984675645, 3.657460218762662, 3.5552778466471215, 4.544530275677845, 3.8551884769127525, 3.4154707373391147, 4.100338126175209, 3.9862080912106546, 4.0379973099233615, 4.769986783132371, 4.132396175720181, 3.8660887327298137, 3.1385162269352485, 4.002891962491784, 4.7199336472350994, 4.110075310199499, 3.1524800508504516, 3.994564343462897, 4.720710426969548, 4.5504221408215955, 3.9458561083323307, 4.109300630345391, 4.217226901796149, 4.1370788683409225, 3.541180554378301, 4.869698271865588, 5.134387845629573, 3.8869300945838163, 5.201125060455682 ]
null
Is the given time series a white noise process?
[ "No", "Yes" ]
No
binary
50
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Gaussian White Noise" ]
White noise is a stationary process with a constant mean and variance. You should check if the time series has a constant mean and variance over time. Another important property is that the noise is uncorrelated over time. Does the time series seem to have these properties?
Noise Understanding
White Noise Recognition
95
[ -2.2355603678074623, -2.3183575031064385, -2.5894358200110097, -2.36248296492986, -2.4651395047877998, -2.568519283958427, -2.7200392480818665, -2.666775008736663, -2.759675688714627, -2.5028675202153425, -2.250650943022198, -2.1837181537431363, -2.304332877364442, -1.9834523453192512, -1.7842491101012732, -1.8991471001608125, -1.8260466117346548, -1.7764093145962223, -1.6747202050215466, -1.6491837921981065, -1.6451942090787968, -1.1380482981274045, -1.0349274834409563, -1.1469044986741672, -1.2137608978313614, -0.8865316968051775, -0.935152908841993, -1.0858382760373004, -1.0647866480492334, -1.0846819908083338, -0.8304196360501822, -0.5431735303707966, -0.5807474938121951, -0.42397218192085906, -0.43240038202685965, -0.5569881224264586, -0.23270635444470675, 0.11949927360430855, 0.19596789249913787, 0.10396262265453259, -0.04860841670661487, 0.08239960397513045, 0.3294453788245792, 0.37303734380250386, 0.5816466986492851, 0.5647405301582801, 0.48860804742856545, 0.5538247607426677, 0.22829567946753496, 0.16621340675513277, 0.32971694893145603, -0.06698509316622685, -0.2661240124691623, -0.2664903909572487, -0.4495013561766073, -0.5086183352563529, -0.8367491162922414, -0.7030657096005123, -0.49111449709184035, -0.7299558708842475, -0.6698949834890915, -0.6812312493206502, -0.5782754944745058, -0.3006401504215996, -0.4746910663333883, -0.23416547452962252, 0.08081188497608409, -0.19519198425162662, -0.0011898771434903576, -0.12616411962254326, 0.007445333284081934, -0.10460500031910476, -0.17659877404419674, -0.2652105811646167, -0.4079533112924983, -0.2554262687528644, -0.14867993563535484, -0.03760002727376529, -0.07785087921276528, -0.10073304715298907, -0.012827266229265362, -0.1289687686634554, -0.19049215006826875, -0.007941803063852603, 0.08212946974303657, 0.3049232518574043, -0.10867005538873442, 0.16750602165990794, 0.3500240837472343, 0.535750089305041, 0.28007685786312186, 0.2073744616056621, 0.1566259238689865, 0.20826508029066018, 0.5375045680486901, 0.5956141963915556, 0.8206952418375173, 1.0838270960979806, 1.2255539373145596, 1.2868641683432431, 1.523239295501776, 1.2735632098611946, 1.4051231875773644, 1.6920037461609319, 1.7394281372339775, 1.8629086114293694, 2.061248189200228, 2.017876475533881, 2.5589537019158777, 2.3718215319398697, 2.068362538220038, 2.20925586787146, 2.1213595433731953, 2.1700326161446233, 2.234896186478138, 2.3288896154210654, 2.118679955464027, 2.006226615629435, 2.218861440809559, 2.140721465887748, 2.134808616937104, 2.0484582825141477, 2.143727128326496, 2.081250668119035, 2.371303012667177, 2.2450237572438425, 2.006103625005933, 1.8067361626118439 ]
null
The given time series is a sawtooth wave. What is the most likely amplitude of the sawtooth wave?
[ "4.65", "1.34", "17.89" ]
4.65
multiple-choice
24
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Sawtooth Wave", "Amplitude" ]
Check the distance between the peak and the baseline.
Pattern Recognition
Cycle Recognition
96
[ -4.650472728356417, -4.417836149338381, -4.037852861159436, -3.7700050233539986, -3.9741061617581894, -3.3549660885268437, -3.013359507550423, -2.928474703306805, -2.58564137254523, -2.165253638454671, -2.07202106469442, -1.6013199651371393, -1.5728821126636956, -1.0953549328479153, -0.9705660035136208, -0.7993344967117928, -0.3077597686908602, -0.3073080813319702, -0.003837219370772388, 0.3871725367730841, 0.6086829265033743, 0.8904181536873761, 1.08861053675544, 1.267923608943623, 1.5850579747838858, 2.044744070242658, 2.041426643502109, 2.6019920674509374, 2.731551813780773, 2.9027060155485844, 3.024601798695135, 3.3001591297400372, 3.714059889174832, 3.9643644635940407, 4.2862643186250775, 4.7088244856216175, -4.442531221429058, -4.246738910321563, -3.849765005364128, -3.693963457355244, -3.286637359644161, -3.2513962973479393, -3.0365461541879872, -2.859379713618737, -2.4074670207321165, -2.2579694563110086, -1.9969650262152925, -1.5062321803171665, -1.5194536934157157, -1.074467092689665, -0.8307256199574865, -0.5507686430882822, -0.15915092003787207, -0.11770970626458244, 0.36577486381531765, 0.31368010049975315, 0.8171953008300803, 1.1621791260195202, 0.8715573706653617, 1.5358436776373534, 1.7901304966677278, 2.0714090030888572, 2.4978005352762986, 2.5127022475534075, 2.733035072177291, 3.121818784480133, 3.488758451343791, 3.6946111865326494, 3.9046004889142485, 4.140665779958902, 4.225316438350971, -4.548604951133015, -4.274236554689902, -4.151583378792111, -3.8664014176471, -3.662331742054882, -3.2082759016709277, -3.0692542860103194, -2.7851775336641067, -2.4449000642885372, -2.2127084795710084, -1.9266571804282757, -1.703080972292453, -1.4384322783747565, -1.1769597354416257, -0.8880113539341743, -0.620731629688698, -0.5309325439257293, -0.20576058197067076, 0.09604360781662852, 0.4239818508253586, 0.8009629524674036, 0.8223189040304248, 1.2539269657407504, 1.3715877379836634, 1.8279546637851483, 2.144557964409354, 2.0409427928757684, 2.4455313966768726, 2.5055608760548314, 2.8340223328096514, 3.102674002249167, 3.590253714764642, 3.8339660727252007, 4.132812744767569, 4.3759005421479324, 4.62603596346604, -4.4444854887899465, -4.2063386334499775, -3.8288702387019855, -3.6671816319950836, -3.353470931729652, -3.37659677228275, -2.998654555956468, -2.520704631497058, -2.423149959195927, -2.233421626626874, -1.7673360506865199, -1.5689112602978383, -1.3473180189480636, -0.8932924139336207, -0.648039509007212, -0.5381460487512846, -0.18470420729887246, -0.2183915279956824, 0.37723534752687704, 0.4216613843725208, 0.6475264327134185 ]
null
What is the most likely mean of the given time series?
[ "-15.2", "0.15", "25.53" ]
-15.2
multiple_choice
41
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Mean" ]
The given time series is stationary. Check the average value of the time series over time.
Pattern Recognition
First Two Moment Recognition
97
[ -14.803585546451252, -15.390011642003708, -15.008996981613521, -15.194674287777586, -15.323507535871883, -15.41751238309349, -14.972123555759534, -15.327425767126474, -15.187654091534396, -15.345265384504222, -14.898377011643754, -15.182211837511856, -15.401742323877526, -15.262298983897555, -14.985414731594233, -15.345581693312454, -15.25205850580551, -15.016718224476932, -15.145112927671116, -15.38245393917409, -15.163188190310558, -15.220344951747526, -15.189165762564837, -15.053281696930997, -15.160569262959864, -15.211231592643873, -15.218697547543455, -15.033487984713735, -15.306603223301288, -15.526591059054214, -15.231369696505846, -15.139646053419506, -15.26040638365234, -15.276969025314305, -15.252486517549995, -15.20086307869621, -15.39443467359596, -15.096620064754138, -15.601729964070183, -15.115065745243946, -15.149518710244607, -15.12159765319035, -15.49019686521634, -15.152629599243236, -15.279575895658919, -14.953644345410671, -15.142160139596802, -15.375960324376335, -15.45403982914283, -15.290558894679949, -15.0737972808742, -15.021991121267668, -15.169564068850026, -15.184968891470508, -15.247592732530112, -15.200376712316093, -15.012376160622965, -15.249807985746129, -15.09701247940322, -15.27743575308694, -15.043142689877369, -15.109182031213425, -15.049397050870596, -14.911103240783877, -15.589519145490407, -15.082579829114309, -15.125837481982545, -15.129124489344056, -15.160568420569573, -15.160676101683956, -15.146013260434074, -15.05944609509826, -15.071558050206848, -15.200924310129855, -15.225622369240533, -15.194068560351175, -15.259876627991646, -14.926586723469761, -15.390250969651687, -15.083184768686838, -15.084088920396635, -15.277735627755906, -15.152140105140528, -15.00519771311584, -15.24728576513517, -14.997754859233343, -15.027191641021933, -15.305009693199862, -15.365524780052668, -15.171990369742035, -15.385621083549735, -15.638562664196337, -15.271507949842539, -14.866707347043167, -15.265086264050392, -15.139457726498092, -15.090752937466819, -15.203388870622378, -15.24783246777469, -15.010401650502645, -15.191065186907025, -15.211019356448022, -15.075935310236774, -15.353595288106533, -15.389088160987523, -15.4440703443007, -15.110809721661354, -15.222003343340464, -15.071548635565629, -15.189394332288591, -15.405477484379073, -15.251174324901083, -15.060844073519407, -15.236973642903669, -15.016769548727089, -15.26606088273863, -15.087809568009257, -15.468033851287927, -15.231544671204349, -15.255954645597356, -15.409567463100895, -15.028151275649147, -15.294402979124271, -15.310088306262312, -14.999371138673757, -15.172595606768992, -15.078623857179196, -15.455893734173927 ]
null
Are the given two time series likely to have the same underlying distribution?
[ "Yes, they have the same underlying distribution", "No, they have different underlying distribution" ]
No, they have different underlying distribution
binary
92
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "AutoRegressive Process", "Moving Average Process" ]
The difference between AR(1) and MA(1) is that AR(1) is a linear combination of past values and white noise, while MA(1) is a linear combination of past white noise values. You should check if the time series exhibit any dependency on the previous values. This could give you a clue about whether the time series is AR(1) or not. Check this for both time series.
Similarity Analysis
Distributional
98
[ 9.868589846250497, 2.776911740480598, -3.631204506326983, -12.780007587224752, -14.171502273132866, -19.89399148376432, -6.214333325238307, -13.98284056750681, -9.963427830383438, -7.427703231043423, 3.5145118940143742, 13.705292404795207, 17.92393335664945, 17.86843011822086, 3.808282633636111, -7.6420747704736876, -14.57056801402844, -4.137244414943601, -2.576496249448523, 6.625375407796806, 15.328327669438274, 5.003143132558141, 4.323257781618384, 3.3286694384588054, -0.6149413454751071, -5.840381621627201, 7.175249736808808, 6.259917056602055, 5.139381530879324, -3.9162715239824974, 3.6191070849490474, -7.155789340420913, -1.1755761838899081, 3.881832653439697, -1.0196843704839287, 2.360773315444655, 3.745314242800595, 2.60264514613898, 2.211555918363509, 2.3870629666260204, 3.208767100021305, 3.1694339934541134, -8.503094707358127, -8.32458527594255, -4.010182208785319, -2.23525848163534, 7.749295808643112, 12.400302541909033, 1.216146682995868, -0.693353734147254, -3.6680495217896825, -2.9779244837035863, -2.412153585349867, 4.185493824118594, 5.121678690706313, 16.402793004650555, 15.532265780344044, 4.119907420902473, -1.376880264960218, 4.93638649534941, -12.192573448777326, -23.212862906622313, -18.463318254045546, -5.261433418024783, 8.86120758512895, 4.917908597885446, 14.542613748167197, 12.356770096222736, -5.428733745454117, -4.42375236114699, -9.728083135133103, 1.3998422966709274, 0.8631212337918744, -12.088634078531205, -24.668055371910555, -19.944243871672956, -40.157569811935424, -37.30770874782735, -27.535863740833463, -32.59885603322035, -16.139213257522982, -1.0013051085114668, -10.968053614328692, -11.754884633427821, 0.5430238064724566, 0.42134370262707466, -13.607710818888538, -12.319379340754363, -18.384786695561885, -3.625850392190655, 3.1586406294933624, -0.6106569490615894, 0.9329545660511337, -12.334852116883956, -17.40565627908328, 1.6082668536583036, 1.8217600087233157, 10.758266054892307, 10.926743727994129, 21.88421341269055, -2.4810045958397566, -3.86697951686187, 13.354232848674396, 20.24512063454596, 29.44981909553868, 23.492209339866037, 13.422703317758998, 0.4665180573279155, -10.59606647075277, -0.40624755451702654, 4.807112460594899, 3.1799554751723194, 7.625870928654663, 7.525214333444339, 15.642348480750305, 22.040746333681945, 6.973856062097132, 8.315544724375606, -10.036231722440334, -6.698777997046305, 0.6840203993788085, -12.589977128428561, -14.23660905735117, -11.294023473682914, -6.696069615212438, -8.142892724418298, -18.237195703581357, -15.129828582057668 ]
[ 10.103562474212723, 11.518040209552916, 10.504691614427362, 11.45734397468351, 10.22756119702138, 7.050624354874136, 10.35729706440097, 12.440848849086436, 10.610265665223785, 11.529925062543722, 11.519629752971372, 8.520942520543452, 7.233094820442455, 14.463540891067403, 8.231399183935551, 10.81689176896186, 12.150676487399187, 8.429904480482751, 11.268549298036854, 10.566602071316806, 9.280036067028487, 9.475553319556411, 12.36682738406366, 7.402316506141522, 11.67982252692112, 11.976230296465118, 6.625765494423858, 10.56836959518416, 6.467980468849163, 12.377436516160035, 10.744396046428283, 8.007816708741814, 8.878394513155392, 11.31868434612689, 6.79997757656308, 12.762019549454378, 8.054341636968786, 9.81454701995948, 10.329983200746437, 8.264614186284751, 8.532211725407558, 13.232526028157894, 7.3044239149506245, 9.180666969927309, 9.375786464047405, 9.796240860044673, 8.070110500071417, 12.322070115125467, 7.236304148418841, 12.231882515810645, 8.980642660536756, 9.354396606441027, 11.065194150590361, 9.722167542593338, 12.798707328303522, 9.257923620293674, 10.422206544942545, 12.142060469558235, 10.727500070819257, 10.035828309951636, 10.722740397157276, 11.756621786813776, 10.51361794990142, 12.404925521700369, 8.654496603658554, 11.630566231249617, 10.166893831617973, 10.829834825008293, 10.268494998410997, 9.716231013066471, 12.390877932523015, 10.64431864488691, 7.946667266274209, 10.676928293415582, 11.037433833117634, 10.358123609934482, 7.882185241444943, 9.705225273359115, 8.368066529037868, 9.963866949557344, 9.136209849603217, 10.50359373016213, 9.551822774042268, 6.590074570878261, 9.203941032463003, 8.66063163066055, 10.515715810763572, 8.614122969716874, 13.779901152738155, 8.443621667631716, 8.315658356340183, 10.469765086155354, 9.157587758317261, 9.90377937312505, 13.260553921459815, 8.650084670179247, 8.28896827888299, 12.550561642690372, 7.1166241297109485, 12.040711103045433, 9.855018656447966, 8.9675944131985, 12.046374626961837, 7.842550306297118, 12.45542169850491, 9.460398722469803, 9.966436466406961, 13.711200889697361, 9.093889386339269, 11.949293345995049, 7.373841992974786, 14.061105213999726, 10.706526172708871, 8.050036687887294, 12.156031005461823, 7.954593842145108, 11.973236122460648, 10.041208113310324, 7.855460734420983, 12.220559380046478, 9.357172804692818, 9.666467361254302, 9.97268116150988, 9.904718226292294, 10.011180192494688, 10.589036416585738, 10.792871173166327, 9.664912783289097 ]
Is the given time series likely to have a non-stationary anomaly?
[ "Yes, due to trend reversal", "Yes, due to cutoff", "No, the anomaly is stationary" ]
Yes, due to cutoff
binary
69
hard
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity", "Linear Trend", "Sine Wave", "Cutoff Anomaly", "Spike Anomaly" ]
Non-stationary anomaly refers to the anomaly that changes over time. You should check if the time series has a constant mean and variance over time. If not, you should check the type of anomaly based on the given definitions. For example, spikes anomaly are stationary.
Anolmaly Detection
General Anomaly Detection
99
[ 0, 1.1186659880485073, 1.9464941275418859, 2.272534172172664, 2.0236674815751052, 1.2846913153311204, 0.2750266453171599, -0.7115525945201533, -1.3876135969920478, -1.5510169840852517, -1.1404406334155939, -0.25222369404762923, 0.8860959377592788, 1.978281932877102, 2.74076999106389, 2.980557538408263, 2.6482178482012335, 1.8514766187556038, 0.8256217815467535, -0.13112559976839844, -0.7395269597745164, -0.8160277320032399, -0.323176282609166, 0.6200888411065192, 1.771109058016669, 2.8301594308355407, 3.522777381905091, 3.6751523212806454, 3.2618680961573245, 2.41288432261908, 1.3778389612163005, 0.45747753707093386, -0.07895591189602524, -0.0676750298540425, 0.5046598731675134, 1.4972776632209506, 2.6539635243292334, 3.6734362749542777, 4.292104554356449, 4.356470335023575, 3.865291899149449, 2.9699249147994644, 1.932747924654909, 1.0550919715408738, 0.5944707161234524, 0.6938463526122038, 1.3423606244645743, 2.3783173800748765, 3.533597417364192, 4.507305707747513, 5.048421513652148, 5.0247489908507665, 4.45922886204478, 3.5236370384861786, 2.491401057927356, 1.6624947622291624, -0.011118801180469205, 0.0031890218468938335, 0.0027904129220013766, 0.010105152848065265, -0.005808781340235147, -0.005251698071781476, -0.0057138016575414155, -0.009240828377471049, -0.026125490126936015, 0.009503696823969031, 0.008164450809513273, -0.01523875997615861, -0.0042804606417623445, -0.007424068371191725, -0.007033438017074073, -0.021396206560762396, -0.0062947496092425085, 0.0059772046691260825, 0.02559488031037793, 0.003942330218796011, 0.0012221916522267957, -0.005154356620924533, -0.006002538501059117, 0.009474398210466388, 0.002910340012621821, -0.006355597402746391, -0.01021552194675598, -0.0016175538639752096, -0.005336488038424868, -0.00005527862320126283, -0.0022945045383195653, 0.003893489132561233, -0.012651191139226421, 5.175469814276433, 4.199947673427429, 3.550230075168918, 3.421220367512922, 3.864793385991625, 4.7755464271010615, 5.919751357853423, 6.999555269904504, 7.734794984743733, 7.93995252795761, 7.575113373568762, 6.756930201989204, 5.726580636676004, 4.7835203572509615, 4.20322834365194, 4.161538061753404, 4.686339368557196, 5.649917701146225, 6.804034827880472, 7.848115149493838, 8.511808075479424, 8.629248167840263, 8.184615209021155, 7.316479713518704, 6.2797402541255725, 5.375607692325889, 4.868868307511439, 4.9151520632209404, 5.518184028553041, 6.528761172830599, 7.685735588479262, 8.687746833539876, 9.275999889351748, 9.305351209418575, 8.78417687951528, 7.872071866901503, 6.836012330940811, 5.977022371136368, 5.547488456296409 ]
null
Is the given time series likely to be stationary after differencing?
[ "No", "Yes" ]
Yes
binary
32
easy
Please answer the question and provide the correct option letter, e.g., A), B), C), D), and option content at the end of your answer. All information need to answer the question is given. If you are unsure, please provide your best guess.
[ "Stationarity" ]
Differencing is a common technique to make a time series stationary. Focus on checking if the trend is removed after differencing.
Pattern Recognition
Stationarity Detection
100
[ -2.4189332550437292, -2.59679441756947, -2.0233154414704884, -1.4210059292154924, -1.3787092264086969, -1.276745149890353, -1.1353993276931762, 0.23678449157356476, -1.7395852356185924, -2.4006638336257873, -1.547587177638399, -0.4552861981967794, -0.034101960079175715, -0.2156360860914288, 1.6197090775360916, 1.7950168766432844, 1.8253693375096545, 3.138400406676512, 3.607254814931732, 4.5338503175182625, 5.575938332314285, 5.208711867364218, 6.95155042314097, 4.524101967293495, 2.5723226521255413, 1.9016868341764634, 1.4842880549555146, 1.8418062537513276, 1.1620704965302675, 1.1503199417107313, 0.9480660948966487, 2.9243042169396127, 2.1306642509728353, 0.47132038232159656, 1.5745628173751691, 0.8706602102390126, 0.780287724816831, 0.143211738289984, 0.8700068986727065, -0.4849150781178817, -3.2446886148413814, -1.9672186450729683, -1.723232726216211, -0.665693322453159, 0.5787441405911011, -0.32481636632089234, -0.2650056548877187, 0.2332659272903636, 0.12649882755899533, -0.18125666623276615, -0.3918992101669243, 0.6763851753602677, 0.42102039838581684, 1.0127974152025099, 1.354805263197374, 0.4041999143079403, 0.7019170596987112, -0.8150863973919998, -0.4193061562810307, 0.4592622889221993, 1.5648845293713638, 0.6256102021324033, 0.09700626971940908, 0.37707126134543123, -0.0921515615925959, -1.9938660362965936, -2.5279343227797937, -2.2516784930764606, -1.1991831467089673, 0.46623785982309085, 0.589426174667265, 1.1479432673753072, 2.095197467431542, 0.07351402191969408, -0.9313494356064089, -0.830231516303609, 0.7038024859300583, 1.3246949067978144, 1.6497516708856177, 1.4248519134494273, 1.8456359153140336, 1.2575944096339975, 0.4887467112523843, -0.19443232610133065, 1.1271724810520318, 0.298752867109041, -0.09440862886643873, 0.36996980755018477, -0.4978202533922495, -0.27484118860028217, -0.052216777152257095, -0.6678773029446655, -0.9230133718447263, -1.853302189923267, -0.49000834199012094, -0.23604192644755184, -1.2699179794823305, -1.1453787117817136, -0.9762009442599489, -3.187851411926287, -1.8662835439938124, -2.841955962813473, -0.7811757465418876, 0.002915704196430214, -1.1080459829073241, -1.4178713162956498, -0.50824549453581, -0.7426501908400563, 0.41899516730638436, 0.0482221726493383, -0.02933529385835055, 0.907434692879305, 1.5023287145670303, 0.590130359803789, 1.0180696670246254, 1.1831597679757804, 0.2842653999716524, -1.0866308514501606, -2.9908167091217304, -3.281094704461852, -3.3343407844817863, -2.8368682128099856, -2.0279435996993187, -2.4359744691871454, -2.5178760028307154, -3.2659139715396512, -3.1799040449984037, -2.2250339339568104 ]
null