MultiLingual CLIP
Multilingual CLIP is a pre-trained model which can be used for multilingual semantic search and zero-shot image classification in 100 languages.
Model Architecture
Multilingual CLIP was built using OpenAI CLIP model. I have used the same Vision encoder (ResNet 50x4), but instead I replaced their text encoder (Transformer) with a Mulilingual Text Encoder (XLM-Roberta) and a configurable number of projection heads, as seen below:
The model was trained in a distributed fashion on 16 Habana Gaudi Accelerators and with mixed Precision in two phases (using COCO Dataset for phase 1 and Google Conceptual Captions for phase 2). The training pipeline was built using PyTorch, PyTorch Lightning, and Distributed Data Parallel.
Datasets
Three datasets have been used for building the model. COCO captions was used for training phase 1 and Google Conceptual Captions was used for training phase 2. Unsplash dataset was used for testing and inference.
COCO Captions
COCO (Common Objects in Context) is a large-scale object detection, segmentation, and captioning dataset. The COCO captions dataset has around ~85000 images and captions pairs.
Run the following to download the dataset:
./download_coco.sh
This dataset was used for the first pre-training phase.
Google Conceptual Captions
Conceptual Captions is a dataset consisting of ~3.3 million images annotated with captions. In contrast with the curated style of other image caption annotations, Conceptual Caption images and their raw descriptions are harvested from the web, and therefore represent a wider variety of styles.
Download the datasets urls/captions from here as save it to datasets/googlecc/googlecc.tsv
. The full dataset has over 3 million images, but you can select a subset by loading the googlecc.tsv
file and saving only the number of rows you want (I have used 1 million images for training).
Then run the following commands to download each image on the googlecc.tsv
file:
npm install
node download_build_googlecc.js
This dataset was used for the second pre-training phase.
Unplash
This dataset was used as the test set during inference.
Run python3.8 download_unsplash.py
to download the dataset.
Training
Setup
Create two Habana instances (AWS EC2 DL1) using Habana® Deep Learning Base AMI (Ubuntu 20.04)
Create the PyTorch docker container running:
docker run --name pytorch -td --runtime=habana -e HABANA_VISIBLE_DEVICES=all -e OMPI_MCA_btl_vader_single_copy_mechanism=none --cap-add=sys_nice --net=host --ipc=host vault.habana.ai/gaudi-docker/1.2.0/ubuntu20.04/habanalabs/pytorch-installer-1.10.0:1.2.0-585
Enter the docker image by running:
docker exec -it pytorch /bin/bash
Setup password-less ssh between all connected servers
Configure password-less ssh between all nodes:
Do the following in all the nodes' docker sessions:
mkdir ~/.ssh cd ~/.ssh ssh-keygen -t rsa -b 4096
Copy id_rsa.pub contents from every node's docker to every other node's docker's ~/.ssh/authorized_keys (all public keys need to be in all hosts' authorized_keys):
cat id_rsa.pub > authorized_keys vi authorized_keys
Copy the contents from inside to other systems. Paste all hosts' public keys in all hosts' “authorized_keys” file.
On each system: Add all hosts (including itself) to known_hosts. The IP addresses used below are just for illustration:
ssh-keyscan -p 3022 -H $IP1 >> ~/.ssh/known_hosts ssh-keyscan -p 3022 -H $IP2 >> ~/.ssh/known_hosts
Change Docker SSH port to 3022
sed -i 's/#Port 22/Port 3022/g' /etc/ssh/sshd_config sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config service ssh restart
Allow all TCP traffic between the nodes on AWS
Clone the git repo:
git clone https://github.com/gzomer/clip-multilingual
Create environment:
python3.8 -m venv .env
Install requirements:
python3.8 -r requirements.txt
Activate environment
source .env/bin/activate
Training params
Learning rate: 1e-3
Batch size: 64
Phase 1 - Epochs: 100
Phase 2 - Epochs: 15
Train script arguments
--dataset-num-workers Number of workers (default: 8)
--dataset-type Dataset type (coco or googlecc) (default: coco)
--dataset-dir Dataset dir (default: ./datasets/coco/)
--dataset-subset-size Load only a subset of the dataset (useful for debugging)
--dataset-train-split Dataset train split (default: 0.8)
--train-device Type of device to use (default: hpu)
--distributed-num-nodes Number of nodes (machines) (default: 2)
--distributed-parallel-devices Number of parallel devices per node (default: 8)
--distributed-master-address Master node IP address
--distributed-master-port Master node port (default: 12345)
--distributed-bucket-cap-mb DDP bucket cap MB (default: 200)
--checkpoint-dir Model checkpoint dir (default: ./models)
--checkpoint-save-every-n Save every n epochs (default: 1)
--checkpoint-load-vision-path Load vision encoder checkpoint
--checkpoint-load-text-path Load text encoder checkpoint
--model-visual-name Which visual model to use (default: RN50x4)
--model-textual-name Which textual model to use (default: xlm-roberta-base)
--hyperparam-num-layers Number of layers (default: 3)
--hyperparam-lr Model learning rate (default: 0.001)
--hyperparam-epochs Max epochs (default: 100)
--hyperparam-precision Precision (default: 16)
--hyperparam-batch-size Batch size (default: 64)
--wandb-project W&B project name (default: clip)
--wandb-enabled W&B is enabled? (default: True)
Habana Gaudi - 8 accelerators
Phase 1 training
python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1
Phase 2 training
python3.8 train.py --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 1 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2
Habana Gaudi - 16 accelerators (multi-server training)
Change the master IP address based on your instances (use local IP, not public IP).
Phase 1 training
NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2
NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2
Phase 2 training
NODE_RANK=0 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 10 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2
NODE_RANK=1 python3.8 train.py --distributed-master-address 172.31.86.231 --train-device hpu --distributed-parallel-devices 8 --distributed-num-nodes 2 --hyperparam-epochs 15 --checkpoint-load-text-path /home/models/text-last.ckpt --checkpoint-load-vision-path /home/models/vision-last.ckpt --checkpoint-dir ./models_phase2
Other devices
If you don't have access to a Habana Gaudi accelerator yet, you can also train on CPU/GPU, although it will be way slower.
To train on CPU, just pass --train-device=cpu
and on GPU --train-device=cuda
to the train.py
script.
Inference
Loading pre-trained model from Hugging Face HUB
from models import create_and_load_from_hub
model = create_and_load_from_hub()
Loading model from local checkpoint
from models import MultiLingualCLIP, load_model
text_checkpoint_path = '/path/to/text model checkpoint'
vision_checkpoint_path = '/path/to/vision model checkpoint'
model = MultiLingualCLIP(num_layers=3)
load_model(model, vision_checkpoint_path, text_checkpoint_path)
Generate embeddings
Run the following (after downloading Unplash dataset):
python3.8 ./generate_embeddings.py
Searching images
import numpy as np
from search import MultiLingualSearch
images_embeddings = np.load('/path/to/images_embeddings')
images_data = [...] # List of image info for each row of the embeddings. For instance, it could be a list of urls, filepaths, ids. They will be returned when calling the search function
semantic_search = MultiLingualSearch(model, images_embeddings, images_data)
results = semantic_search.search('विद्यालय में') # Means at school
print(results)
[{"image": "https://images.unsplash.com/photo-1557804506-669a67965ba0?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxM3x8bWVldGluZ3N8ZW58MHx8fHwxNjQ1NjA2MjQz&ixlib=rb-1.2.1&q=80&w=400",
"prob": 0.2461608648300171},
{"image": "https://images.unsplash.com/photo-1558403194-611308249627?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwyMXx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDMyMjE&ixlib=rb-1.2.1&q=80&w=400",
"prob": 0.16881239414215088},
{"image": "https://images.unsplash.com/photo-1531497865144-0464ef8fb9a9?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw4Nnx8cGVvcGxlJTIwd29ya2luZ3xlbnwwfHx8fDE2NDU2MDY5ODc&ixlib=rb-1.2.1&q=80&w=400",
"prob": 0.14744874835014343},
{"image": "https://images.unsplash.com/photo-1561089489-f13d5e730d72?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHw5MHx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwNjk1Nw&ixlib=rb-1.2.1&q=80&w=400",
"prob": 0.095176100730896},
{"image": "https://images.unsplash.com/photo-1580582932707-520aed937b7b?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwyNDg3OTV8MHwxfHNlYXJjaHwxMnx8ZWR1Y2F0aW9ufGVufDB8fHx8MTY0NTYwMzIwMA&ixlib=rb-1.2.1&q=80&w=400",
"prob": 0.05218643322587013}]