Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -7,24 +7,45 @@ from typing import List
|
|
| 7 |
import pytesseract
|
| 8 |
import requests
|
| 9 |
from io import BytesIO
|
| 10 |
-
|
| 11 |
-
from llama_index.node_parser import SimpleNodeParser
|
| 12 |
-
llama-index
|
| 13 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
| 14 |
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
description = """
|
| 20 |
## DocQA
|
| 21 |
-
|
| 22 |
This app shows how to do Document Question Answering
|
| 23 |
Check out the docs for the `/predict` endpoint below to try it out!
|
| 24 |
"""
|
| 25 |
|
| 26 |
app = FastAPI(docs_url="/", description=description)
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
# pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
| 29 |
|
| 30 |
|
|
@@ -64,9 +85,14 @@ def load_file(file_url: str, sentences: List[str]):
|
|
| 64 |
model_name = "deepset/roberta-base-squad2"
|
| 65 |
|
| 66 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Define the common context
|
| 69 |
-
context = all_text
|
| 70 |
|
| 71 |
# List of questions
|
| 72 |
questions = sentences
|
|
@@ -74,6 +100,7 @@ def load_file(file_url: str, sentences: List[str]):
|
|
| 74 |
qa_dict = {}
|
| 75 |
# Get answers for each question with the same context
|
| 76 |
for question in questions:
|
|
|
|
| 77 |
QA_input = {
|
| 78 |
'question': question,
|
| 79 |
'context': context
|
|
|
|
| 7 |
import pytesseract
|
| 8 |
import requests
|
| 9 |
from io import BytesIO
|
| 10 |
+
|
|
|
|
|
|
|
| 11 |
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
| 12 |
|
| 13 |
+
from top2vec import Top2Vec
|
| 14 |
+
from llama_index.node_parser import SimpleNodeParser
|
| 15 |
|
| 16 |
|
| 17 |
|
| 18 |
|
| 19 |
description = """
|
| 20 |
## DocQA
|
|
|
|
| 21 |
This app shows how to do Document Question Answering
|
| 22 |
Check out the docs for the `/predict` endpoint below to try it out!
|
| 23 |
"""
|
| 24 |
|
| 25 |
app = FastAPI(docs_url="/", description=description)
|
| 26 |
|
| 27 |
+
def doc_chunk(data):
|
| 28 |
+
node_parser = SimpleNodeParser.from_defaults(chunk_size=256)
|
| 29 |
+
nodes = node_parser.get_nodes_from_documents(data)
|
| 30 |
+
return nodes
|
| 31 |
+
|
| 32 |
+
def create_train_data(nodes):
|
| 33 |
+
data = []
|
| 34 |
+
for i in range(len(nodes)):
|
| 35 |
+
#print(nodes[i].get_content())
|
| 36 |
+
data.append(nodes[i].get_content())
|
| 37 |
+
return data
|
| 38 |
+
|
| 39 |
+
def get_model(data):
|
| 40 |
+
model = Top2Vec(data, embedding_model='universal-sentence-encoder')
|
| 41 |
+
return model
|
| 42 |
+
|
| 43 |
+
def get_search_result(model, question):
|
| 44 |
+
documents, doc_scores, doc_ids = model.query_documents(question, 1)
|
| 45 |
+
|
| 46 |
+
return documents
|
| 47 |
+
|
| 48 |
+
|
| 49 |
# pipe = pipeline("document-question-answering", model="impira/layoutlm-document-qa")
|
| 50 |
|
| 51 |
|
|
|
|
| 85 |
model_name = "deepset/roberta-base-squad2"
|
| 86 |
|
| 87 |
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
| 88 |
+
##########################
|
| 89 |
+
nodes = doc_chunk(all_text)
|
| 90 |
+
data = create_train_data(nodes)
|
| 91 |
+
model = get_model(data)
|
| 92 |
+
#context = get_search_result(model, question)
|
| 93 |
|
| 94 |
# Define the common context
|
| 95 |
+
#context = all_text
|
| 96 |
|
| 97 |
# List of questions
|
| 98 |
questions = sentences
|
|
|
|
| 100 |
qa_dict = {}
|
| 101 |
# Get answers for each question with the same context
|
| 102 |
for question in questions:
|
| 103 |
+
context = get_search_result(model, question)
|
| 104 |
QA_input = {
|
| 105 |
'question': question,
|
| 106 |
'context': context
|