""" The implementation of the main annotator class from "SpEL: Structured Prediction for Entity Linking" """ import os import re import pickle import numpy from typing import List from glob import glob from itertools import chain from transformers import AutoModelForMaskedLM import torch import torch.nn as nn from torch import optim from tqdm import tqdm from utils import store_validation_data_wiki, chunk_annotate_and_merge_to_phrase, \ get_aida_set_phrase_splitted_documents, compare_gold_and_predicted_annotation_documents from decao_eval import EntityEvaluationScores, InOutMentionEvaluationResult from span_annotation import SubwordAnnotation from data_loader import BERT_MODEL_NAME, dl_sa, tokenizer from configuration import get_checkpoints_dir, get_aida_train_canonical_redirects, get_ood_canonical_redirects, \ get_logdir_dir, get_exec_run_file class SpELAnnotator: def __init__(self): super(SpELAnnotator, self).__init__() self.checkpoints_root = get_checkpoints_dir() self.logdir = get_logdir_dir() self.exec_run_file = get_exec_run_file() self.text_chunk_length = 254 self.text_chunk_overlap = 20 self.bert_lm = None self.number_of_bert_layers = 0 self.bert_lm_h = 0 self.out = None self.softmax = None def init_model_from_scratch(self, base_model=BERT_MODEL_NAME, device="cpu"): """ This is required to be called to load up the base model architecture before loading the fine-tuned checkpoint. """ if base_model: self.bert_lm = AutoModelForMaskedLM.from_pretrained(base_model, output_hidden_states=True, cache_dir=get_checkpoints_dir() / "hf").to(device) self.disable_roberta_lm_head() self.number_of_bert_layers = self.bert_lm.config.num_hidden_layers + 1 self.bert_lm_h = self.bert_lm.config.hidden_size self.out = nn.Embedding(num_embeddings=len(dl_sa.mentions_vocab), embedding_dim=self.bert_lm_h, sparse=True).to(device) self.softmax = nn.Softmax(dim=-1) def shrink_classification_head_to_aida(self, device): """ This will be called in fine-tuning step 3 to shrink the classification head to in-domain data vocabulary. """ aida_mentions_vocab, aida_mentions_itos = dl_sa.get_aida_vocab_and_itos() if self.out_module.num_embeddings == len(aida_mentions_vocab): return current_state_dict = self.out_module.state_dict() new_out = nn.Embedding(num_embeddings=len(aida_mentions_vocab), embedding_dim=self.bert_lm_h, sparse=True).to(device) new_state_dict = new_out.state_dict() for index_new in range(len(aida_mentions_itos)): item_new = aida_mentions_itos[index_new] assert item_new in dl_sa.mentions_vocab, \ "the aida fine-tuned mention vocab must be a subset of the original vocab" index_current = dl_sa.mentions_vocab[item_new] new_state_dict['weight'][index_new] = current_state_dict['weight'][index_current] new_out.load_state_dict(new_state_dict, strict=False) self.out = new_out.to(device) dl_sa.shrink_vocab_to_aida() model_params = sum(p.numel() for p in self.bert_lm.parameters()) out_params = sum(p.numel() for p in self.out.parameters()) print(f' * Shrank model to {model_params+out_params} number of parameters ({model_params} parameters ' f'for the encoder and {out_params} parameters for the classification head)!') @property def current_device(self): return self.lm_module.device @property def lm_module(self): return self.bert_lm.module if isinstance(self.bert_lm, nn.DataParallel) or \ isinstance(self.bert_lm, nn.parallel.DistributedDataParallel) else self.bert_lm @property def out_module(self): return self.out.module if isinstance(self.out, nn.DataParallel) or \ isinstance(self.out, nn.parallel.DistributedDataParallel) else self.out @staticmethod def get_canonical_redirects(limit_to_conll=True): return get_aida_train_canonical_redirects() if limit_to_conll else get_ood_canonical_redirects() def create_optimizers(self, encoder_lr=5e-5, decoder_lr=0.1, exclude_parameter_names_regex=None): if exclude_parameter_names_regex is not None: bert_lm_parameters = list() regex = re.compile(exclude_parameter_names_regex) for n, p in list(self.lm_module.named_parameters()): if not len(regex.findall(n)) > 0: bert_lm_parameters.append(p) else: bert_lm_parameters = list(self.lm_module.parameters()) bert_optim = optim.Adam(bert_lm_parameters, lr=encoder_lr) if decoder_lr < 1e-323: # IMPORTANT! This is a hack since if we don't consider an optimizer for the last layer(e.g. decoder_lr=0.0), # BCEWithLogitsLoss will become unstable and memory will explode. decoder_lr = 1e-323 out_optim = optim.SparseAdam(self.out.parameters(), lr=decoder_lr) return bert_optim, out_optim @staticmethod def create_warmup_scheduler(optimizer, warmup_steps): """ Creates a scheduler which increases the :param optimizer: learning rate from 0 to the specified learning rate in :param warmup_steps: number of batches. You need to call scheduler.step() after optimizer.step() in your code for this scheduler to take effect """ return optim.lr_scheduler.LambdaLR( optimizer, lambda epoch: epoch / warmup_steps if epoch < warmup_steps else 1.0) def get_highest_confidence_model_predictions(self, batch_token_ids, topk_per_token=20, topk_from_batch=8196): """ This function will be used for hard negative mining. For a given input batch, it will return the `topk_from_batch` mentions which have had model puzzled. In the process, to reduce the computational complexity the model will first select `topk_per_token` number of candidates from the vocabulary, and then applies the topk selection on it. """ with torch.no_grad(): logits = self.get_model_raw_logits_inference(batch_token_ids) # topk_logit_per_token, topk_eids_per_token = logits.topk(topk_per_token, sorted=False, dim=-1) # This is a workaround to the torch.topk bug for large sized tensors topk_logit_per_token, topk_eids_per_token = [], [] for batch_item in logits: topk_probs, topk_ids = batch_item.topk(topk_per_token, sorted=False, dim=-1) topk_logit_per_token.append(topk_probs) topk_eids_per_token.append(topk_ids) topk_logit_per_token = torch.stack(topk_logit_per_token, dim=0) topk_eids_per_token = torch.stack(topk_eids_per_token, dim=0) i = torch.cat( [ topk_eids_per_token.view(1, -1), torch.zeros(topk_eids_per_token.view(-1).size(), dtype=torch.long, device=topk_eids_per_token.device).view(1, -1), ], dim=0, ) v = topk_logit_per_token.view(-1) st = torch.sparse.FloatTensor(i, v) stc = st.coalesce() topk_indices = stc._values().sort(descending=True)[1][:topk_from_batch] result = stc._indices()[0, topk_indices] return result.cpu().tolist() # ########################################################################################### def annotate_subword_ids(self, subword_ids_list: List, k_for_top_k_to_keep: int, token_offsets=None) \ -> List[SubwordAnnotation]: with torch.no_grad(): token_ids = torch.LongTensor(subword_ids_list) raw_logits, hidden_states = self.get_model_raw_logits_inference(token_ids, return_hidden_states=True) logits = self.get_model_logits_inference(raw_logits, hidden_states, k_for_top_k_to_keep, token_offsets) return logits def get_model_raw_logits_training(self, token_ids, label_ids, label_probs): # label_probs is not used in this function but provided for the classes inheriting SpELAnnotator. enc = self.bert_lm(token_ids).hidden_states[-1] out = self.out(label_ids) logits = enc.matmul(out.transpose(0, 1)) return logits def get_model_logits_inference(self, raw_logits, hidden_states, k_for_top_k_to_keep, token_offsets=None) \ -> List[SubwordAnnotation]: # hidden_states is not used in this function but provided for the classes inheriting SpELAnnotator. logits = self.softmax(raw_logits) # The following line could possibly cause errors in torch version 1.13.1 # see https://github.com/pytorch/pytorch/issues/95455 for more information top_k_logits, top_k_indices = logits.topk(k_for_top_k_to_keep) top_k_logits = top_k_logits.squeeze(0).cpu().tolist() top_k_indices = top_k_indices.squeeze(0).cpu().tolist() chunk = ["" for _ in top_k_logits] if token_offsets is None else token_offsets return [SubwordAnnotation(p, i, x[0]) for p, i, x in zip(top_k_logits, top_k_indices, chunk)] def get_model_raw_logits_inference(self, token_ids, return_hidden_states=False): encs = self.lm_module(token_ids.to(self.current_device)).hidden_states out = self.out_module.weight logits = encs[-1].matmul(out.transpose(0, 1)) return (logits, encs) if return_hidden_states else logits def evaluate(self, epoch, batch_size, label_size, best_f1, is_training=True, use_retokenized_wikipedia_data=False, potent_score_threshold=0.82): self.bert_lm.eval() self.out.eval() vocab_pad_id = dl_sa.mentions_vocab[''] all_words, all_tags, all_y, all_y_hat, all_predicted, all_token_ids = [], [], [], [], [], [] subword_eval = InOutMentionEvaluationResult(vocab_index_of_o=dl_sa.mentions_vocab['|||O|||']) dataset_name = store_validation_data_wiki( self.checkpoints_root, batch_size, label_size, is_training=is_training, use_retokenized_wikipedia_data=use_retokenized_wikipedia_data) with torch.no_grad(): for d_file in tqdm(sorted(glob(os.path.join(self.checkpoints_root, dataset_name, "*")))): batch_token_ids, label_ids, label_probs, eval_mask, label_id_to_entity_id_dict, \ batch_entity_ids, is_in_mention, _ = pickle.load(open(d_file, "rb")) logits = self.get_model_raw_logits_inference(batch_token_ids) subword_eval.update_scores(eval_mask, is_in_mention, logits) y_hat = logits.argmax(-1) tags = list() predtags = list() y_resolved_list = list() y_hat_resolved_list = list() token_list = list() for batch_id, seq in enumerate(label_probs.max(-1)[1]): for token_id, label_id in enumerate(seq[:-self.text_chunk_overlap]): if eval_mask[batch_id][token_id].item() == 0: y_resolved = vocab_pad_id else: y_resolved = label_ids[label_id].item() y_resolved_list.append(y_resolved) tags.append(dl_sa.mentions_itos[y_resolved]) y_hat_resolved = y_hat[batch_id][token_id].item() y_hat_resolved_list.append(y_hat_resolved) predtags.append(dl_sa.mentions_itos[y_hat_resolved]) token_list.append(batch_token_ids[batch_id][token_id].item()) all_y.append(y_resolved_list) all_y_hat.append(y_hat_resolved_list) all_tags.append(tags) all_predicted.append(predtags) all_words.append(tokenizer.convert_ids_to_tokens(token_list)) all_token_ids.append(token_list) del batch_token_ids, label_ids, label_probs, eval_mask, \ label_id_to_entity_id_dict, batch_entity_ids, logits, y_hat y_true = numpy.array(list(chain(*all_y))) y_pred = numpy.array(list(chain(*all_y_hat))) all_token_ids = numpy.array(list(chain(*all_token_ids))) num_proposed = len(y_pred[(1 < y_pred) & (all_token_ids > 0)]) num_correct = (((y_true == y_pred) & (1 < y_true) & (all_token_ids > 0))).astype(int).sum() num_gold = len(y_true[(1 < y_true) & (all_token_ids > 0)]) precision = num_correct / num_proposed if num_proposed > 0.0 else 0.0 recall = num_correct / num_gold if num_gold > 0.0 else 0.0 f1 = 2.0 * precision * recall / (precision + recall) if precision + recall > 0.0 else 0.0 f05 = 1.5 * precision * recall / (precision + recall) if precision + recall > 0.0 else 0.0 if f1 > best_f1: print("Saving the best checkpoint ...") config = self.prepare_model_checkpoint(epoch) fname = self.get_mode_checkpoint_name() torch.save(config, f"{fname}.pt") print(f"weights were saved to {fname}.pt") if precision > potent_score_threshold and recall > potent_score_threshold and is_training: print(f"Saving the potent checkpoint with both precision and recall above {potent_score_threshold} ...") config = self.prepare_model_checkpoint(epoch) try: fname = self.get_mode_checkpoint_name() torch.save(config, f"{fname}-potent.pt") print(f"weights were saved to {fname}-potent.pt") except NotImplementedError: pass self.bert_lm.train() self.out.train() with open(self.exec_run_file, "a+") as exec_file: exec_file.write(f"{precision}, {recall}, {f1}, {f05}, {num_proposed}, {num_correct}, {num_gold}, " f"{epoch+1},,\n") return precision, recall, f1, f05, num_proposed, num_correct, num_gold, subword_eval def inference_evaluate(self, epoch, best_f1, dataset_name='testa'): self.bert_lm.eval() self.out.eval() evaluation_results = EntityEvaluationScores(dataset_name) gold_documents = get_aida_set_phrase_splitted_documents(dataset_name) for gold_document in tqdm(gold_documents): t_sentence = " ".join([x.word_string for x in gold_document]) predicted_document = chunk_annotate_and_merge_to_phrase(self, t_sentence, k_for_top_k_to_keep=1) comparison_results = compare_gold_and_predicted_annotation_documents(gold_document, predicted_document) g_md = set((e[1].begin_character, e[1].end_character) for e in comparison_results if e[0].resolved_annotation) p_md = set((e[1].begin_character, e[1].end_character) for e in comparison_results if e[1].resolved_annotation) g_el = set((e[1].begin_character, e[1].end_character, dl_sa.mentions_itos[e[0].resolved_annotation]) for e in comparison_results if e[0].resolved_annotation) p_el = set((e[1].begin_character, e[1].end_character, dl_sa.mentions_itos[e[1].resolved_annotation]) for e in comparison_results if e[1].resolved_annotation) if p_el: evaluation_results.record_mention_detection_results(p_md, g_md) evaluation_results.record_entity_linking_results(p_el, g_el) if evaluation_results.micro_entity_linking.f1.compute() > best_f1: print("Saving the best checkpoint ...") config = self.prepare_model_checkpoint(epoch) fname = self.get_mode_checkpoint_name() torch.save(config, f"{fname}.pt") print(f"weights were saved to {fname}.pt") self.bert_lm.train() self.out.train() return evaluation_results def prepare_model_checkpoint(self, epoch): chk_point = { "bert_lm": self.lm_module.state_dict(), "number_of_bert_layers": self.number_of_bert_layers, "bert_lm_h": self.bert_lm_h, "out": self.out_module.state_dict(), "epoch": epoch, } sub_model_specific_checkpoint_data = self.sub_model_specific_checkpoint_data() for key in sub_model_specific_checkpoint_data: assert key not in ["bert_lm", "number_of_bert_layers", "bert_lm_h", "out", "epoch"], \ f"{key} is already considered in prepare_model_checkpoint function" chk_point[key] = sub_model_specific_checkpoint_data[key] return chk_point def disable_roberta_lm_head(self): assert self.bert_lm is not None self.bert_lm.lm_head.layer_norm.bias.requires_grad = False self.bert_lm.lm_head.layer_norm.weight.requires_grad = False self.bert_lm.lm_head.dense.bias.requires_grad = False self.bert_lm.lm_head.dense.weight.requires_grad = False self.bert_lm.lm_head.decoder.bias.requires_grad = False def _load_from_checkpoint_object(self, checkpoint, device="cpu"): torch.cuda.empty_cache() self.bert_lm.load_state_dict(checkpoint["bert_lm"], strict=False) self.bert_lm.to(device) self.disable_roberta_lm_head() self.out.load_state_dict(checkpoint["out"], strict=False) self.out.to(device) self.number_of_bert_layers = checkpoint["number_of_bert_layers"] self.bert_lm_h = checkpoint["bert_lm_h"] self.sub_model_specific_load_checkpoint_data(checkpoint) self.bert_lm.eval() self.out.eval() model_params = sum(p.numel() for p in self.bert_lm.parameters()) out_params = sum(p.numel() for p in self.out.parameters()) print(f' * Loaded model with {model_params+out_params} number of parameters ({model_params} parameters ' f'for the encoder and {out_params} parameters for the classification head)!') @staticmethod def download_from_torch_hub(finetuned_after_step=1): assert 4 >= finetuned_after_step >= 1 if finetuned_after_step == 4: # This model is the same SpEL finetuned model after step 3 except that its classification layer projects to # the entirety of the step-2 model rather than shrinking it in size file_name = "spel-base-step-3-500K.pt" # Downloads and returns the finetuned model checkpoint created on Oct-03-2023 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/8nw5fFXdz2yBP5z/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) elif finetuned_after_step == 3: file_name = "spel-base-step-3.pt" # Downloads and returns the finetuned model checkpoint created on Sep-26-2023 with P=92.06|R=91.93|F1=91.99 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/HpQ3PMm6A3y1NBl/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) elif finetuned_after_step == 2: file_name = 'spel-base-step-2.pt' # Downloads and returns the pretrained model checkpoint created on Sep-26-2023 with P=77.60|R=77.91|F1=77.75 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/Hf37vc1foluHPBh/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) else: file_name = 'spel-base-step-1.pt' # Downloads and returns the pretrained model checkpoint created on Sep-11-2023 with P=82.50|R=83.16|F1=82.83 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/9OAoAG5eYeREE9V/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) print(f" * Loaded pretrained model checkpoint: {file_name}") return checkpoint @staticmethod def download_large_from_torch_hub(finetuned_after_step=1): assert 4 >= finetuned_after_step >= 1 if finetuned_after_step == 4: # This model is the same SpEL finetuned model after step 3 except that its classification layer projects to # the entirety of the step-2 model rather than shrinking it in size file_name = "spel-large-step-3-500K.pt" # Downloads and returns the finetuned model checkpoint created on Oct-03-2023 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/BCvputD1ByAvILC/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) elif finetuned_after_step == 3: file_name = "spel-large-step-3.pt" # Downloads and returns the finetuned model checkpoint created on Oct-02-2023 with P=92.53|R=92.99|F1=93.76 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/kBBlYVM4Tr59P0q/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) elif finetuned_after_step == 2: file_name = 'spel-large-step-2.pt' # Downloads and returns the pretrained model checkpoint created on Oct-02-2023 with P=77.36|R=73.11|F1=75.18 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/rnDiuKns7gzADyb/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) else: file_name = 'spel-large-step-1.pt' # Downloads and returns the pretrained model checkpoint created on Sep-11-2023 with P=84.02|R=82.74|F1=83.37 checkpoint = torch.hub.load_state_dict_from_url('https://vault.sfu.ca/index.php/s/bTp6UN2xL7Yh52w/download', model_dir=str(get_checkpoints_dir()), map_location="cpu", file_name=file_name) print(f" * Loaded pretrained model checkpoint: {file_name}") return checkpoint def load_checkpoint(self, checkpoint_name, device="cpu", rank=0, load_from_torch_hub=False, finetuned_after_step=1): if load_from_torch_hub and BERT_MODEL_NAME == "roberta-large": checkpoint = self.download_large_from_torch_hub(finetuned_after_step) self._load_from_checkpoint_object(checkpoint, device) elif load_from_torch_hub and BERT_MODEL_NAME == "roberta-base": checkpoint = self.download_from_torch_hub(finetuned_after_step) self._load_from_checkpoint_object(checkpoint, device) else: # load from the local .checkpoints directory if rank == 0: print("Loading model checkpoint: {}".format(checkpoint_name)) fname = os.path.join(self.checkpoints_root, checkpoint_name) checkpoint = torch.load(fname, map_location="cpu") self._load_from_checkpoint_object(checkpoint, device) # #############################FUNCTIONS THAT THE SUB-MODELS MUST REIMPLEMENT#################################### def sub_model_specific_checkpoint_data(self): """ :return: a dictionary of key values containing everything that matters to the sub-model and is not already considered in prepare_model_checkpoint. """ return {} def sub_model_specific_load_checkpoint_data(self, checkpoint): return def get_mode_checkpoint_name(self): raise NotImplementedError def annotate(self, nif_collection, **kwargs): raise NotImplementedError