Spaces:
Runtime error
Runtime error
############################################################################## | |
# Understanding the impact of Growth and Margin profile on B2B SaaS Valuations | |
# Dataset: 106 B2B SaaS companies | |
# Author: Ramu Arunachalam (ramu@acapital.com) | |
# Created: 06/20/21 | |
# Datset last updated: 06/09/21 | |
############################################################################### | |
import joblib as jl | |
import pandas as pd | |
import plotly.express as px | |
import plotly.graph_objects as go | |
import statsmodels.api as sm | |
import streamlit as st | |
from statsmodels.stats.outliers_influence import variance_inflation_factor | |
from transformers import pipeline | |
from transformers import TapasTokenizer, TapasForQuestionAnswering | |
import json | |
import requests | |
file_date = '2021-06-11' | |
saas_filename_all = f'{file_date}-comps_B2B_ALL.csv' | |
saas_filename_high_growth = f'{file_date}-comps_B2B_High_Growth.csv' | |
def get_scatter_fig(df, x, y): | |
fig = px.scatter(df, | |
x=x, | |
y=y, | |
hover_data=['Name'], | |
title=f'{y} vs {x}') | |
df_r = df[[y] + [x]].dropna() | |
model = sm.OLS(df_r[y], sm.add_constant(df_r[x])).fit() | |
regline = sm.OLS(df_r[y], sm.add_constant(df_r[x])).fit().fittedvalues | |
fig.add_trace(go.Scatter(x=df_r[x], | |
y=model.predict(), | |
mode='lines', | |
marker_color='black', | |
name='Best-fit', | |
line=dict(width=4, dash='dot'))) | |
return fig | |
latex_dict = {'EV / NTM Revenue': r'''\frac{EV}{Rev_{NTM}}''', | |
'EV / 2021 Revenue': r'''\frac{EV}{Rev_{2021}}''', | |
'EV / NTM Gross Profit': r'''\frac{EV}{GP_{NTM}}''', | |
'EV / 2021 Gross Profit': r'''\frac{EV}{GP_{2021}}''', | |
'NTM Revenue Growth': r'''Rev\,Growth_{NTM}''', | |
'2021 Revenue Growth': r'''Rev\,Growth_{2021}''', | |
'Growth adjusted EV / LTM Revenue': r'''\frac{EV}{Rev_{LTM}}\cdot\frac{1}{Growth_{NTM}}''', | |
'Growth adjusted EV / 2020 Revenue': r'''\frac{EV}{Rev_{2020}}\cdot\frac{1}{Growth_{2021}}''' | |
} | |
class RegressionInput: | |
def __init__(self, df, x_vars, y_var): | |
self.df = df | |
self.x_vars = x_vars | |
self.y_var = y_var | |
self._hash = tuple([jl.hash(df), tuple(self.x_vars), tuple([self.y_var])]) | |
return | |
def hash(self): | |
return self._hash | |
class RegressionOutput: | |
def __init__(self, reg_input, df_r, model, df_pvalues, vif_data): | |
self.df_r = df_r | |
self.model = model | |
self.df_pvalues = df_pvalues | |
self.vif_data = vif_data | |
self.plot_figs = dict() | |
# Regression equation | |
self.eq_str = latex_dict.get(reg_input.y_var, reg_input.y_var) + r'''= \beta_0''' | |
for x, i in zip(reg_input.x_vars, range(len(reg_input.x_vars))): | |
self.eq_str += rf'''+\beta_{{{i + 1}}}\cdot {{{latex_dict.get(x, x)}}}''' | |
self.eq_str += r'''+\epsilon''' | |
self.eq_str = self.eq_str.replace("%", "\%").replace("&", "\&").replace("$", "\$") | |
# Compute regression plots and save them | |
# Plot residuals | |
for x in reg_input.x_vars: | |
self.plot_figs[x] = sm.graphics.plot_regress_exog(self.model, x) | |
self._hash = tuple([reg_input.hash(), jl.hash(df_r), id(model), jl.hash(df_pvalues), jl.hash(vif_data)]) | |
return | |
def hash(self): | |
return self._hash | |
def reg_input_hash(reg_input): | |
h = reg_input.hash() | |
# st.info(f"reg_input_hash: h = {h}") | |
return h | |
def reg_output_hash(reg_output): | |
h = reg_output.hash() | |
# st.info(f'reg_output hash = {h}') | |
return h | |
class Experiment: | |
id_num = 0 | |
def __init__(self): | |
df_main = pd.read_csv(saas_filename_all) | |
# Clean: 2x --> 2, 80% --> 80, $3,000 --> 3000 | |
df_obj = df_main[set(df_main.columns) - {'Name'}].select_dtypes(['object']) | |
df_main[df_obj.columns] = df_obj \ | |
.apply(lambda x: x.str.strip('x')) \ | |
.apply(lambda x: x.str.strip('%')) \ | |
.replace(',', '', regex=True) \ | |
.replace('\$', '', regex=True) | |
cols = df_main.columns | |
for c in cols: | |
try: | |
df_main[c] = pd.to_numeric(df_main[c]) | |
except: | |
pass | |
df_main['2021 Revenue Growth'] = (df_main['2021 Analyst Revenue Estimates'].astype(float) / df_main[ | |
'2020 Revenue'].astype( | |
float) - 1) * 100 | |
df_main = df_main[df_main['Name'].notna()] | |
self.tickers_all = list(df_main[df_main['Name'].isin(['Median', 'Mean']) == False]['Name']) | |
df_main_hg = pd.read_csv(saas_filename_high_growth) | |
df_main_hg = df_main_hg[df_main_hg['Name'].notna()] | |
self.tickers_hg = list(df_main_hg[df_main_hg['Name'].isin(['Median', 'Mean']) == False]['Name']) | |
self.tickers_excl_hg = list(set(self.tickers_all) - set(self.tickers_hg)) | |
self.df_main = df_main | |
self.df = df_main | |
self.reg_input = None | |
self.reg_output = None | |
return | |
def get_tickers(self, growth='High'): | |
if growth == 'High': | |
return self.tickers_hg | |
elif growth == 'Low': | |
return self.tickers_excl_hg | |
else: | |
return self.tickers_all | |
def filter(self, by): | |
if by == 'High growth only': | |
tickers = self.tickers_hg | |
elif by == 'All (excl. high growth)': | |
tickers = self.tickers_excl_hg | |
else: | |
tickers = self.tickers_all | |
self.df = self.df_main[self.df_main['Name'].isin(tickers)] # type of dataset | |
return self | |
def set_fwd_timeline(self, type): | |
self.rev_g = f'{type} Revenue Growth' | |
self.rev_mult = f'EV / {type} Revenue' | |
self.gp_mult = f'EV / {type} Gross Profit' | |
self.gm = f'Gross Margin' | |
# To avoid double counting growth, for growth-adjusted multiples | |
# we take the forward growth rate with the current revenue multiple | |
rev_mult = 'LTM' if type == 'NTM' else '2020' | |
self.growth_adj_mult = f'Growth adjusted EV / {rev_mult} Revenue' | |
self.df[self.growth_adj_mult] = self.df[f'EV / {rev_mult} Revenue'] / self.df[self.rev_g] | |
return self | |
def get_y_metric_list(self): | |
return [self.rev_mult, self.gp_mult, self.growth_adj_mult, self.rev_g] | |
def get_x_metric_list(self): | |
return self.df.select_dtypes(['float', 'int']).columns | |
def to_frame(self): | |
return self.df | |
def _regression(self, reg_input): | |
df = reg_input.df | |
reg_x_vars = reg_input.x_vars | |
reg_y = reg_input.y_var | |
if not reg_x_vars: | |
return None | |
df_r = df[[reg_y] + reg_x_vars].dropna() | |
# Run the regression | |
X = df_r[reg_x_vars] | |
X = sm.add_constant(X) | |
model = sm.OLS(df_r[reg_y], X).fit() | |
# Compute Variance Inflation Factors | |
df_v = df_r[reg_x_vars] | |
vif_data = None | |
if len(df_v.columns) >= 2: | |
# VIF dataframe | |
vif_data = pd.DataFrame() | |
vif_data["feature"] = df_v.columns | |
# calculating VIF for each feature | |
vif_data["VIF"] = [variance_inflation_factor(df_v.values, i) | |
for i in range(len(df_v.columns))] | |
# pvalue dataframe | |
df_pvalues = model.params.to_frame().reset_index().rename(columns={'index': 'vars', 0: 'Beta'}) | |
df_pvalues['p-value'] = model.pvalues.to_frame().reset_index().rename(columns={0: 'p-value'})['p-value'] | |
df_pvalues['Statistical Significance'] = 'Low' | |
df_pvalues.loc[df_pvalues['p-value'] <= 0.05, 'Statistical Significance'] = 'High' | |
df_pvalues = df_pvalues[df_pvalues['vars'] != 'const'] | |
return RegressionOutput(reg_input, df_r, model, df_pvalues, vif_data) | |
def regression(self, reg_x_vars, reg_y_var): | |
self.reg_input = RegressionInput(self.df, reg_x_vars, reg_y_var) | |
self.reg_output = self._regression(self.reg_input) | |
return self | |
def print(self, show_detail=False): | |
# Print regression equation | |
st.latex(self.reg_output.eq_str) | |
def highlight_significant_rows(val): | |
color = 'green' if val['p-value'] <= 0.05 else 'red' | |
return [f"color: {color}"] * len(val) | |
st.subheader("Summary", anchor='summary') | |
st.write(f"1. N = {len(self.reg_output.df_r)} companies") | |
# Assess model fit | |
if self.reg_output.model.rsquared * 100 > 30: | |
st.write(f"2. Model fit is **good** R ^ 2 = {self.reg_output.model.rsquared * 100: .2f}%") | |
if self.reg_output.model.f_pvalue < 0.05: | |
st.write(f"3. Model is **statistically significant** (F-test = {self.reg_output.model.f_pvalue:.2f})") | |
else: | |
st.write( | |
f"3. The regression is **NOT statistically significant** (F-test = {self.reg_output.model.f_pvalue:.2f})") | |
else: | |
st.write(f"2. Model fit is **poor** (R ^ 2 = {self.reg_output.model.rsquared * 100: .2f}%)") | |
# Check for Multicolinearity | |
if ( | |
self.reg_output.vif_data is not None | |
and len(self.reg_output.vif_data[self.reg_output.vif_data['VIF'] > 10]) > 0 | |
): | |
st.write("4. **Potential multicolinearity**") | |
else: | |
st.write("4. **NO multicolinearity**") | |
# print p-values | |
st.write('***') | |
for _, row in self.reg_output.df_pvalues.iterrows(): | |
str = 'strong' if row['Statistical Significance'] == 'High' else 'weak' | |
st.write(f"* There is a **{str} relationship** between *'{self.reg_input.y_var}'* and *'{row['vars']}'*") | |
st.table(self.reg_output.df_pvalues.set_index('vars').style.apply(highlight_significant_rows, axis=1)) | |
if show_detail: | |
# Show details | |
st.subheader("Details:", anchor='details') | |
# Plot residuals | |
for k, f in self.reg_output.plot_figs.items(): | |
st.write(f"Plotting residuals for **{k}**") | |
st.pyplot(f) | |
# st.pyplot(f) | |
st.markdown('***') | |
st.write(self.reg_output.model.summary()) | |
st.markdown('***') | |
if self.reg_output.vif_data is not None: | |
st.write("Variance Inflation Factors") | |
st.table(self.reg_output.vif_data.set_index('feature')) | |
return self | |
def workbench(show_detail): | |
fwd_time = st.sidebar.selectbox('Timeline', ('2021', 'NTM')) | |
slice_by_growth = st.sidebar.radio("B2B SaaS Dataset", ['High growth only', 'All', 'All (excl. high growth)']) | |
e = Experiment().set_fwd_timeline(fwd_time).filter(slice_by_growth) | |
st.sidebar.write("**Regression:**") | |
y_sel = st.sidebar.radio("Target metric", e.get_y_metric_list()) | |
st.sidebar.text("Select independent variable(s)") | |
st.header("Regression") | |
# Check if user selected revenue growth and/or gross margin | |
reg_x_cols = [i for i in [e.rev_g, e.gm] if st.sidebar.checkbox(i, value={e.rev_g: True, e.gm: True}, key=i)] | |
remaining_cols = list(set(e.get_x_metric_list()) - {e.rev_g, e.gm}) | |
reg_x_cols += st.sidebar.multiselect("Additional independent variables:", remaining_cols) | |
e.regression(reg_x_vars=reg_x_cols, reg_y_var=y_sel).print(show_detail) | |
## Plots | |
#st.header("Plots") | |
#for _, x in zip(range(4), e.reg_input.x_vars): | |
# st.plotly_chart(get_scatter_fig(e.to_frame(), x=x, y=e.reg_input.y_var)) | |
#st.plotly_chart(get_scatter_fig(e.to_frame(), x=e.gm, y=e.reg_input.y_var)) | |
st.subheader("Dataset") | |
st.expander('Table Output') \ | |
.table(e.to_frame()[['Name'] + [y_sel] + reg_x_cols] | |
.set_index('Name') | |
.sort_values(y_sel, ascending=False)) | |
st.expander('Full Raw Table Output').table(e.df_main) | |
st.sidebar.info(f"""*{len(e.df)} companies selected* | |
*Prices as of {file_date}*""") | |
return | |
def get_dataset(filter='All'): | |
e = Experiment() | |
df = e.set_fwd_timeline('2021').to_frame()[['Name'] + ['EV / 2021 Revenue', '2021 Revenue Growth','Gross Margin']].set_index('Name') | |
high_growth_tickers = e.get_tickers(growth='High') | |
low_growth_tickers = e.get_tickers(growth='Low') | |
high_growth_tickers = set(high_growth_tickers).intersection(set(df.index.values.tolist())) | |
df.loc[high_growth_tickers,'Category'] = 'High Growth' | |
low_growth_tickers = set(low_growth_tickers).intersection(set(df.index.values.tolist())) | |
df.loc[low_growth_tickers,'Category'] = 'Low Growth' | |
df = df[df['Category'].notna()] | |
if filter == 'High Growth': | |
return df.loc[high_growth_tickers] | |
elif filter == 'Low Growth': | |
return df.loc[low_growth_tickers] | |
return df | |
def summary(e1, e2, e3, e4): | |
st.header("High Growth B2B SaaS") | |
st.markdown(""" | |
For high growth B2B SaaS, ***revenue growth*** (*not profitability*) ***drives valuation*** | |
* *Valuation multiples* are well explained by *revenue growth* | |
* Model fit is good (High R^2) | |
* Revenue growth is a statistically significant factor (low p-value) | |
* *Gross Margin* does not influence *valuation multiples* | |
* Poor relationship between Revenue multiples and Gross margin (high p-value) | |
""") | |
with st.expander("More info"): | |
e1.print(True) | |
st.markdown(""" | |
* Looking at Free Cash Flow % instead of Gross Margin yield similar results | |
* Model fit is good (High R^2) | |
* *Revenue growth* is a statistically significant factor (low p-value) | |
* *FCF Margin* does not influence *valuation multiples* | |
* Poor relationship between Revenue multiples and FCF margin (high p-value) | |
""") | |
with st.expander("More info"): | |
e2.print(True) | |
st.markdown('***') | |
st.header("B2B SaaS (excluding high growth)") | |
st.markdown(""" | |
For the rest of B2B SaaS (i.e non high growth SaaS), the picture is less clear | |
* *Revenue growth* by itself doesn't adequately explain *valuation multiples* | |
* Model fit is poor (low R^2) | |
* But *Revenue growth* is still a statistically significant factor (low p-value) | |
* *Gross Margin* does not influence *valuation multiples* | |
* Poor relationship between Revenue multiples and Gross margin (high p-value) | |
""") | |
with st.expander("More info"): | |
e3.print(True) | |
st.markdown(""" | |
* Looking at Free Cash Flow % instead of Gross Margin improves model fit | |
* FCF Margin* has a **small positive effect** on *valuation multiples* | |
* Low p-value but small Beta. | |
* But overall *revenue growth* still has a much **larger effect** on valuation multiples than profitability | |
* Low p-value and higher Beta relative to FCF % | |
""") | |
with st.expander("More info"): | |
e4.print(True) | |
return | |
def make_api_call(queries, df:pd.DataFrame): | |
API_TOKEN = "api_DjJYjFpAQfQkhpfzncoRuuKuuLWrSzHdav" | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq" | |
st.sidebar.info("Using ** google/tapas-large-finetuned-wtq**") | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
table_dict = df.to_dict(orient='list') | |
output = query({ | |
"inputs": { | |
"query": queries, | |
"table": table_dict | |
}}) | |
return output | |
def nlu_query_use_api(): | |
df = get_dataset(filter='High Growth').dropna().reset_index().rename(columns={'Name':'Company','EV / 2021 Revenue':'Revenue Multiple','2021 Revenue Growth':'Growth Rate'}) | |
df['Revenue Multiple'] = df['Revenue Multiple'].round(2).apply(str) | |
df['Growth Rate'] = df['Growth Rate'].round(2).apply(str) | |
df['Gross Margin'] = df['Gross Margin'].round(2).apply(str) | |
df = df[['Company','Revenue Multiple','Growth Rate','Gross Margin']] | |
with st.expander("Dataset"): | |
st.table(df) | |
questions = ['How many companies are in this dataset?', | |
'Which company has the highest growth rate?', | |
'Which company has the highest gross margin?', | |
'Which company trades at the highest revenue multiple?', | |
'List all companies with growth rates greater than 40?', | |
'What is the average gross margin for companies in this dataset?', | |
'What is the average trading multiple?' | |
] | |
st.sidebar.write("Sample questions:") | |
st.sidebar.caption("[Copy and Paste any of these questions into the textbox below]") | |
for i in questions: st.sidebar.markdown(f"* {i}") | |
queries = st.text_area("Enter Question:", 'How many companies are in this dataset?') | |
#queries = ['Which company has the highest gross margin?'] | |
output = make_api_call(queries=queries, df=df) | |
if 'error' in output: | |
st.write(output['error']) | |
else: | |
try: | |
df_output = pd.DataFrame.from_dict(output['cells']) | |
if output['aggregator'] == 'COUNT': | |
st.info(f"[COUNT] Answer: {df_output[0].count()}") | |
elif output['aggregator'] == 'SUM': | |
st.info(f"[SUM] Answer: {df_output[0].astype(float).sum().round(2)}") | |
elif output['aggregator'] == 'AVERAGE': | |
st.info(f"[AVERAGE] Answer: {df_output[0].astype(float).mean().round(2)}") | |
else: | |
st.info(f"Answer is {output['answer']}") | |
except ValueError: | |
st.write(output) | |
with st.expander("Raw Output"): | |
st.write(output) | |
return | |
def nlu_query(): | |
from torch_scatter import scatter | |
st.header("NLU Query") | |
model_name = 'google/tapas-large-finetuned-wtq' | |
model = TapasForQuestionAnswering.from_pretrained(model_name) | |
tokenizer = TapasTokenizer.from_pretrained(model_name) | |
df = get_dataset().dropna().reset_index().rename(columns={'Name':'Company','EV / 2021 Revenue':'Revenue Multiple','2021 Revenue Growth':'Growth Rate'}) | |
df['Revenue Multiple'] = df['Revenue Multiple'].round(2).apply(str) | |
df['Growth Rate'] = df['Growth Rate'].round(2).apply(str) | |
df['Gross Margin'] = df['Gross Margin'].round(2).apply(str) | |
df = df[['Company','Revenue Multiple','Growth Rate','Gross Margin']] | |
st.table(df) | |
queries = ['How many companies are in the dataset', 'Which company has the highest growth rate?','Which company has the highest gross margin?'] | |
st.write(queries) | |
#queries = st.text_area('Ask a question') | |
inputs = tokenizer(table=df, queries=queries, padding='max_length', return_tensors="pt") | |
outputs = model(**inputs) | |
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions( | |
inputs, | |
outputs.logits.detach(), | |
outputs.logits_aggregation.detach()) | |
inputs = tokenizer(table=df, queries=queries, padding='max_length', return_tensors="pt") | |
id2aggregation = {0: "NONE", 1: "SUM", 2: "AVERAGE", 3:"COUNT"} | |
aggregation_predictions_string = [id2aggregation[x] for x in predicted_aggregation_indices] | |
answers = [] | |
for coordinates in predicted_answer_coordinates: | |
if len(coordinates) == 1: | |
# only a single cell: | |
answers.append(df.iat[coordinates[0]]) | |
else: | |
# multiple cells | |
cell_values = [] | |
for coordinate in coordinates: | |
cell_values.append(df.iat[coordinate]) | |
answers.append(", ".join(cell_values)) | |
st.write(answers) | |
st.write(aggregation_predictions_string) | |
return | |
def main(): | |
#st.set_page_config(initial_sidebar_state="collapsed") | |
sel = st.sidebar.radio("Menu", ['NLU Question Answer','Summary', 'Workbench']) | |
show_detail = True | |
# pre compute three experiments | |
# Experiment 1 | |
e1 = Experiment() \ | |
.set_fwd_timeline('2021') \ | |
.filter('High growth only') | |
e1.regression(reg_x_vars=[e1.rev_g, e1.gm], reg_y_var=e1.rev_mult) | |
# Experiment 2 | |
e2 = Experiment() \ | |
.set_fwd_timeline('2021') \ | |
.filter('High growth only') | |
e2.regression(reg_x_vars=[e2.rev_g, 'LTM FCF %'], reg_y_var=e2.rev_mult) | |
# Experiment 3 | |
e3 = Experiment() \ | |
.set_fwd_timeline('2021') \ | |
.filter('All (excl. high growth)') | |
e3.regression(reg_x_vars=[e3.rev_g, e3.gm], reg_y_var=e3.rev_mult) | |
# Experiment 4 | |
e4 = Experiment() \ | |
.set_fwd_timeline('2021') \ | |
.filter('All (excl. high growth)') | |
e4.regression(reg_x_vars=[e4.rev_g, 'LTM FCF %'], reg_y_var=e4.rev_mult) | |
if sel == 'NLU Question Answer': | |
st.title("Query Dataset") | |
return nlu_query_use_api() | |
elif sel == 'Workbench': | |
st.title('Impact of Growth and Margins on Valuation') | |
return workbench(True) | |
else: | |
st.title('Impact of Growth and Margins on Valuation') | |
return summary(e1, e2, e3, e4) | |
if __name__ == "__main__": | |
main() | |