Spaces:
Running
Running
Upload utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
def cosine_lr_schedule(optimizer, epoch, max_epoch, init_lr, min_lr):
|
3 |
+
"""Decay the learning rate"""
|
4 |
+
lr = (init_lr - min_lr) * 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) + min_lr
|
5 |
+
for param_group in optimizer.param_groups:
|
6 |
+
param_group['lr'] = lr
|
7 |
+
|
8 |
+
def warmup_lr_schedule(optimizer, step, max_step, init_lr, max_lr):
|
9 |
+
"""Warmup the learning rate"""
|
10 |
+
lr = min(max_lr, init_lr + (max_lr - init_lr) * step / max_step)
|
11 |
+
for param_group in optimizer.param_groups:
|
12 |
+
param_group['lr'] = lr
|
13 |
+
|
14 |
+
def step_lr_schedule(optimizer, epoch, init_lr, min_lr, decay_rate):
|
15 |
+
"""Decay the learning rate"""
|
16 |
+
lr = max(min_lr, init_lr * (decay_rate**epoch))
|
17 |
+
for param_group in optimizer.param_groups:
|
18 |
+
param_group['lr'] = lr
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import io
|
22 |
+
import os
|
23 |
+
import time
|
24 |
+
from collections import defaultdict, deque
|
25 |
+
import datetime
|
26 |
+
|
27 |
+
import torch
|
28 |
+
import torch.distributed as dist
|
29 |
+
|
30 |
+
class SmoothedValue(object):
|
31 |
+
"""Track a series of values and provide access to smoothed values over a
|
32 |
+
window or the global series average.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, window_size=20, fmt=None):
|
36 |
+
if fmt is None:
|
37 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
38 |
+
self.deque = deque(maxlen=window_size)
|
39 |
+
self.total = 0.0
|
40 |
+
self.count = 0
|
41 |
+
self.fmt = fmt
|
42 |
+
|
43 |
+
def update(self, value, n=1):
|
44 |
+
self.deque.append(value)
|
45 |
+
self.count += n
|
46 |
+
self.total += value * n
|
47 |
+
|
48 |
+
def synchronize_between_processes(self):
|
49 |
+
"""
|
50 |
+
Warning: does not synchronize the deque!
|
51 |
+
"""
|
52 |
+
if not is_dist_avail_and_initialized():
|
53 |
+
return
|
54 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
55 |
+
dist.barrier()
|
56 |
+
dist.all_reduce(t)
|
57 |
+
t = t.tolist()
|
58 |
+
self.count = int(t[0])
|
59 |
+
self.total = t[1]
|
60 |
+
|
61 |
+
@property
|
62 |
+
def median(self):
|
63 |
+
d = torch.tensor(list(self.deque))
|
64 |
+
return d.median().item()
|
65 |
+
|
66 |
+
@property
|
67 |
+
def avg(self):
|
68 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
69 |
+
return d.mean().item()
|
70 |
+
|
71 |
+
@property
|
72 |
+
def global_avg(self):
|
73 |
+
return self.total / self.count
|
74 |
+
|
75 |
+
@property
|
76 |
+
def max(self):
|
77 |
+
return max(self.deque)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def value(self):
|
81 |
+
return self.deque[-1]
|
82 |
+
|
83 |
+
def __str__(self):
|
84 |
+
return self.fmt.format(
|
85 |
+
median=self.median,
|
86 |
+
avg=self.avg,
|
87 |
+
global_avg=self.global_avg,
|
88 |
+
max=self.max,
|
89 |
+
value=self.value)
|
90 |
+
|
91 |
+
|
92 |
+
class MetricLogger(object):
|
93 |
+
def __init__(self, delimiter="\t"):
|
94 |
+
self.meters = defaultdict(SmoothedValue)
|
95 |
+
self.delimiter = delimiter
|
96 |
+
|
97 |
+
def update(self, **kwargs):
|
98 |
+
for k, v in kwargs.items():
|
99 |
+
if isinstance(v, torch.Tensor):
|
100 |
+
v = v.item()
|
101 |
+
assert isinstance(v, (float, int))
|
102 |
+
self.meters[k].update(v)
|
103 |
+
|
104 |
+
def __getattr__(self, attr):
|
105 |
+
if attr in self.meters:
|
106 |
+
return self.meters[attr]
|
107 |
+
if attr in self.__dict__:
|
108 |
+
return self.__dict__[attr]
|
109 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
110 |
+
type(self).__name__, attr))
|
111 |
+
|
112 |
+
def __str__(self):
|
113 |
+
loss_str = []
|
114 |
+
for name, meter in self.meters.items():
|
115 |
+
loss_str.append(
|
116 |
+
"{}: {}".format(name, str(meter))
|
117 |
+
)
|
118 |
+
return self.delimiter.join(loss_str)
|
119 |
+
|
120 |
+
def global_avg(self):
|
121 |
+
loss_str = []
|
122 |
+
for name, meter in self.meters.items():
|
123 |
+
loss_str.append(
|
124 |
+
"{}: {:.4f}".format(name, meter.global_avg)
|
125 |
+
)
|
126 |
+
return self.delimiter.join(loss_str)
|
127 |
+
|
128 |
+
def synchronize_between_processes(self):
|
129 |
+
for meter in self.meters.values():
|
130 |
+
meter.synchronize_between_processes()
|
131 |
+
|
132 |
+
def add_meter(self, name, meter):
|
133 |
+
self.meters[name] = meter
|
134 |
+
|
135 |
+
def log_every(self, iterable, print_freq, header=None):
|
136 |
+
i = 0
|
137 |
+
if not header:
|
138 |
+
header = ''
|
139 |
+
start_time = time.time()
|
140 |
+
end = time.time()
|
141 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
142 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
143 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
144 |
+
log_msg = [
|
145 |
+
header,
|
146 |
+
'[{0' + space_fmt + '}/{1}]',
|
147 |
+
'eta: {eta}',
|
148 |
+
'{meters}',
|
149 |
+
'time: {time}',
|
150 |
+
'data: {data}'
|
151 |
+
]
|
152 |
+
if torch.cuda.is_available():
|
153 |
+
log_msg.append('max mem: {memory:.0f}')
|
154 |
+
log_msg = self.delimiter.join(log_msg)
|
155 |
+
MB = 1024.0 * 1024.0
|
156 |
+
for obj in iterable:
|
157 |
+
data_time.update(time.time() - end)
|
158 |
+
yield obj
|
159 |
+
iter_time.update(time.time() - end)
|
160 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
161 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
162 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
163 |
+
if torch.cuda.is_available():
|
164 |
+
print(log_msg.format(
|
165 |
+
i, len(iterable), eta=eta_string,
|
166 |
+
meters=str(self),
|
167 |
+
time=str(iter_time), data=str(data_time),
|
168 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
169 |
+
else:
|
170 |
+
print(log_msg.format(
|
171 |
+
i, len(iterable), eta=eta_string,
|
172 |
+
meters=str(self),
|
173 |
+
time=str(iter_time), data=str(data_time)))
|
174 |
+
i += 1
|
175 |
+
end = time.time()
|
176 |
+
total_time = time.time() - start_time
|
177 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
178 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
179 |
+
header, total_time_str, total_time / len(iterable)))
|
180 |
+
|
181 |
+
|
182 |
+
class AttrDict(dict):
|
183 |
+
def __init__(self, *args, **kwargs):
|
184 |
+
super(AttrDict, self).__init__(*args, **kwargs)
|
185 |
+
self.__dict__ = self
|
186 |
+
|
187 |
+
|
188 |
+
def compute_acc(logits, label, reduction='mean'):
|
189 |
+
ret = (torch.argmax(logits, dim=1) == label).float()
|
190 |
+
if reduction == 'none':
|
191 |
+
return ret.detach()
|
192 |
+
elif reduction == 'mean':
|
193 |
+
return ret.mean().item()
|
194 |
+
|
195 |
+
def compute_n_params(model, return_str=True):
|
196 |
+
tot = 0
|
197 |
+
for p in model.parameters():
|
198 |
+
w = 1
|
199 |
+
for x in p.shape:
|
200 |
+
w *= x
|
201 |
+
tot += w
|
202 |
+
if return_str:
|
203 |
+
if tot >= 1e6:
|
204 |
+
return '{:.1f}M'.format(tot / 1e6)
|
205 |
+
else:
|
206 |
+
return '{:.1f}K'.format(tot / 1e3)
|
207 |
+
else:
|
208 |
+
return tot
|
209 |
+
|
210 |
+
def setup_for_distributed(is_master):
|
211 |
+
"""
|
212 |
+
This function disables printing when not in master process
|
213 |
+
"""
|
214 |
+
import builtins as __builtin__
|
215 |
+
builtin_print = __builtin__.print
|
216 |
+
|
217 |
+
def print(*args, **kwargs):
|
218 |
+
force = kwargs.pop('force', False)
|
219 |
+
if is_master or force:
|
220 |
+
builtin_print(*args, **kwargs)
|
221 |
+
|
222 |
+
__builtin__.print = print
|
223 |
+
|
224 |
+
|
225 |
+
def is_dist_avail_and_initialized():
|
226 |
+
if not dist.is_available():
|
227 |
+
return False
|
228 |
+
if not dist.is_initialized():
|
229 |
+
return False
|
230 |
+
return True
|
231 |
+
|
232 |
+
|
233 |
+
def get_world_size():
|
234 |
+
if not is_dist_avail_and_initialized():
|
235 |
+
return 1
|
236 |
+
return dist.get_world_size()
|
237 |
+
|
238 |
+
|
239 |
+
def get_rank():
|
240 |
+
if not is_dist_avail_and_initialized():
|
241 |
+
return 0
|
242 |
+
return dist.get_rank()
|
243 |
+
|
244 |
+
|
245 |
+
def is_main_process():
|
246 |
+
return get_rank() == 0
|
247 |
+
|
248 |
+
|
249 |
+
def save_on_master(*args, **kwargs):
|
250 |
+
if is_main_process():
|
251 |
+
torch.save(*args, **kwargs)
|
252 |
+
|
253 |
+
|
254 |
+
def init_distributed_mode(args):
|
255 |
+
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
256 |
+
args.rank = int(os.environ["RANK"])
|
257 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
258 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
259 |
+
elif 'SLURM_PROCID' in os.environ:
|
260 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
261 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
262 |
+
else:
|
263 |
+
print('Not using distributed mode')
|
264 |
+
args.distributed = False
|
265 |
+
return
|
266 |
+
|
267 |
+
args.distributed = True
|
268 |
+
|
269 |
+
torch.cuda.set_device(args.gpu)
|
270 |
+
args.dist_backend = 'nccl'
|
271 |
+
print('| distributed init (rank {}, word {}): {}'.format(
|
272 |
+
args.rank, args.world_size, args.dist_url), flush=True)
|
273 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
274 |
+
world_size=args.world_size, rank=args.rank)
|
275 |
+
torch.distributed.barrier()
|
276 |
+
setup_for_distributed(args.rank == 0)
|
277 |
+
|
278 |
+
|