import evaluate import datasets from typing import Union, Dict from transformers import AutoModelForCausalLM, AutoTokenizer import torch from tqdm import tqdm _DESCRIPTION = """ Perplexity metric implemented by d-Matrix. Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence, calculated with exponent base `e`. For more information, see https://huggingface.co/docs/transformers/perplexity """ _KWARGS_DESCRIPTION = """ Args: model (Union[str,AutoModelForCausalLM]): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) references (list of str): input text, each separate text snippet is one list entry. device (str): device to run on, defaults to 'cuda' when available. max_length (int): maximum sequence length, defaults to 2048. Returns: perplexity: dictionary containing the perplexity score and loss. Examples: Example: >>> from datasets import load_dataset >>> perplexity = evaluate.load("dmx_perplexity", module_type="metric") >>> input_texts = load_dataset("wikitext", "wikitext-2-raw-v1", split="test")["text"][:10] # doctest: +SKIP >>> results = perplexity.compute(model='distilgpt2', ... references=input_texts) >>> print(list(results.keys())) ['loss', 'perplexity'] >>> print(results['loss']) # doctest: +SKIP 3.8299286365509033 >>> print(results['perplexity']) # doctest: +SKIP 46.05925369262695 """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class DmxPerplexity(evaluate.Metric): def _info(self): return evaluate.MetricInfo( module_type="metric", description=_DESCRIPTION, citation="", inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "references": datasets.Value("string"), } ), reference_urls=["https://huggingface.co/docs/transformers/perplexity"], ) def _compute( self, references, model: Union[str, AutoModelForCausalLM], device=None, max_length=None, **kwargs, ): if device is not None: assert device in [ "gpu", "cpu", "cuda", ], "device should be either gpu or cpu." if device == "gpu": device = "cuda" else: device = "cuda" if torch.cuda.is_available() else "cpu" if isinstance(model, str): tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model) else: tokenizer = AutoTokenizer.from_pretrained(model.config._name_or_path,**kwargs) if max_length: max_seq_len = max_length elif hasattr(model.config, "max_position_embeddings"): max_seq_len = model.config.max_position_embeddings elif hasattr(model.config, "n_positions"): max_seq_len = model.config.n_positions else: max_seq_len = 2048 if not hasattr(model, "hf_device_map") and ( not hasattr(model, "model_parallel") or not model.model_parallel ): model = model.to(device) model.eval() encodings = tokenizer("\n\n".join(references), return_tensors="pt") stride = max_seq_len seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_seq_len, seq_len) trg_len = end_loc - prev_end_loc input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) if isinstance(outputs, Dict): neg_log_likelihood = outputs["loss"] * trg_len else: neg_log_likelihood = outputs.loss * trg_len nlls.append(neg_log_likelihood.to(device)) prev_end_loc = end_loc if end_loc == seq_len: break loss = torch.stack(nlls).float().sum() / end_loc ppl = torch.exp(loss) return dict( loss=loss.item(), perplexity=ppl.item(), )