context-probing / app.py
cifkao's picture
Fix LaTeX
2cb1651
from pathlib import Path
from typing import Any, Dict, Hashable
import streamlit as st
import streamlit.components.v1 as components
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, BatchEncoding, GPT2LMHeadModel, PreTrainedTokenizer
from transformers import LogitsProcessorList, RepetitionPenaltyLogitsProcessor, TemperatureLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper
from context_probing import estimate_unigram_logprobs
from context_probing.core import nll_score, kl_div_score
from context_probing.utils import columns_to_diagonals, get_windows, ids_to_readable_tokens
root_dir = Path(__file__).resolve().parent
highlighted_text_component = components.declare_component(
"highlighted_text", path=root_dir / "highlighted_text" / "build"
)
compact_layout = st.experimental_get_query_params().get("compact", ["false"]) == ["true"]
if not compact_layout:
st.title("Context length probing")
st.markdown(
"""[📃 Paper](https://arxiv.org/abs/2212.14815) |
[🌍 Website](https://cifkao.github.io/context-probing) |
[🧑‍💻 Code](https://github.com/cifkao/context-probing)
"""
)
generation_mode = st.radio(
"Mode", ["Basic mode", "Generation mode"],
horizontal=True, label_visibility="collapsed"
) == "Generation mode"
st.caption(
"In basic mode, we analyze the model's one-step-ahead predictions on the input text. "
"In generation mode, we generate a continuation of the input text (prompt) "
"and analyze the model's predictions influencing the generated tokens."
)
model_name = st.selectbox(
"Model",
[
"distilgpt2",
"gpt2",
"EleutherAI/gpt-neo-125m",
"roneneldan/TinyStories-8M",
"roneneldan/TinyStories-33M",
]
)
metric_name = st.radio(
"Metric",
(["KL divergence"] if not generation_mode else []) + ["NLL loss"],
index=0,
horizontal=True,
help="**KL divergence** is computed between the predictions with the reduced context "
"(corresponding to the highlighted token) and the predictions with the full context "
"($c_\\text{max}$ tokens). \n"
"**NLL loss** is the negative log-likelihood loss (a.k.a. cross entropy) for the target "
"token."
)
tokenizer = st.cache_resource(AutoTokenizer.from_pretrained, show_spinner=False)(model_name, use_fast=False)
# Make sure the logprobs do not use up more than ~4 GB of memory
MAX_MEM = 4e9 / (torch.finfo(torch.float16).bits / 8)
# Select window lengths such that we are allowed to fill the whole window without running out of memory
# (otherwise the window length is irrelevant); if using NLL, memory is not a consideration, but we want
# to limit runtime
multiplier = tokenizer.vocab_size if metric_name == "KL divergence" else 16384 # arbitrary number
window_len_options = [
w for w in [8, 16, 32, 64, 128, 256, 512, 1024]
if w == 8 or w * (2 * w) * multiplier <= MAX_MEM
]
window_len = st.select_slider(
r"Window size ($c_\text{max}$)",
options=window_len_options,
value=min(128, window_len_options[-1]),
help="The maximum context length $c_\\text{max}$ for which we compute the scores. Smaller "
"windows are less computationally intensive, allowing for longer inputs."
)
# Now figure out how many tokens we are allowed to use:
# window_len * (num_tokens + window_len) * vocab_size <= MAX_MEM
max_tokens = int(MAX_MEM / (multiplier * window_len) - window_len)
max_tokens = min(max_tokens, 4096)
enable_null_context = st.checkbox(
"Enable length-1 context",
value=True,
help="This enables computing scores for context length 1 (i.e. the previous token), which "
"involves using an estimate of the model's unigram distribution. This is not originally "
"proposed in the paper."
)
generate_kwargs = {}
with st.empty():
if generation_mode:
with st.expander("Generation options", expanded=False):
generate_kwargs["max_new_tokens"] = st.slider(
"Max. number of generated tokens",
min_value=8, max_value=min(1024, max_tokens), step=8, value=min(128, max_tokens)
)
col1, col2, col3, col4 = st.columns(4)
with col1:
generate_kwargs["temperature"] = st.number_input(
min_value=0.01, value=0.9, step=0.05, label="`temperature`"
)
with col2:
generate_kwargs["top_p"] = st.number_input(
min_value=0., value=0.95, max_value=1., step=0.05, label="`top_p`"
)
with col3:
generate_kwargs["typical_p"] = st.number_input(
min_value=0., value=1., max_value=1., step=0.05, label="`typical_p`"
)
with col4:
generate_kwargs["repetition_penalty"] = st.number_input(
min_value=1., value=1., step=0.05, label="`repetition_penalty`"
)
DEFAULT_TEXT = """
We present context length probing, a novel explanation technique for causal
language models, based on tracking the predictions of a model as a function of the length of
available context, and allowing to assign differential importance scores to different contexts.
The technique is model-agnostic and does not rely on access to model internals beyond computing
token-level probabilities. We apply context length probing to large pre-trained language models
and offer some initial analyses and insights, including the potential for studying long-range
dependencies.
""".replace("\n", " ").strip()
with st.expander(
f"Prompt" if generation_mode else f"Input text (≤\u2009{max_tokens} tokens)", expanded=True
):
text = st.text_area(
"Input text",
st.session_state.get("input_text", DEFAULT_TEXT),
key="input_text", label_visibility="collapsed"
)
inputs = tokenizer([text])
[input_ids] = inputs["input_ids"]
label_ids = [*input_ids[1:], tokenizer.eos_token_id]
inputs["labels"] = [label_ids]
num_user_tokens = len(input_ids)
if num_user_tokens < 1:
st.error("Please enter at least one token.", icon="🚨")
st.stop()
if not generation_mode and num_user_tokens > max_tokens:
st.error(
f"Your input has {num_user_tokens} tokens. Please enter at most {max_tokens} tokens "
f"or try reducing the window size.",
icon="🚨"
)
st.stop()
with st.spinner("Loading model…"):
model = st.cache_resource(AutoModelForCausalLM.from_pretrained, show_spinner=False)(model_name)
@st.cache_data(show_spinner=False)
def get_unigram_logprobs(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
model_name: str
):
path = Path("data") / "unigram_logprobs" / f'{model_name.replace("/", "_")}.npy'
if path.exists():
return torch.as_tensor(np.load(path, allow_pickle=False))
else:
return estimate_unigram_logprobs(_model, _tokenizer)
if enable_null_context:
with st.spinner("Obtaining unigram probabilities…"):
unigram_logprobs = get_unigram_logprobs(model, tokenizer, model_name=model_name)
else:
unigram_logprobs = torch.full((tokenizer.vocab_size,), torch.nan)
unigram_logprobs = tuple(unigram_logprobs.tolist())
@torch.inference_mode()
def get_logprobs(model, inputs, metric):
logprobs = []
batch_size = 8
num_items = len(inputs["input_ids"])
pbar = st.progress(0)
for i in range(0, num_items, batch_size):
pbar.progress(i / num_items, f"{i}/{num_items}")
batch = {k: v[i:i + batch_size] for k, v in inputs.items()}
batch_logprobs = model(**batch).logits.log_softmax(dim=-1).to(torch.float16)
if metric != "KL divergence":
batch_logprobs = torch.gather(
batch_logprobs, dim=-1, index=batch["labels"][..., None]
)
logprobs.append(batch_logprobs)
logprobs = torch.cat(logprobs, dim=0)
pbar.empty()
return logprobs
def get_logits_processor(temperature, top_p, typical_p, repetition_penalty) -> LogitsProcessorList:
processor = LogitsProcessorList()
if repetition_penalty != 1.0:
processor.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
if temperature != 1.0:
processor.append(TemperatureLogitsWarper(temperature))
if top_p < 1.0:
processor.append(TopPLogitsWarper(top_p=top_p, min_tokens_to_keep=1))
if typical_p < 1.0:
processor.append(TypicalLogitsWarper(mass=typical_p, min_tokens_to_keep=1))
return processor
@torch.inference_mode()
def generate(model, inputs, metric, window_len, max_new_tokens, **kwargs):
assert metric == "NLL loss"
start = max(0, inputs["input_ids"].shape[1] - window_len + 1)
input_ids = inputs["input_ids"][:, start:]
logits_warper = get_logits_processor(**kwargs)
new_ids, logprobs = [], []
eos_idx = None
pbar = st.progress(0)
max_steps = max_new_tokens + window_len - 1
model_kwargs = dict(use_cache=True)
for i in range(max_steps):
pbar.progress(i / max_steps, f"{i}/{max_steps}")
if input_ids.shape[1] == window_len:
model_kwargs.update(use_cache=False)
if "past_key_values" in model_kwargs:
del model_kwargs["past_key_values"]
model_inputs = model.prepare_inputs_for_generation(input_ids, **model_kwargs)
model_outputs = model(**model_inputs)
model_kwargs = model._update_model_kwargs_for_generation(model_outputs, model_kwargs, is_encoder_decoder=False)
logits_window = model_outputs.logits.squeeze(0)
logprobs_window = logits_window.log_softmax(dim=-1)
if eos_idx is None:
probs_next = logits_warper(input_ids, logits_window[[-1]]).softmax(dim=-1)
next_token = torch.multinomial(probs_next, num_samples=1).item()
if next_token == tokenizer.eos_token_id or i >= max_new_tokens - 1:
eos_idx = i
else:
next_token = tokenizer.eos_token_id
new_ids.append(next_token)
input_ids = torch.cat([input_ids, torch.tensor([[next_token]])], dim=1)
if input_ids.shape[1] > window_len:
input_ids = input_ids[:, 1:]
if logprobs_window.shape[0] == window_len:
logprobs.append(
logprobs_window[torch.arange(window_len), input_ids.squeeze(0)]
)
if eos_idx is not None and i - eos_idx >= window_len - 1:
break
pbar.empty()
[input_ids] = input_ids.tolist()
new_ids = new_ids[:eos_idx + 1]
label_ids = [*input_ids, *new_ids][1:]
return torch.as_tensor(new_ids), torch.as_tensor(label_ids), torch.stack(logprobs)[:, :, None]
@torch.inference_mode()
def run_context_length_probing(
_model: GPT2LMHeadModel,
_tokenizer: PreTrainedTokenizer,
_inputs: Dict[str, torch.Tensor],
window_len: int,
unigram_logprobs: tuple,
metric: str,
generation_mode: bool,
generate_kwargs: Dict[str, Any],
cache_key: Hashable
):
del cache_key
[input_ids] = _inputs["input_ids"]
[label_ids] = _inputs["labels"]
with st.spinner("Running model…"):
if generation_mode:
new_ids, label_ids, logprobs = generate(
model=_model,
inputs=_inputs.convert_to_tensors("pt"),
metric=metric,
window_len=window_len,
**generate_kwargs
)
output_ids = [*input_ids, *new_ids]
window_len = logprobs.shape[1]
else:
window_len = min(window_len, len(input_ids))
inputs_sliding = get_windows(
_inputs,
window_len=window_len,
start=0,
pad_id=_tokenizer.eos_token_id
).convert_to_tensors("pt")
logprobs = get_logprobs(model=_model, inputs=inputs_sliding, metric=metric)
output_ids = [*input_ids, label_ids[-1]]
num_tgt_tokens = logprobs.shape[0]
with st.spinner("Computing scores…"):
logprobs = logprobs.transpose(0, 1)
logprobs = columns_to_diagonals(logprobs)
logprobs = logprobs[:, :num_tgt_tokens]
label_ids = label_ids[-num_tgt_tokens:]
unigram_logprobs = torch.as_tensor(unigram_logprobs)
unigram_logprobs[~torch.isfinite(unigram_logprobs)] = torch.nan
if logprobs.shape[-1] == 1:
unigram_logprobs = unigram_logprobs[label_ids].unsqueeze(-1)
else:
unigram_logprobs = unigram_logprobs.unsqueeze(0).repeat(num_tgt_tokens, 1)
logprobs = torch.cat([unigram_logprobs.unsqueeze(0), logprobs], dim=0)
if metric == "NLL loss":
scores = nll_score(logprobs=logprobs, labels=label_ids, allow_overwrite=True)
elif metric == "KL divergence":
scores = kl_div_score(logprobs, labels=label_ids, allow_overwrite=True)
del logprobs # possibly overwritten by the score computation to save memory
scores = (-scores).diff(dim=0).transpose(0, 1)
scores = scores.nan_to_num()
scores /= scores.abs().max(dim=1, keepdim=True).values + 1e-6
scores = scores.to(torch.float16)
if generation_mode:
scores = F.pad(scores, (0, 0, max(0, len(input_ids) - window_len + 1), 0), value=0.)
return output_ids, scores
if not generation_mode:
run_context_length_probing = st.cache_data(run_context_length_probing, show_spinner=False)
if generation_mode:
st.button("Rerun", type="primary")
output_ids, scores = run_context_length_probing(
_model=model,
_tokenizer=tokenizer,
_inputs=inputs,
window_len=window_len,
unigram_logprobs=unigram_logprobs,
metric=metric_name,
generation_mode=generation_mode,
generate_kwargs=generate_kwargs,
cache_key=(model_name, text),
)
tokens = ids_to_readable_tokens(tokenizer, output_ids, strip_whitespace=False)
st.markdown('<label style="font-size: 14px;">Output</label>', unsafe_allow_html=True)
highlighted_text_component(
tokens=tokens,
scores=scores.tolist(),
prefix_len=len(input_ids) if generation_mode else 0
)