ecg / app.py
alessio21's picture
update app.py
a8ed8aa
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
import tensorflow as tf
from tensorflow import keras
import seaborn as sns
from sklearn.metrics import accuracy_score, precision_score, recall_score, roc_auc_score
from sklearn.metrics import f1_score, confusion_matrix, precision_recall_curve, roc_curve
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, losses
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Model
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from sklearn.decomposition import PCA
import plotly.express as px
from scipy.interpolate import griddata
import sklearn
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix, precision_score, roc_auc_score, precision_recall_curve
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, cross_val_predict, StratifiedKFold
from sentence_transformers import SentenceTransformer
from sklearn import tree
import gradio as gr
import os
import json
from datetime import datetime, timedelta
import shutil
import random
import plotly.io as pio
import joblib
#load models
autoencoder = keras.models.load_model('models/autoencoder')
classifier = keras.models.load_model('models/classifier')
decision_tree = joblib.load("models/decision_tree_model.pkl")
llm_model = SentenceTransformer(r"sentence-transformers/paraphrase-MiniLM-L6-v2")
pca_2d_llm_clusters = joblib.load('models/pca_llm_model.pkl')
print("models loaded")
#compute training dataset constant (min and max) for data normalization
dataframe = pd.read_csv('ecg.csv', header=None)
dataframe[140] = dataframe[140].apply(lambda x: 1 if x==0 else 0)
df_ecg = dataframe[[i for i in range(140)]]
ecg_raw_data = df_ecg.values
labels = dataframe.values[:, -1]
ecg_data = ecg_raw_data[:, :]
train_data, test_data, train_labels, test_labels = train_test_split(
ecg_data, labels, test_size=0.2, random_state=21)
min_val = tf.reduce_min(train_data)
max_val = tf.reduce_max(train_data)
print("constant computing: OK")
#compute PCA for latent space representation
ecg_data = (ecg_data - min_val) / (max_val - min_val)
ecg_data = tf.cast(ecg_data, tf.float32)
print(ecg_data.shape)
X = autoencoder.encoder(ecg_data).numpy()
n_components=2
pca = PCA(n_components=n_components)
X_compressed = pca.fit_transform(X)
column_names = [f"Feature{i + 1}" for i in range(n_components)]
categories = ["normal","heart disease"]
target_categorical = pd.Categorical.from_codes(labels.astype(int), categories=categories)
df_compressed = pd.DataFrame(X_compressed, columns=column_names)
df_compressed["target"] = target_categorical
print("PCA: done")
#load dataset for decision tree map plot
df_plot = pd.read_csv("df_mappa.csv", sep=",", header=0)
print("df map for decision tree loaded.")
#load dataset form llm pca
df_pca_llm = pd.read_csv("df_PCA_llm.csv",sep=",",header=0)
#useful functions
def df_encoding(df):
df.ExerciseAngina.replace(
{
'N' : 'No',
'Y' : 'exercise-induced angina'
},
inplace = True
)
df.FastingBS.replace(
{
0 : 'Not Diabetic',
1 : 'High fasting blood sugar'
},
inplace = True
)
df.Sex.replace(
{
'M' : 'Man',
'F' : 'Female'
},
inplace = True
)
df.ChestPainType.replace(
{
'ATA' : 'Atypical',
'NAP' : 'Non-Anginal Pain',
'ASY' : 'Asymptomatic',
'TA' : 'Typical Angina'
},
inplace = True
)
df.RestingECG.replace(
{
'Normal' : 'Normal',
'ST' : 'ST-T wave abnormality',
'LVH' : 'Probable left ventricular hypertrophy'
},
inplace = True
)
df.ST_Slope.replace(
{
'Up' : 'Up',
'Flat' : 'Flat',
'Down' : 'Downsloping'
},
inplace = True
)
return df
def compile_text_no_target(x):
text = f"""Age: {x['Age']},
Sex: {x['Sex']},
Chest Pain Type: {x['ChestPainType']},
RestingBP: {x['RestingBP']},
Cholesterol: {x['Cholesterol']},
FastingBS: {x['FastingBS']},
RestingECG: {x['RestingECG']},
MaxHR: {x['MaxHR']}
Exercise Angina: {x['ExerciseAngina']},
Old peak: {x['Oldpeak']},
ST_Slope: {x['ST_Slope']}
"""
return text
def LLM_transform(df , model = llm_model):
sentences = df.apply(lambda x: compile_text_no_target(x), axis=1).tolist()
#model = SentenceTransformer(r"sentence-transformers/paraphrase-MiniLM-L6-v2")
output = model.encode(sentences=sentences, show_progress_bar= True, normalize_embeddings = True)
df_embedding = pd.DataFrame(output)
return df_embedding
def upload_ecg(file):
if len(os.listdir("current_ecg"))>0: # se ci sono file nella cartella, eliminali
try:
for filename in os.listdir("current_ecg"):
file_path = os.path.join("current_ecg", filename)
if os.path.isfile(file_path):
os.remove(file_path)
print(f"I file nella cartella 'current_ecg' sono stati eliminati.")
except Exception as e:
print(f"Errore nell'eliminazione dei file: {str(e)}")
df = pd.read_csv(file.name,header=None) #file.name è il path temporaneo del file caricato
source_directory = os.path.dirname(file.name) # Replace with the source directory path
destination_directory = 'current_ecg' # Replace with the destination directory path
# Specify the filename (including the extension) of the CSV file you want to copy
file_to_copy = os.path.basename(file.name) # Replace with the actual filename
# Construct the full source and destination file paths
source_file_path = f"{source_directory}/{file_to_copy}"
destination_file_path = f"{destination_directory}/{file_to_copy}"
# Copy the file from the source directory to the destination directory
shutil.copy(source_file_path, destination_file_path)
return "Your ECG is ready, you can analyze it!"
def ecg_availability(patient_name):
folder_path = os.path.join("PATIENT",patient_name)
status_file_path = os.path.join(folder_path, "status.json")
# Check if the "status.json" file exists
if not os.path.isfile(status_file_path):
return None # If the file doesn't exist, return None
# Load the JSON data from the "status.json" file
with open(status_file_path, 'r') as status_file:
status_data = json.load(status_file)
# Extract the last datetime from the status JSON (if available)
last_datetime_str = status_data.get("last_datetime", None)
# Get the list of CSV files in the folder
csv_files = [f for f in os.listdir(folder_path) if f.endswith(".csv")]
if last_datetime_str is None:
return f"New ECG available" # If the JSON is empty, return all CSV files
last_datetime = datetime.strptime(last_datetime_str, "%B_%d_%H_%M_%S")
# Find successive CSV files
successive_csv_files = []
for csv_file in csv_files:
csv_datetime_str = csv_file.split('.')[0]
csv_datetime = datetime.strptime(csv_datetime_str, "%B_%d_%H_%M_%S")
# Check if the CSV datetime is successive to the last saved datetime
if csv_datetime > last_datetime:
successive_csv_files.append(csv_file)
if len(successive_csv_file)>0:
return f"New ECG available (last ECG: {last_datetime})"
else:
return f"No ECG available (last ECG: {last_datetime})"
def ecg_analysis():
df = pd.read_csv(os.path.join("current_ecg",os.listdir("current_ecg")[0]))
df_ecg = df[[str(i) for i in range(140)]] #ecg data columns
df_data = df_ecg.values #raw data. shape: (n_rows , 140)
df_data = (df_data - min_val) / (max_val - min_val)
df_data = tf.cast(df_data, tf.float32) #raw data. shape: (n_rows , 140)
df_tree = df[["ChestPainType","ST_Slope"]].copy() #dataset for decision tree
df_llm = df[["Age","Sex","ChestPainType","RestingBP","Cholesterol","FastingBS","RestingECG","MaxHR","ExerciseAngina","Oldpeak","ST_Slope"]].copy() # dataset for LLM
true_label = df.values[:,-1]
# ----------------ECG ANALYSIS WITH AUTOENCODER-------------------------------
heartbeat_encoder_preds = autoencoder.encoder(df_data).numpy() #encoder data representation. shape: (n_rows , 8)
heartbeat_decoder_preds = autoencoder.decoder(heartbeat_encoder_preds).numpy() #decoder data reconstruction. shape: (n_rows , 140)
classification_res = classifier.predict(df_data) #shape: (n_rows , 1)
print("shapes of: encoder preds, decoder preds, classification preds/n",heartbeat_encoder_preds.shape,heartbeat_decoder_preds.shape,classification_res.shape)
#heartbeat_indexes = [i for i, pred in enumerate(classification_res) if pred == 0]
p_encoder_preds = heartbeat_encoder_preds[0,:] #encoder representation of the chosen row
p_decoder_preds = heartbeat_decoder_preds[0,:] #decoder reconstruction of the chosen row
p_class_res = classification_res[0,:] # classification res of the chosen row
p_true = true_label[0]
#LATENT SPACE PLOT
# Create the scatter plot
fig = px.scatter(df_compressed, x='Feature1', y='Feature2', color='target', color_discrete_map={0: 'red', 1: 'blue'},
labels={'Target': 'Binary Target'},size_max=18)
# Disable hover information
# fig.update_traces(mode="markers",
# hovertemplate = None,
# hoverinfo = "skip")
# Customize the plot layout
fig.update_layout(
#title='Latent space 2D (PCA reduction)',
xaxis_title='component 1',
yaxis_title='component 2'
)
# add new point
new_point_compressed = pca.transform(p_encoder_preds.reshape(1,-1))
new_point = {'X':[new_point_compressed[0][0]] , 'Y':[new_point_compressed[0][1]] } # Target value 2 for the new point
new_point_df = pd.DataFrame(new_point)
#fig.add_trace(px.scatter(new_point_df, x='X', y='Y').data[0])
fig.add_trace(go.Scatter(
x=new_point_df['X'],
y=new_point_df['Y'],
mode='markers',
marker=dict(symbol='star', color='black', size=15),
name='actual patient'
))
d = fig.to_dict()
d["data"][0]["type"] = "scatter"
fig=go.Figure(d)
# DECODER RECONSTRUCTION PLOT
# fig_reconstruction = plt.figure(figsize=(10,8))
# sns.set(font_scale = 2)
# sns.set_style("white")
# plt.plot(df_data[0], 'black',linewidth=2)
# plt.plot(heartbeat_decoder_preds[0], 'red',linewidth=2)
# plt.fill_between(np.arange(140), heartbeat_decoder_preds[0], df_data[0], color='lightcoral')
# plt.legend(labels=["Input", "Reconstruction", "Error"])
fig_reconstruction = go.Figure()
sns.set(font_scale=2)
sns.set_style("white")
# Plot 'Input' and 'Reconstruction' lines
fig_reconstruction.add_trace(
go.Scatter(x=np.arange(140), y=df_data[0], fill=None, mode='lines', name='Input', line=dict(color='black', width=3)))
fig_reconstruction.add_trace(
go.Scatter(x=np.arange(140), y=heartbeat_decoder_preds[0], fill=None, mode='lines', name='Reconstruction',
line=dict(color='red', width=3)))
# Create a custom fill area
fill_x = list(np.arange(140)) + list(reversed(np.arange(140)))
fill_y = list(heartbeat_decoder_preds[0]) + list(reversed(df_data[0]))
fig_reconstruction.add_trace(go.Scatter(x=fill_x, y=fill_y, fill='tozeroy', fillcolor='rgba(255, 182, 193, 10.0)', mode='lines', line=dict(color='rgba(255, 182, 193, 0.5)', width=0), name='Error'))
# Customize the legend's position (outside the graph)
fig_reconstruction.update_layout(
legend=dict(
x=1.1, # Adjust the x-coordinate to position the legend outside
y=1.05, # Adjust the y-coordinate to position the legend
)
)
#classification probability
# ----------DECISION TREE ANALYSIS---------------------------------
# Define the desired column order
encoded_features = ['ST_Slope_Up', 'ST_Slope_Flat', 'ST_Slope_Down', 'ChestPainType_ASY', 'ChestPainType_ATA', 'ChestPainType_NAP', 'ChestPainType_TA'] #il modello vuole le colonne in un determinato ordine
X_plot = pd.DataFrame(columns=encoded_features)
for k in range(len(df_tree['ST_Slope'])):
X_plot.loc[k] = 0
if df_tree['ST_Slope'][k] == 'Up':
X_plot['ST_Slope_Up'][k] = 1
if df_tree['ST_Slope'][k] == 'Flat':
X_plot['ST_Slope_Flat'][k] = 1
if df_tree['ST_Slope'][k] == 'Down':
X_plot['ST_Slope_Down'][k] = 1
if df_tree['ChestPainType'][k] == 'ASY':
X_plot['ChestPainType_ASY'][k] = 1
if df_tree['ChestPainType'][k] == 'ATA':
X_plot['ChestPainType_ATA'][k] = 1
if df_tree['ChestPainType'][k] == 'NAP':
X_plot['ChestPainType_NAP'][k] = 1
if df_tree['ChestPainType'][k] == 'TA':
X_plot['ChestPainType_TA'][k] = 1
#model prediction
y_score = decision_tree.predict_proba(X_plot)[:,1]
chest_pain = []
slop = []
for k in range(len(X_plot)):
if X_plot['ChestPainType_ASY'][k] == 1 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(0)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 1 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(1)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 1 and X_plot['ChestPainType_TA'][k] == 0:
chest_pain.append(2)
if X_plot['ChestPainType_ASY'][k] == 0 and X_plot['ChestPainType_ATA'][k] == 0 and X_plot['ChestPainType_NAP'][k] == 0 and X_plot['ChestPainType_TA'][k] == 1:
chest_pain.append(3)
if X_plot['ST_Slope_Up'][k] == 1 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 0:
slop.append(0)
if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 1 and X_plot['ST_Slope_Down'][k] == 0:
slop.append(1)
if X_plot['ST_Slope_Up'][k] == 0 and X_plot['ST_Slope_Flat'][k] == 0 and X_plot['ST_Slope_Down'][k] == 1:
slop.append(2)
# Create a structured grid
fig_tree = plt.figure()
x1 = np.linspace(df_plot['ST_Slope'].min()-0.5, df_plot['ST_Slope'].max()+0.5)
x2 = np.linspace(df_plot['ChestPainType'].min()-0.5, df_plot['ChestPainType'].max()+0.5)
X1, X2 = np.meshgrid(x1, x2)
# Interpolate the 'Prob' values onto the grid
points = df_plot[['ST_Slope', 'ChestPainType']].values
values = df_plot['Prob'].values
Z = griddata(points, values, (X1, X2), method='nearest')
# Create the contour plot with regions colored by interpolated 'Prob'
plt.contourf(X1, X2, Z, cmap='coolwarm', levels=10)
plt.colorbar(label='Predicted Probability')
# Add data points if needed
plt.scatter(slop[:1], chest_pain[:1], c="k", cmap='coolwarm', edgecolor='k', marker='o', label=f'prob={y_score[:1].round(3)}')
# Remove the numerical labels from the x and y axes
plt.xticks([])
plt.yticks([])
# Add custom labels "0" and "1" near the center of the axis
plt.text(0.0, -0.7, "Up", ha='center',fontsize=15)
plt.text(1.00, -0.7, "Flat", ha='center',fontsize=15)
plt.text(2.00, -0.7, "Down", ha='center',fontsize=15)
plt.text(-0.62, 0.0, "ASY", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 1.00, "ATA", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 2.0, "NAP", rotation='vertical', va='center',fontsize=15)
plt.text(-0.62, 3.0, "TA", rotation='vertical', va='center',fontsize=15)
# Add labels and title
plt.xlabel('ST_Slope', fontsize=15, labelpad=20)
plt.ylabel('ChestPainType', fontsize=15, labelpad=20)
#plt.legend()
# ------------LLM ANALYSIS------------------------------------
df_llm_encoding = df_encoding(df_llm)
df_point_LLM = LLM_transform(df_llm_encoding)
df_point_LLM.columns = [str(column) for column in df_point_LLM.columns]
pca_llm_point = pca_2d_llm_clusters.transform(df_point_LLM)
pca_llm_point.columns = ["comp1", "comp2"]
#clusters
# fig_llm_cluster = plt.figure()
# x = df_pca_llm['comp1']
# y = df_pca_llm['comp2']
# labels = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster 3']
# # Create a dictionary to map 'RestingECG' values to colors
# color_mapping = {0: 'r', 1: 'b', 2: 'g', 3: 'y'}
# for i in df_pca_llm['cluster'].unique():
# color = color_mapping.get(i, 'k') # Use 'k' (black) for undefined values
# plt.scatter(x[df_pca_llm['cluster'] == i], y[df_pca_llm['cluster'] == i], c=color, label=labels[i])
# plt.scatter(pca_llm_point['comp1'], pca_llm_point['comp1'], c='k', marker='D')
# # Remove the numerical labels from the x and y axes
# plt.xticks([])
# plt.yticks([])
# plt.xlabel('Principal Component 1')
# plt.ylabel('Principal Component 2')
# plt.legend()
# plt.grid(False)
fig_llm_cluster = go.Figure() #use plotly for this, otherwise with matplotlib the legend will be ouside of the image when we use gradio
for cluster in df_pca_llm['cluster'].unique():
cluster_data = df_pca_llm[df_pca_llm['cluster'] == cluster]
fig_llm_cluster.add_trace(
go.Scatter(x=cluster_data['comp1'], y=cluster_data['comp2'], mode='markers', name=f'Cluster {cluster}'))
# Customize the marker size
fig_llm_cluster.update_traces(marker=dict(size=12))
# Set axis labels
fig_llm_cluster.update_xaxes(title_text="Principal Component 1")
fig_llm_cluster.update_yaxes(title_text="Principal Component 2")
# Add the additional point
fig_llm_cluster.add_trace(
go.Scatter(x=pca_llm_point['comp1'], y=pca_llm_point['comp2'], mode='markers', name='Patient',
marker=dict(size=12, symbol='diamond', line=dict(width=2, color='Black'))))
# Customize the legend's position (outside the graph)
fig_llm_cluster.update_layout(
legend=dict(
x=1.05, # Adjust the x-coordinate to position the legend outside
y=1 # Adjust the y-coordinate to position the legend
)
)
# Deactivate the grid
fig_llm_cluster.update_xaxes(showgrid=False)
fig_llm_cluster.update_yaxes(showgrid=False)
return fig, fig_reconstruction , f"Heart disease probability: {int(p_class_res[0]*100)} %" , fig_tree , f"Heart disease probability: {int(y_score[0]*100)} %" , fig_llm_cluster
#demo app
with gr.Blocks(title="TIQUE - AI DEMO CAPABILITIES") as demo:
# demo = gr.Blocks()
# with demo:
gr.Markdown("<h1><center>TIQUE: AI DEMO CAPABILITIES<center><h1>")
with gr.Row():
pazienti = ["Elisabeth Smith","Michael Mims"]
menu_pazienti = gr.Dropdown(choices=pazienti,label="patients")
available_ecg_result = gr.Textbox()
menu_pazienti.input(ecg_availability, inputs=[menu_pazienti], outputs=[available_ecg_result])
with gr.Row():
input_file = gr.UploadButton("Upload patient's data and latest ECG 📁")
text_upload_results = gr.Textbox()
input_file.upload(upload_ecg,inputs=[input_file],outputs=text_upload_results)
with gr.Row():
ecg_start_analysis_button = gr.Button(value="Start data analysis",scale=1)
gr.Markdown("## Patient positioning on clusters")
with gr.Row():
llm_cluster = gr.Plot()
gr.Markdown("## ECG analysis:")
with gr.Row():
with gr.Column():
latent_space_representation = gr.Plot()
with gr.Column():
autoencoder_ecg_reconstruction = gr.Plot()
classifier_nn_prediction = gr.Textbox()
gr.Markdown("## Patient's classification based on Chest Pain Type and ST Slope:")
with gr.Row():
decision_tree_plot = gr.Plot()
decision_tree_proba = gr.Textbox()
ecg_start_analysis_button.click(fn=ecg_analysis, inputs=None, outputs=[latent_space_representation,
autoencoder_ecg_reconstruction,
classifier_nn_prediction,decision_tree_plot, decision_tree_proba,
llm_cluster])
if __name__ == "__main__":
demo.launch()