Spaces:
Running
Running
from __future__ import annotations | |
import pathlib | |
import pickle | |
import sys | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from huggingface_hub import hf_hub_download | |
app_dir = pathlib.Path(__file__).parent | |
submodule_dir = app_dir / "StyleGAN-Human" | |
sys.path.insert(0, submodule_dir.as_posix()) | |
class Model: | |
def __init__(self): | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self.model = self.load_model("stylegan_human_v2_1024.pkl") | |
def load_model(self, file_name: str) -> nn.Module: | |
path = hf_hub_download("public-data/StyleGAN-Human", f"models/{file_name}") | |
with open(path, "rb") as f: | |
model = pickle.load(f)["G_ema"] | |
model.eval() | |
model.to(self.device) | |
with torch.inference_mode(): | |
z = torch.zeros((1, model.z_dim)).to(self.device) | |
label = torch.zeros([1, model.c_dim], device=self.device) | |
model(z, label, force_fp32=True) | |
return model | |
def generate_z(self, z_dim: int, seed: int) -> torch.Tensor: | |
return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).to(self.device).float() | |
def generate_single_image(self, seed: int, truncation_psi: float) -> np.ndarray: | |
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
z = self.generate_z(self.model.z_dim, seed) | |
label = torch.zeros([1, self.model.c_dim], device=self.device) | |
out = self.model(z, label, truncation_psi=truncation_psi, force_fp32=True) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
return out[0].cpu().numpy() | |
def generate_interpolated_images( | |
self, seed0: int, psi0: float, seed1: int, psi1: float, num_intermediate: int | |
) -> list[np.ndarray]: | |
seed0 = int(np.clip(seed0, 0, np.iinfo(np.uint32).max)) | |
seed1 = int(np.clip(seed1, 0, np.iinfo(np.uint32).max)) | |
z0 = self.generate_z(self.model.z_dim, seed0) | |
z1 = self.generate_z(self.model.z_dim, seed1) | |
vec = z1 - z0 | |
dvec = vec / (num_intermediate + 1) | |
zs = [z0 + dvec * i for i in range(num_intermediate + 2)] | |
dpsi = (psi1 - psi0) / (num_intermediate + 1) | |
psis = [psi0 + dpsi * i for i in range(num_intermediate + 2)] | |
label = torch.zeros([1, self.model.c_dim], device=self.device) | |
res = [] | |
for z, psi in zip(zs, psis): | |
out = self.model(z, label, truncation_psi=psi, force_fp32=True) | |
out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
out = out[0].cpu().numpy() | |
res.append(out) | |
return res | |