Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from datasets import load_dataset | |
| from transformers import pipeline | |
| import pandas as pd | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
| from datasets import load_dataset | |
| dataset_dict = load_dataset('HUPD/hupd', | |
| name='sample', | |
| data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", | |
| icpr_label=None, | |
| train_filing_start_date='2016-01-01', | |
| train_filing_end_date='2016-01-31', | |
| val_filing_start_date='2017-01-22', | |
| val_filing_end_date='2017-01-31', | |
| ) | |
| df = pd.DataFrame.from_dict(dataset_dict["train"]) | |
| df = pd.DataFrame(df,columns =['patent_number','decision', 'abstract', 'claims','filing_date']) | |
| #st.dataframe(df) | |
| PAN = df['patent_number'].drop_duplicates() | |
| st.title('Harvard USPTO Patentability Score') | |
| #make_choice = st.sidebar.selectbox('Select the Patent Application Number:', PAN) | |
| #####NEW | |
| with st.form("patent-form"): | |
| make_choice = st.selectbox('Select the Patent Application Number:', PAN) | |
| submitted = st.form_submit_button(label='submit') | |
| if submitted: | |
| #st.write("Outside the form") | |
| model_name = "distilbert-base-uncased-finetuned-sst-2-english" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) | |
| #abstract = df['abstract'].loc[df['patent_number'] == make_choice] | |
| decision = df['decision'].loc[df['patent_number'] == make_choice] | |
| #X_train = abstract.to_string() | |
| X_train = decision.to_string() | |
| #X_train = abstract.values.tolist() | |
| results = classifier(X_train, truncation=True) | |
| for result in results: | |
| print(result) | |
| score = result['score'] | |
| print(score) | |
| st.write("The Patentability Score is:", score) | |
| ######NEW | |
| pd.options.display.max_colwidth = 100000 | |
| abstract = df["abstract"].loc[df["patent_number"] == make_choice] | |
| st.subheader(':red[Patent Application]') | |
| st.subheader(':red[Abstract:]') | |
| st.info(abstract) | |
| claims = df["claims"].loc[df["patent_number"] == make_choice] | |
| st.subheader(':red[Claim:]') | |
| st.info(claims) | |