sgangireddy's picture
Create README.md
80f5dfe
metadata
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - facebook/multilingual_librispeech
metrics:
  - wer
model-index:
  - name: Whisper medium French MLS
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: facebook/multilingual_librispeech French
          type: facebook/multilingual_librispeech
          config: french
          split: test
          args: french
        metrics:
          - name: Wer
            type: wer
            value: 6.497245494665325

Whisper medium French MLS

This model is a fine-tuned version of openai/whisper-medium on the facebook/multilingual_librispeech French dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1239
  • Wer: 6.4972

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1424 1.0 1000 0.1239 6.4972

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2