metadata
tags:
- generated_from_trainer
datasets:
- klue
metrics:
- pearsonr
model-index:
- name: roberta-base-finetuned-sts
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: klue
type: klue
args: sts
metrics:
- name: Pearsonr
type: pearsonr
value: 0.956039443806831
roberta-base-finetuned-sts
This model is a fine-tuned version of klue/roberta-base on the klue dataset. It achieves the following results on the evaluation set:
- Loss: 0.1999
- Pearsonr: 0.9560
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Pearsonr |
---|---|---|---|---|
No log | 1.0 | 329 | 0.2462 | 0.9478 |
1.2505 | 2.0 | 658 | 0.1671 | 0.9530 |
1.2505 | 3.0 | 987 | 0.1890 | 0.9525 |
0.133 | 4.0 | 1316 | 0.2360 | 0.9548 |
0.0886 | 5.0 | 1645 | 0.2265 | 0.9528 |
0.0886 | 6.0 | 1974 | 0.2097 | 0.9518 |
0.0687 | 7.0 | 2303 | 0.2281 | 0.9523 |
0.0539 | 8.0 | 2632 | 0.2212 | 0.9542 |
0.0539 | 9.0 | 2961 | 0.1843 | 0.9532 |
0.045 | 10.0 | 3290 | 0.1999 | 0.9560 |
0.0378 | 11.0 | 3619 | 0.2357 | 0.9533 |
0.0378 | 12.0 | 3948 | 0.2134 | 0.9541 |
0.033 | 13.0 | 4277 | 0.2273 | 0.9540 |
0.03 | 14.0 | 4606 | 0.2148 | 0.9533 |
0.03 | 15.0 | 4935 | 0.2207 | 0.9534 |
Framework versions
- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6