metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- sentiment140
metrics:
- accuracy
model-index:
- name: Sentiment140_ALBERT_5E
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sentiment140
type: sentiment140
config: sentiment140
split: train
args: sentiment140
metrics:
- name: Accuracy
type: accuracy
value: 0.8533333333333334
Sentiment140_ALBERT_5E
This model is a fine-tuned version of albert-base-v2 on the sentiment140 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6103
- Accuracy: 0.8533
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6713 | 0.08 | 50 | 0.5704 | 0.7333 |
0.5742 | 0.16 | 100 | 0.4620 | 0.8 |
0.5104 | 0.24 | 150 | 0.5536 | 0.74 |
0.5313 | 0.32 | 200 | 0.5198 | 0.76 |
0.5023 | 0.4 | 250 | 0.4286 | 0.8 |
0.4871 | 0.48 | 300 | 0.4294 | 0.8267 |
0.4513 | 0.56 | 350 | 0.4349 | 0.8133 |
0.4647 | 0.64 | 400 | 0.4046 | 0.8333 |
0.4827 | 0.72 | 450 | 0.4218 | 0.8333 |
0.4517 | 0.8 | 500 | 0.4093 | 0.82 |
0.4417 | 0.88 | 550 | 0.3999 | 0.84 |
0.4701 | 0.96 | 600 | 0.3779 | 0.8867 |
0.397 | 1.04 | 650 | 0.3730 | 0.8667 |
0.3377 | 1.12 | 700 | 0.3833 | 0.8333 |
0.411 | 1.2 | 750 | 0.3704 | 0.84 |
0.3796 | 1.28 | 800 | 0.3472 | 0.86 |
0.3523 | 1.36 | 850 | 0.3512 | 0.8733 |
0.3992 | 1.44 | 900 | 0.3712 | 0.84 |
0.3641 | 1.52 | 950 | 0.3718 | 0.82 |
0.3973 | 1.6 | 1000 | 0.3508 | 0.84 |
0.3576 | 1.68 | 1050 | 0.3600 | 0.86 |
0.3701 | 1.76 | 1100 | 0.3287 | 0.8667 |
0.3721 | 1.84 | 1150 | 0.3794 | 0.82 |
0.3673 | 1.92 | 1200 | 0.3378 | 0.8733 |
0.4223 | 2.0 | 1250 | 0.3508 | 0.86 |
0.2745 | 2.08 | 1300 | 0.3835 | 0.86 |
0.283 | 2.16 | 1350 | 0.3500 | 0.8533 |
0.2769 | 2.24 | 1400 | 0.3334 | 0.8733 |
0.2491 | 2.32 | 1450 | 0.3519 | 0.8867 |
0.3237 | 2.4 | 1500 | 0.3438 | 0.86 |
0.2662 | 2.48 | 1550 | 0.3513 | 0.8667 |
0.2423 | 2.56 | 1600 | 0.3413 | 0.8867 |
0.2655 | 2.64 | 1650 | 0.3126 | 0.8933 |
0.2516 | 2.72 | 1700 | 0.3333 | 0.8733 |
0.252 | 2.8 | 1750 | 0.3316 | 0.88 |
0.2872 | 2.88 | 1800 | 0.3227 | 0.9 |
0.306 | 2.96 | 1850 | 0.3383 | 0.8733 |
0.248 | 3.04 | 1900 | 0.3474 | 0.8733 |
0.1507 | 3.12 | 1950 | 0.4140 | 0.8667 |
0.1994 | 3.2 | 2000 | 0.3729 | 0.8533 |
0.167 | 3.28 | 2050 | 0.3782 | 0.8867 |
0.1872 | 3.36 | 2100 | 0.4352 | 0.8867 |
0.1611 | 3.44 | 2150 | 0.4511 | 0.8667 |
0.2338 | 3.52 | 2200 | 0.4244 | 0.8533 |
0.1538 | 3.6 | 2250 | 0.4226 | 0.8733 |
0.1561 | 3.68 | 2300 | 0.4126 | 0.88 |
0.2156 | 3.76 | 2350 | 0.4382 | 0.86 |
0.1684 | 3.84 | 2400 | 0.4969 | 0.86 |
0.1917 | 3.92 | 2450 | 0.4439 | 0.8667 |
0.1584 | 4.0 | 2500 | 0.4759 | 0.86 |
0.1038 | 4.08 | 2550 | 0.5042 | 0.8667 |
0.0983 | 4.16 | 2600 | 0.5527 | 0.8533 |
0.1404 | 4.24 | 2650 | 0.5801 | 0.84 |
0.0844 | 4.32 | 2700 | 0.5884 | 0.86 |
0.1347 | 4.4 | 2750 | 0.5865 | 0.8467 |
0.1373 | 4.48 | 2800 | 0.5915 | 0.8533 |
0.1506 | 4.56 | 2850 | 0.5976 | 0.8467 |
0.1007 | 4.64 | 2900 | 0.6678 | 0.82 |
0.1311 | 4.72 | 2950 | 0.6082 | 0.8533 |
0.1402 | 4.8 | 3000 | 0.6180 | 0.8467 |
0.1363 | 4.88 | 3050 | 0.6107 | 0.8533 |
0.0995 | 4.96 | 3100 | 0.6103 | 0.8533 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.3.2
- Tokenizers 0.13.1