xx_eb_ner / README.md
philipp-zettl's picture
Update spaCy pipeline
f887e4e verified
metadata
tags:
  - spacy
  - token-classification
language:
  - multilingual
license: cc-by-nc-sa-4.0
model-index:
  - name: xx_eb_ner
    results:
      - task:
          name: NER
          type: token-classification
        metrics:
          - name: NER Precision
            type: precision
            value: 0.9316591427
          - name: NER Recall
            type: recall
            value: 0.9186371683
          - name: NER F Score
            type: f_score
            value: 0.9251023326

Usage

Install the model via pip:

pip install https://huggingface.co/philipp-zettl/xx_eb_ner/resolve/main/xx_eb_ner-any-py3-none-any.whl

For specific versions, please use the commits provided in the source repository. Example: version 0.1.0

pip install https://huggingface.co/philipp-zettl/xx_eb_ner/resolve/c8585148cabcfd04feec0745c17b148a48933f45/xx_eb_ner-any-py3-none-any.whl

After installing the model with it's dependencies, you can use it like any other SpaCy model:

# Using spacy.load().
import spacy
nlp = spacy.load("xx_eb_ner")
# Importing as module.
import xx_eb_ner
nlp = xx_eb_ner.load()
Feature Description
Name xx_eb_ner
Version 0.7.0
spaCy >=3.8.4,<3.9.0
Default Pipeline tok2vec, ner
Components tok2vec, ner
Vectors 0 keys, 0 unique vectors (0 dimensions)
Sources n/a
License cc-by-nc-sa-4.0
Author Philipp Zettl

Label Scheme

View label scheme (3 labels for 1 components)
Component Labels
ner COURSE_NAME, JOB_TITLE, LOCATION

Accuracy

Type Score
ENTS_F 92.51
ENTS_P 93.17
ENTS_R 91.86
TOK2VEC_LOSS 10209876.05
NER_LOSS 1606987.89