Papers
arxiv:2404.12753

AutoCrawler: A Progressive Understanding Web Agent for Web Crawler Generation

Published on Apr 19
· Submitted by akhaliq on Apr 22
#1 Paper of the day
Authors:
,
,

Abstract

Web automation is a significant technique that accomplishes complicated web tasks by automating common web actions, enhancing operational efficiency, and reducing the need for manual intervention. Traditional methods, such as wrappers, suffer from limited adaptability and scalability when faced with a new website. On the other hand, generative agents empowered by large language models (LLMs) exhibit poor performance and reusability in open-world scenarios. In this work, we introduce a crawler generation task for vertical information web pages and the paradigm of combining LLMs with crawlers, which helps crawlers handle diverse and changing web environments more efficiently. We propose AutoCrawler, a two-stage framework that leverages the hierarchical structure of HTML for progressive understanding. Through top-down and step-back operations, AutoCrawler can learn from erroneous actions and continuously prune HTML for better action generation. We conduct comprehensive experiments with multiple LLMs and demonstrate the effectiveness of our framework. Resources of this paper can be found at https://github.com/EZ-hwh/AutoCrawler

Community

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2404.12753 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2404.12753 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2404.12753 in a Space README.md to link it from this page.

Collections including this paper 22