metadata
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.94
Neuron conversation
MiniLMv2-L12-H384-distilled-from-RoBERTa-Large-distilled-clinc
This model is a fine-tuned version of nreimers/MiniLMv2-L12-H384-distilled-from-RoBERTa-Large on the clinc_oos dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.9389999
Deploy/use Model
If you want to use this model checkout the following notenbook: sagemaker/18_inferentia_inference
from sagemaker.huggingface.model import HuggingFaceModel
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
model_data=s3_model_uri, # path to your model and script
role=role, # iam role with permissions to create an Endpoint
transformers_version="4.12", # transformers version used
pytorch_version="1.9", # pytorch version used
py_version='py37', # python version used
)
# Let SageMaker know that we've already compiled the model via neuron-cc
huggingface_model._is_compiled_model = True
# deploy the endpoint endpoint
predictor = huggingface_model.deploy(
initial_instance_count=1, # number of instances
instance_type="ml.inf1.xlarge" # AWS Inferentia Instance
)