metadata
language:
- de
license: mit
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_9_0
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
model-index:
- name: wav2vec2-base-german-cv9
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 6.1
type: common_voice
args: de
metrics:
- name: Test WER
type: wer
value: 10.565782902002717
- name: Test CER
type: cer
value: 2.622682485295966
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 6.1
type: common_voice
args: de
metrics:
- name: Test WER (+LM)
type: wer
value: 7.996088831362508
- name: Test CER (+LM)
type: cer
value: 2.151571771162333
wav2vec2-base-german-cv9
This model is a fine-tuned version of facebook/wav2vec2-base on the MOZILLA-FOUNDATION/COMMON_VOICE_9_0 - DE dataset. It achieves the following results on the evaluation set:
- Loss: 0.1742
- Wer: 0.1209
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.6827 | 1.0 | 3557 | 0.6695 | 0.6247 |
0.3992 | 2.0 | 7114 | 0.3738 | 0.3936 |
0.2611 | 3.0 | 10671 | 0.3011 | 0.3177 |
0.2536 | 4.0 | 14228 | 0.2672 | 0.2749 |
0.1943 | 5.0 | 17785 | 0.2487 | 0.2480 |
0.2004 | 6.0 | 21342 | 0.2246 | 0.2268 |
0.1605 | 7.0 | 24899 | 0.2176 | 0.2120 |
0.1579 | 8.0 | 28456 | 0.2046 | 0.2024 |
0.1668 | 9.0 | 32013 | 0.2027 | 0.1944 |
0.1338 | 10.0 | 35570 | 0.1968 | 0.1854 |
0.1478 | 11.0 | 39127 | 0.1963 | 0.1823 |
0.1177 | 12.0 | 42684 | 0.1956 | 0.1800 |
0.1245 | 13.0 | 46241 | 0.1889 | 0.1732 |
0.1124 | 14.0 | 49798 | 0.1868 | 0.1714 |
0.1112 | 15.0 | 53355 | 0.1805 | 0.1650 |
0.1209 | 16.0 | 56912 | 0.1860 | 0.1614 |
0.1002 | 17.0 | 60469 | 0.1828 | 0.1604 |
0.118 | 18.0 | 64026 | 0.1832 | 0.1580 |
0.0974 | 19.0 | 67583 | 0.1771 | 0.1555 |
0.1007 | 20.0 | 71140 | 0.1812 | 0.1532 |
0.0866 | 21.0 | 74697 | 0.1752 | 0.1504 |
0.0901 | 22.0 | 78254 | 0.1690 | 0.1477 |
0.0964 | 23.0 | 81811 | 0.1773 | 0.1489 |
0.085 | 24.0 | 85368 | 0.1776 | 0.1456 |
0.0945 | 25.0 | 88925 | 0.1786 | 0.1428 |
0.0804 | 26.0 | 92482 | 0.1737 | 0.1429 |
0.0832 | 27.0 | 96039 | 0.1789 | 0.1394 |
0.0683 | 28.0 | 99596 | 0.1741 | 0.1390 |
0.0761 | 29.0 | 103153 | 0.1688 | 0.1379 |
0.0833 | 30.0 | 106710 | 0.1726 | 0.1370 |
0.0753 | 31.0 | 110267 | 0.1774 | 0.1353 |
0.08 | 32.0 | 113824 | 0.1734 | 0.1344 |
0.0644 | 33.0 | 117381 | 0.1737 | 0.1334 |
0.0745 | 34.0 | 120938 | 0.1763 | 0.1335 |
0.0629 | 35.0 | 124495 | 0.1761 | 0.1311 |
0.0654 | 36.0 | 128052 | 0.1718 | 0.1302 |
0.0656 | 37.0 | 131609 | 0.1697 | 0.1301 |
0.0643 | 38.0 | 135166 | 0.1716 | 0.1279 |
0.0683 | 39.0 | 138723 | 0.1777 | 0.1279 |
0.0587 | 40.0 | 142280 | 0.1735 | 0.1271 |
0.0693 | 41.0 | 145837 | 0.1780 | 0.1260 |
0.0532 | 42.0 | 149394 | 0.1724 | 0.1245 |
0.0594 | 43.0 | 152951 | 0.1736 | 0.1250 |
0.0544 | 44.0 | 156508 | 0.1744 | 0.1238 |
0.0559 | 45.0 | 160065 | 0.1770 | 0.1232 |
0.0557 | 46.0 | 163622 | 0.1766 | 0.1231 |
0.0521 | 47.0 | 167179 | 0.1751 | 0.1220 |
0.0591 | 48.0 | 170736 | 0.1724 | 0.1217 |
0.0507 | 49.0 | 174293 | 0.1753 | 0.1212 |
0.0577 | 50.0 | 177850 | 0.1742 | 0.1209 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6