metadata
language:
- gn
license: apache-2.0
tags:
- automatic-speech-recognition
- generated_from_trainer
- gn
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-xls-r-300m-gn-cv8
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: pt
metrics:
- name: Test WER
type: wer
value: 69.05
- name: Test CER
type: cer
value: 14.7
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8.0
type: mozilla-foundation/common_voice_8_0
args: gn
metrics:
- name: Test WER
type: wer
value: 69.05
wav2vec2-xls-r-300m-gn-cv8
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:
- Loss: 0.9392
- Wer: 0.7033
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
20.0601 | 5.54 | 100 | 5.1622 | 1.0 |
3.7052 | 11.11 | 200 | 3.2869 | 1.0 |
3.3275 | 16.65 | 300 | 3.2162 | 1.0 |
3.2984 | 22.22 | 400 | 3.1638 | 1.0 |
3.1111 | 27.76 | 500 | 2.5541 | 1.0 |
2.238 | 33.32 | 600 | 1.2198 | 0.9616 |
1.5284 | 38.86 | 700 | 0.9571 | 0.8593 |
1.2735 | 44.43 | 800 | 0.8719 | 0.8363 |
1.1269 | 49.97 | 900 | 0.8334 | 0.7954 |
1.0427 | 55.54 | 1000 | 0.7700 | 0.7749 |
1.0152 | 61.11 | 1100 | 0.7747 | 0.7877 |
0.943 | 66.65 | 1200 | 0.7151 | 0.7442 |
0.9132 | 72.22 | 1300 | 0.7224 | 0.7289 |
0.8397 | 77.76 | 1400 | 0.7354 | 0.7059 |
0.8577 | 83.32 | 1500 | 0.7285 | 0.7263 |
0.7931 | 88.86 | 1600 | 0.7863 | 0.7084 |
0.7995 | 94.43 | 1700 | 0.7562 | 0.6880 |
0.799 | 99.97 | 1800 | 0.7905 | 0.7059 |
0.7373 | 105.54 | 1900 | 0.7791 | 0.7161 |
0.749 | 111.11 | 2000 | 0.8125 | 0.7161 |
0.6925 | 116.65 | 2100 | 0.7722 | 0.6905 |
0.7034 | 122.22 | 2200 | 0.8989 | 0.7136 |
0.6745 | 127.76 | 2300 | 0.8270 | 0.6982 |
0.6837 | 133.32 | 2400 | 0.8569 | 0.7161 |
0.6689 | 138.86 | 2500 | 0.8339 | 0.6982 |
0.6471 | 144.43 | 2600 | 0.8441 | 0.7110 |
0.615 | 149.97 | 2700 | 0.9038 | 0.7212 |
0.6477 | 155.54 | 2800 | 0.9089 | 0.7059 |
0.6047 | 161.11 | 2900 | 0.9149 | 0.7059 |
0.5613 | 166.65 | 3000 | 0.8582 | 0.7263 |
0.6017 | 172.22 | 3100 | 0.8787 | 0.7084 |
0.5546 | 177.76 | 3200 | 0.8753 | 0.6957 |
0.5747 | 183.32 | 3300 | 0.9167 | 0.7212 |
0.5535 | 188.86 | 3400 | 0.8448 | 0.6905 |
0.5331 | 194.43 | 3500 | 0.8644 | 0.7161 |
0.5428 | 199.97 | 3600 | 0.8730 | 0.7033 |
0.5219 | 205.54 | 3700 | 0.9047 | 0.6982 |
0.5158 | 211.11 | 3800 | 0.8706 | 0.7033 |
0.5107 | 216.65 | 3900 | 0.9139 | 0.7084 |
0.4903 | 222.22 | 4000 | 0.9456 | 0.7315 |
0.4772 | 227.76 | 4100 | 0.9475 | 0.7161 |
0.4713 | 233.32 | 4200 | 0.9237 | 0.7059 |
0.4743 | 238.86 | 4300 | 0.9305 | 0.6957 |
0.4705 | 244.43 | 4400 | 0.9561 | 0.7110 |
0.4908 | 249.97 | 4500 | 0.9389 | 0.7084 |
0.4717 | 255.54 | 4600 | 0.9234 | 0.6982 |
0.4462 | 261.11 | 4700 | 0.9323 | 0.6957 |
0.4556 | 266.65 | 4800 | 0.9432 | 0.7033 |
0.4691 | 272.22 | 4900 | 0.9389 | 0.7059 |
0.4601 | 277.76 | 5000 | 0.9392 | 0.7033 |
Framework versions
- Transformers 4.16.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.1
- Tokenizers 0.11.0