metadata
license: mit
base_model: kavg/LiLT-RE-ZH
tags:
- generated_from_trainer
datasets:
- xfun
metrics:
- precision
- recall
- f1
model-index:
- name: checkpoints
results: []
checkpoints
This model is a fine-tuned version of kavg/LiLT-RE-ZH on the xfun dataset. It achieves the following results on the evaluation set:
- Precision: 0.4183
- Recall: 0.5884
- F1: 0.4890
- Loss: 0.4704
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
Training results
Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|
0.0761 | 41.67 | 500 | 0.3965 | 0.1487 | 0.3487 | 0.4596 |
0.0508 | 83.33 | 1000 | 0.4620 | 0.2456 | 0.4049 | 0.5379 |
0.0422 | 125.0 | 1500 | 0.4876 | 0.2545 | 0.4137 | 0.5934 |
0.0186 | 166.67 | 2000 | 0.4984 | 0.2960 | 0.4258 | 0.6010 |
0.0147 | 208.33 | 2500 | 0.4933 | 0.3388 | 0.4171 | 0.6035 |
0.0054 | 250.0 | 3000 | 0.5010 | 0.3819 | 0.4283 | 0.6035 |
0.0059 | 291.67 | 3500 | 0.5115 | 0.4177 | 0.4373 | 0.6162 |
0.006 | 333.33 | 4000 | 0.4974 | 0.3875 | 0.4281 | 0.5934 |
0.0026 | 375.0 | 4500 | 0.4910 | 0.4209 | 0.4226 | 0.5859 |
0.0078 | 416.67 | 5000 | 0.4952 | 0.3861 | 0.4275 | 0.5884 |
0.0035 | 458.33 | 5500 | 0.4890 | 0.4193 | 0.4183 | 0.5884 |
0.0022 | 500.0 | 6000 | 0.5059 | 0.4399 | 0.4395 | 0.5960 |
0.0042 | 541.67 | 6500 | 0.4979 | 0.4653 | 0.4288 | 0.5934 |
0.0079 | 583.33 | 7000 | 0.5037 | 0.4514 | 0.4309 | 0.6061 |
0.0047 | 625.0 | 7500 | 0.4937 | 0.4701 | 0.4227 | 0.5934 |
0.0032 | 666.67 | 8000 | 0.4937 | 0.4733 | 0.4227 | 0.5934 |
0.0048 | 708.33 | 8500 | 0.4339 | 0.6136 | 0.5084 | 0.5080 |
0.0004 | 750.0 | 9000 | 0.4183 | 0.5884 | 0.4890 | 0.4704 |
0.0044 | 791.67 | 9500 | 0.4213 | 0.5884 | 0.4910 | 0.4843 |
0.0014 | 833.33 | 10000 | 0.4234 | 0.5934 | 0.4942 | 0.5084 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1