LiLT-RE-ZH-SIN / README.md
kavg's picture
LiLT-RE-ZH-SIN
aade786 verified
metadata
license: mit
base_model: kavg/LiLT-RE-ZH
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: checkpoints
    results: []

checkpoints

This model is a fine-tuned version of kavg/LiLT-RE-ZH on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.4183
  • Recall: 0.5884
  • F1: 0.4890
  • Loss: 0.4704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step F1 Validation Loss Precision Recall
0.0761 41.67 500 0.3965 0.1487 0.3487 0.4596
0.0508 83.33 1000 0.4620 0.2456 0.4049 0.5379
0.0422 125.0 1500 0.4876 0.2545 0.4137 0.5934
0.0186 166.67 2000 0.4984 0.2960 0.4258 0.6010
0.0147 208.33 2500 0.4933 0.3388 0.4171 0.6035
0.0054 250.0 3000 0.5010 0.3819 0.4283 0.6035
0.0059 291.67 3500 0.5115 0.4177 0.4373 0.6162
0.006 333.33 4000 0.4974 0.3875 0.4281 0.5934
0.0026 375.0 4500 0.4910 0.4209 0.4226 0.5859
0.0078 416.67 5000 0.4952 0.3861 0.4275 0.5884
0.0035 458.33 5500 0.4890 0.4193 0.4183 0.5884
0.0022 500.0 6000 0.5059 0.4399 0.4395 0.5960
0.0042 541.67 6500 0.4979 0.4653 0.4288 0.5934
0.0079 583.33 7000 0.5037 0.4514 0.4309 0.6061
0.0047 625.0 7500 0.4937 0.4701 0.4227 0.5934
0.0032 666.67 8000 0.4937 0.4733 0.4227 0.5934
0.0048 708.33 8500 0.4339 0.6136 0.5084 0.5080
0.0004 750.0 9000 0.4183 0.5884 0.4890 0.4704
0.0044 791.67 9500 0.4213 0.5884 0.4910 0.4843
0.0014 833.33 10000 0.4234 0.5934 0.4942 0.5084

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1