|
|
|
from datasets import load_dataset, load_metric, Audio, Dataset |
|
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM |
|
import re |
|
import torch |
|
import argparse |
|
from typing import Dict |
|
|
|
def log_results(result: Dataset, args: Dict[str, str]): |
|
""" DO NOT CHANGE. This function computes and logs the result metrics. """ |
|
|
|
log_outputs = args.log_outputs |
|
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) |
|
|
|
|
|
wer = load_metric("wer") |
|
cer = load_metric("cer") |
|
|
|
|
|
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) |
|
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) |
|
|
|
|
|
result_str = ( |
|
f"WER: {wer_result}\n" |
|
f"CER: {cer_result}" |
|
) |
|
print(result_str) |
|
|
|
with open(f"{dataset_id}_eval_results.txt", "w") as f: |
|
f.write(result_str) |
|
|
|
|
|
if log_outputs is not None: |
|
pred_file = f"log_{dataset_id}_predictions.txt" |
|
target_file = f"log_{dataset_id}_targets.txt" |
|
|
|
with open(pred_file, "w") as p, open(target_file, "w") as t: |
|
|
|
|
|
def write_to_file(batch, i): |
|
p.write(f"{i}" + "\n") |
|
p.write(batch["prediction"] + "\n") |
|
t.write(f"{i}" + "\n") |
|
t.write(batch["target"] + "\n") |
|
|
|
result.map(write_to_file, with_indices=True) |
|
|
|
|
|
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str: |
|
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """ |
|
|
|
text = text.lower() if to_lower else text.upper() |
|
|
|
text = re.sub(invalid_chars_regex, " ", text) |
|
|
|
text = re.sub("\s+", " ", text).strip() |
|
|
|
return text |
|
|
|
|
|
def main(args): |
|
|
|
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) |
|
|
|
|
|
|
|
|
|
|
|
if args.greedy: |
|
processor = Wav2Vec2Processor.from_pretrained(args.model_id) |
|
decoder = None |
|
else: |
|
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id) |
|
decoder = processor.decoder |
|
|
|
feature_extractor = processor.feature_extractor |
|
tokenizer = processor.tokenizer |
|
|
|
|
|
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate)) |
|
|
|
|
|
if args.device is None: |
|
args.device = 0 if torch.cuda.is_available() else -1 |
|
|
|
config = AutoConfig.from_pretrained(args.model_id) |
|
model = AutoModelForCTC.from_pretrained(args.model_id) |
|
|
|
|
|
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer, |
|
feature_extractor=feature_extractor, decoder=decoder, device=args.device) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))] |
|
special_tokens = [ |
|
tokenizer.pad_token, tokenizer.word_delimiter_token, |
|
tokenizer.unk_token, tokenizer.bos_token, |
|
tokenizer.eos_token, |
|
] |
|
non_special_tokens = [x for x in tokens if x not in special_tokens] |
|
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]" |
|
normalize_to_lower = False |
|
for token in non_special_tokens: |
|
if token.isalpha() and token.islower(): |
|
normalize_to_lower = True |
|
break |
|
|
|
|
|
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower): |
|
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s) |
|
|
|
batch["prediction"] = prediction["text"] |
|
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower) |
|
return batch |
|
|
|
|
|
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) |
|
|
|
|
|
result = result.filter(lambda example: example["target"] != "") |
|
|
|
|
|
|
|
log_results(result, args) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" |
|
) |
|
parser.add_argument( |
|
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets" |
|
) |
|
parser.add_argument( |
|
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" |
|
) |
|
parser.add_argument( |
|
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`" |
|
) |
|
parser.add_argument( |
|
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds." |
|
) |
|
parser.add_argument( |
|
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds." |
|
) |
|
parser.add_argument( |
|
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis." |
|
) |
|
parser.add_argument( |
|
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference." |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=int, |
|
default=None, |
|
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", |
|
) |
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|