henryscheible's picture
update model card README.md
99e1565
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - crows_pairs
metrics:
  - accuracy
model-index:
  - name: bert-base-uncased_crows_pairs_finetuned
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: crows_pairs
          type: crows_pairs
          config: crows_pairs
          split: test
          args: crows_pairs
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7649006622516556

bert-base-uncased_crows_pairs_finetuned

This model is a fine-tuned version of bert-base-uncased on the crows_pairs dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1731
  • Accuracy: 0.7649
  • Tp: 0.3344
  • Tn: 0.4305
  • Fp: 0.1126
  • Fn: 0.1225

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Tp Tn Fp Fn
0.703 1.05 20 0.6889 0.5430 0.0 0.5430 0.0 0.4570
0.6884 2.11 40 0.6886 0.5 0.3013 0.1987 0.3444 0.1556
0.5388 3.16 60 0.6347 0.7053 0.1821 0.5232 0.0199 0.2748
0.2228 4.21 80 0.9802 0.6987 0.1887 0.5099 0.0331 0.2682
0.1644 5.26 100 0.7523 0.7583 0.3675 0.3907 0.1523 0.0894
0.0478 6.32 120 1.5712 0.6954 0.2053 0.4901 0.0530 0.2517
0.0465 7.37 140 1.2587 0.7351 0.2781 0.4570 0.0861 0.1788
0.0313 8.42 160 1.5825 0.7450 0.3775 0.3675 0.1755 0.0795
0.0137 9.47 180 1.3570 0.7318 0.2815 0.4503 0.0927 0.1755
0.04 10.53 200 2.1377 0.6921 0.1887 0.5033 0.0397 0.2682
0.0041 11.58 220 1.6776 0.7351 0.3278 0.4073 0.1358 0.1291
0.0042 12.63 240 1.8873 0.7086 0.2980 0.4106 0.1325 0.1589
0.0009 13.68 260 2.2464 0.6987 0.3543 0.3444 0.1987 0.1026
0.014 14.74 280 1.9753 0.7252 0.3245 0.4007 0.1424 0.1325
0.0026 15.79 300 1.8852 0.7417 0.2914 0.4503 0.0927 0.1656
0.0147 16.84 320 2.0273 0.7351 0.3113 0.4238 0.1192 0.1457
0.0009 17.89 340 1.7328 0.7483 0.3278 0.4205 0.1225 0.1291
0.0085 18.95 360 2.0146 0.7450 0.2815 0.4636 0.0795 0.1755
0.0001 20.0 380 2.0808 0.7450 0.3113 0.4338 0.1093 0.1457
0.0001 21.05 400 2.2655 0.7417 0.3609 0.3808 0.1623 0.0960
0.0034 22.11 420 2.0298 0.7583 0.3079 0.4503 0.0927 0.1490
0.0082 23.16 440 2.0650 0.7550 0.3344 0.4205 0.1225 0.1225
0.0001 24.21 460 2.2472 0.7450 0.2748 0.4702 0.0728 0.1821
0.0001 25.26 480 2.3655 0.7351 0.3709 0.3642 0.1788 0.0861
0.0004 26.32 500 2.1407 0.7550 0.3510 0.4040 0.1391 0.1060
0.0001 27.37 520 2.1168 0.7450 0.3642 0.3808 0.1623 0.0927
0.0002 28.42 540 2.2050 0.7517 0.3775 0.3742 0.1689 0.0795
0.0 29.47 560 2.0560 0.7682 0.3212 0.4470 0.0960 0.1358
0.0 30.53 580 2.0859 0.7715 0.3179 0.4536 0.0894 0.1391
0.0 31.58 600 2.0958 0.7715 0.3179 0.4536 0.0894 0.1391
0.0 32.63 620 2.1039 0.7715 0.3179 0.4536 0.0894 0.1391
0.0 33.68 640 2.1113 0.7715 0.3179 0.4536 0.0894 0.1391
0.0 34.74 660 2.1180 0.7715 0.3179 0.4536 0.0894 0.1391
0.0 35.79 680 2.1127 0.7715 0.3278 0.4437 0.0993 0.1291
0.0 36.84 700 2.1376 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 37.89 720 2.1460 0.7616 0.3377 0.4238 0.1192 0.1192
0.0 38.95 740 2.1507 0.7649 0.3377 0.4272 0.1159 0.1192
0.0 40.0 760 2.1548 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 41.05 780 2.1586 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 42.11 800 2.1620 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 43.16 820 2.1649 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 44.21 840 2.1674 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 45.26 860 2.1690 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 46.32 880 2.1705 0.7682 0.3377 0.4305 0.1126 0.1192
0.0 47.37 900 2.1717 0.7649 0.3344 0.4305 0.1126 0.1225
0.0 48.42 920 2.1726 0.7649 0.3344 0.4305 0.1126 0.1225
0.0 49.47 940 2.1731 0.7649 0.3344 0.4305 0.1126 0.1225

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1
  • Datasets 2.10.1
  • Tokenizers 0.13.2