emilys's picture
update model card README.md
130ab6a
metadata
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: twitter-roberta-base-dec2021-WNUT
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.7111716621253406
          - name: Recall
            type: recall
            value: 0.6244019138755981
          - name: F1
            type: f1
            value: 0.664968152866242
          - name: Accuracy
            type: accuracy
            value: 0.9642789042140724

twitter-roberta-base-dec2021-WNUT

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-dec2021 on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2152
  • Precision: 0.7112
  • Recall: 0.6244
  • F1: 0.6650
  • Accuracy: 0.9643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.46 25 0.2818 0.0982 0.0383 0.0551 0.9241
No log 0.93 50 0.2158 0.6181 0.4569 0.5254 0.9480
No log 1.39 75 0.1930 0.6682 0.5347 0.5940 0.9555
No log 1.85 100 0.1728 0.6583 0.5646 0.6079 0.9594
No log 2.31 125 0.1787 0.7050 0.5718 0.6314 0.9619
No log 2.78 150 0.2051 0.6979 0.5251 0.5993 0.9587
No log 3.24 175 0.1755 0.7172 0.5945 0.6501 0.9621
No log 3.7 200 0.1720 0.6943 0.6304 0.6608 0.9645
No log 4.17 225 0.1873 0.7203 0.6316 0.6730 0.9646
No log 4.63 250 0.1781 0.6934 0.6196 0.6545 0.9638
No log 5.09 275 0.1953 0.7040 0.6172 0.6577 0.9631
No log 5.56 300 0.1953 0.7223 0.6316 0.6739 0.9642
No log 6.02 325 0.1839 0.7008 0.6471 0.6729 0.9648
No log 6.48 350 0.1995 0.716 0.6423 0.6772 0.9650
No log 6.94 375 0.2056 0.7251 0.6184 0.6675 0.9640
No log 7.41 400 0.2044 0.7065 0.6220 0.6616 0.9640
No log 7.87 425 0.2042 0.7201 0.6400 0.6776 0.9650
No log 8.33 450 0.2247 0.7280 0.6244 0.6722 0.9638
No log 8.8 475 0.2060 0.7064 0.6447 0.6742 0.9649
0.0675 9.26 500 0.2152 0.7112 0.6244 0.6650 0.9643
0.0675 9.72 525 0.2086 0.7070 0.6495 0.6771 0.9650

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1