eliasbe's picture
Bætti við lágstafa sýnidæmi með nafnorðum sem eru líka sérnöfn
4679c51
metadata
license: agpl-3.0
tags:
  - generated_from_trainer
datasets:
  - mim_gold_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: XLMR-ENIS-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mim_gold_ner
          type: mim_gold_ner
          args: mim-gold-ner
        metrics:
          - name: Precision
            type: precision
            value: 0.9002453676283949
          - name: Recall
            type: recall
            value: 0.896
          - name: F1
            type: f1
            value: 0.8981176669198953
          - name: Accuracy
            type: accuracy
            value: 0.9843747637694087
widget:
  - text: >-
      systurnar guðrún og monique voru einar í skóginum umkringdar víði, eik og
      reyni með þá ósk að sameinast fjölskyldu sinni sem fór á mai thai og í bíó
      paradís að sjá jim carey leika í the eternal sunshine of the spotless
      mind.

XLMR-ENIS-finetuned-ner

This model is a fine-tuned version of vesteinn/XLMR-ENIS on the mim_gold_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0827
  • Precision: 0.9002
  • Recall: 0.896
  • F1: 0.8981
  • Accuracy: 0.9844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0567 1.0 2904 0.1081 0.8486 0.8140 0.8309 0.9796
0.0302 2.0 5808 0.0906 0.8620 0.8298 0.8456 0.9818
0.0197 3.0 8712 0.0948 0.8691 0.8447 0.8567 0.9826

Framework versions

  • Transformers 4.11.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.12.1
  • Tokenizers 0.10.3