metadata
license: agpl-3.0
tags:
- generated_from_trainer
datasets:
- mim_gold_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: XLMR-ENIS-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: mim_gold_ner
type: mim_gold_ner
args: mim-gold-ner
metrics:
- name: Precision
type: precision
value: 0.9002453676283949
- name: Recall
type: recall
value: 0.896
- name: F1
type: f1
value: 0.8981176669198953
- name: Accuracy
type: accuracy
value: 0.9843747637694087
widget:
- text: >-
systurnar guðrún og monique voru einar í skóginum umkringdar víði, eik og
reyni með þá ósk að sameinast fjölskyldu sinni sem fór á mai thai og í bíó
paradís að sjá jim carey leika í the eternal sunshine of the spotless
mind.
XLMR-ENIS-finetuned-ner
This model is a fine-tuned version of vesteinn/XLMR-ENIS on the mim_gold_ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0827
- Precision: 0.9002
- Recall: 0.896
- F1: 0.8981
- Accuracy: 0.9844
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0567 | 1.0 | 2904 | 0.1081 | 0.8486 | 0.8140 | 0.8309 | 0.9796 |
0.0302 | 2.0 | 5808 | 0.0906 | 0.8620 | 0.8298 | 0.8456 | 0.9818 |
0.0197 | 3.0 | 8712 | 0.0948 | 0.8691 | 0.8447 | 0.8567 | 0.9826 |
Framework versions
- Transformers 4.11.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3