transformers documentation

RemBERT

RemBERT

Overview

The RemBERT model was proposed in Rethinking Embedding Coupling in Pre-trained Language Models by Hyung Won Chung, Thibault FĂ©vry, Henry Tsai, Melvin Johnson, Sebastian Ruder.

The abstract from the paper is the following:

We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that allocating additional capacity to the output embedding provides benefits to the model that persist through the fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger output embeddings prevent the model’s last layers from overspecializing to the pre-training task and encourage Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage.

Tips:

For fine-tuning, RemBERT can be thought of as a bigger version of mBERT with an ALBERT-like factorization of the embedding layer. The embeddings are not tied in pre-training, in contrast with BERT, which enables smaller input embeddings (preserved during fine-tuning) and bigger output embeddings (discarded at fine-tuning). The tokenizer is also similar to the Albert one rather than the BERT one.

RemBertConfig

class transformers.RemBertConfig < > expand 

( vocab_size = 250300 hidden_size = 1152 num_hidden_layers = 32 num_attention_heads = 18 input_embedding_size = 256 output_embedding_size = 1664 intermediate_size = 4608 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 classifier_dropout_prob = 0.1 max_position_embeddings = 512 type_vocab_size = 2 initializer_range = 0.02 layer_norm_eps = 1e-12 use_cache = True is_encoder_decoder = False pad_token_id = 0 bos_token_id = 312 eos_token_id = 313 **kwargs )

This is the configuration class to store the configuration of a RemBertModel. It is used to instantiate an RemBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the remert-large architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

RemBertTokenizer

class transformers.RemBertTokenizer < > expand 

( vocab_file do_lower_case = False remove_space = True keep_accents = True bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

Construct a RemBERT tokenizer. Based on SentencePiece.

This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.

Attributes: spmodel (SentencePieceProcessor): The _SentencePiece processor that is used for every conversion (string, tokens and IDs).

build_inputs_with_special_tokens < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) ⟶ List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A REMBERT sequence has the following format:

  • single sequence: [CLS] X [SEP]
  • pair of sequences: [CLS] A [SEP] B [SEP]
get_special_tokens_mask < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) ⟶ List[int]

Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

create_token_type_ids_from_sequences < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) ⟶ List[int]

Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

If token_ids_1 is None, this method only returns the first portion of the mask (0s).

RemBertTokenizerFast

class transformers.RemBertTokenizerFast < > expand 

( vocab_file = None tokenizer_file = None do_lower_case = True remove_space = True keep_accents = False bos_token = '[CLS]' eos_token = '[SEP]' unk_token = '<unk>' sep_token = '[SEP]' pad_token = '<pad>' cls_token = '[CLS]' mask_token = '[MASK]' **kwargs )

Construct a “fast” RemBert tokenizer (backed by HuggingFace’s tokenizers library). Based on Unigram. This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods

build_inputs_with_special_tokens < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) ⟶ List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RemBERT sequence has the following format:

  • single sequence: [CLS] X [SEP]
  • pair of sequences: [CLS] A [SEP] B [SEP]
get_special_tokens_mask < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) ⟶ List[int]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

create_token_type_ids_from_sequences < > expand 

( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) ⟶ List[int]

Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

if token_ids_1 is None, only returns the first portion of the mask (0s).

RemBertModel

class transformers.RemBertModel < > expand 

( config add_pooling_layer = True )

The bare RemBERT Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True. To be used in a Seq2Seq model, the model needs to initialized with both is_decoder argument and add_cross_attention set to True; an encoder_hidden_states is then expected as an input to the forward pass.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None encoder_hidden_states = None encoder_attention_mask = None past_key_values = None use_cache = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)

The RemBertModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertModel
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertModel.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state

RemBertForCausalLM

class transformers.RemBertForCausalLM < > expand 

( config )

RemBERT Model with a language modeling head on top for CLM fine-tuning. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None encoder_hidden_states = None encoder_attention_mask = None past_key_values = None labels = None use_cache = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)

The RemBertForCausalLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertForCausalLM, RemBertConfig
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> config = RemBertConfig.from_pretrained("rembert")
>>> config.is_decoder = True
>>> model = RemBertForCausalLM.from_pretrained('rembert', config=config)

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_logits = outputs.logits

RemBertForMaskedLM

class transformers.RemBertForMaskedLM < > expand 

( config )

RemBERT Model with a language modeling head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None encoder_hidden_states = None encoder_attention_mask = None labels = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ MaskedLMOutput or tuple(torch.FloatTensor)

The RemBertForMaskedLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertForMaskedLM
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForMaskedLM.from_pretrained('rembert')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

RemBertForSequenceClassification

class transformers.RemBertForSequenceClassification < > expand 

( config )

RemBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None labels = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ SequenceClassifierOutput or tuple(torch.FloatTensor)

The RemBertForSequenceClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example of single-label classification:

>>> from transformers import RemBertTokenizer, RemBertForSequenceClassification
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForSequenceClassification.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

Example of multi-label classification:

>>> from transformers import RemBertTokenizer, RemBertForSequenceClassification
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForSequenceClassification.from_pretrained('rembert', problem_type="multi_label_classification")

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([[1, 1]], dtype=torch.float) # need dtype=float for BCEWithLogitsLoss
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

RemBertForMultipleChoice

class transformers.RemBertForMultipleChoice < > expand 

( config )

RemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None labels = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ MultipleChoiceModelOutput or tuple(torch.FloatTensor)

The RemBertForMultipleChoice forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertForMultipleChoice
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForMultipleChoice.from_pretrained('rembert')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors='pt', padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss = outputs.loss
>>> logits = outputs.logits

RemBertForTokenClassification

class transformers.RemBertForTokenClassification < > expand 

( config )

RemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None labels = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ TokenClassifierOutput or tuple(torch.FloatTensor)

The RemBertForTokenClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertForTokenClassification
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForTokenClassification.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

RemBertForQuestionAnswering

class transformers.RemBertForQuestionAnswering < > expand 

( config )

RemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward < > expand 

( input_ids = None attention_mask = None token_type_ids = None position_ids = None head_mask = None inputs_embeds = None start_positions = None end_positions = None output_attentions = None output_hidden_states = None return_dict = None ) ⟶ QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

The RemBertForQuestionAnswering forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, RemBertForQuestionAnswering
>>> import torch

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = RemBertForQuestionAnswering.from_pretrained('rembert')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits

TFRemBertModel

class transformers.TFRemBertModel < > expand 

( *args **kwargs )

The bare RemBERT Model transformer outputing raw hidden-states without any specific head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None encoder_hidden_states: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None encoder_attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None past_key_values: typing.Union[typing.Tuple[typing.Tuple[typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]]], NoneType] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFBaseModelOutputWithPoolingAndCrossAttentions or `tuple(tf.Tensor)“

The TFRemBertModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertModel
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertModel.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)

>>> last_hidden_states = outputs.last_hidden_state

TFRemBertForMaskedLM

class transformers.TFRemBertForMaskedLM < > expand 

( *args **kwargs )

RemBERT Model with a language modeling head on top.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFMaskedLMOutput or `tuple(tf.Tensor)“

The TFRemBertForMaskedLM forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForMaskedLM
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForMaskedLM.from_pretrained('rembert')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="tf")
>>> inputs["labels"] = tokenizer("The capital of France is Paris.", return_tensors="tf")["input_ids"]

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFRemBertForCausalLM

class transformers.TFRemBertForCausalLM < > expand 

( *args **kwargs )

RemBERT Model with a language modeling head on top for CLM fine-tuning.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None encoder_hidden_states: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None encoder_attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None past_key_values: typing.Union[typing.Tuple[typing.Tuple[typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor]]], NoneType] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFCausalLMOutputWithCrossAttentions or tuple(tf.Tensor)

encoderhidden_states (tf.Tensor of shape (batch_size, sequence_length, hidden_size), _optional): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoderattention_mask (tf.Tensor of shape (batch_size, sequence_length), _optional): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]:

  • 1 for tokens that are not masked,
  • 0 for tokens that are masked.

pastkey_values (Tuple[Tuple[tf.Tensor]] of length config.n_layers) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If past_key_values are used, the user can optionally input only the last decoder_input_ids (those that don’t have their past key value states given to this model) of shape (batch_size, 1) instead of all decoder_input_ids of shape (batch_size, sequence_length). use_cache (bool, _optional, defaults to True): If set to True, past_key_values key value states are returned and can be used to speed up decoding (see past_key_values). Set to False during training, True during generation labels (tf.Tensor or np.ndarray of shape (batch_size, sequence_length), optional): Labels for computing the cross entropy classification loss. Indices should be in [0, ..., config.vocab_size - 1].

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForCausalLM
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForCausalLM.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> logits = outputs.logits

TFRemBertForSequenceClassification

class transformers.TFRemBertForSequenceClassification < > expand 

( *args **kwargs )

RemBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFSequenceClassifierOutput or `tuple(tf.Tensor)“

The TFRemBertForSequenceClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForSequenceClassification
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForSequenceClassification.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> inputs["labels"] = tf.reshape(tf.constant(1), (-1, 1)) # Batch size 1

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFRemBertForMultipleChoice

class transformers.TFRemBertForMultipleChoice < > expand 

( *args **kwargs )

RemBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFMultipleChoiceModelOutput or `tuple(tf.Tensor)“

The TFRemBertForMultipleChoice forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForMultipleChoice
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForMultipleChoice.from_pretrained('rembert')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."

>>> encoding = tokenizer([prompt, prompt], [choice0, choice1], return_tensors='tf', padding=True)
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> outputs = model(inputs)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> logits = outputs.logits

TFRemBertForTokenClassification

class transformers.TFRemBertForTokenClassification < > expand 

( *args **kwargs )

RemBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None labels: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFTokenClassifierOutput or `tuple(tf.Tensor)“

The TFRemBertForTokenClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForTokenClassification
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForTokenClassification.from_pretrained('rembert')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> input_ids = inputs["input_ids"]
>>> inputs["labels"] = tf.reshape(tf.constant([1] * tf.size(input_ids).numpy()), (-1, tf.size(input_ids))) # Batch size 1

>>> outputs = model(inputs)
>>> loss = outputs.loss
>>> logits = outputs.logits

TFRemBertForQuestionAnswering

class transformers.TFRemBertForQuestionAnswering < > expand 

( *args **kwargs )

RemBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a tf.keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.

TF 2.0 models accepts two formats as inputs:

  • having all inputs as keyword arguments (like PyTorch models), or
  • having all inputs as a list, tuple or dict in the first positional arguments.

This second option is useful when using tf.keras.Model.fit method which currently requires having all the tensors in the first argument of the model call function: model(inputs).

If you choose this second option, there are three possibilities you can use to gather all the input Tensors in the first positional argument :

  • a single Tensor with input_ids only and nothing else: model(inputs_ids)
  • a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: model([input_ids, attention_mask]) or model([input_ids, attention_mask, token_type_ids])
  • a dictionary with one or several input Tensors associated to the input names given in the docstring: model({"input_ids": input_ids, "token_type_ids": token_type_ids})
call < > expand 

( input_ids: typing.Union[typing.List[tensorflow.python.framework.ops.Tensor], typing.List[numpy.ndarray], typing.List[tensorflow.python.keras.engine.keras_tensor.KerasTensor], typing.Dict[str, tensorflow.python.framework.ops.Tensor], typing.Dict[str, numpy.ndarray], typing.Dict[str, tensorflow.python.keras.engine.keras_tensor.KerasTensor], tensorflow.python.framework.ops.Tensor, numpy.ndarray, tensorflow.python.keras.engine.keras_tensor.KerasTensor, NoneType] = None attention_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None token_type_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None position_ids: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None head_mask: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None inputs_embeds: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None start_positions: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None end_positions: typing.Union[numpy.ndarray, tensorflow.python.framework.ops.Tensor, NoneType] = None training: typing.Optional[bool] = False **kwargs ) ⟶ TFQuestionAnsweringModelOutput or `tuple(tf.Tensor)“

The TFRemBertForQuestionAnswering forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import RemBertTokenizer, TFRemBertForQuestionAnswering
>>> import tensorflow as tf

>>> tokenizer = RemBertTokenizer.from_pretrained('rembert')
>>> model = TFRemBertForQuestionAnswering.from_pretrained('rembert')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> input_dict = tokenizer(question, text, return_tensors='tf')
>>> outputs = model(input_dict)
>>> start_logits = outputs.start_logits
>>> end_logits = outputs.end_logits

>>> all_tokens = tokenizer.convert_ids_to_tokens(input_dict["input_ids"].numpy()[0])
>>> answer = ' '.join(all_tokens[tf.math.argmax(start_logits, 1)[0] : tf.math.argmax(end_logits, 1)[0]+1])