metadata
tags:
- generated_from_trainer
datasets:
- wikiann
metrics:
- precision
- recall
- f1
- accuracy
inference: false
language:
- sk
model-index:
- name: bertoslav-limited-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann sk
type: wikiann
args: sk
metrics:
- name: Precision
type: precision
value: 0.8985571260306242
- name: Recall
type: recall
value: 0.9173994738819993
- name: F1
type: f1
value: 0.9078805459481573
- name: Accuracy
type: accuracy
value: 0.9700235061239639
Named Entity Recognition based on bertoslav-limited
This model is a fine-tuned version of crabz/bertoslav-limited on the Slovak wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.2119
- Precision: 0.8986
- Recall: 0.9174
- F1: 0.9079
- Accuracy: 0.9700
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2953 | 1.0 | 834 | 0.1516 | 0.8413 | 0.8647 | 0.8529 | 0.9549 |
0.0975 | 2.0 | 1668 | 0.1304 | 0.8787 | 0.9056 | 0.8920 | 0.9658 |
0.0487 | 3.0 | 2502 | 0.1405 | 0.8916 | 0.8958 | 0.8937 | 0.9660 |
0.025 | 4.0 | 3336 | 0.1658 | 0.8850 | 0.9116 | 0.8981 | 0.9669 |
0.0161 | 5.0 | 4170 | 0.1739 | 0.8974 | 0.9127 | 0.9050 | 0.9693 |
0.0074 | 6.0 | 5004 | 0.1888 | 0.8900 | 0.9144 | 0.9020 | 0.9687 |
0.0051 | 7.0 | 5838 | 0.1996 | 0.8946 | 0.9145 | 0.9044 | 0.9693 |
0.0039 | 8.0 | 6672 | 0.2052 | 0.8993 | 0.9158 | 0.9075 | 0.9697 |
0.0024 | 9.0 | 7506 | 0.2112 | 0.8946 | 0.9171 | 0.9057 | 0.9696 |
0.0018 | 10.0 | 8340 | 0.2119 | 0.8986 | 0.9174 | 0.9079 | 0.9700 |
Framework versions
- Transformers 4.14.0.dev0
- Pytorch 1.10.0
- Datasets 1.16.1
- Tokenizers 0.10.3