crabz's picture
Update README.md
7e050ec
metadata
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
inference: false
language:
  - sk
model-index:
  - name: bertoslav-limited-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann sk
          type: wikiann
          args: sk
        metrics:
          - name: Precision
            type: precision
            value: 0.8985571260306242
          - name: Recall
            type: recall
            value: 0.9173994738819993
          - name: F1
            type: f1
            value: 0.9078805459481573
          - name: Accuracy
            type: accuracy
            value: 0.9700235061239639

Named Entity Recognition based on bertoslav-limited

This model is a fine-tuned version of crabz/bertoslav-limited on the Slovak wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2119
  • Precision: 0.8986
  • Recall: 0.9174
  • F1: 0.9079
  • Accuracy: 0.9700

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2953 1.0 834 0.1516 0.8413 0.8647 0.8529 0.9549
0.0975 2.0 1668 0.1304 0.8787 0.9056 0.8920 0.9658
0.0487 3.0 2502 0.1405 0.8916 0.8958 0.8937 0.9660
0.025 4.0 3336 0.1658 0.8850 0.9116 0.8981 0.9669
0.0161 5.0 4170 0.1739 0.8974 0.9127 0.9050 0.9693
0.0074 6.0 5004 0.1888 0.8900 0.9144 0.9020 0.9687
0.0051 7.0 5838 0.1996 0.8946 0.9145 0.9044 0.9693
0.0039 8.0 6672 0.2052 0.8993 0.9158 0.9075 0.9697
0.0024 9.0 7506 0.2112 0.8946 0.9171 0.9057 0.9696
0.0018 10.0 8340 0.2119 0.8986 0.9174 0.9079 0.9700

Framework versions

  • Transformers 4.14.0.dev0
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.10.3