chintagunta85's picture
update model card README.md
df5554d
metadata
tags:
  - generated_from_trainer
datasets:
  - species_800
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: electramed-small-SPECIES800-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: species_800
          type: species_800
          config: species_800
          split: train
          args: species_800
        metrics:
          - name: Precision
            type: precision
            value: 0.6221498371335505
          - name: Recall
            type: recall
            value: 0.7470664928292047
          - name: F1
            type: f1
            value: 0.6789099526066352
          - name: Accuracy
            type: accuracy
            value: 0.9831434110359828

electramed-small-SPECIES800-ner

This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the species_800 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0513
  • Precision: 0.6221
  • Recall: 0.7471
  • F1: 0.6789
  • Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0536 1.0 359 0.0971 0.6138 0.5554 0.5832 0.9795
0.0309 2.0 718 0.0692 0.6175 0.6063 0.6118 0.9808
0.0563 3.0 1077 0.0582 0.6424 0.6910 0.6658 0.9819
0.0442 4.0 1436 0.0553 0.5900 0.7523 0.6613 0.9814
0.0069 5.0 1795 0.0511 0.6291 0.7497 0.6841 0.9827
0.0141 6.0 2154 0.0505 0.6579 0.7471 0.6996 0.9837
0.0052 7.0 2513 0.0513 0.5965 0.7458 0.6628 0.9826
0.0573 8.0 2872 0.0509 0.6140 0.7445 0.6730 0.9828
0.0203 9.0 3231 0.0516 0.6118 0.7458 0.6722 0.9830
0.0101 10.0 3590 0.0513 0.6221 0.7471 0.6789 0.9831

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1