init
Browse files- 1_Pooling/config.json +7 -0
- README.md +125 -0
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- eval/similarity_evaluation_sts-dev_results.csv +45 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- similarity_evaluation_sts-test_results.csv +2 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Usage (HuggingFace Transformers)
|
38 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModel
|
42 |
+
import torch
|
43 |
+
|
44 |
+
|
45 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
46 |
+
def mean_pooling(model_output, attention_mask):
|
47 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
48 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
49 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
+
|
51 |
+
|
52 |
+
# Sentences we want sentence embeddings for
|
53 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
54 |
+
|
55 |
+
# Load model from HuggingFace Hub
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
57 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
58 |
+
|
59 |
+
# Tokenize sentences
|
60 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
61 |
+
|
62 |
+
# Compute token embeddings
|
63 |
+
with torch.no_grad():
|
64 |
+
model_output = model(**encoded_input)
|
65 |
+
|
66 |
+
# Perform pooling. In this case, mean pooling.
|
67 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
68 |
+
|
69 |
+
print("Sentence embeddings:")
|
70 |
+
print(sentence_embeddings)
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
## Evaluation Results
|
76 |
+
|
77 |
+
<!--- Describe how your model was evaluated -->
|
78 |
+
|
79 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
80 |
+
|
81 |
+
|
82 |
+
## Training
|
83 |
+
The model was trained with the parameters:
|
84 |
+
|
85 |
+
**DataLoader**:
|
86 |
+
|
87 |
+
`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
|
88 |
+
```
|
89 |
+
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
90 |
+
```
|
91 |
+
|
92 |
+
**Loss**:
|
93 |
+
|
94 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
95 |
+
|
96 |
+
Parameters of the fit()-Method:
|
97 |
+
```
|
98 |
+
{
|
99 |
+
"epochs": 4,
|
100 |
+
"evaluation_steps": 32,
|
101 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
102 |
+
"max_grad_norm": 1,
|
103 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
104 |
+
"optimizer_params": {
|
105 |
+
"lr": 2e-05
|
106 |
+
},
|
107 |
+
"scheduler": "WarmupLinear",
|
108 |
+
"steps_per_epoch": null,
|
109 |
+
"warmup_steps": 132,
|
110 |
+
"weight_decay": 0.01
|
111 |
+
}
|
112 |
+
```
|
113 |
+
|
114 |
+
|
115 |
+
## Full Model Architecture
|
116 |
+
```
|
117 |
+
SentenceTransformer(
|
118 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
|
119 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
120 |
+
)
|
121 |
+
```
|
122 |
+
|
123 |
+
## Citing & Authors
|
124 |
+
|
125 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output/training_nli_by_MNRloss_klue-roberta-base-2022-04-04_05-37-06/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.17.0",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.17.0",
|
5 |
+
"pytorch": "1.10.0+cu111"
|
6 |
+
}
|
7 |
+
}
|
eval/similarity_evaluation_sts-dev_results.csv
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
0,32,0.9364174362360864,0.9094216546694657,0.92582788694544,0.9017441643624815,0.9254401438588308,0.901526619591415,0.9195836305019299,0.8955015298062975
|
3 |
+
0,64,0.9387752275339513,0.9007437600357805,0.9225384658462545,0.8939835328003457,0.9224253234587552,0.8938864660272327,0.9312168927716451,0.8944727091686603
|
4 |
+
0,96,0.9468690622759517,0.9052071491166803,0.9315989701714651,0.8982278196123462,0.9312254058599362,0.8975479505188085,0.9408992391966308,0.8995410650319291
|
5 |
+
0,128,0.9513973438569597,0.9104143353257175,0.9390391178916682,0.903455540814021,0.9386622769013641,0.9027070675096522,0.9456786886784108,0.9037294612393371
|
6 |
+
0,160,0.9539637583127887,0.9114323825634303,0.9441187648063655,0.9069916361798683,0.9437786368251059,0.9058798379458675,0.9503494076269636,0.9054814833363348
|
7 |
+
0,192,0.9539124421909819,0.911112897783568,0.9421967634011064,0.9056968302261439,0.9419330172603467,0.9051007534608151,0.9493618507616046,0.9041584421873551
|
8 |
+
0,224,0.9551687995499981,0.9112834950543767,0.9438365083172408,0.9058067242890087,0.9434752751503982,0.9051846556830871,0.9496683457982172,0.9041114340546021
|
9 |
+
0,256,0.9554804203829234,0.9128381398473069,0.9485515866450848,0.9098893455661841,0.9483374653467044,0.9096530126998181,0.9507678704498552,0.9029032435696672
|
10 |
+
0,288,0.9562482086511792,0.9100148438780354,0.9448471974002534,0.9054040497059701,0.9446359378799348,0.9052784862655212,0.9492478983062795,0.8995691031757613
|
11 |
+
0,320,0.9561487187902168,0.9096581597799543,0.945520667765122,0.9057972506628995,0.9454266663505844,0.9056164597716856,0.950265539798975,0.9004332001920656
|
12 |
+
0,-1,0.9571052120202281,0.9111794329549592,0.9461612080839833,0.906620440561665,0.9459869566928014,0.9065482515307142,0.9513097386083957,0.9018320455077192
|
13 |
+
1,32,0.9589284376986155,0.9155851465996718,0.9483045904404686,0.9108832918913888,0.9480921463786799,0.910821728479482,0.9531169742770288,0.906775887608312
|
14 |
+
1,64,0.9570876996908693,0.9122643223095513,0.9469297025827347,0.9077753172683088,0.946887598589024,0.9078164669106759,0.9526850308960527,0.9035609405886594
|
15 |
+
1,96,0.9595173522480765,0.9185526235805104,0.949525873118562,0.9136694625933475,0.9493670154270055,0.9134103248142119,0.9541430512629039,0.910460139118153
|
16 |
+
1,128,0.9594034804425732,0.9177448302127982,0.9510410538205278,0.9140668054196116,0.9510066453124948,0.9139974774237459,0.9543353984825856,0.9093598532345999
|
17 |
+
1,160,0.9584134650306313,0.9172432054959888,0.9461025929414694,0.9105820950017797,0.9461444449624696,0.9103345148701154,0.9516067076326292,0.9082593020895156
|
18 |
+
1,192,0.9593122412588952,0.9177322113427256,0.9490222867938638,0.9126346356767571,0.9488741413840257,0.9123628373436895,0.9523702097361784,0.9074511942035157
|
19 |
+
1,224,0.9587664740779075,0.918486641668888,0.9488150974469091,0.9126174277822926,0.9487367568966477,0.9125062642535294,0.9522711523458558,0.9075626798355667
|
20 |
+
1,256,0.9604776700687462,0.9199549021488536,0.9507702520105745,0.9145412067206465,0.950627800866083,0.9143870291398981,0.9523122158141124,0.9075605425855164
|
21 |
+
1,288,0.9599948071138408,0.9167965164426752,0.949718666634352,0.9114113669685069,0.949585599134688,0.9113439336978632,0.9534018869898268,0.9063316617011595
|
22 |
+
1,320,0.9597816801503579,0.9164429645030677,0.9503627500328624,0.9123222978028438,0.9502739985277567,0.9121922779686731,0.953720293466597,0.906147244305871
|
23 |
+
1,-1,0.9598848308181257,0.9151735175421271,0.9499376525952087,0.9111668072052281,0.9498483507883388,0.9109439306773873,0.9538155052652163,0.905184329790349
|
24 |
+
2,32,0.9611249795383279,0.917696166089834,0.9511940498317587,0.9137962765524426,0.9511085346287841,0.91331617212849,0.955393707646168,0.9088780321895962
|
25 |
+
2,64,0.9616877811715796,0.9192479081637024,0.9523860863690279,0.9148297771613778,0.9523215186092309,0.9145050515739642,0.9556432386327292,0.9097805693912004
|
26 |
+
2,96,0.9604781269002473,0.9157677867440812,0.9495904511222646,0.9113192681649256,0.9495279215398057,0.9109291366628556,0.9542327564577004,0.9064814169932403
|
27 |
+
2,128,0.9611133334720325,0.9187520489352939,0.9522764505040499,0.9147749930763146,0.9521882757981746,0.9145110464845659,0.9557172940043167,0.9097987284377261
|
28 |
+
2,160,0.9615751896241393,0.9199000346954663,0.9518281640003243,0.9153267256925522,0.9516685292510961,0.9150998702417457,0.9548557351807491,0.909208279006306
|
29 |
+
2,192,0.9613341797906176,0.9191231442963551,0.9518160789845664,0.91428573334009,0.9516872478411317,0.9141634288270228,0.9550004692835815,0.9085085245917373
|
30 |
+
2,224,0.9616900120618316,0.919838634229465,0.9525592426357835,0.9150848867546918,0.9524253655928929,0.9148058202556733,0.9552728837262433,0.9089769103200213
|
31 |
+
2,256,0.9614442434723803,0.9192568512668169,0.9516094663271528,0.9143671042094657,0.9515011443642336,0.9139930210300242,0.9548639890929828,0.908475069608324
|
32 |
+
2,288,0.9618484932169079,0.920681574750307,0.9513790593502466,0.9152344298375478,0.9513181683023832,0.914947792016543,0.9538819302951755,0.9083427382093829
|
33 |
+
2,320,0.9615814166173311,0.9194168911286099,0.9511747679699945,0.9142165758694942,0.9510632043548606,0.9138110440408215,0.9536774502549238,0.9071540974992867
|
34 |
+
2,-1,0.9618899204830091,0.9197523219160592,0.9514990187584786,0.9144950284775409,0.9513724249074965,0.9141933958011308,0.9541000305950149,0.907493882362763
|
35 |
+
3,32,0.9615725200294286,0.9196699542618352,0.9500532438609471,0.9139447661680752,0.9499245880971301,0.9136385217304753,0.954052601801799,0.9082290205910208
|
36 |
+
3,64,0.9622641779564153,0.9208518537072761,0.9518685142228873,0.9157354368701474,0.9517278605856678,0.9154265739222907,0.9549183732412461,0.9091011626106166
|
37 |
+
3,96,0.9625325524437279,0.9211031170102869,0.9520056696349597,0.9157857115091826,0.9518802639360843,0.9155718273472446,0.9549038242948721,0.9093585420847464
|
38 |
+
3,128,0.962412207234652,0.9210918320267806,0.9521220082987237,0.9157850028819498,0.9519936696864797,0.9155149931694914,0.9549815974380843,0.9092520130538757
|
39 |
+
3,160,0.9625864612298495,0.9212151369556961,0.9524239137731138,0.9161263224728557,0.9522914047396616,0.9158954350467772,0.9551869771522131,0.9097375363919628
|
40 |
+
3,192,0.9627922108913867,0.9214139694219735,0.9523087980474476,0.9163644932226866,0.9521701958703442,0.9158994404958961,0.9550326043881759,0.9095774055845672
|
41 |
+
3,224,0.9630076661645971,0.9217946235113581,0.9525463989407941,0.9166150706332703,0.952410780891146,0.9161885755647432,0.9555716681641571,0.9102728493194283
|
42 |
+
3,256,0.9630675850486086,0.9222451399096487,0.952555889993494,0.9168340478166045,0.9524244870974917,0.9164701544694059,0.9553434910563082,0.9104731937749312
|
43 |
+
3,288,0.9630349696372591,0.9222882373298693,0.952605827051247,0.9168340478166045,0.9524710416836056,0.9165576301434459,0.9551684193943721,0.9101838578652106
|
44 |
+
3,320,0.9630215630333796,0.9222556859503128,0.9526062420847365,0.9168406528287275,0.9524752171203408,0.9165423624476087,0.9551697992335885,0.9101982615663468
|
45 |
+
3,-1,0.9630212619359664,0.9222594034012261,0.9526033726229892,0.9168338697124335,0.952472766628758,0.9165486567247956,0.9551685746586317,0.910192641811339
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2147a9742efe60296c22416c409fb7cd04b8ddf8ebf9852b6fe79d8b7becf5fd
|
3 |
+
size 442554737
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
similarity_evaluation_sts-test_results.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
|
2 |
+
-1,-1,0.8900689868339492,0.8892573547643868,0.8875096311088903,0.882654606412235,0.8867271453049435,0.8817527389246668,0.8786014218947737,0.8734982195607274
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "[CLS]", "eos_token": "[SEP]", "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "do_basic_tokenize": true, "never_split": null, "bos_token": "[CLS]", "eos_token": "[SEP]", "model_max_length": 512, "special_tokens_map_file": "/root/.cache/huggingface/transformers/9d0c87e44b00acfbfbae931b2e4068eb6311a0c3e71e23e5400bdf57cab4bfbf.70c17d6e4d492c8f24f5bb97ab56c7f272e947112c6faf9dd846da42ba13eb23", "name_or_path": "output/training_nli_by_MNRloss_klue-roberta-base-2022-04-04_05-37-06/", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|