anuragshas's picture
Update README.md
f83b190
metadata
language: te
datasets:
  - openslr
metrics:
  - wer
tags:
  - audio
  - automatic-speech-recognition
  - speech
  - xlsr-fine-tuning-week
license: apache-2.0
model-index:
  - name: Anurag Singh XLSR Wav2Vec2 Large 53 Telugu
    results:
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR te
          type: openslr
          args: te
        metrics:
          - name: Test WER
            type: wer
            value: 44.98

Wav2Vec2-Large-XLSR-53-Telugu

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Telugu using the OpenSLR SLR66 dataset. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import pandas as pd
# Evaluation notebook contains the procedure to download the data
df = pd.read_csv("/content/te/test.tsv", sep="\t")
df["path"] = "/content/te/clips/" + df["path"]
test_dataset = Dataset.from_pandas(df)
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") 
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

import torch
import torchaudio
from datasets import Dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from sklearn.model_selection import train_test_split
import pandas as pd
# Evaluation notebook contains the procedure to download the data
df = pd.read_csv("/content/te/test.tsv", sep="\t")
df["path"] = "/content/te/clips/" + df["path"]
test_dataset = Dataset.from_pandas(df)
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-telugu") 
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\_\;\:\"\“\%\‘\”\।\’\'\&]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def normalizer(text):
    # Use your custom normalizer
    text = text.replace("\\n","\n")
    text = ' '.join(text.split())
    text = re.sub(r'''([a-z]+)''','',text,flags=re.IGNORECASE)
    text = re.sub(r'''%'''," శాతం ", text)
    text = re.sub(r'''(/|-|_)'''," ", text)
    text = re.sub("ై","ై", text)
    text = text.strip()
    return text
def speech_file_to_array_fn(batch):
    batch["sentence"] = normalizer(batch["sentence"])
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()+ " "
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 44.98%

Training

70% of the OpenSLR Telugu dataset was used for training.

Train Split of annotations is here

Test Split of annotations is here

Training Data Preparation notebook can be found here

Training notebook can be foundhere

Evaluation notebook is here