metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: yt-special-batch88
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_9_0 id
type: mozilla-foundation/common_voice_9_0
config: id
split: train
args: id
metrics:
- name: Wer
type: wer
value: 5.357219480798112
yt-special-batch88
This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set:
- Loss: 0.2602
- Wer: 5.3572
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
37.1656 | 1.58 | 1000 | 31.4152 | 569.1440 |
15.0344 | 3.17 | 2000 | 13.2072 | 144.3489 |
7.6075 | 4.75 | 3000 | 5.8946 | 42.3836 |
2.5225 | 6.34 | 4000 | 2.0158 | 19.5430 |
0.5364 | 7.92 | 5000 | 0.2602 | 5.3572 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3