from collections import OrderedDict import torch import torch.nn as nn from functools import partial from timm.models.layers import trunc_normal_, DropPath, to_2tuple def conv_3xnxn(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (2, stride, stride), (1, 0, 0), groups=groups) def conv_1xnxn(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (1, kernel_size, kernel_size), (1, stride, stride), (0, 0, 0), groups=groups) def conv_3xnxn_std(inp, oup, kernel_size=3, stride=3, groups=1): return nn.Conv3d(inp, oup, (3, kernel_size, kernel_size), (1, stride, stride), (1, 0, 0), groups=groups) def conv_1x1x1(inp, oup, groups=1): return nn.Conv3d(inp, oup, (1, 1, 1), (1, 1, 1), (0, 0, 0), groups=groups) def conv_3x3x3(inp, oup, groups=1): return nn.Conv3d(inp, oup, (3, 3, 3), (1, 1, 1), (1, 1, 1), groups=groups) def conv_5x5x5(inp, oup, groups=1): return nn.Conv3d(inp, oup, (5, 5, 5), (1, 1, 1), (2, 2, 2), groups=groups) def bn_3d(dim): return nn.BatchNorm3d(dim) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = conv_1x1x1(in_features, hidden_features) self.act = act_layer() self.fc2 = conv_1x1x1(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.norm1 = bn_3d(dim) self.conv1 = conv_1x1x1(dim, dim, 1) self.conv2 = conv_1x1x1(dim, dim, 1) self.attn = conv_5x5x5(dim, dim, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = bn_3d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, C, T, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, C, T, H, W) return x class SplitSABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = conv_3x3x3(dim, dim, groups=dim) self.t_norm = norm_layer(dim) self.t_attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, C, T, H, W = x.shape attn = x.view(B, C, T, H * W).permute(0, 3, 2, 1).contiguous() attn = attn.view(B * H * W, T, C) attn = attn + self.drop_path(self.t_attn(self.t_norm(attn))) attn = attn.view(B, H * W, T, C).permute(0, 2, 1, 3).contiguous() attn = attn.view(B * T, H * W, C) residual = x.view(B, C, T, H * W).permute(0, 2, 3, 1).contiguous() residual = residual.view(B * T, H * W, C) attn = residual + self.drop_path(self.attn(self.norm1(attn))) attn = attn.view(B, T * H * W, C) out = attn + self.drop_path(self.mlp(self.norm2(attn))) out = out.transpose(1, 2).reshape(B, C, T, H, W) return out class SpeicalPatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) self.proj = conv_3xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0]) def forward(self, x): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) B, C, T, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous() return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, std=False): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) if std: self.proj = conv_3xnxn_std(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0]) else: self.proj = conv_1xnxn(in_chans, embed_dim, kernel_size=patch_size[0], stride=patch_size[0]) def forward(self, x): B, C, T, H, W = x.shape # FIXME look at relaxing size constraints # assert H == self.img_size[0] and W == self.img_size[1], \ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x) B, C, T, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, T, H, W, -1).permute(0, 4, 1, 2, 3).contiguous() return x class Uniformer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, depth=[5, 8, 20, 7], num_classes=400, img_size=224, in_chans=3, embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0.3, attn_drop_rate=0., drop_path_rate=0., norm_layer=None, split=False, std=False): super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = partial(nn.LayerNorm, eps=1e-6) self.patch_embed1 = SpeicalPatchEmbed( img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1], std=std) self.patch_embed3 = PatchEmbed( img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2], std=std) self.patch_embed4 = PatchEmbed( img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3], std=std) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depth))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth[0])]) self.blocks2 = nn.ModuleList([ CBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]], norm_layer=norm_layer) for i in range(depth[1])]) if split: self.blocks3 = nn.ModuleList([ SplitSABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ SplitSABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) for i in range(depth[3])]) else: self.blocks3 = nn.ModuleList([ SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]], norm_layer=norm_layer) for i in range(depth[2])]) self.blocks4 = nn.ModuleList([ SABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+depth[0]+depth[1]+depth[2]], norm_layer=norm_layer) for i in range(depth[3])]) self.norm = bn_3d(embed_dim[-1]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # Classifier head self.head = nn.Linear(embed_dim[-1], num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) for name, p in self.named_parameters(): # fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs # are multiplied by 0*0, which is hard for the model to move out of. if 't_attn.qkv.weight' in name: nn.init.constant_(p, 0) if 't_attn.qkv.bias' in name: nn.init.constant_(p, 0) if 't_attn.proj.weight' in name: nn.init.constant_(p, 1) if 't_attn.proj.bias' in name: nn.init.constant_(p, 0) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed1(x) x = self.pos_drop(x) for blk in self.blocks1: x = blk(x) x = self.patch_embed2(x) for blk in self.blocks2: x = blk(x) x = self.patch_embed3(x) for blk in self.blocks3: x = blk(x) x = self.patch_embed4(x) for blk in self.blocks4: x = blk(x) x = self.norm(x) x = self.pre_logits(x) return x def forward(self, x): x = self.forward_features(x) x = x.flatten(2).mean(-1) x = self.head(x) return x def uniformer_small(): return Uniformer( depth=[3, 4, 8, 3], embed_dim=[64, 128, 320, 512], head_dim=64, drop_rate=0.1) def uniformer_base(): return Uniformer( depth=[5, 8, 20, 7], embed_dim=[64, 128, 320, 512], head_dim=64, drop_rate=0.3)