Sakura-SOLAR-Instruct-DPO-v2
(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
Using DPO method.
With argilla/distilabel-math-preference-dpo.
I shared the information about my model. (training and code)
Please see: ⭐Sakura-SOLAR.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
Sakura-SOLAR-Instruct-DPO-v2 | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Sakura-SOLAR-Instruct-DPO-v1 | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
kyujinpy/Sakura-SOLAR-Instruct | 74.40 | 70.99 | 88.42 | 66.33 | 71.79 | 83.66 | 65.20 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Sakura-SOLAR-Instruct-DPO-v2"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.