metadata
language:
- ca
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- openslr
- collectivat/tv3_parla
- projecte-aina/parlament_parla
metrics:
- wer
model-index:
- name: Whisper Medium Ca
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ca
split: test
args: ca
metrics:
- name: Wer
type: wer
value: 10.0031
Whisper Medium Ca
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0, the Fleurs, the SLR69, the tb3_parla and the parlament_parla datasets. It achieves the following results on the evaluation set:
- eval_loss: 0.1905
- eval_wer: 10.0031
- eval_runtime: 10456.4485
- eval_samples_per_second: 1.563
- eval_steps_per_second: 0.195
- epoch: 0.2
- step: 2000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2