whisper_base_ateso / README.md
Eyesiga's picture
End of training
264d340 verified
metadata
language:
  - ate
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - tericlabs
metrics:
  - wer
model-index:
  - name: Whisper base ateso
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Sunbird
          type: tericlabs
        metrics:
          - name: Wer
            type: wer
            value: 27.710843373493976

Whisper base ateso

This model is a fine-tuned version of openai/whisper-base on the Sunbird dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5293
  • Wer: 27.7108

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4597 3.5 1000 0.5186 32.1285
0.1812 6.99 2000 0.4394 26.7738
0.0429 10.49 3000 0.4765 26.7738
0.016 13.99 4000 0.5157 27.3092
0.0053 17.48 5000 0.5293 27.7108

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2