metadata
license: mit
tags:
- generated_from_trainer
datasets:
- tweets_hate_speech_detection
metrics:
- accuracy
- f1
model-index:
- name: FirstTry
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweets_hate_speech_detection
type: tweets_hate_speech_detection
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9821679962458939
- name: F1
type: f1
value: 0.8692660550458716
FirstTry
This model is a fine-tuned version of roberta-base on the tweets_hate_speech_detection dataset. It achieves the following results on the evaluation set:
- Loss: 0.0847
- Accuracy: 0.9822
- F1: 0.8693
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.1159 | 1.0 | 1599 | 0.1019 | 0.9759 | 0.8270 |
0.0727 | 2.0 | 3198 | 0.0965 | 0.9795 | 0.8424 |
0.044 | 3.0 | 4797 | 0.0847 | 0.9822 | 0.8693 |
0.0301 | 4.0 | 6396 | 0.1121 | 0.9811 | 0.8660 |
0.0206 | 5.0 | 7995 | 0.1718 | 0.9700 | 0.8110 |
0.0176 | 6.0 | 9594 | 0.1453 | 0.9811 | 0.8591 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1
- Datasets 2.10.1
- Tokenizers 0.13.3