--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: bert-base-uncased-finetuned-cda results: [] --- # bert-base-uncased-finetuned-cda This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.0518 | 1.0 | 391 | 1.8074 | | 1.8971 | 2.0 | 782 | 1.7770 | | 1.8422 | 3.0 | 1173 | 1.7504 | | 1.7984 | 4.0 | 1564 | 1.7272 | | 1.777 | 5.0 | 1955 | 1.6912 | | 1.7532 | 6.0 | 2346 | 1.6920 | | 1.7323 | 7.0 | 2737 | 1.6826 | | 1.7251 | 8.0 | 3128 | 1.6687 | | 1.7108 | 9.0 | 3519 | 1.6553 | | 1.7076 | 10.0 | 3910 | 1.6702 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1