--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned results: [] --- # bert-base-uncased-finetuned This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1600 - Precision: 0.8614 - Recall: 0.9121 - F1: 0.8860 - Accuracy: 0.9548 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 327 | 0.1504 | 0.8629 | 0.8675 | 0.8652 | 0.9512 | | 0.2057 | 2.0 | 654 | 0.1462 | 0.8664 | 0.9034 | 0.8845 | 0.9548 | | 0.2057 | 3.0 | 981 | 0.1600 | 0.8614 | 0.9121 | 0.8860 | 0.9548 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.0+cu118 - Datasets 2.19.1 - Tokenizers 0.15.2