--- library_name: transformers license: apache-2.0 base_model: albert/albert-base-v1 tags: - generated_from_trainer metrics: - accuracy model-index: - name: classification_model_albert results: [] --- # classification_model_albert This model is a fine-tuned version of [albert/albert-base-v1](https://huggingface.co/albert/albert-base-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2353 - Accuracy: 0.9224 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2452 | 1.0 | 1563 | 0.2077 | 0.9186 | | 0.1795 | 2.0 | 3126 | 0.2353 | 0.9224 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3