--- language: - eu license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Tiny Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: validation args: eu metrics: - name: Wer type: wer value: 34.086924983376655 --- # Whisper Tiny Basque This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.6509 - Wer: 34.0869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3011 | 23.26 | 1000 | 0.6017 | 41.4677 | | 0.0904 | 46.51 | 2000 | 0.5919 | 35.6284 | | 0.0408 | 69.77 | 3000 | 0.6267 | 34.7095 | | 0.0265 | 93.02 | 4000 | 0.6420 | 34.3932 | | 0.0212 | 116.28 | 5000 | 0.6509 | 34.0869 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1