--- language: - pt license: apache-2.0 base_model: openai/whisper-base tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Base Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 pt type: mozilla-foundation/common_voice_13_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 19.28991555219663 --- # Whisper Base Portuguese This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the mozilla-foundation/common_voice_13_0 pt dataset. It achieves the following results on the evaluation set: - Loss: 0.3815 - Wer: 19.2899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3261 | 7.04 | 1000 | 0.4097 | 20.6766 | | 0.2632 | 14.08 | 2000 | 0.3884 | 19.5101 | | 0.2241 | 21.13 | 3000 | 0.3827 | 19.4690 | | 0.2048 | 28.17 | 4000 | 0.3815 | 19.2899 | | 0.1956 | 35.21 | 5000 | 0.3815 | 19.4033 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.15.1