--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-base results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: gl split: test args: gl metrics: - name: Wer type: wer value: 19.112168874172188 --- # openai/whisper-base This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5307 - Wer: 19.1122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0088 | 9.02 | 1000 | 0.4219 | 18.7776 | | 0.0015 | 19.02 | 2000 | 0.4754 | 18.6879 | | 0.0008 | 29.02 | 3000 | 0.5036 | 18.9000 | | 0.0005 | 39.02 | 4000 | 0.5225 | 19.0553 | | 0.0004 | 49.02 | 5000 | 0.5307 | 19.1122 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3