from typing import Any, Dict from lightning_utilities.core.rank_zero import rank_zero_only from omegaconf import OmegaConf from src.utils import pylogger log = pylogger.RankedLogger(__name__, rank_zero_only=True) @rank_zero_only def log_hyperparameters(object_dict: Dict[str, Any]) -> None: """Controls which config parts are saved by Lightning loggers. Additionally saves: - Number of model parameters :param object_dict: A dictionary containing the following objects: - `"cfg"`: A DictConfig object containing the main config. - `"model"`: The Lightning model. - `"trainer"`: The Lightning trainer. """ hparams = {} cfg = OmegaConf.to_container(object_dict["cfg"]) model = object_dict["model"] trainer = object_dict["trainer"] if not trainer.logger: log.warning("Logger not found! Skipping hyperparameter logging...") return hparams["model"] = cfg["model"] # save number of model parameters hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) hparams["model/params/trainable"] = sum( p.numel() for p in model.parameters() if p.requires_grad ) hparams["model/params/non_trainable"] = sum( p.numel() for p in model.parameters() if not p.requires_grad ) hparams["data"] = cfg["data"] hparams["trainer"] = cfg["trainer"] hparams["callbacks"] = cfg.get("callbacks") hparams["extras"] = cfg.get("extras") hparams["task_name"] = cfg.get("task_name") hparams["tags"] = cfg.get("tags") hparams["ckpt_path"] = cfg.get("ckpt_path") hparams["seed"] = cfg.get("seed") # send hparams to all loggers for logger in trainer.loggers: logger.log_hyperparams(hparams)