# @package _global_ # specify here default configuration # order of defaults determines the order in which configs override each other defaults: - _self_ - data: anomaly_clip - model: anomaly_clip - callbacks: default - logger: many_loggers # set logger here or use command line (e.g. `python train.py logger=tensorboard`) - trainer: default - paths: default - extras: default - hydra: default # information of object and prompt template - prompt: default # experiment configs allow for version control of specific hyperparameters # e.g. best hyperparameters for given model and datamodule - experiment: null # config for hyperparameter optimization - hparams_search: null # optional local config for machine/user specific settings # it's optional since it doesn't need to exist and is excluded from version control - optional local: default # debugging config (enable through command line, e.g. `python train.py debug=default) - debug: null # task name, determines output directory path task_name: "train" # tags to help you identify your experiments # you can overwrite this in experiment configs # overwrite from command line with `python train.py tags="[first_tag, second_tag]"` tags: ["dev"] # set False to skip model training train: True # evaluate on test set, using best model weights achieved during training # lightning chooses best weights based on the metric specified in checkpoint callback test: True # simply provide checkpoint path to resume training ckpt_path: null # seed for random number generators in pytorch, numpy and python.random seed: 2025