{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc00b36bf00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681846231572757174, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOuZI79J7Yw+dDv+PaxLsz8JcpI/EgnovnXn6z3Z6zw/9kUSP9PElr2LJQc/bycUQHucy78ye8w+Yh5cvgEKJcC3DQ28aw+uvGuRcr0vePo/vszMP39k8b68a5G+rhjpPxS23T+ms42/qD2MPojFk7/b39I+HC/xPsd7ib2z2XI+THrLu7kdxb+GIXa+KmUKPwMptT4Ivho/pQ0Iv1HwiD1c7pg+X7iqv0gdhT7xKZQ+hvO7Ps/Lgr4JKmW/mQ4vvx7AwD56MLY/nxvovdCRSr+8yxO/prONv6g9jD6IxZO/2ZzoPS+kyD5QcV48NycoPEovJT0vEvW/phDgvs59eD9lxyI/CcfDvnGGr77lo5Y/Wxcpv1zc8r/Q3Xs+UsOfPnqnCD99GqK/J5KZv7fSWbzkuzw/IXumP9q/Qb/ldVC/vMsTv6azjb+oPYw+iMWTvyX9zb2K9bg+alAyPZYh6T2pqCy8BPcCwJZ4C78kqms/GVvyPrCLQT6Uj6y+pqeqP41cZb+UWN6/sLHNPtAPyD5NRXU+7pebvuNhjL8KUwY/4YGEP/RGrT/Jh/K+4F0Dv7zLE7+ms42/qD2MPojFk7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABOeku2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjUGePQAAAAA+uuq/AAAAACtj+T0AAAAA33zfPwAAAADRHOS9AAAAAGjK2j8AAAAAm6ODPQAAAACGYu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0a/mNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAgKjL0AAAAA/lTovwAAAABoBpu8AAAAAKSk4T8AAAAATQLfPQAAAAAyN+Q/AAAAAJjqBj4AAAAAv43ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHHNELYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAAmQo+AAAAAFGh4b8AAAAAI1iWPQAAAAC69es/AAAAAIpvrL0AAAAAg+nnPwAAAADhyEe9AAAAAJRM3r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfUpW2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADLV8vAAAAABZwuG/AAAAAKOhAr4AAAAAQKPvPwAAAADvnEM7AAAAAA096j8AAAAAa3KuPQAAAAA+8t6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKPH9sabWmSMAWyUTegDjAF0lEdAv0sxPtUn5XV9lChoBkdApDWC/0ulGmgHTegDaAhHQL9Lz3FUADJ1fZQoaAZHQKTQSKOT7l9oB03oA2gIR0C/TEjOTq0MdX2UKGgGR0ClPGXXiBGyaAdN6ANoCEdAv03y2d/ax3V9lChoBkdApKBPqgRK6GgHTegDaAhHQL9Rb/8EV351fZQoaAZHQKPu97yhBZ9oB03oA2gIR0C/UhLIxQBQdX2UKGgGR0Cj2hObiIcjaAdN6ANoCEdAv1KR8eCCjHV9lChoBkdApGidiz9jw2gHTegDaAhHQL9USNpudf91fZQoaAZHQKRlSsunMt9oB03oA2gIR0C/WAMlgMMJdX2UKGgGR0Cj83aFdszmaAdN6ANoCEdAv1ifvRZ2ZHV9lChoBkdApBLnVurIYGgHTegDaAhHQL9ZHUMoc711fZQoaAZHQKSBpaxHG0hoB03oA2gIR0C/WrdjCpFTdX2UKGgGR0CknRcCHRCyaAdN6ANoCEdAv14802tMf3V9lChoBkdApOEeYWtU42gHTegDaAhHQL9e4J9y9251fZQoaAZHQKRcXKmKqGVoB03oA2gIR0C/X1lbVz6rdX2UKGgGR0CkmKT101ZUaAdN6ANoCEdAv2D3v3JxN3V9lChoBkdApSJW0w8GLWgHTegDaAhHQL9kkRceKbd1fZQoaAZHQKUCmxoqTbFoB03oA2gIR0C/ZTx1xKg7dX2UKGgGR0ClDP+vpyIYaAdN6ANoCEdAv2W7wAlv63V9lChoBkdApPGPdqL0jGgHTegDaAhHQL9natozvZ11fZQoaAZHQKTku1TBInVoB03oA2gIR0C/ausUIsy0dX2UKGgGR0CkExsN2C/XaAdN6ANoCEdAv2uQSOBDonV9lChoBkdApKc6J0nw5WgHTegDaAhHQL9sDY6GQCF1fZQoaAZHQKR7sWweNkxoB03oA2gIR0C/bblar3j/dX2UKGgGR0Ckf3d0Rvm6aAdN6ANoCEdAv3FIbS7XhHV9lChoBkdApJXJ9w3o92gHTegDaAhHQL9x6vFFUhp1fZQoaAZHQKSHFsjVx0doB03oA2gIR0C/cmpQxesxdX2UKGgGR0ClRkqgIyCWaAdN6ANoCEdAv3QTp0OmSHV9lChoBkdApYMJyIYWL2gHTegDaAhHQL93i2itaIN1fZQoaAZHQKTicLbYbsFoB03oA2gIR0C/eC5KjBVNdX2UKGgGR0Ck6mSWZ7XyaAdN6ANoCEdAv3itXYDkl3V9lChoBkdApRg8vysjmmgHTegDaAhHQL96X+zMRpV1fZQoaAZHQKRtg7JW/8FoB03oA2gIR0C/fhPUWl/IdX2UKGgGR0ClUhingpBpaAdN6ANoCEdAv365K3/gi3V9lChoBkdApYpv4j8k2WgHTegDaAhHQL9/OGipNsZ1fZQoaAZHQKTgve3QUpNoB03oA2gIR0C/gOTyjHn2dX2UKGgGR0ClNyV9nbqRaAdN6ANoCEdAv4RYBU70WnV9lChoBkdApYhOSSvC/GgHTegDaAhHQL+E+Cih37l1fZQoaAZHQKWXJKGtZFJoB03oA2gIR0C/hXFLOAy3dX2UKGgGR0ClMZltbcGkaAdN6ANoCEdAv4cNVFQVK3V9lChoBkdApRi32kBS1mgHTegDaAhHQL+Ke8QqZtx1fZQoaAZHQKUqugPEsJ9oB03oA2gIR0C/iyK8Yht+dX2UKGgGR0CkaqqW9lEraAdN6ANoCEdAv4ue1KGtZHV9lChoBkdApKAue18b72gHTegDaAhHQL+NSgam4y51fZQoaAZHQKNqFWWhRIloB03oA2gIR0C/kNjx0+1SdX2UKGgGR0CjbVzgdfb9aAdN6ANoCEdAv5F7nzQNTnV9lChoBkdAo3lc9U0el2gHTegDaAhHQL+R+8a4tpV1fZQoaAZHQKRMEh1Tzd1oB03oA2gIR0C/k6XHR1HOdX2UKGgGR0ClgxwAuIykaAdN6ANoCEdAv5c3cEeQuHV9lChoBkdApczMBuGbkWgHTegDaAhHQL+X2YBvJil1fZQoaAZHQKW6hI8yN4toB03oA2gIR0C/mFafe1rqdX2UKGgGR0CmAEu3DvVmaAdN6ANoCEdAv5nzQzDXOHV9lChoBkdApkLgj2SMcmgHTegDaAhHQL+dUdIXj2l1fZQoaAZHQKYL9bwBo25oB03oA2gIR0C/ne8ohIOIdX2UKGgGR0CmVaxT850baAdN6ANoCEdAv55m8M/hVHV9lChoBkdApZLuqkuYhWgHTegDaAhHQL+gAXhfjS51fZQoaAZHQKXcwO/cnE5oB03oA2gIR0C/o5om5UcXdX2UKGgGR0CmCeIis4kvaAdN6ANoCEdAv6RE7p3X7XV9lChoBkdAplvadBjWkWgHTegDaAhHQL+k1bwBo251fZQoaAZHQKXqkr0aqCJoB03oA2gIR0C/ppG1x82KdX2UKGgGR0Cl90qzZ6D5aAdN6ANoCEdAv6occLjPwHV9lChoBkdAo8KKI55qumgHTegDaAhHQL+qxAYYR/V1fZQoaAZHQKT7yqnWJ79oB03oA2gIR0C/q0NKqXF+dX2UKGgGR0Clv7NmDlHSaAdN6ANoCEdAv6zn8BMi8nV9lChoBkdApXhnnU2DQWgHTegDaAhHQL+wbCdjG1h1fZQoaAZHQKXaHtZ3cHpoB03oA2gIR0C/sRH3L3bmdX2UKGgGR0ClyP8BMi8naAdN6ANoCEdAv7GR2xIJ7nV9lChoBkdApfKhhttQ9GgHTegDaAhHQL+zOpYcNpd1fZQoaAZHQKZk3YI0IkZoB03oA2gIR0C/tqm9xp+MdX2UKGgGR0Cl9ESpJf6XaAdN6ANoCEdAv7dObG3nZHV9lChoBkdAplPHb48EFGgHTegDaAhHQL+3z/qPfbd1fZQoaAZHQKWK08EFGG5oB03oA2gIR0C/uYLR8c+8dX2UKGgGR0ClshbONYKZaAdN6ANoCEdAv70WxLTQV3V9lChoBkdApKRRyU9py2gHTegDaAhHQL+9wbEP1+R1fZQoaAZHQKTYzmCAc1hoB03oA2gIR0C/vkWmk30gdX2UKGgGR0ClH04gieNDaAdN6ANoCEdAv8AAB4lhPXV9lChoBkdApQX+Hck+o2gHTegDaAhHQL/DcmgrYoR1fZQoaAZHQKP7o56t1ZFoB03oA2gIR0C/xBMnRb8ndX2UKGgGR0CkxfXTd+G5aAdN6ANoCEdAv8SRWsA/93V9lChoBkdApNnXC9AX22gHTegDaAhHQL/GNyE+Pil1fZQoaAZHQKR3/BGhEjRoB03oA2gIR0C/ybQBT4tZdX2UKGgGR0CkoZw4bS7YaAdN6ANoCEdAv8peR+z+m3V9lChoBkdApZU8A3kxRGgHTegDaAhHQL/K29Sde6Z1fZQoaAZHQKVtXYA80UJoB03oA2gIR0C/zJ+tSydGdX2UKGgGR0ClsIjOs1baaAdN6ANoCEdAv9AdOclPanV9lChoBkdApHHD0nPVu2gHTegDaAhHQL/QwfO2RaJ1fZQoaAZHQKTpREpiI+JoB03oA2gIR0C/0UIgeRxMdX2UKGgGR0CkfDs7lq8EaAdN6ANoCEdAv9L0jX4CZHV9lChoBkdApX4uKXOW0WgHTegDaAhHQL/WhdIXj2l1fZQoaAZHQKQd7P557gNoB03oA2gIR0C/1yt0eU6gdX2UKGgGR0ClUaQ7kn1GaAdN6ANoCEdAv9evKSxJNHV9lChoBkdApLO5Rjz7M2gHTegDaAhHQL/Zbh/RVp91fZQoaAZHQKRBbZgXuVpoB03oA2gIR0C/3N0hib2EdX2UKGgGR0CkmZnXEqDsaAdN6ANoCEdAv92EmJFb3XV9lChoBkdApUPEKVpsXWgHTegDaAhHQL/eAezD4xl1fZQoaAZHQKXqh4N7SiNoB03oA2gIR0C/36h7/n4gdX2UKGgGR0CloimyxA0LaAdN6ANoCEdAv+Mz9ycTanV9lChoBkdApiQrxgAp8WgHTegDaAhHQL/j3vUjLSx1fZQoaAZHQKUtmyKNyYJoB03oA2gIR0C/5GSM1jy4dX2UKGgGR0ClqT/TkQwsaAdN6ANoCEdAv+Y0BFNL13VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 156250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}